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1 Abstract 

Recent advancements in Artificial Intelligence (AI), Machine Learning (ML), Deep 

Learning, and Object Detection have transformed various industries by enabling 

efficient, cost-effective, and automated processes. These technologies hold huge 

potential to enhance Search and Rescue (SAR) operations, particularly in critical 

tasks such as victim identification, location tracking, and hazard detection. This 

project explores the integration of AI in SAR scenarios, focusing on their capacity to 

improve operational accuracy and efficiency. 
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5 Introduction 

Over the past decade, the widespread availability of affordable and capable drones 

has revolutionised many fields, including environmental monitoring, agriculture, 

infrastructure inspection, and public safety. In particular, Search and Rescue (SAR) 

operations have begun integrating drones into their workflows to enhance search 

efficiency, improve crew safety, and expand operational reach. Drones serve as 

force multipliers, enabling SAR teams to cover large and often hazardous areas 

more quickly and with fewer personnel on the ground. 

At the same time, advances in Artificial Intelligence (AI), Machine Learning (ML), and 

Deep Learning (DL) have unlocked new capabilities in real-time image processing, 

object detection, and classification. These technologies are now mature enough to 

be embedded into resource-constrained systems such as drones, making it feasible 

to perform onboard analysis of video streams during flight. This integration creates 

the possibility for automated systems that can detect, classify, and track objects of 

interest—such as missing persons or potential hazards—in real-time. 

Despite these advancements, many SAR operations remain heavily manual, often 

relying on human operators to visually scan live video feeds. This is not only time-

consuming and fatiguing but also prone to human error, especially in low-visibility or 

high-stress environments. Additionally, the majority of object detection solutions 

available are either closed source, prohibitively expensive, or require significant post-

processing effort, making them unsuitable for smaller organisations with limited 

resources. 

This project seeks to address these limitations by developing an open, low-cost 

software solution—tentatively titled DroneLink—that enhances drone-based SAR 

capabilities through integrated real-time object detection and tracking. The 

application is designed to process both live and recorded video feeds, detect human 

objects using pretrained deep learning models (e.g., YOLO), and maintain tracking 

through DeepSORT-based multi-object tracking algorithms. Emphasis is placed on 

usability, performance, and modularity to ensure the system is accessible to SAR 

personnel with varying levels of technical expertise. 

 



10 
 

The primary objective is to provide a tool that can assist SAR teams in rapidly 

locating individuals, minimising search time, and reducing the cognitive load on 

operators. Additionally, the application supports exporting processed video and 

metadata for reporting or review, improving operational transparency and post-

mission analysis. 

By combining ML-based detection algorithms with an intuitive graphical interface and 

support for widely available hardware, this project demonstrates how modern AI 

technologies can be practically applied to life-saving applications in the field. 
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6 Research 

The following section builds on research previously conducted in an earlier submitted 

report, ‘Investigating Object Detection, Tracking & its Applications in Search and 

Rescue’ (Mattless, 2024) 

 Introduction 

In recent years, advancements in Artificial Intelligence (AI), Machine Learning (ML), 

and Object Detection have significantly increased their capabilities, driving 

transformative changes across many industries. These technologies enable 

processes that may have been time-consuming, costly, or required specialised 

expertise to be executed with remarkable efficiency, often autonomously, through the 

usage of neural networks. From identifying patterns in complex datasets to 

automating intricate tasks, AI and ML have the potential to reshape how entire 

industries operate, with object detection emerging as a key component in 

applications that require precise identification and localisation of objects within 

images or video streams.   

This paper aims to explore the use cases of such technologies and their potential to 

greatly benefit Search and Rescue (SAR) operations. By utilising the advancements 

in AI, ML and Object Detection SAR mission efficiency could be improved through 

the more accurate identification and location of individuals in distress, especially in 

challenging environments or adverse conditions. Additionally, the integration of 

tracking algorithms enables the constant monitoring of detection objects, giving SAR 

crews constant, real-time updates on their location, movement and condition. 

This paper investigates the algorithms and how they function, their practical 

applications and the challenges they would encounter in a SAR context. 

 Object Detection 

 What is Object Detection? 

Object detection is a computer vision technology that combines object classification 

and localisation to identify and position objects within an image or video. It involves 

recognising the type (class) of objects (e.g., car, person) and determining its exact 
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location within a scene. Object detection models typically employ feature extraction 

techniques and neural network architecture like Convolutional Neural Networks 

(CNNs) to process visual data and make predictions. Applications range from 

autonomous vehicles such as cars and drones to surveillance and healthcare. (Murel 

& Kavlakoglu, 2024) 

6.2.1.1 How does object detection work? 

Modern object detection uses ‘Deep Learning’ which is a subset of Machine 

Learning.  

Machine learning has manually selected features that are curated by the person 

training the model, this can be effective with smaller datasets and has the benefit of 

being less computationally intensive. Additionally, Machine learning algorithms are 

trained and used on structured or tabular (e.g., Excel Spreadsheets) making them 

useful for uses like recommender systems or predictive analytics (e.g., sales 

forecasting). 

