

Real-Time Object Detection System for

Drone-Based Search and Rescue

Connor Mattless

N00213409

Supervisor: Joachim Pietsch

Second Reader: Timm Jeschawitz

Major Project

DL836 BSc (Hons) in Creative Computing

Year 4

1

1 Abstract

Recent advancements in Artificial Intelligence (AI), Machine Learning (ML), Deep

Learning, and Object Detection have transformed various industries by enabling

efficient, cost-effective, and automated processes. These technologies hold huge

potential to enhance Search and Rescue (SAR) operations, particularly in critical

tasks such as victim identification, location tracking, and hazard detection. This

project explores the integration of AI in SAR scenarios, focusing on their capacity to

improve operational accuracy and efficiency.

2

2 Acknowledgements

I would like to express my sincere gratitude to my supervisor, Joachim Pietsch, and

my second reader, Timm Jeschawitz, for their invaluable guidance, constructive

feedback, and dedicated support that helped bring this project to fruition.

I also appreciate the insightful contributions and encouragement of my colleagues at

the UCD Centre for Cybersecurity & Cybercrime Investigation throughout the

development of this project.

3

The incorporation of material without formal and proper acknowledgement (even with no

deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should

document this in your submitted work and if you have any doubt as to what level of

discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,

which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk

where they can be accessed by other. Be aware that removable media, used to transfer work, may

also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to

the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.

Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual

assessment. This would include jointly developed solutions as well as one

individual giving a solution to another who then makes some changes and

hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own

work.

Student: Connor Mattless

Signed:

Failure to complete and submit this form may lead to an investigation into your work.

4

3 Table of Contents

1 Abstract .. 1

2 Acknowledgements .. 2

3 Table of Contents ... 4

4 Table of Figures ... 7

5 Introduction .. 9

6 Research .. 11

 Introduction ... 11

 Object Detection ... 11

 What is Object Detection? ... 11

 Types of Object Detection .. 16

 Object Tracking... 17

 What is Object Tracking? ... 17

 Types of Object Tracking ... 18

 Applications of Object Detection & Tracking in SAR 19

7 Requirements ... 22

 Introduction ... 22

 Requirements Gathering ... 22

 Similar Applications ... 22

 User Requirements .. 26

 Functional Requirements ... 26

 Non-Functional Requirements ... 26

 Use Case Diagram .. 27

 Conclusion ... 27

8 Design .. 28

 Program Design .. 28

 Technologies ... 28

5

 Design Patterns ... 32

 Application Architecture ... 33

 User Interface Design .. 33

 Conclusion ... 34

9 Implementation ... 35

 Introduction ... 35

 Predevelopment.. 35

 Virtual Environment ... 35

 Continuous Integration Pipeline ... 35

 Pre-recorded Video & OpenCV2 ... 38

 Initial Model Implementation ... 39

 Improved Model .. 41

 PySide 6 Video Player .. 43

 Dialogs and Signals .. 46

 Signals in PySide / Qt .. 46

 Dialog handling .. 46

 Implementation .. 47

 DeepSort .. 47

 What is DeepSort?... 47

 Why DeepSort? ... 48

 How does the detection work? ... 49

 Settings .. 50

 Implementation .. 51

 Multi-Threading ... 52

 Threading & Processing... 53

 Multi-Threading Implementation... 54

 Multi-Processing Implementation ... 54

6

 Threading Conclusion .. 55

 Metadata Extraction .. 56

 Archive Processor ... 58

 Play / Pause ... 60

 Close Video .. 62

 Binary Compilation .. 64

 Creating a binary ... 64

 Automating Compilation ... 66

 Conclusion ... 68

 Implementation Conclusion ... 68

10 Testing ... 69

 Unit Testing .. 69

 Integration Testing .. 71

 Manual Testing ... 72

11 Further Development .. 73

12 Conclusion ... 74

 Final Words .. 75

13 Bibliography .. 76

7

4 Table of Figures

Figure 1: CNN diagram (MathWorks, n.d.) .. 13
Figure 2: Convolutional Layer (Modi, 2023) .. 14
Figure 3: Example batch output from CNN (Mattless, MP_video_processing, 2024)15
Figure 4: Object Detection v MOT (Klingler, 2023) .. 18
Figure 5: mAP50 results of Archangel dataset + YOLOv5 (Shen, et al., 2023) 20
Figure 6: USRI Loc8 (USRI, n.d.) .. 22
Figure 7: Loc8 Report generator (Aermatica3D, n.d.).. 23
Figure 8: ADIAT Image Viewer (Texsar, 2024) ... 24
Figure 9: MRMap Map view (Brookes, 2008) .. 25
Figure 10: Use Case Diagram ... 27
Figure 11: Ultralytics Hub .. 29
Figure 12: Google Colab ... 30
Figure 13: Block Diagram.. 33
Figure 14: Main Page Wireframe .. 34
Figure 15: V Env Command .. 35
Figure 16: Dockerfile ... 36
Figure 17: GitHub CI Yaml .. 37
Figure 18: Expanded Pipeline ... 38
Figure 19: Showing a video in Python ... 39
Figure 20: Notebook Model Training ... 40
Figure 21: Model Training Report .. 41
Figure 22: Large Model mAP .. 42
Figure 23: 'Lite' Model mAP .. 43
Figure 24: Initial Video Player ... 44
Figure 25: VideoPlayer Class .. 45
Figure 26: Dialog Handler Class ... 47
Figure 27: Dialog Handler Class Method ... 47
Figure 28: YoloDeepSortProcessor ... 48
Figure 29: VideoPlayer Model Methods .. 49
Figure 30: Drawing a rectangle & ID ... 50
Figure 31: Settings Dialog Class ... 50
Figure 32: SettingsDialog Model Loading .. 51
Figure 33: Multi-Processing Implementation ... 53
Figure 34: Multi-Processing Worker .. 55
Figure 35: MetadataProcessor .. 57
Figure 36: Metadata Viewer .. 58
Figure 37: VideoQueue Class ... 60
Figure 38: Adding Play / Pause Button .. 61
Figure 39: toggle_play_pause Method .. 62
Figure 40: Closure signal .. 63
Figure 41: Close button QPushButton ... 63

8

Figure 42: VideoPlayer close method.. 64
Figure 43: DroneLink Spec File ... 65
Figure 44: Binary Compilation Jobs .. 67
Figure 45: CI Test Job ... 70

9

5 Introduction

Over the past decade, the widespread availability of affordable and capable drones

has revolutionised many fields, including environmental monitoring, agriculture,

infrastructure inspection, and public safety. In particular, Search and Rescue (SAR)

operations have begun integrating drones into their workflows to enhance search

efficiency, improve crew safety, and expand operational reach. Drones serve as

force multipliers, enabling SAR teams to cover large and often hazardous areas

more quickly and with fewer personnel on the ground.

At the same time, advances in Artificial Intelligence (AI), Machine Learning (ML), and

Deep Learning (DL) have unlocked new capabilities in real-time image processing,

object detection, and classification. These technologies are now mature enough to

be embedded into resource-constrained systems such as drones, making it feasible

to perform onboard analysis of video streams during flight. This integration creates

the possibility for automated systems that can detect, classify, and track objects of

interest—such as missing persons or potential hazards—in real-time.

Despite these advancements, many SAR operations remain heavily manual, often

relying on human operators to visually scan live video feeds. This is not only time-

consuming and fatiguing but also prone to human error, especially in low-visibility or

high-stress environments. Additionally, the majority of object detection solutions

available are either closed source, prohibitively expensive, or require significant post-

processing effort, making them unsuitable for smaller organisations with limited

resources.

This project seeks to address these limitations by developing an open, low-cost

software solution—tentatively titled DroneLink—that enhances drone-based SAR

capabilities through integrated real-time object detection and tracking. The

application is designed to process both live and recorded video feeds, detect human

objects using pretrained deep learning models (e.g., YOLO), and maintain tracking

through DeepSORT-based multi-object tracking algorithms. Emphasis is placed on

usability, performance, and modularity to ensure the system is accessible to SAR

personnel with varying levels of technical expertise.

10

The primary objective is to provide a tool that can assist SAR teams in rapidly

locating individuals, minimising search time, and reducing the cognitive load on

operators. Additionally, the application supports exporting processed video and

metadata for reporting or review, improving operational transparency and post-

mission analysis.

By combining ML-based detection algorithms with an intuitive graphical interface and

support for widely available hardware, this project demonstrates how modern AI

technologies can be practically applied to life-saving applications in the field.

11

6 Research

The following section builds on research previously conducted in an earlier submitted

report, ‘Investigating Object Detection, Tracking & its Applications in Search and

Rescue’ (Mattless, 2024)

 Introduction

In recent years, advancements in Artificial Intelligence (AI), Machine Learning (ML),

and Object Detection have significantly increased their capabilities, driving

transformative changes across many industries. These technologies enable

processes that may have been time-consuming, costly, or required specialised

expertise to be executed with remarkable efficiency, often autonomously, through the

usage of neural networks. From identifying patterns in complex datasets to

automating intricate tasks, AI and ML have the potential to reshape how entire

industries operate, with object detection emerging as a key component in

applications that require precise identification and localisation of objects within

images or video streams.