Deep Learning (DL) is a subset of ML that uses neural networks with layers. These 

are designed to find, learn and combine features from raw data without manual 

intervention. 

The most common neural networks used in object detection are Convolutional 

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) (Carmatec, 2024). 

6.2.1.1.1 Convolutional Neural Networks 

A CNN is composed of a series of layers. Input, output, and many hidden layers in 

between. 
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Figure 1: CNN diagram (MathWorks, n.d.) 

 

CNNs first apply filters (which are small samples of the input) to an input image to 

detect features like simple edges, textures or shapes. The filters are applied to the 

whole image in a convolution operation. A convolutional operation involves sliding 

these filters across the input image, multiplying corresponding pixel values at each 

position, and then summing the results to produce a single output value. The 

convolution operation can then combine features to create complex or abstract 

feature detection. These features found in the filter are then combined with the input 

to create a feature map. 

Between the convolutional layers are pooling layers, they are responsible for 

downsizing the feature maps to reduce the number of parameters, controlling 

overfitting and reducing weight oscillations. Pooling layers work by summarising 

regions of the feature map. Typically, this is done by taking the max pooling or the 

average pooling pixel values within each region. This reduces the spatial 

dimensions, improving the computational efficiency, and helps to better generalise 

the model by only keeping the most relevant information. 
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Figure 2: Convolutional Layer (Modi, 2023) 

Next the activation layer applies a non-linear activation function, such as Rectified 

Linear Unit (ReLu) to the output of the pooling layer. This allows the model to learn 

more complex representations of the input data. 

 A normalisation layer is then applied. The normalisation layer adjusts the scale of 

the input data to keep the range of data values consistent. This helps prevent 

extreme values from effecting the output data and ensures that all inputs are treated 

more equally. Typically, in CNNs batch normalisation is used where a mean is 

calculated across the input batch. This can reduce the time it takes for a model to 

find a good solution during the training, further reduce overfitting and allows for 

larger learning rates as the model will be less sensitive. 

The input is then run through a dropout layer that randomly disables (drops out) 

neurons during the training. This benefits the model by ensuring that the model 

doesn’t simply memorise the training data but instead generalises.  

Finally, a dense layer is run. The dense layer combines the features and makes a 

final prediction. The activations from the previous layers are flattened and passed as 

inputs to the dense layer which then produces a final output. (Modi, 2023)  

The output in terms of object detection would be a bounding box around feature with 

a selected class (e.g., person, car, etc)  
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Figure 3: Example batch output from CNN (Mattless, MP_video_processing, 2024) 

 

6.2.1.1.2 Recurrent Neural Networks 

RNNs are specifically designed to process sequential or temporal data, such as text, 

audio, or video, which makes them distinct from CNNs. While both RNNs and CNNs 

share basic neural network elements like layers and weights (as shown in Figure 1), 

RNNs introduce a unique 'hidden state' mechanism. This hidden state acts as 

memory, enabling the model to retain information from previous steps in the 

sequence. This feature makes RNNs ideal for tasks where the order and context of 

inputs are important. (GeeksForGeeks, 2024). 

There are various types of RNNs, each suited to different tasks. For tracking objects 

in a video, a Many-to-Many (N-to-N) RNN is the most appropriate choice, as it 

processes each frame of the video sequentially and generates an output for every 

input. There are many types of RNN, some of which blur the line between RNN and 

CNN, but that is out of scope for this paper. (GeeksForGeeks, 2024). 

An RNN works by processing each element of the input sequence (e.g., a frame 

from a video or a word in a sentence) one at a time. This sequential approach allows 

the RNN to capture the temporal relationships between elements. If the input data is 
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textual or categorical, it is first converted into numerical representations, a process 

known as feature representation. (GeeksForGeeks, 2024). 

At the start of the sequence, the hidden state is initialised as a vector of zeros. For 

each input in the sequence, the RNN updates its hidden state based on the current 

input and the previous hidden state. This step is repeated for every element in the 

sequence, progressively accumulating information from all previous states. 
(GeeksForGeeks, 2024). 

The final hidden state is then used to compute the network's output, which is 

compared to the actual target output to calculate the error. To train the RNN, the 

model uses Backpropagation Through Time (BPTT), a method that backpropagates 

the error through each time step to update the network's weights and improve 

performance (GeeksForGeeks, 2024). 

 Types of Object Detection 

Modern object detection techniques can be broadly categorised into two categories, 

anchor and non-anchor-based methods. (Amjoud & Amrouch, 2023) 

Anchor based algorithms can be further categorised into two categories. One-stage 

detectors and two-stage detectors. Both of these detectors utilise boundaries around 

potential objects. 

Two-stage detectors split the detection process into a two-step process: Region 

Proposal and Classification, with the classification step containing some location 

refinement. 

Region proposal identifies regions of interest (ROIs) in the feature map that are likely 

to contain objects. The second stage, Classification, processes these ROIs and 

attempts to classify the objects and refine the bounding boxes. 