This paper aims to explore the use cases of such technologies and their potential to

greatly benefit Search and Rescue (SAR) operations. By utilising the advancements

in AI, ML and Object Detection SAR mission efficiency could be improved through

the more accurate identification and location of individuals in distress, especially in

challenging environments or adverse conditions. Additionally, the integration of

tracking algorithms enables the constant monitoring of detection objects, giving SAR

crews constant, real-time updates on their location, movement and condition.

This paper investigates the algorithms and how they function, their practical

applications and the challenges they would encounter in a SAR context.

 Object Detection

 What is Object Detection?

Object detection is a computer vision technology that combines object classification

and localisation to identify and position objects within an image or video. It involves

recognising the type (class) of objects (e.g., car, person) and determining its exact

12

location within a scene. Object detection models typically employ feature extraction

techniques and neural network architecture like Convolutional Neural Networks

(CNNs) to process visual data and make predictions. Applications range from

autonomous vehicles such as cars and drones to surveillance and healthcare. (Murel

& Kavlakoglu, 2024)

6.2.1.1 How does object detection work?

Modern object detection uses ‘Deep Learning’ which is a subset of Machine

Learning.

Machine learning has manually selected features that are curated by the person

training the model, this can be effective with smaller datasets and has the benefit of

being less computationally intensive. Additionally, Machine learning algorithms are

trained and used on structured or tabular (e.g., Excel Spreadsheets) making them

useful for uses like recommender systems or predictive analytics (e.g., sales

forecasting).

Deep Learning (DL) is a subset of ML that uses neural networks with layers. These

are designed to find, learn and combine features from raw data without manual

intervention.

The most common neural networks used in object detection are Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) (Carmatec, 2024).

6.2.1.1.1 Convolutional Neural Networks

A CNN is composed of a series of layers. Input, output, and many hidden layers in

between.

13

Figure 1: CNN diagram (MathWorks, n.d.)

CNNs first apply filters (which are small samples of the input) to an input image to

detect features like simple edges, textures or shapes. The filters are applied to the

whole image in a convolution operation. A convolutional operation involves sliding

these filters across the input image, multiplying corresponding pixel values at each

position, and then summing the results to produce a single output value. The

convolution operation can then combine features to create complex or abstract

feature detection. These features found in the filter are then combined with the input

to create a feature map.

Between the convolutional layers are pooling layers, they are responsible for

downsizing the feature maps to reduce the number of parameters, controlling

overfitting and reducing weight oscillations. Pooling layers work by summarising

regions of the feature map. Typically, this is done by taking the max pooling or the

average pooling pixel values within each region. This reduces the spatial

dimensions, improving the computational efficiency, and helps to better generalise

the model by only keeping the most relevant information.

14

Figure 2: Convolutional Layer (Modi, 2023)

Next the activation layer applies a non-linear activation function, such as Rectified

Linear Unit (ReLu) to the output of the pooling layer. This allows the model to learn

more complex representations of the input data.

 A normalisation layer is then applied. The normalisation layer adjusts the scale of

the input data to keep the range of data values consistent. This helps prevent

extreme values from effecting the output data and ensures that all inputs are treated

more equally. Typically, in CNNs batch normalisation is used where a mean is

calculated across the input batch. This can reduce the time it takes for a model to

find a good solution during the training, further reduce overfitting and allows for

larger learning rates as the model will be less sensitive.

The input is then run through a dropout layer that randomly disables (drops out)

neurons during the training. This benefits the model by ensuring that the model

doesn’t simply memorise the training data but instead generalises.

Finally, a dense layer is run. The dense layer combines the features and makes a

final prediction. The activations from the previous layers are flattened and passed as

inputs to the dense layer which then produces a final output. (Modi, 2023)

The output in terms of object detection would be a bounding box around feature with

a selected class (e.g., person, car, etc)

15

Figure 3: Example batch output from CNN (Mattless, MP_video_processing, 2024)

6.2.1.1.2 Recurrent Neural Networks

RNNs are specifically designed to process sequential or temporal data, such as text,

audio, or video, which makes them distinct from CNNs. While both RNNs and CNNs

share basic neural network elements like layers and weights (as shown in Figure 1),

RNNs introduce a unique 'hidden state' mechanism. This hidden state acts as

memory, enabling the model to retain information from previous steps in the

sequence. This feature makes RNNs ideal for tasks where the order and context of

inputs are important. (GeeksForGeeks, 2024).

There are various types of RNNs, each suited to different tasks. For tracking objects

in a video, a Many-to-Many (N-to-N) RNN is the most appropriate choice, as it

processes each frame of the video sequentially and generates an output for every

input. There are many types of RNN, some of which blur the line between RNN and

CNN, but that is out of scope for this paper. (GeeksForGeeks, 2024).

An RNN works by processing each element of the input sequence (e.g., a frame

from a video or a word in a sentence) one at a time. This sequential approach allows

the RNN to capture the temporal relationships between elements. If the input data is

16

textual or categorical, it is first converted into numerical representations, a process

known as feature representation. (GeeksForGeeks, 2024).

At the start of the sequence, the hidden state is initialised as a vector of zeros. For

each input in the sequence, the RNN updates its hidden state based on the current

input and the previous hidden state. This step is repeated for every element in the

sequence, progressively accumulating information from all previous states.
(GeeksForGeeks, 2024).

The final hidden state is then used to compute the network's output, which is

compared to the actual target output to calculate the error. To train the RNN, the

model uses Backpropagation Through Time (BPTT), a method that backpropagates

the error through each time step to update the network's weights and improve

performance (GeeksForGeeks, 2024).

 Types of Object Detection

Modern object detection techniques can be broadly categorised into two categories,

anchor and non-anchor-based methods. (Amjoud & Amrouch, 2023)

Anchor based algorithms can be further categorised into two categories. One-stage

detectors and two-stage detectors. Both of these detectors utilise boundaries around

potential objects.

Two-stage detectors split the detection process into a two-step process: Region

Proposal and Classification, with the classification step containing some location

refinement.

Region proposal identifies regions of interest (ROIs) in the feature map that are likely

to contain objects. The second stage, Classification, processes these ROIs and

attempts to classify the objects and refine the bounding boxes.

Two-stage detectors are known for their high accuracy in both localisation and

recognition but are generally unsuitable for real-time processing as they require

significant compute power. Some examples of two-stage detectors are R-CNN,

Faster R-CNN and Mask R-CNN.

One-stage detectors combine the Region Proposal and Classification stages into a

single stage. This has the effect of making the model slightly less accurate but much

17

faster allowing it to be used in real-time processing. The most notable example of a

one-stage detector is YOLO (You Only Look Once) (Jiao, et al., 2019)

Non-anchor-based techniques remove the need for predefined bounding boxes, they

instead predict the centre point of an object in the image and directly regress the

objects size and shape. This approach to object detection reduces the computational

complexity and avoids errors relating to the anchor box design.

There are also transformer bases approaches to object detection that have recently

been developed but these approaches require large datasets and significant

computational power in return for a simpler and more unified detection pipeline

(Amjoud & Amrouch, 2023).

 Object Tracking

 What is Object Tracking?

Object tracking is the process of identifying and continuously tracking objects across

a series of frames in a video stream after the object has been initially detected. In the

context of video tracking, a neural network processes sequential frames and

estimates the object's current and previous locations, maintaining continuity as long

as possible.

The tracking process typically involves several key steps. The first is target

initialisation, where the object of interest is defined. A bounding box is drawn around

the object in the initial frame, and the tracker uses this reference to locate and track

the object in subsequent frames, updating the bounding box as needed.

Next, the tracker performs appearance modelling, which focuses on capturing the

visual features of the object to handle variations in appearance caused by changes

in lighting, angle, or scale. This is analogous to feature extraction and helps the

tracker maintain accuracy across frames. (Barla, 2021)

Motion prediction is then used to estimate the object's trajectory based on its

previous positions. Techniques such as Kalman filters or particle filters can be

employed to predict the object's likely position in the next frame, facilitating smooth

and reliable tracking. (Barla, 2021)

18

Finally, object association ensures that the object detected in the current frame is

correctly matched with the same object from previous frames. This step is crucial for

maintaining tracking continuity, even in cases where the object undergoes occlusion,

changes appearance, or momentarily exits the frame. (Barla, 2021)

Object tracking has numerous real-world applications, such as in security, where it

can be used to monitor individuals across multiple cameras in a surveillance system.

(Barla, 2021)

 Types of Object Tracking

At a high level there are two types of object tracking: Single Object Tracking (SOT)

and Multi-Object Tracking (MOT).

MOT differs from general object detection in that instead of just trying to classify

each object in a scene it will also assign a unique ID to each object to distinguish

each discrete object even if they have the same class.