Two-stage detectors are known for their high accuracy in both localisation and 

recognition but are generally unsuitable for real-time processing as they require 

significant compute power. Some examples of two-stage detectors are R-CNN, 

Faster R-CNN and Mask R-CNN.  

One-stage detectors combine the Region Proposal and Classification stages into a 

single stage. This has the effect of making the model slightly less accurate but much 
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faster allowing it to be used in real-time processing. The most notable example of a 

one-stage detector is YOLO (You Only Look Once) (Jiao, et al., 2019) 

Non-anchor-based techniques remove the need for predefined bounding boxes, they 

instead predict the centre point of an object in the image and directly regress the 

objects size and shape. This approach to object detection reduces the computational 

complexity and avoids errors relating to the anchor box design.  

There are also transformer bases approaches to object detection that have recently 

been developed but these approaches require large datasets and significant 

computational power in return for a simpler and more unified detection pipeline 

(Amjoud & Amrouch, 2023). 

 Object Tracking 

 What is Object Tracking? 

Object tracking is the process of identifying and continuously tracking objects across 

a series of frames in a video stream after the object has been initially detected. In the 

context of video tracking, a neural network processes sequential frames and 

estimates the object's current and previous locations, maintaining continuity as long 

as possible. 

The tracking process typically involves several key steps. The first is target 

initialisation, where the object of interest is defined. A bounding box is drawn around 

the object in the initial frame, and the tracker uses this reference to locate and track 

the object in subsequent frames, updating the bounding box as needed. 

Next, the tracker performs appearance modelling, which focuses on capturing the 

visual features of the object to handle variations in appearance caused by changes 

in lighting, angle, or scale. This is analogous to feature extraction and helps the 

tracker maintain accuracy across frames. (Barla, 2021) 

Motion prediction is then used to estimate the object's trajectory based on its 

previous positions. Techniques such as Kalman filters or particle filters can be 

employed to predict the object's likely position in the next frame, facilitating smooth 

and reliable tracking. (Barla, 2021) 
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Finally, object association ensures that the object detected in the current frame is 

correctly matched with the same object from previous frames. This step is crucial for 

maintaining tracking continuity, even in cases where the object undergoes occlusion, 

changes appearance, or momentarily exits the frame. (Barla, 2021) 

Object tracking has numerous real-world applications, such as in security, where it 

can be used to monitor individuals across multiple cameras in a surveillance system. 

(Barla, 2021) 

 Types of Object Tracking 

At a high level there are two types of object tracking: Single Object Tracking (SOT) 

and Multi-Object Tracking (MOT).  

MOT differs from general object detection in that instead of just trying to classify 

each object in a scene it will also assign a unique ID to each object to distinguish 

each discrete object even if they have the same class.  

 

Figure 4: Object Detection v MOT (Klingler, 2023) 

As seen above in Figure 4, a general object detection algorithm just sees ‘car’ 

whereas a MOT is attempting to identify different cars as being different from each 

other. (Klingler, 2023) 
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Single Object Tracking, sometimes called Visual Object Tracking, focuses on 

continuously tracking a single object through an image sequence after its initial 

detection. The object is initialised in the first frame. SOTs are designed to handle 

changes in the object’s appearance, size and orientation as well as challenges such 

as lighting conditions and occlusion. SOT is designed for real-time processing and 

as such it is used in applications such as security systems for tracking individuals or 

for tracking hand / eye movements. 

A drawback of SOT is that it cannot handle new objects appearing in the middle of a 

sequence (Klingler, 2023).   

 Applications of Object Detection & Tracking in SAR 

There are a number of areas that object detection & tracking can greatly benefit 

search and rescue operations and crews. Over the last 15 years drones have gone 

from being a prototype technology in the SAR field to becoming a staple piece of 

equipment for rescue workers. The advancements and miniaturisation of optical and 

Forward Looking Infrared (FLIR) cameras mean that a single person portable drone 

can carry a whole suite of sensors as well as perform autonomous actions whilst 

reporting to a ground station or controller. A common usage of drones is to utilise an 

on-board FLIR camera to locate victims in the wilderness. (Dukowitz, 2024). 

In parallel to civilian and humanitarian applications, drones are increasingly being 

utilised in combat. Most notably in the ongoing conflict in Ukraine. There, commercial 

and military grade drones have been repurposed for reconnaissance, target 

acquisition and even direct engagement. These drone systems often rely on video 

feeds and manual control. Integrating real-time object detection and tracking 

software could offer significant advantages to the platform. For instance, automated 

identification and geolocation of opposing forces or equipment could streamline 

intelligence gathering pipelines and reduce operator workload. The same core 

technologies developed for SAR use could be adapted to support autonomous 

targeting, situational awareness, and mission planning in complex combat 

environments.  

Integrating object detection and tracking would add yet another powerful dimension 

to the drone-based camera system by allowing the possibility for the drone to 
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autonomously find and report potential victims. Combining the object tracking with 

the drones integrated GPS data would allow the system to report potential areas for 

crews to investigate, which could improve efficiency in the allocation of SAR 

resources and time (McGee, Mathew, & Gonzalez, 2020). 

SAR does present a number of challenges to the usage of object detection and 

tracking, particularly as SAR teams frequently operate in environments that may 

have adverse conditions or in environments where poor thermal contrast or the 

target could be partially occluded.  Addressing these issues presents a significant 

challenge as it requires advanced model training due to the number of variables 

present in drone imagery. Training the model on datasets specifically designed for 

the purpose would be required. In research conducted into the usage of human 

detection from drones using YOLO models with a specifically created and labelled 

data set called ‘Archangel’ with significant fine tuning found a max detection rate of 

around 75 mAP50 for standing poses but significantly less for other poses. (Shen, et 

al., 2023). mAP50 refers to the mean Average Precision over the threshold of 50%. 

This metric measures how accurately a model detects objects by comparing the 

predicted bounding boxes to the ground truth boxes. A higher mAP value indicates 

better performance. In this case a score of 75 mAP50 indicates that the model 

correctly identified and localised objects with at least 50% overlap 75% of the time.  

 

 

Figure 5: mAP50 results of Archangel dataset + YOLOv5 (Shen, et al., 2023) 

Recent advancements in thermal imaging, particularly with YOLOv5 models, have 

demonstrated robust performance in detecting individuals in challenging 

environments. For example, drones equipped with thermal cameras can detect 

individuals in harsh conditions such as low-light or occluded areas. In research 

involving simulated SAR missions, thermal object detection combined with multiple-

target tracking achieved high tracking precision under adverse conditions. However, 
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challenges like track breakage due to rapid drone movements or occlusions remain, 

emphasizing the need for refined detection models and better dataset diversity 

(Yeom, 2024). 

Aside from victim identification, object detection can be used for hazard detection 

and avoidance for ground crews, enabling the better planning of routes when moving 

or to identify hazards in disaster zones such as active fires or flooding. Detecting 

potential debris and hazards for SAR operators has the potential to enhance both the 

safety and effectiveness of SAR teams and operations (Nehete, Dharrao, Pise, & 

Bongale, 2024). 

Environmental factors such as occlusions and weather conditions can greatly 

degrade the quality and accuracy of the detections. 

In conclusion, the integration of detection and tracking algorithms would represent a 

significant leap in SAR capabilities and has the potential to save lives in real world 

conditions. I believe that there should be future efforts into researching and refining 

these technologies to expand and improve their use cases in this field.  
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7 Requirements 

 Introduction 

The purpose of the requirements phase was to allow the discovery of what the 

application should be able to do and what the end user would find essential and what 

would be classified as a ‘nice-top-have’ 

From the research it as concluded that development should proceed in Python as 

the ‘Pythonic’ workflow appeared to have the best documentation and available 

tools. The development of the application would include the creation of a GUI as well 

as training models to process the video. The model would be based on Ultralytics’ 

YOLO series of machine learning models. 

 Requirements Gathering 

 Similar Applications 

7.2.1.1 Loc8 

Loc8 is a software package developed by USR (“Unmanned Systems Research”) 

that allows a user to scan images from drones to allow the location people or other 

objects. Loc8 does not use machine learning in its approach to this task. Instead, 

using pixel analysis to identify the target using colour and other information.  

Figure 6: USRI Loc8 (USRI, n.d.) 
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Figure 7: Loc8 Report generator (Aermatica3D, n.d.) 

7.2.1.1.1 Advantages 

Loc8 has many advantages. It allows its users to quickly scan images produced by 

drones and generate a map of the located target from the image. Loc8 also allows 

the generation of a report that outlines the actions taken in the application and it’s 

processing of images. Due to the low hardware requirements of the pixel analysis 

and the no requirement for an internet connection it is ideal for teams that may not 

have the best computing equipment or limited access to the Internet. 

 

7.2.1.1.2 Disadvantages 

Loc8 also has some notable disadvantages to its use. Primarily it is closed source 

and requires a licence to use. This means that many smaller organisations may not 

be able to access the tool due to budgetary constraints. Larger organisations may 

require that such software is “open source, closed community” meaning that law 

enforcement and other similar agencies can inspect the source code before deciding 

to use the tool. 

Additionally, Loc8 has no facility to accept live video from a drone and is solely for 

processing images after-the-fact. 
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7.2.1.2 Texsar ADIAT 

 

Figure 8: ADIAT Image Viewer (Texsar, 2024) 

Automated drone image analysis tool (ADIAT) developed by Texsar. Similar to Loc8 

ADIAT allows the processing of images from drone footage using pixel colour data.  

7.2.1.2.1 Advantages 

ADIAT is feature rich allowing the user to fine tune the processing of the images 

though various means such as altering the minimum object area, the colour to 

search for, or even changing the algorithm that is used to search the image for 

objects. If the user also inputs a ‘SRT’ type file into the application, then location data 

can be processed alongside the images allowing for geolocation. The geolocation 

information can then subsequently be exported to a KML file for use on Google Earth 

and similar programs. 