Figure 4: Object Detection v MOT (Klingler, 2023)

As seen above in Figure 4, a general object detection algorithm just sees ‘car’

whereas a MOT is attempting to identify different cars as being different from each

other. (Klingler, 2023)

19

Single Object Tracking, sometimes called Visual Object Tracking, focuses on

continuously tracking a single object through an image sequence after its initial

detection. The object is initialised in the first frame. SOTs are designed to handle

changes in the object’s appearance, size and orientation as well as challenges such

as lighting conditions and occlusion. SOT is designed for real-time processing and

as such it is used in applications such as security systems for tracking individuals or

for tracking hand / eye movements.

A drawback of SOT is that it cannot handle new objects appearing in the middle of a

sequence (Klingler, 2023).

 Applications of Object Detection & Tracking in SAR

There are a number of areas that object detection & tracking can greatly benefit

search and rescue operations and crews. Over the last 15 years drones have gone

from being a prototype technology in the SAR field to becoming a staple piece of

equipment for rescue workers. The advancements and miniaturisation of optical and

Forward Looking Infrared (FLIR) cameras mean that a single person portable drone

can carry a whole suite of sensors as well as perform autonomous actions whilst

reporting to a ground station or controller. A common usage of drones is to utilise an

on-board FLIR camera to locate victims in the wilderness. (Dukowitz, 2024).

In parallel to civilian and humanitarian applications, drones are increasingly being

utilised in combat. Most notably in the ongoing conflict in Ukraine. There, commercial

and military grade drones have been repurposed for reconnaissance, target

acquisition and even direct engagement. These drone systems often rely on video

feeds and manual control. Integrating real-time object detection and tracking

software could offer significant advantages to the platform. For instance, automated

identification and geolocation of opposing forces or equipment could streamline

intelligence gathering pipelines and reduce operator workload. The same core

technologies developed for SAR use could be adapted to support autonomous

targeting, situational awareness, and mission planning in complex combat

environments.

Integrating object detection and tracking would add yet another powerful dimension

to the drone-based camera system by allowing the possibility for the drone to

20

autonomously find and report potential victims. Combining the object tracking with

the drones integrated GPS data would allow the system to report potential areas for

crews to investigate, which could improve efficiency in the allocation of SAR

resources and time (McGee, Mathew, & Gonzalez, 2020).

SAR does present a number of challenges to the usage of object detection and

tracking, particularly as SAR teams frequently operate in environments that may

have adverse conditions or in environments where poor thermal contrast or the

target could be partially occluded. Addressing these issues presents a significant

challenge as it requires advanced model training due to the number of variables

present in drone imagery. Training the model on datasets specifically designed for

the purpose would be required. In research conducted into the usage of human

detection from drones using YOLO models with a specifically created and labelled

data set called ‘Archangel’ with significant fine tuning found a max detection rate of

around 75 mAP50 for standing poses but significantly less for other poses. (Shen, et

al., 2023). mAP50 refers to the mean Average Precision over the threshold of 50%.

This metric measures how accurately a model detects objects by comparing the

predicted bounding boxes to the ground truth boxes. A higher mAP value indicates

better performance. In this case a score of 75 mAP50 indicates that the model

correctly identified and localised objects with at least 50% overlap 75% of the time.

Figure 5: mAP50 results of Archangel dataset + YOLOv5 (Shen, et al., 2023)

Recent advancements in thermal imaging, particularly with YOLOv5 models, have

demonstrated robust performance in detecting individuals in challenging

environments. For example, drones equipped with thermal cameras can detect

individuals in harsh conditions such as low-light or occluded areas. In research

involving simulated SAR missions, thermal object detection combined with multiple-

target tracking achieved high tracking precision under adverse conditions. However,

21

challenges like track breakage due to rapid drone movements or occlusions remain,

emphasizing the need for refined detection models and better dataset diversity

(Yeom, 2024).

Aside from victim identification, object detection can be used for hazard detection

and avoidance for ground crews, enabling the better planning of routes when moving

or to identify hazards in disaster zones such as active fires or flooding. Detecting

potential debris and hazards for SAR operators has the potential to enhance both the

safety and effectiveness of SAR teams and operations (Nehete, Dharrao, Pise, &

Bongale, 2024).

Environmental factors such as occlusions and weather conditions can greatly

degrade the quality and accuracy of the detections.

In conclusion, the integration of detection and tracking algorithms would represent a

significant leap in SAR capabilities and has the potential to save lives in real world

conditions. I believe that there should be future efforts into researching and refining

these technologies to expand and improve their use cases in this field.

22

7 Requirements

 Introduction

The purpose of the requirements phase was to allow the discovery of what the

application should be able to do and what the end user would find essential and what

would be classified as a ‘nice-top-have’

From the research it as concluded that development should proceed in Python as

the ‘Pythonic’ workflow appeared to have the best documentation and available

tools. The development of the application would include the creation of a GUI as well

as training models to process the video. The model would be based on Ultralytics’

YOLO series of machine learning models.

 Requirements Gathering

 Similar Applications

7.2.1.1 Loc8

Loc8 is a software package developed by USR (“Unmanned Systems Research”)

that allows a user to scan images from drones to allow the location people or other

objects. Loc8 does not use machine learning in its approach to this task. Instead,

using pixel analysis to identify the target using colour and other information.

Figure 6: USRI Loc8 (USRI, n.d.)

23

Figure 7: Loc8 Report generator (Aermatica3D, n.d.)

7.2.1.1.1 Advantages

Loc8 has many advantages. It allows its users to quickly scan images produced by

drones and generate a map of the located target from the image. Loc8 also allows

the generation of a report that outlines the actions taken in the application and it’s

processing of images. Due to the low hardware requirements of the pixel analysis

and the no requirement for an internet connection it is ideal for teams that may not

have the best computing equipment or limited access to the Internet.

7.2.1.1.2 Disadvantages

Loc8 also has some notable disadvantages to its use. Primarily it is closed source

and requires a licence to use. This means that many smaller organisations may not

be able to access the tool due to budgetary constraints. Larger organisations may

require that such software is “open source, closed community” meaning that law

enforcement and other similar agencies can inspect the source code before deciding

to use the tool.

Additionally, Loc8 has no facility to accept live video from a drone and is solely for

processing images after-the-fact.

24

7.2.1.2 Texsar ADIAT

Figure 8: ADIAT Image Viewer (Texsar, 2024)

Automated drone image analysis tool (ADIAT) developed by Texsar. Similar to Loc8

ADIAT allows the processing of images from drone footage using pixel colour data.

7.2.1.2.1 Advantages

ADIAT is feature rich allowing the user to fine tune the processing of the images

though various means such as altering the minimum object area, the colour to

search for, or even changing the algorithm that is used to search the image for

objects. If the user also inputs a ‘SRT’ type file into the application, then location data

can be processed alongside the images allowing for geolocation. The geolocation

information can then subsequently be exported to a KML file for use on Google Earth

and similar programs.

7.2.1.2.2 Disadvantages

ADIAT, similar to Loc8 can only process images or videos that have been uploaded

after the flight of the drone has finished. Because of the configurability of the tool, it

also has a steep learning curve that may require end users to receive training on the

tool to be properly utilized as the detection algorithms are required to be tuned by the

user.

25

7.2.1.3 MRMap

Figure 9: MRMap Map view (Brookes, 2008)

MRMap was “conceived and developed by Mountain Rescue Team personnel in the

Lake District (UK).” (MRMap, n.d.) It is currently in widespread use within SAR teams

across the UK and Ireland.

7.2.1.3.1 Advantages

MRMaps allows for near real-time tracking of SAR assets via radio pings meaning

that people and assets can be tracked even in areas where there is limited internet

access.

The ability to receive real-time data from drones as well as set waypoints and search

areas for drones gives SAR teams a huge capability, allowing them to search areas

in a hands-off way.

7.2.1.3.2 Disadvantages

Similar again to the previous tools mentioned, the real-time analysis works by

processing pixel colour data which requires the user to know what the colour of their

target may be, possibly leading to issues with detection.

26

Because the tool has been in development for almost 30 years there are many

systems that users may struggle to integrate with the tool due to the code base being

reliant on legacy systems and packages.

 User Requirements

As part of my requirements gathering, I reached out to Dublin Wicklow Mountain

Rescue Team (DWMRT) as well as members of An Garda Síochána (AGS).

Unfortunately, my contact with DWMRT fell through as they were not able to allocate

the resources I would need to conduct proper research into their specific use case in

the timeframe that this project required. I did, however, manage to speak to some

active and former members of AGS in an unofficial capacity in regard to what

features that they think would be useful to support similar mission profiles.

 Functional Requirements

• Realtime Video Processing: The application should be able to take in a video

source from the machine it is running on and run the model on the incoming

video stream.

• Pre-recorded Video Processing: The application should be able to run the

model on a video clip uploaded to the program from the local file system.

• Metadata Extraction: The application should be able to extract any available

metadata from the video source.

• Video Archival: The program should be able to export the processed video

back to the local filesystem with the processing information included in the file.

• Target Identification: The application should aid the user in identifying a

potential target of interest.

 Non-Functional Requirements

• Accurate: The program should be able to detect human objects with a ‘greater

than chance’ probability.

• Performant: The program should perform at a usable framerate on a range of

computer hardware that are commonly available.

• Usable: The program should have a user-friendly GUI that conforms to design

norms.

27

• Reliable: The program should not be prone to crashing or performing

unexpectedly when running.

 Use Case Diagram

To envisage what the user’s interactions with the program will be, a Use Case

Diagram was created. The diagram displays the actions that a user can take within

the program and what the outcome of those actions would be.

Figure 10: Use Case Diagram

 Conclusion

Having completed research into similar tools, spoken with industry professionals and

planned how my application will flow it was now clearer how the program should

proceed in relation to its features and what its users will need to find the software

useful.

28

8 Design

The system was designed with a strong emphasis on modularity, performance, and

ease of future expansion. Given the complex challenge of integrating real-time video

processing, deep learning inference, and GUI responsiveness within a single

application, consideration was given to both software and system architecture. The

overall architecture uses a class-based, modular approach where modules such as

video input, detection, metadata extraction, and user interface logic—are

encapsulated in their own files. This modular approach allows for scalable,

disconnected development, simplified testing, and straightforward maintenance.

 Program Design

The primary application was written in Python 3.12 due to its extensive ecosystem of

libraries, strong community support, and its native compatibility with PyTorch,

OpenCV, and PySide. The decision to build the GUI in PySide6 (Qt for Python) was

driven by its robust widget system, native feel, and extensive documentation.

 Technologies

8.1.1.1 Visual Studio Code & PyCharm

For the development of the application, I chose to use Microsoft’s Visual Studio

Code (VS Code) and Jet Brain’s PyCharm. I was using two code editors because

they both had strengths and weaknesses as well as my development was done

across multiple devices. I found VS Code better for rapid development where I would

be writing large amounts of code as it has, in my opinion, a better development

experience and quality of life features. On the other hand, PyCharm is specifically

designed for Python development, and it has comprehensive debugging and

package management tools that can make debugging easier.

29

8.1.1.2 Ultralytics Hub

Figure 11: Ultralytics Hub

Initially I was training my models purely locally on my machine. This proved to be an

extremely time-consuming endeavour. To save development time I moved to using a

cloud solution, Ultralytics Hub. This web interface provided my Ultralytics allowed me

to select a desired model and then upload my dataset to it for training. Once the

training had concluded I was able to download the weights from the model and use it

on my local computer.

Ultralytics Hub also provides me with easy to digest data about the accuracy of my

trained model, allowing me to compare between my model versions.

30

8.1.1.3 Google Colab

Figure 12: Google Colab

Together with Ultralytics Hub I used Google Colab for the compute power behind the

training of the model. Initially this was quite limited in its compute resources,

although still faster than training locally. I decided to purchase the ‘Pro’ version of

Colab as it greatly increased the compute power, I had available to me as well as

allowed my training to continue when my computer was switched off, meaning I

could train my models overnight.

8.1.1.4 Hyperparameter Tuning

To improve model performance and training efficiency, several hyperparameters

were adjusted during the training permutations.

• Batch Size: Batch size was adjusted to fit within Colab Pro’s memory

constraints. A batch size of 16 provided a good balance between accuracy

and memory cost. Batch size affects how many images are processed at once

during the training.

• Epochs: Epochs control how many times the model sees the full dataset.

More epochs give the model more opportunity to learn, but too many lead to

overfitting of the training dataset. During the training I initially used 50 epochs

but later raised the number to 100 after observing underfitting in the

validation.

31

• Learning Rate: I lowered the initial learning rate from 0.01 to 0.005 to

stabilise early training convolutions. The learning rate determines how much

the model’s weights are adjusted during the training. A high learning rate can

cause divergence which is when the model’s loss (error) does not decrease

and instead gets worse and worse over the course of the training.

• Momentum: The recommended momentum value of 0.937 was used, as

recommended in YOLO configurations. Momentum helps the more retain

passed gradient direction to smooth and accelerate training. This reduces the

oscillation in the model’s weights during training.

8.1.1.5 Docker / GitHub Actions

CI/CD pipeline environments are containerised and built with GitHub Actions to

produce binary artifacts using PyInstaller for OS-specific deployment and automated

testing.

8.1.1.6 DeepSORT

Used for Multi-Object Tracking (MOT). It assigns persistent IDs to objects across

frames using appearance embeddings and Kalman filtering. This provides stable

tracking of objects and reduces ID problems common in simple SORT algorithms.

8.1.1.7 OpenCV2

Employed for video decoding, image frame extraction, drawing bounding boxes, and

basic video processing tasks. It provides low-level control over frame operations and

is fully compatible with NumPy arrays and PyTorch tensors, making it well-suited for

pre- and post-processing.

8.1.1.8 PySide6

Used for building the graphical user interface. It provides a full-featured widget set,

layout management, and a signal-slot system to decouple GUI actions from backend

logic. PySide6 is modern, Qt6-compatible, and has better support for event-driven

programming than alternatives like Tkinter or wxPython.

32

 Design Patterns

For this project, a modular, object-oriented approach was adopted. Each functional

component of the application is encapsulated in its own class or group of classes.

This is aided by an instance based pattern for modules like the detection processor,

and a singleton pattern for shared state (e.g., frame queue management, video

player). Key design principles include:

• Signal-Slot Architecture: All GUI interactions and user inputs are connected

to backend logic using PySide6's built-in Signal and Slot mechanism. This

promotes non-blocking behaviour and prevents direct coupling between GUI

and logic layers.

• Encapsulation and Separation of Concerns: All major components, such

as detection, processing, display, and storage are decoupled and

communicate only through well-defined interfaces. This allows easier

refactoring and allows independent unit testing.

• Threading and Multiprocessing: A hybrid threading-multiprocessing

approach is used. Threads handle video capture and GUI responsiveness,

while multiprocessing handles compute-heavy detection and frame rendering,

taking full advantage of multi-core CPUs.

33

 Application Architecture

Figure 13: Block Diagram

 User Interface Design

The inherent limitations present in PySide 6, particularly with styling, significantly

constrained my design choices. This is due to the styling options defined by Qt,

which restricts customisation using style sheets or other visuals that would otherwise

be available in other frameworks. Despite these limitations development continued in

PySide 6 because it is currently the most modern and well documented GUI package

for Python.

To establish a foundation to develop upon I created some simple wireframes in

Figma (Fig. 14). This would serve as the blueprint for the application.

34

Figure 14: Main Page Wireframe

 Conclusion

Although there were certain constraints related to the visual design, the utilisation of

PySide 6 facilitates the development of a modern and easy to use GUI. Additionally,

the modular approach to the code base means that it is easily maintainable and

extendable. Having these design principles eases the development process by

removing the need for ad hoc modifications to core design elements or principles.

35

9 Implementation

 Introduction

This section provides a comprehensive overview of the development process

employed in the creation of the program, tentatively titled ‘DroneLink’. It outlines the

sequential steps taken during the development and expands on the rationale behind

the chosen methodologies. The implementation was guided by a modular design

architecture outlined in the design phase.

 Predevelopment

Prior to starting any functional code or training models, it was important to set up a

functional development environment, pipeline, and repository. This ensures that any

packages installed were local to the project, any code written was tested on the main

branch and finally that work in progress code wasn’t merged into the main branch.

 Virtual Environment

Before starting development in earnest, a virtual environment had to be created to

create an isolated dependency environment as well prevent packages from being

installed globally on the machine.

This was performed by running this command:

Figure 15: V Env Command

From this point the virtual environment could be activated and PIP packages

installed.

 Continuous Integration Pipeline

In order to run automated unit and integration tests on my code a CI pipeline that

runs a Docker environment was needed. This ensures that the code is being tested

in the same environment every single time the tests are run.

The Docker image was created by writing a Dockerfile. This file defines layers for the

docker image to run when building the image.

36

Figure 16: Dockerfile

Unfortunately, it was during the implementation of this Dockerfile that I found out that

PySide 6 couldn’t be run in a dockerised environment as PySide 6 requires some

sort of display in order to function. This led to much of the development not being ran

through the pipeline correctly whilst I researched ways to have a containerised

testing environment.

37

Ultimately, I decided to run the tests outside of an isolated environment in my

pipeline for simplicity due to time constraints. I did, however, find later that I could

have used a utility called ‘FlatPak’ which can run PySide 6 in partial isolation.

Figure 17: GitHub CI Yaml

38

I after the issues I encountered, I decided to implement linting, package caching and

expand the testing to multiple Python versions in the pipeline. This was done by

adding new line items in the pipeline YAML file.

Figure 18: Expanded Pipeline

This will be covered further in the Testing section.