7.2.1.2.2 Disadvantages 

ADIAT, similar to Loc8 can only process images or videos that have been uploaded 

after the flight of the drone has finished. Because of the configurability of the tool, it 

also has a steep learning curve that may require end users to receive training on the 

tool to be properly utilized as the detection algorithms are required to be tuned by the 

user. 
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7.2.1.3 MRMap 

 

Figure 9: MRMap Map view (Brookes, 2008) 

MRMap was “conceived and developed by Mountain Rescue Team personnel in the 

Lake District (UK).” (MRMap, n.d.) It is currently in widespread use within SAR teams 

across the UK and Ireland.  

7.2.1.3.1 Advantages 

MRMaps allows for near real-time tracking of SAR assets via radio pings meaning 

that people and assets can be tracked even in areas where there is limited internet 

access.  

The ability to receive real-time data from drones as well as set waypoints and search 

areas for drones gives SAR teams a huge capability, allowing them to search areas 

in a hands-off way. 

7.2.1.3.2 Disadvantages 

Similar again to the previous tools mentioned, the real-time analysis works by 

processing pixel colour data which requires the user to know what the colour of their 

target may be, possibly leading to issues with detection.  
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Because the tool has been in development for almost 30 years there are many 

systems that users may struggle to integrate with the tool due to the code base being 

reliant on legacy systems and packages.  

 User Requirements 

As part of my requirements gathering, I reached out to Dublin Wicklow Mountain 

Rescue Team (DWMRT) as well as members of An Garda Síochána (AGS). 

Unfortunately, my contact with DWMRT fell through as they were not able to allocate 

the resources I would need to conduct proper research into their specific use case in 

the timeframe that this project required. I did, however, manage to speak to some 

active and former members of AGS in an unofficial capacity in regard to what 

features that they think would be useful to support similar mission profiles.  

 Functional Requirements 

• Realtime Video Processing: The application should be able to take in a video 

source from the machine it is running on and run the model on the incoming 

video stream. 

• Pre-recorded Video Processing: The application should be able to run the 

model on a video clip uploaded to the program from the local file system. 

• Metadata Extraction: The application should be able to extract any available 

metadata from the video source. 

• Video Archival: The program should be able to export the processed video 

back to the local filesystem with the processing information included in the file.  

• Target Identification: The application should aid the user in identifying a 

potential target of interest. 

 Non-Functional Requirements 

• Accurate: The program should be able to detect human objects with a ‘greater 

than chance’ probability. 

• Performant: The program should perform at a usable framerate on a range of 

computer hardware that are commonly available. 

• Usable: The program should have a user-friendly GUI that conforms to design 

norms. 
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• Reliable: The program should not be prone to crashing or performing 

unexpectedly when running. 

 Use Case Diagram 

To envisage what the user’s interactions with the program will be, a Use Case 

Diagram was created. The diagram displays the actions that a user can take within 

the program and what the outcome of those actions would be. 

 

Figure 10: Use Case Diagram 

 

 Conclusion 

Having completed research into similar tools, spoken with industry professionals and 

planned how my application will flow it was now clearer how the program should 

proceed in relation to its features and what its users will need to find the software 

useful. 
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8 Design 

The system was designed with a strong emphasis on modularity, performance, and 

ease of future expansion. Given the complex challenge of integrating real-time video 

processing, deep learning inference, and GUI responsiveness within a single 

application, consideration was given to both software and system architecture. The 

overall architecture uses a class-based, modular approach where modules such as 

video input, detection, metadata extraction, and user interface logic—are 

encapsulated in their own files. This modular approach allows for scalable, 

disconnected development, simplified testing, and straightforward maintenance. 

 Program Design 

The primary application was written in Python 3.12 due to its extensive ecosystem of 

libraries, strong community support, and its native compatibility with PyTorch, 

OpenCV, and PySide. The decision to build the GUI in PySide6 (Qt for Python) was 

driven by its robust widget system, native feel, and extensive documentation. 

 Technologies 

8.1.1.1 Visual Studio Code & PyCharm 

For the development of the application, I chose to use Microsoft’s Visual Studio 

Code (VS Code) and Jet Brain’s PyCharm. I was using two code editors because 

they both had strengths and weaknesses as well as my development was done 

across multiple devices. I found VS Code better for rapid development where I would 

be writing large amounts of code as it has, in my opinion, a better development 

experience and quality of life features. On the other hand, PyCharm is specifically 

designed for Python development, and it has comprehensive debugging and 

package management tools that can make debugging easier.  
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8.1.1.2 Ultralytics Hub 

 

Figure 11: Ultralytics Hub 

Initially I was training my models purely locally on my machine. This proved to be an 

extremely time-consuming endeavour. To save development time I moved to using a 

cloud solution, Ultralytics Hub. This web interface provided my Ultralytics allowed me 

to select a desired model and then upload my dataset to it for training. Once the 

training had concluded I was able to download the weights from the model and use it 

on my local computer. 

Ultralytics Hub also provides me with easy to digest data about the accuracy of my 

trained model, allowing me to compare between my model versions. 
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8.1.1.3 Google Colab 

 

Figure 12: Google Colab 

Together with Ultralytics Hub I used Google Colab for the compute power behind the 

training of the model. Initially this was quite limited in its compute resources, 

although still faster than training locally. I decided to purchase the ‘Pro’ version of 

Colab as it greatly increased the compute power, I had available to me as well as 

allowed my training to continue when my computer was switched off, meaning I 

could train my models overnight.  

8.1.1.4 Hyperparameter Tuning 

To improve model performance and training efficiency, several hyperparameters 

were adjusted during the training permutations. 

• Batch Size: Batch size was adjusted to fit within Colab Pro’s memory 

constraints. A batch size of 16 provided a good balance between accuracy 

and memory cost. Batch size affects how many images are processed at once 

during the training. 

• Epochs: Epochs control how many times the model sees the full dataset. 

More epochs give the model more opportunity to learn, but too many lead to 

overfitting of the training dataset. During the training I initially used 50 epochs 

but later raised the number to 100 after observing underfitting in the 

validation.  
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• Learning Rate: I lowered the initial learning rate from 0.01 to 0.005 to 

stabilise early training convolutions. The learning rate determines how much 

the model’s weights are adjusted during the training. A high learning rate can 

cause divergence which is when the model’s loss (error) does not decrease 

and instead gets worse and worse over the course of the training. 

• Momentum: The recommended momentum value of 0.937 was used, as 

recommended in YOLO configurations. Momentum helps the more retain 

passed gradient direction to smooth and accelerate training. This reduces the 

oscillation in the model’s weights during training. 

8.1.1.5 Docker / GitHub Actions 

CI/CD pipeline environments are containerised and built with GitHub Actions to 

produce binary artifacts using PyInstaller for OS-specific deployment and automated 

testing. 

8.1.1.6 DeepSORT 

Used for Multi-Object Tracking (MOT). It assigns persistent IDs to objects across 

frames using appearance embeddings and Kalman filtering. This provides stable 

tracking of objects and reduces ID problems common in simple SORT algorithms. 

8.1.1.7 OpenCV2 

Employed for video decoding, image frame extraction, drawing bounding boxes, and 

basic video processing tasks. It provides low-level control over frame operations and 

is fully compatible with NumPy arrays and PyTorch tensors, making it well-suited for 

pre- and post-processing. 

8.1.1.8 PySide6 

Used for building the graphical user interface. It provides a full-featured widget set, 

layout management, and a signal-slot system to decouple GUI actions from backend 

logic. PySide6 is modern, Qt6-compatible, and has better support for event-driven 

programming than alternatives like Tkinter or wxPython. 
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 Design Patterns 

For this project, a modular, object-oriented approach was adopted. Each functional 

component of the application is encapsulated in its own class or group of classes. 

This is aided by an instance based pattern for modules like the detection processor, 

and a singleton pattern for shared state (e.g., frame queue management, video 

player). Key design principles include: 

• Signal-Slot Architecture: All GUI interactions and user inputs are connected 

to backend logic using PySide6's built-in Signal and Slot mechanism. This 

promotes non-blocking behaviour and prevents direct coupling between GUI 

and logic layers. 

• Encapsulation and Separation of Concerns: All major components, such 

as detection, processing, display, and storage are decoupled and 

communicate only through well-defined interfaces. This allows easier 

refactoring and allows independent unit testing. 

• Threading and Multiprocessing: A hybrid threading-multiprocessing 

approach is used. Threads handle video capture and GUI responsiveness, 

while multiprocessing handles compute-heavy detection and frame rendering, 

taking full advantage of multi-core CPUs. 
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 Application Architecture 

 

Figure 13: Block Diagram 

 User Interface Design 

The inherent limitations present in PySide 6, particularly with styling, significantly 

constrained my design choices. This is due to the styling options defined by Qt, 

which restricts customisation using style sheets or other visuals that would otherwise 

be available in other frameworks. Despite these limitations development continued in 

PySide 6 because it is currently the most modern and well documented GUI package 

for Python.  

To establish a foundation to develop upon I created some simple wireframes in 

Figma (Fig. 14). This would serve as the blueprint for the application. 
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Figure 14: Main Page Wireframe 

 

 Conclusion 

Although there were certain constraints related to the visual design, the utilisation of 

PySide 6 facilitates the development of a modern and easy to use GUI. Additionally, 

the modular approach to the code base means that it is easily maintainable and 

extendable. Having these design principles eases the development process by 

removing the need for ad hoc modifications to core design elements or principles. 
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9 Implementation 

 Introduction 

This section provides a comprehensive overview of the development process 

employed in the creation of the program, tentatively titled ‘DroneLink’. It outlines the 

sequential steps taken during the development and expands on the rationale behind 

the chosen methodologies. The implementation was guided by a modular design 

architecture outlined in the design phase. 

 Predevelopment 

Prior to starting any functional code or training models, it was important to set up a 

functional development environment, pipeline, and repository. This ensures that any 

packages installed were local to the project, any code written was tested on the main 

branch and finally that work in progress code wasn’t merged into the main branch. 

 Virtual Environment 

Before starting development in earnest, a virtual environment had to be created to 

create an isolated dependency environment as well prevent packages from being 

installed globally on the machine.  