 Pre-recorded Video & OpenCV2

The first task was to get a pre-recorded video to play in Python. To do this a package

called OpenCV2 was utilized to parse the video. “Open CV is an open-source

computer vision and machine learning software library. OpenCV was built to provide

39

a common infrastructure for computer vision applications and to accelerate the use

of machine perception in the commercial products”. (OpenCV, n.d.)

Figure 19: Showing a video in Python

This implementation imported the video using OpenCV’s VideoCapture method. This

parses the video as a list of images that are displayed sequentially on the machine.

In the code, the video frames are pre-processed to be ready for processing by a ML

model. This code snippet would become the core for the whole project.

 Initial Model Implementation

Initially the models for this project were trained locally ona PC. This was done in a

Jupyter notebook for rapid development and repeatability.

40

Figure 20: Notebook Model Training

Initially, Ultralytics’ YOLO11s model was used as a starting point for training with a

generic dataset of labelled drone footage of humans. This dataset had a variety of

classes relating to the activity of the person detected, such as ‘running’, ‘walking,

and ‘laying_down’ amongst others. The main goal of using this dataset wasn’t to be

accurate or useful for the end product. It just needed to function to a demonstrable

degree so that a minimum viable product could be presented.

As seen in figure 19, it was chosen to train the model with 25 epochs in batches of

16 images. This resulted in a training time upwards of 3 hours on a Nvidia RTX 4080

graphics card. This lengthy training time was surprising as the dataset wasn’t

especially large, and the hardware was extremely capable.

41

Figure 21: Model Training Report

After training the output validation curves reported that this model had an accuracy

of approximately 65%, which is only slightly higher than chance at detecting human

objects, this translated to poor performance in the benchmark video being used to

test the model on real-world drone footage. This poor performance made it clear that

a much improved and varied dataset and model would be required and the

difference in accuracy indicates that the model was over-trained.

 Improved Model

Following the poor performance of the locally trained model a solution to the

hardware limitations was found in with Ultralytics Hub and Google Colab Pro.

Initially a comparatively very large model was trained on the VisDrone dataset, this

model had a reported accuracy of 60-70% in its validation tests but in actual use it

appeared much better at detecting humans due to the larger and more varied

training data. This dataset and the resulting model also had a slightly different

classification set, meaning that vehicles and humans were now tracked, but poses

would not be classified. It was felt that this was a good trade-off for the gain in

detection capabilities

42

Figure 22: Large Model mAP

It is also important to distinguish between the accuracy metrics derived from training

and validation versus real-world performance. While the mAP (Mean Average

Precision) scores reflect the model’s ability to detect objects in static images, actual

usage often involves processing 30 frames per second of temporal data. If the

primary objective is simply to detect a human at any point in a video, then the

evaluation criteria differ from the standard per-image assessment. objective of the

model is to detect a human at all then true accuracy of the model can be significantly

lower and still yield useful results.

Despite the better performance of the new model on the benchmark video, the

program experienced severe performance issues due to the size of the model and

the processing it required on each frame. It was decided that a ‘lite’ model would be

trained for usage on machines with limited performance. This ‘lite’ model had similar

accuracy single image accuracy to the first model but with better edge case

detection whilst being significantly more performant than the large model.

43

Figure 23: 'Lite' Model mAP

 PySide 6 Video Player

The user interface for the program was created using the Python package PySide 6

which is a python wrapper for the Qt C++ library. The decision was made to go with

PySide 6 because it has a much more modern appearance over other libraries such

as Tkinter and is very object oriented due to it being a C++ package at its core. It is

also very well documented compared to more obscure or newer packages like

DearPyGui. This made it the obvious choice for development despite the steep

learning curve to the package.

The first goal in implementing the GUI was just to be able to display the video in a

GUI container, with no interactivity. This was achieved simply by creating a

QApplication in the main file and creating a video processor class module that

served the frames to another class module called video player. This modular

approach would be needed later in the project to ensure that I could process both

live and pre-recorded frames.

44

Figure 24: Initial Video Player

Figure 23 illustrates the initial implementation of the video player module, which

accepts variables for the video and model paths. Initially, these paths were hard

coded for testing purposes.

The GUI is constructed by first initializing a PySide QApplication instance and then

instantiating QWidgets within a MainWindow subclass; each discrete element of the

interface is represented by a QWidget. The VideoPlayer class is subsequently

attached to its corresponding widget, reinforcing a modular design. This approach

allows future enhancements with ease, as adding new features simply involves

integrating additional widgets.

45

Figure 25: VideoPlayer Class

When the VideoPlayer class is instantiated, it inherits the properties of the

MainWindow. This allows it to set its own QWidget as the central widget and assign

it to the MainWindow. VideoPlayer also instantiates a VideoProcessor instance

which handles turning the video into frames using cv2’s VideoCapture method and

returning them to the video player.

46

 Dialogs and Signals

In order for menus and actions to execute methods in the program in a non-blocking

way, signals are utilised.

 Signals in PySide / Qt

Signals in PySide 6 are a core aspect of Qt’s event driven architecture. A signal is

essentially a notification that a specific event or action has occurred. Signals are

emitted by objects when something notable happens, such as user input, data

availability or a state change. They can be connected to special function / method

decorators called ‘slots’, which handle these events.

Signals and slots provide a decoupled communication mechanism, meaning that

objects don’t directly invoke methods on one another. Instead, they emit signals that

interested parties connect to and react to the emissions. This design architecture

encourages modularity, reusability and easier maintenance of the code.

 Dialog handling

In the project, dialogs are managed though a dedicated class called ‘DialogHandler’.

This class centralises GUI operations like file selection, confirmations and

informational alerts, decoupling these user interactions form the main application

logic. The signals serve as the primary means of communicating the results of the

dialogs back to the applications logic.

Specifically, the DialogHandler class defines several signals:

• file_path_response: Emits when the user selects a file or saves one via a

dialog. It provides information back to the main app, including the selected file

path and whether the processing should be initiated.

• message_shown and yes_no_asked: Allow user feedback loops and

confirmations in a structured and predictable manner.

When a user selects a file from a dialog, the dialog emits a signal with the relevant

details. The main application (MainApp) then connects to these signals, processing

the returned information though defined slots.

47

 Implementation

Figure 26: Dialog Handler Class

Figure 27: Dialog Handler Class Method

As shown in Figures 25 and 26, signals are implemented as attributes of the

DialogSignals class, instantiated within DialogHandler. Upon initialisation of

DialogHandler, each signal defined within DialogSignals is immediately connected to

a specific hander method. These handler methods encapsulate the logic for

interacting with PySide’s GUI elements.

 DeepSort

 What is DeepSort?

“Deep SORT (Simple Online and Realtime Tracking) is an algorithm used for multi-

object tracking in video streams. It is an extension of the SORT (Simple Online and

Realtime Tracking) algorithm, which uses the Kalman filter for object tracking. Deep

48

SORT incorporates a deep association metric based on appearance features

learned by a deep convolutional neural network.” (Amjoud & Amrouch, 2023)

Simply put, DeepSort is an algorithm that detects multiple images through a series of

frames, associates an ID number with each object and attempts to maintain the track

whilst the object is present and detected in the frames.

 Why DeepSort?

DeepSort was chosen for this project as it has great features that benefit the

program, namely a feature called “Re-ID embeddings”. This is a feature, built into

DeepSort, that keeps track of detected objects, even if they are temporarily

obstructed from view. This is important in the context of this project because when

an object is detected it is assigned an ID number. Keeping this ID number the same

throughout the detection period can help the user from confusing detected objects

with each other. Although, this does have the drawback of being computationally

expensive.

Figure 28: YoloDeepSortProcessor

49

Figure 29: VideoPlayer Model Methods

 How does the detection work?

After successfully getting the video running in the GUI the next task was to

implement the model processing on the frames. This is done by the

YOLODeepSortProcessor.

The update_frame method from the VideoPlayer calls the

YOLODeepSortProcessor’s process_frame method. This method runs the model on

the frame and returns the bounding box coordinates of the detected objects, the

confidence level of the detection and the classification. These variables are then

passed into DeepSort to update the tracked objects

Once the frame has been processed, the bounding boxes are drawn using the

coordinates from the tracked objects using CV2’s rectangle method and the tracking

ID is written above the box (Figure 27)

50

Figure 30: Drawing a rectangle & ID

 Settings

Figure 31: Settings Dialog Class

The next major feature integrated into the application was the settings menu, which

introduces user-configurable control over core aspects of the system. This modal

dialog provides an intuitive interface for adjusting runtime parameters, with the

51

primary focus on allowing users to select among different object detection models

included in the application.

The primary motivation for implementing this feature arose from the need to cater to

user preferences and varying hardware capabilities. Different object detection

models exhibit significant differences in computational requirements and

performance characteristics. By allowing users to select a model that aligns with their

specific needs and hardware constraints, the application ensures consistent

performance across a wide range of hardware.

 Implementation

The SettingsDialog class uses PySide6's widgets to provide user-friendly settings

interface. Upon initialisation, the dialog dynamically identifies all available .pt

(PyTorch) model files within the application's local assets directory. It then populates

these model files into a QComboBox widget, facilitating straightforward model

selection. This dynamic approach ensures scalability; new models can be effortlessly

integrated into the application by simply placing the respective .pt files into the

assets folder, without the need for additional code modifications.