This was performed by running this command: 

 

Figure 15: V Env Command 

From this point the virtual environment could be activated and PIP packages 

installed. 

 Continuous Integration Pipeline 

In order to run automated unit and integration tests on my code a CI pipeline that 

runs a Docker environment was needed. This ensures that the code is being tested 

in the same environment every single time the tests are run. 

The Docker image was created by writing a Dockerfile. This file defines layers for the 

docker image to run when building the image.  
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Figure 16: Dockerfile 

Unfortunately, it was during the implementation of this Dockerfile that I found out that 

PySide 6 couldn’t be run in a dockerised environment as PySide 6 requires some 

sort of display in order to function. This led to much of the development not being ran 

through the pipeline correctly whilst I researched ways to have a containerised 

testing environment.  
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Ultimately, I decided to run the tests outside of an isolated environment in my 

pipeline for simplicity due to time constraints. I did, however, find later that I could 

have used a utility called ‘FlatPak’ which can run PySide 6 in partial isolation. 

 

Figure 17: GitHub CI Yaml 
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I after the issues I encountered, I decided to implement linting, package caching and 

expand the testing to multiple Python versions in the pipeline. This was done by 

adding new line items in the pipeline YAML file.  

 

 

Figure 18: Expanded Pipeline 

 

This will be covered further in the Testing section. 

 Pre-recorded Video & OpenCV2 

The first task was to get a pre-recorded video to play in Python. To do this a package 

called OpenCV2 was utilized to parse the video. “Open CV is an open-source 

computer vision and machine learning software library. OpenCV was built to provide 
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a common infrastructure for computer vision applications and to accelerate the use 

of machine perception in the commercial products”. (OpenCV, n.d.) 

 

Figure 19: Showing a video in Python 

This implementation imported the video using OpenCV’s VideoCapture method. This 

parses the video as a list of images that are displayed sequentially on the machine.  

In the code, the video frames are pre-processed to be ready for processing by a ML 

model. This code snippet would become the core for the whole project. 

 Initial Model Implementation 

Initially the models for this project were trained locally ona PC. This was done in a 

Jupyter notebook for rapid development and repeatability. 
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Figure 20: Notebook Model Training 

Initially, Ultralytics’ YOLO11s model was used as a starting point for training with a 

generic dataset of labelled drone footage of humans. This dataset had a variety of 

classes relating to the activity of the person detected, such as ‘running’, ‘walking, 

and ‘laying_down’ amongst others. The main goal of using this dataset wasn’t to be 

accurate or useful for the end product. It just needed to function to a demonstrable 

degree so that a minimum viable product could be presented. 

As seen in figure 19, it was chosen to train the model with 25 epochs in batches of 

16 images. This resulted in a training time upwards of 3 hours on a Nvidia RTX 4080 

graphics card. This lengthy training time was surprising as the dataset wasn’t 

especially large, and the hardware was extremely capable.  
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Figure 21: Model Training Report 

After training the output validation curves reported that this model had an accuracy 

of approximately 65%, which is only slightly higher than chance at detecting human 

objects, this translated to poor performance in the benchmark video being used to 

test the model on real-world drone footage. This poor performance made it clear that 

a much improved and varied dataset and model would be required and the 

difference in accuracy indicates that the model was over-trained. 

 Improved Model 

Following the poor performance of the locally trained model a solution to the 

hardware limitations was found in with Ultralytics Hub and Google Colab Pro. 

Initially a comparatively very large model was trained on the VisDrone dataset, this 

model had a reported accuracy of 60-70% in its validation tests but in actual use it 

appeared much better at detecting humans due to the larger and more varied 

training data. This dataset and the resulting model also had a slightly different 

classification set, meaning that vehicles and humans were now tracked, but poses 

would not be classified. It was felt that this was a good trade-off for the gain in 

detection capabilities 
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Figure 22: Large Model mAP 

It is also important to distinguish between the accuracy metrics derived from training 

and validation versus real-world performance. While the mAP (Mean Average 

Precision) scores reflect the model’s ability to detect objects in static images, actual 

usage often involves processing 30 frames per second of temporal data. If the 

primary objective is simply to detect a human at any point in a video, then the 

evaluation criteria differ from the standard per-image assessment. objective of the 

model is to detect a human at all then true accuracy of the model can be significantly 

lower and still yield useful results. 

Despite the better performance of the new model on the benchmark video, the 

program experienced severe performance issues due to the size of the model and 

the processing it required on each frame. It was decided that a ‘lite’ model would be 

trained for usage on machines with limited performance.  This ‘lite’ model had similar 

accuracy single image accuracy to the first model but with better edge case 

detection whilst being significantly more performant than the large model.  
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Figure 23: 'Lite' Model mAP 

 PySide 6 Video Player 

The user interface for the program was created using the Python package PySide 6 

which is a python wrapper for the Qt C++ library. The decision was made to go with 

PySide 6 because it has a much more modern appearance over other libraries such 

as Tkinter and is very object oriented due to it being a C++ package at its core. It is 

also very well documented compared to more obscure or newer packages like 

DearPyGui. This made it the obvious choice for development despite the steep 

learning curve to the package.  