Figure 32: SettingsDialog Model Loading

The settings dialog uses QSettings, Qt’s built-in persistent storage. Working similarly

to web cookies, to manage application preferences and ensure consistency between

sessions. When users open the settings menu, the dialog reads the previously

selected model from QSettings and sets it as the default selection within the

dropdown box. This provides continuity and improves user experience, minimizing

the configuration effort across different usage sessions. If no previous model

selection exists the user is prevented from running live or pre-recorded video

52

analysis until they select a model from the settings menu. This is achieved by

disabling the buttons in the file dropdown.

Once the Save button is pressed, the selected model preference is saved back to

QSettings. The settings dialog then emits a custom-defined signal, settings_updated,

containing the path to the newly selected model. This signal notifies all dependent

components of the settings update. Connected slots within the main application then

receive this signal and adjust the model loading to the updated path without requiring

a restart.

9.9.1.1 Refactoring

The introduction of the settings feature required significant refactoring of existing

functions to accommodate dynamic user preferences. Initially, the object detection

model path was hardcoded into the program, significantly restricting flexibility and

scalability. Migrating to the new design required removing these hardcoded

dependencies, instead using a configurable approach.

 Multi-Threading

As the project progressed it became apparent that the current approach to the

software design was becoming significantly more computationally intensive than

initially forecasted. To address these performance concerns, multithreading and

multiprocessing techniques were integrated into the software's design.

53

 Threading & Processing

Figure 33: Multi-Processing Implementation

Before implementing this, it was important to understand what threading and multi-

processing are and how they can be useful in a project.

54

9.10.1.1 Threading

Threading involves executing multiple threads within the same process. These

threads share memory and resources, this allows for fast communication and low

overhead computing power.

9.10.1.2 Multi-Processing

Multi-processing is when multiple processes are executed simultaneously, each with

their own separate memory space. This is well-suited to CPU bound or otherwise

computationally intensive tasks. The processes run independently of each other,

enabling parallel computation at the expense of higher resource overhead due to the

additional management requirements of handling multiple processes.

 Multi-Threading Implementation

Multi-threading was used in the project to continuously capture video frames from

the video source. The thread manages the capture processes by retrieving every nth

frame and enqueues the frame into a thread-safe frame queue. Using a separate

thread for frame capture prevents blocking operations, which allows the GUI and

other components to remain responsive and minimizes delays in frame acquisition.

9.10.2.1 Thread Safety

In the context of this project and the frame queue, thread-safe refers to operations

designed to function correctly when accessed simultaneously by multiple threads

without causing data loss or race conditions. This means that, for example, the frame

queue should have a locking mechanism and manage the consistency of shared

data. In this project this is provided by default by the multiprocessing class’s Queue

data structure.

 Multi-Processing Implementation

A separate process (processing_process) handles intensive video processing tasks

independently. This process continuously fetches frames from the shared queue,

performs model inference, and places processed frames into another queue for

display. Utilizing multiprocessing ensures that heavy computational workloads do not

impede or degrade GUI responsiveness, thereby maintaining a consistent and

smooth user experience.

55

Additionally, inter-thread and inter-process communication is managed through

thread-safe and process-safe queues (mp.Queue). This strategy prevents the

aforementioned race conditions and improves the responsiveness and stability of the

GUI by ensuring that frame capture, processing, and display tasks occur

concurrently yet independently. The combined implementation of threading and

multiprocessing substantially improves the program's overall performance and

responsiveness.

Figure 34: Multi-Processing Worker

The multi-processing worker function also utilises frame skipping if the frame queue

exceeds its maximum size. This means that if the queue reaches its maximum size

of 100 frames, then subsequent frames get skipped to prevent blocking behaviour

from the program and allows the processing to catch up.

 Threading Conclusion

Learning how threading and multiprocessing functioned within the context of Python

and how to integrate it into the program took a considerable

56

 Metadata Extraction

Metadata refers to the descriptive information embedded within digital files such as

video or images. This data typically contains information about the date and time of

the recording, camera settings, GPS data and device information. This can be useful

to SAR teams in many situations, such as an image or video become relevant to a

case after the video was recorded. Metadata can give detailed information about

where and when the video was recorded.

The extraction of this data was done by using the pymediainfo package in the

MetadataProcessor.

57

Figure 35: MetadataProcessor

The get_metadata method is the only publicly available method on the class, this

method calls all the necessary private methods so that the data can be collected,

merged and returned in a single method.

The approach was chosen for the class design to abstract some of the repeated

actions away from the developer and to improve the code readability where the class

methods are called.

58

Initially it was hoped that video metadata would contain geographic data that would

allow the program to export or display the location of the video in some manner.

Unfortunately, it was found that videos do not typically have geographic metadata.

Despite this, the entirety of the video metadata is provided to the user in a Qwidget

to the side of the video.

Figure 36: Metadata Viewer

When there is a video playing the main process calls the metadata viewer class

which, in turn, uses the MetadataProcessor to take metadata from the same video

source. The data is then presented to the user in a Qwidget that has been made

scrollable due to the length of the data.

 Archive Processor

The next task in the development of the project was to implement a way for the user

to export the processed footage in a way that both preserved the original footage

59

and had the object detection overlays baked into the footage. This feature

unexpectedly turned out to be the hardest to implement.

Initially there was difficulty in implementing this function of the application because

each operating system works in a slightly different way when saving video formats

due to the required codecs.

During the development of this feature I realised that skipping frames on the frame

capture method resulted in faster than real-time playback of the video. To fix this a

refactor was required, the frame skipping was moved from the frame capture method

to the frame processing method. This maintained the improved performance whilst

allowing the video to be played back to the user at real time. This also allowed the

Archive Processor to maintain the integrity of the processed file more in line with the

original provided video with no loss of data.

During the initial development of the archive processor the output video codec would

have to be manually changed when testing the feature between different operating

systems by altering the code. This was solved by changing the codec one that would

work in an operating system agnostic way. For this reason, MP4V was chosen.

The next difficulty was using the VideoQueue class that had been previously

implemented. Previously, the VideoQueue class had been implemented as a regular

class that can have may instances of the class as objects. In this project the

VideoQueue class needed to be implemented as a singleton, meaning that there can

only be a single instance of the class active in the program at any one time. It

required some significant research and refactoring to the class to ensure that it could

only be instantiated once. To achieve this class decorators were used calling the

@classmethod decorator. This runs additional code before the method letting python

know that the method modifies the class as a whole rather than a specific instance.

Instead of passing ‘self’ to the class methods as is standard practice the class itself

is passed in as seen in figure 33 below.

60

Figure 37: VideoQueue Class

The instance property of the VideoQueue class ensures that there is only one

instance of the class. The _lock property is important to ensure that the queue

functions correctly in the multi-threaded environment it is being used in. _lock

functions similarly to a database lock that prevents the writing of data whilst another

process is writing or removing data. This helps to ensure data consistency when

enqueuing and dequeuing.

 Play / Pause

The next feature goal was to add the ability to pause and resume playback of pre-

recorded videos in the app. This was an important quality of life feature to add to the

application because it allows the user to freeze a potentially important frame. Initially

I wanted to include the ability to scrub forwards and backwards through the video but

61

due to the way the video had been implemented this was impossible without major,

foundational code structure and functional changes. As the video player class was

not designed with this functionality in mind.

The actual implementation of the play / pause is simplistic but required careful

forethought in-order function correctly with the many moving parts of the program.

Specific attention was paid to how the pausing would affect the archival feature.

The first element added was a button that the user interacts with. This was implanted

by added a QPushButton to the video player layout.

Figure 38: Adding Play / Pause Button

When the user presses this button, it calls the toggle_play_pause method of the

VideoPlayer class.

62

Figure 39: toggle_play_pause Method

This method stops the multi-threading timer which will stop the processing of frames

in the worker threads. In order to start video processing and playback again the timer

is restarted with a framerate of 33 frames per second. Alongside the pausing of the

timer the text in the button is updated to relay its function when pressed a

subsequent time.

Initially during the development of this feature there were issues because the

implementation was attempting to add a check to the get_frame method of the

VideoProcessor. This caused issues because the archive_processor and model

processing were still running meaning that errors were being generated when the

video was paused because the VideoProcessor was no longer providing frames to

the downstream processors.

 Close Video

Previously, upon a finishing a pre-recorded video or terminating the connected

livestream video the last frame of the video would be permanently visible in the

program. To fix this a close function was added that can be invoked by the user at

any time before, during or after the playback of the video. This is a very important

feature for the user experience because it allows the user to process multiple videos

63

without having to restart the program. Additionally, it solved the issue of multiple

video player instances being able to be open in the program at one time.

The initial implementation for the close method was overly complex because it

involved trying to destroy the class. After attempting this route for the feature, it was

realised that I could just call the parent class’s close function and emit a signal to let

any other processes know that the VideoPlayer class was terminating. For example,

the metadata viewer knows to close itself when the video is closed.

The signal was added to the top level of the class, outside of the constructor.

Figure 40: Closure signal

The button itself was added via a QPushButton that calls the close method of the

class.

Figure 41: Close button QPushButton

64

Figure 42: VideoPlayer close method

The super().close() calls the close function of the QMainWindow. This kills the child

QWidget (VideoPlayer in this case.)

 Binary Compilation

For a program to be effectively distributed, it should be compiled into a standalone

executable. PyInstaller, a Python library, facilitates this process by packaging Python

applications with all their dependencies into a single executable file. “PyInstaller

bundles a Python application and all its dependencies into a single package. The

user can run the packaged app without installing a Python interpreter or any

modules.” (PyInstaller, n.d.)

Packaging the application into a single executable enhances user-friendliness

significantly. Users are not required to install Python or manage dependencies

manually, actions which typically demand technical expertise. Instead, most users

are already comfortable with executing applications from a binary executable file.

 Creating a binary

One of the methods that can be used to create a binary of a Python program is to

create what is called a Spec file. A Spec file explicitly instructs PyInstaller on the

compilation process, detailing the source files, necessary dependencies, included

data files, and additional configurations.

65

Figure 43: DroneLink Spec File

As seen in figure 43, the spec file is structured into sections each with an important

role.

• Analysis: This part identifies the script (dronelink.py) intended for compilation

and outlines paths (pathex) for source files and dependencies. It specifies

additional data files required at runtime under the datas section, like asset

files (src/assets). The hidden imports list explicitly includes modules and

66

submodules that PyInstaller may not automatically detect due to dynamic

imports or indirect usage.

• PYZ: This section packages Python bytecode compiled from the scripts

identified during analysis into a zipped archive. It encapsulates the logic and

dependencies of the application, improving efficiency and load performance at

runtime.

• EXE Section: This is the final step where PyInstaller generates the executable

binary. It bundles scripts, binaries, zipped data, and additional metadata from

previous sections. Configurations here include defining the executable's name

(DroneLink), controlling debugging behaviour (debug=False), and determining

whether a console window will appear upon execution (console=True). UPX

(ultimate packer for executables) compression (upx=True) is also applied here

to reduce the size of the executable, improving portability and download

speed. UPX is a compression tool solely designed to reduce file size of

executable files.

The created binary will only run on the operating system architecture that it was

created on. For instance, a binary created on a Windows machine will only run on

other Windows (Win32) machines, likewise with Ubuntu and MacOS. MacOS

binaries require the binary to be created on the oldest version of the operating

system you wish to support as new versions of the OS have backwards compatibility

but in inverse may not be true.

 Automating Compilation

Instead of manually having to create binaries for each new version of the tool, it is

possible to automate the compilation of the code into binaries by using the CI

pipeline. The pipeline can then use containerised instances to create the binaries for

the desired operating systems when code is merged into the main branch.

This is achieved by defining jobs in the GitHub actions CI YAML file.

67

Figure 44: Binary Compilation Jobs

As seen in Figure 44, the two CI jobs, build-windows, and build-linux will use the

previously created spec file (Figure 43) in a docker instance. They achieve this by

building an image from the windows/ubuntu-latest image and then installed the

required Python version along with the needed packages. In this case that is

68

PyInstaller. After package installation, PyInstaller is run with the spec file provided in

the repository. After compilation the binaries are available for download as a upload

artifact.

 Conclusion

In summary, compiling a Python application into a standalone executable using

PyInstaller significantly improves the ease of software distribution and user

accessibility. By clearly defining the compilation process through a Spec file and

automating the creation of executables via Continuous Integration pipelines,

developers can efficiently produce consistent and reliable software binaries. This

strategy not only simplifies deployment but also enhances the overall user

experience by reducing complexity and dependency management.

 Implementation Conclusion

During the implementation phase, the design ideas were transformed into a fully

working, modular application that could track and detect objects in drone footage in

real time. Class-based design, multiprocessing pipelines, and a non-blocking signal-

slot communication mechanism were used to prioritise performance,

responsiveness, and maintainability. While threading and multiprocessing facilitated

effective frame recording and model inference without affecting user interaction,

PySide6 integration allowed for a responsive and user-friendly GUI.

Following iterative training with Ultralytics Hub and Google Colab Pro, deep learning

models were trained and reviewed, and optimised models suited for high-

performance and resource limited scenarios were chosen. Important features

including model selection, metadata extraction, live and pre-recorded video

processing, and the ability to archive annotated material were created gradually and

verified by both automated and manual testing.

Despite challenges such as platform-specific codec support and GUI limitations, the

final implementation delivered a reliable and extensible foundation for drone-based

SAR tools. The modular structure ensures that future enhancements, such as

geolocation integration or cloud-based analytics, can be incorporated with minimal

architectural disruption.

69

10 Testing

Throughout the project multiple methods were used to test and validate the usability,

performance, and stability of the application across its various components. Given

the program’s complexity, ranging from GUI responsiveness and multi-threaded

video handling to real-time object detection; testing was approached in an iterative

and modular manner. Early testing focused on manual testing of key features, whilst

later testing relied heavily on automated unit testing of methods, classes and

functions for ensuring the functionalities of the program continued to work as

expected.

In addition, user interface testing ensured that controls such as model selected,

video playing and settings management operated as expected across different

scenarios and edge cases. Continuous Integration pipelines were used to automate

linting, test execution across multiple Python versions to catch platform specific

errors. Manual testing was also conducted to attempt to simulate real-world SAR use

cases and verify the reliability of object detection in varied environments.

 Unit Testing

Unit testing was used to verify the function of individual components of the

application against a ground truth. In particular the elements that handled the

processing side of the application in contrast to the GUI. The tests focused on

ensuring that the processors in the application continued to output expected values

and to guarantee that any changes would be durable.

Unit tests we implemented using PyTest, a testing framework for the Python

language. To ensure the tests were always consistent across changes to the local

Python and project environment, the tests were run as part of a containerised

environment in a continuous integration pipeline provided by GitHub Actions. This

container would be completely isolated from my local system as it runs in the cloud

and thus separated from any changes or quirks of my local system. This meant that

every time the tests were run it was in the exact same environment providing a solid

foundation for the tests to be accurate.

70

Figure 45: CI Test Job

The ‘test’ job runs in a ubuntu container and will run the tests a total of 3 times on

different Python versions. This is to catch errors that may be related to the version of

Python the user is running if building the application from source.

The CI ‘test’ job had a number of steps.

71

• Firstly, the code is checked out using the checkout@v4 GitHub action. This

checks out the code to the container

• If the container has previously ran in its current configuration, then the pip

packaged are loaded from the cache GitHub action. This prevents having to

redownload the packages every time the job is run, reducing the time it takes

to complete the job.

• Python is then installed to the container according to the matrix defined in the

strategy key.

• The PIP packages are then installed into the Python environment.

• Linting is performed on the Python code to ensure that the code conforms to

Pythonic code standards and that there is not redundant code. For example, it

catches unused imports and variables that are defined but never used. This

step ensures that any submitted code is of a high quality.

• The PyTest unit test suite is then run on the code. This step will also create a

coverage report. This gives information on how much of the code is covered

by tests and can help highlight areas that need more tests to special attention.

• The coverage report is then uploaded as a job artifact to GitHub, allowing

developers to view the report after the job has been completed.

 Integration Testing

Integration testing was considered to validate the interactions between the

processing and GUI logic. Given the real time nature of the application, it was

important that the UI correctly handled all the core functions.

The primary tool for integration testing was PyTest-Qt. PyTest-Qt is an extension to

PyTest that facilitates GUI testing by simulating user interactions with Qt widgets.

This would allow the test suite to mimic actual user behaviour such as clicking

buttons, selecting models and beginning processing on a video.

However, due to the limitations on running Qt applications inside headless,

dockerised CI environments, these integration tests were not implemented. Qt

applications require a display server in order to function. There are some tools (such

as xvfb) that simulate a display server, allowing a dockerised application. The real-

world implementation of this, on the other hand, turned out to be vastly more

72

complex than initially thought. Especially with the added complexity of handling multi-

threading. Instead, the GUI would be manually tested

 Manual Testing

During the course of development, manual testing was conducted on both the

graphical user interface and the object detection model. This testing process

involved verifying that each feature of the GUI operated correctly during regular

usage, ensuring that expected user workflows, such as loading models, managing

video playback, and adjusting settings, functioned without errors or unexpected

behaviour. Throughout development, special attention was also paid to identifying

and executing potential edge cases, such as providing invalid file inputs, abruptly

terminating video streams, or adjusting settings during active detection, to observe

how the application handled unexpected or abnormal user actions.

The manual testing approach for the GUI emphasized not only validating the correct

behaviour under standard conditions but also challenging the system’s robustness

under unusual scenarios that a real-world user might encounter. Testing sessions

frequently involved switching models mid-playback, rapidly changing settings,

introducing corrupt media files, and forcing resolution changes to validate that the

application could recover gracefully without requiring a restart or leading to a crash.

In addition to the GUI, the model's behaviour was manually tested by running it

against a variety of video samples representing different environments and

conditions. These tests verified the model's ability to maintain detection accuracy

under varying lighting conditions, image qualities, and object densities. Real-world

SAR video data were incorporated to ensure that object detection results were

consistent, reliable, and free of critical failures such as frame freezes or detection

hangs.

Manual testing cycles were performed iteratively throughout the project's

development, with observations carefully noted and used to guide bug fixing and

feature refinement. This manual validation process played a crucial role in ensuring

the overall stability, usability, and performance of the final application

73

11 Further Development

There are many potential areas for further development of the DroneLink application.

Whilst the current implementation focuses on real time object detection and tracking

with the goal of aiding Search and Resue applications.

A clear path for growth in the project would be to tailor the system for different

operational demands in sectors such as defence, policing, surveying and others.

Each of these sectors has unique requirements that could be met though the

publishing of modules for the base program, introducing features tailored to each

industry.

For instance, in the defence sector there is a demand for autonomous systems

capable of target recognition, tracking hostile assets and conducting semi or fully

autonomous reconnaissance. DroneLink could be expanded to include model

training on camouflaged personnel, military equipment or in structure detection to

map out possible static defences. Combining this further with tools to autonomously

control the drone based on its detections and classifications could be a desirable

feature for this sector.

Similarly, for policing applications, the software could be optimised for urban

environments, with software capabilities added to aid in crowd monitoring, traffic

control or with facial recognition to aid in the tracking of persons of interest. Further

expansion of the metadata extraction tool in the application would be desirable for

this use case to aid in the building of a case against an individual.

Additionally, surveying features could be added to the software to allow for not only

human detection but for infrastructure analysus, for example, the model could be

trained to identify potential faults in buildings, bridges or other infrastructural

buildings. Integration with Geographic Information Systems (GIS) would enable the

automatic mapping of detected features would add a huge capability to the program.

74

12 Conclusion

The aim of this project was to develop a real-time item recognition and tracking

system to support drone-based Search and Rescue (SAR) operations. Throughout

the project, I had to learn and apply principles of modularity, performance

optimisation, usability, and maintainability, recognising their importance for real-world

SAR applications where dependability and efficiency are critical.

During the initial research phase, a gap was identified in the availability of open,

flexible, and cost-effective SAR solutions. Addressing this gap required learning

about recent advances in AI, computer vision, and object detection technologies. I

designed and implemented a full system capable of processing both live and

recorded video streams, incorporating object detection and multi-object tracking

using DeepSORT. I developed independent and concurrent modules for video

processing, model inference, and metadata extraction through multithreading and

multiprocessing, gaining practical, professional grade experience in managing

parallel systems

Model training and optimisation involved learning to use platforms such as Ultralytics

Hub and Google Colab Pro. This allowed me to create models specifically adapted to

drone footage, balancing detection accuracy against computational demands. For

the user interface, I studied and implemented PySide6 to ensure that SAR personnel

could operate the system intuitively, without requiring specialist technical knowledge.

Although learning to use these platforms and packages was essential to the

development of the project, the complexity and depth of the required learning to

correctly implement many of the features significantly slowed down the initial

development of the features. Substantial time had to be dedicated to understanding

new frameworks, tools and best practices before implementing the features. This

overall lead to less features being in the program than initially desired.

A significant focus was placed on system validation. I learned to integrate unit testing

into a containerised Continuous Integration (CI) pipeline to maintain backend

reliability across different Python environments. Manual testing complemented this

process by validating the graphical interface, user workflows, and overall system

behaviour under realistic and extreme conditions.

75

The project presented several challenges, such as the difficulties associated with

GUI testing within Docker containers and the limitations on performance during video

archiving. I researched and applied practical solutions to address these issues and

outlined opportunities for further enhancements.

The final outcome is a fully functional and extensible application designed to assist

SAR teams by reducing search times, minimising human error, and has the

capability to provide a ‘force multiplier’ to SAR teams. This project reflects the critical

role of machine learning, computer vision, and software engineering practices in

creating effective, real world technological solutions

 Final Words

Beyond the technical outcomes of the project, the process of researching, designing,

planning and developing this system has been a valuable opportunity to

independently build my skills and to critically identify areas of weakness in my

professional capacity. It has provided clearer insight into the challenges involved in

bringing a major software project from concept to delivery under tight time

constraints.

Many of the skills developed throughout this project, particularly in technical

planning, self-learning, and system integration, will support my ongoing professional

growth. Recognising the areas where my knowledge is currently limited will also

allow me to more effectively target future learning and development

.

76

13 Bibliography

Aermatica3D. (n.d.). LOC8 by USR. Retrieved from Aermatica3D:

https://www.aermatica.com/en/loc8-image-processing-software-2/

Amjoud, A. B., & Amrouch, M. (2023). Object Detection Using Deep Learning, CNNs.

IEEE.

Barla, N. (2021, November 16). The Complete Guide to Object Tracking [+V7

Tutorial]. Retrieved from V7Labs: https://www.v7labs.com/blog/object-

tracking-guide

Brookes, R. (2008, September 04). MRMap Manual Chapter 05 – Basic Guidelines

for using the MRMap. Retrieved from MRMap:

http://mrmap.org.uk/forum/uploaded_files/mrmap_chap05_mrmap_appl_v1.04

_04.09.2008.pdf

Carmatec. (2024, September 26). Difference Between Machine Learning and Deep

Learning: A Comprehensive Guide. Retrieved from Carmatec:

https://www.carmatec.com/blog/difference-between-machine-learning-and-

deep-learning/

Dukowitz, Z. (2024, June 14). Search and Rescue Drones: A Guide to How SAR

Teams Use Drones in Their Work. Retrieved from UAV Coach:

https://uavcoach.com/search-and-rescue-drones/

GeeksForGeeks. (2024, November 15). Introduction to Recurrent Neural Networks.

Retrieved from GeeksForGeeks: https://www.geeksforgeeks.org/introduction-

to-recurrent-neural-network/

Jiao, L., Zhang, F., Liu, F., Tang, S., Li, L., Feng, Z., & Qu, R. (2019). A Survey of

Deep Learning-based Object Detection. IEEE, 1-5.

Klingler, N. (2023, December 3). Object Tracking in Computer Vision (2024 Guide).

Retrieved from Viso.ai: https://viso.ai/deep-learning/object-tracking/

Kouidri, A. (2023, October 11). Mastering Deep Sort: The Future of Object Tracking

Explained. Retrieved from ikomia: https://www.ikomia.ai/blog/deep-sort-

object-tracking-guide

77

MathWorks. (n.d.). What Is a Convolutional Neural Network? Retrieved from

MathWorks: https://uk.mathworks.com/discovery/convolutional-neural-

network.html

Mattless, C. (2024). Investigating Object Detection, Tracking & its Applications in

Search and Rescue. IADT – Institute of Art, Design and Technology.

Mattless, C. (2024, December 11). MP_video_processing. Retrieved from Github:

https://github.com/cmattless/MP_video_processing

McGee, J., Mathew, S. J., & Gonzalez, F. (2020). Unmanned Aerial Vehicle and

Artificial Intelligence for Thermal. 2020 International Conference on

Unmanned Aircraft Systems (ICUAS). Athens: IEEE.

Modi, P. (2023, October 14). Convolutional Neural Networks for Dummies. Retrieved

from Medium: https://medium.com/@prathammodi001/convolutional-neural-

networks-for-dummies-a-step-by-step-cnn-tutorial-e68f464d608f

MRMap. (n.d.). Introduction. Retrieved from MRMap:

http://www.mrmap.org.uk/index.php/introduction

Murel, D. J., & Kavlakoglu, E. (2024, January 3). What is object detection? .

Retrieved from IBM: https://www.ibm.com/think/topics/object-detection

Nehete, P., Dharrao, D., Pise, P., & Bongale, A. (2024). Object Detection and

Classification in Human Rescue Operations: Deep Learning Strategies.

International Information and Engineering Technology Association.

OpenCV. (n.d.). About. Retrieved from OpenCV: https://opencv.org/about/

PyInstaller. (n.d.). PyInstaller Manual. Retrieved from PyInstaller:

https://pyinstaller.org/en/stable/

Shen, Y.-T., Kwon, H., Conover, D., Bhattacharyya, S., Vale, N., Gray, J., . . . Skirlo,

F. (2023). Archangel: A Hybrid UAV-based Human Detection. IEEE.

Texsar. (2024, November 6). Automated Drone Image Analysis Tool. Retrieved from

Texsar: https://www.texsar.org/automated-drone-image-analysis-tool/

USRI. (n.d.). Home. Retrieved from USRI: https://www.usri.ca/

78

Yeom, S. (2024). Thermal Image Tracking for Search and Rescue Missions with.

MDPU.