The first goal in implementing the GUI was just to be able to display the video in a 

GUI container, with no interactivity. This was achieved simply by creating a 

QApplication in the main file and creating a video processor class module that 

served the frames to another class module called video player. This modular 

approach would be needed later in the project to ensure that I could process both 

live and pre-recorded frames. 
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Figure 24: Initial Video Player 

Figure 23 illustrates the initial implementation of the video player module, which 

accepts variables for the video and model paths. Initially, these paths were hard 

coded for testing purposes. 

The GUI is constructed by first initializing a PySide QApplication instance and then 

instantiating QWidgets within a MainWindow subclass; each discrete element of the 

interface is represented by a QWidget. The VideoPlayer class is subsequently 

attached to its corresponding widget, reinforcing a modular design. This approach 

allows future enhancements with ease, as adding new features simply involves 

integrating additional widgets. 



45 
 

 

Figure 25: VideoPlayer Class 

When the VideoPlayer class is instantiated, it inherits the properties of the 

MainWindow. This allows it to set its own QWidget as the central widget and assign 

it to the MainWindow. VideoPlayer also instantiates a VideoProcessor instance 

which handles turning the video into frames using cv2’s VideoCapture method and 

returning them to the video player.  
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 Dialogs and Signals 

In order for menus and actions to execute methods in the program in a non-blocking 

way, signals are utilised.  

 Signals in PySide / Qt 

Signals in PySide 6 are a core aspect of Qt’s event driven architecture. A signal is 

essentially a notification that a specific event or action has occurred. Signals are 

emitted by objects when something notable happens, such as user input, data 

availability or a state change. They can be connected to special function / method 

decorators called ‘slots’, which handle these events. 

Signals and slots provide a decoupled communication mechanism, meaning that 

objects don’t directly invoke methods on one another. Instead, they emit signals that 

interested parties connect to and react to the emissions. This design architecture 

encourages modularity, reusability and easier maintenance of the code. 

  Dialog handling 

In the project, dialogs are managed though a dedicated class called ‘DialogHandler’. 

This class centralises GUI operations like file selection, confirmations and 

informational alerts, decoupling these user interactions form the main application 

logic. The signals serve as the primary means of communicating the results of the 

dialogs back to the applications logic. 

Specifically, the DialogHandler class defines several signals: 

• file_path_response: Emits when the user selects a file or saves one via a 

dialog. It provides information back to the main app, including the selected file 

path and whether the processing should be initiated. 

• message_shown and yes_no_asked: Allow user feedback loops and 

confirmations in a structured and predictable manner. 

When a user selects a file from a dialog, the dialog emits a signal with the relevant 

details. The main application (MainApp) then connects to these signals, processing 

the returned information though defined slots. 
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 Implementation 

 

Figure 26: Dialog Handler Class 

 

Figure 27: Dialog Handler Class Method 

As shown in Figures 25 and 26, signals are implemented as attributes of the 

DialogSignals class, instantiated within DialogHandler. Upon initialisation of 

DialogHandler, each signal defined within DialogSignals is immediately connected to 

a specific hander method. These handler methods encapsulate the logic for 

interacting with PySide’s GUI elements.  

 DeepSort 

 What is DeepSort? 

“Deep SORT (Simple Online and Realtime Tracking) is an algorithm used for multi-

object tracking in video streams. It is an extension of the SORT (Simple Online and 

Realtime Tracking) algorithm, which uses the Kalman filter for object tracking. Deep 
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SORT incorporates a deep association metric based on appearance features 

learned by a deep convolutional neural network.” (Amjoud & Amrouch, 2023) 

Simply put, DeepSort is an algorithm that detects multiple images through a series of 

frames, associates an ID number with each object and attempts to maintain the track 

whilst the object is present and detected in the frames. 

 Why DeepSort? 

DeepSort was chosen for this project as it has great features that benefit the 

program, namely a feature called “Re-ID embeddings”. This is a feature, built into 

DeepSort, that keeps track of detected objects, even if they are temporarily 

obstructed from view. This is important in the context of this project because when 

an object is detected it is assigned an ID number. Keeping this ID number the same 

throughout the detection period can help the user from confusing detected objects 

with each other. Although, this does have the drawback of being computationally 

expensive. 

 

Figure 28: YoloDeepSortProcessor 
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Figure 29: VideoPlayer Model Methods 

 How does the detection work? 

After successfully getting the video running in the GUI the next task was to 

implement the model processing on the frames. This is done by the 

YOLODeepSortProcessor. 

The update_frame method from the VideoPlayer calls the 

YOLODeepSortProcessor’s process_frame method. This method runs the model on 

the frame and returns the bounding box coordinates of the detected objects, the 

confidence level of the detection and the classification. These variables are then 

passed into DeepSort to update the tracked objects  

Once the frame has been processed, the bounding boxes are drawn using the 

coordinates from the tracked objects using CV2’s rectangle method and the tracking 

ID is written above the box (Figure 27) 
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Figure 30: Drawing a rectangle & ID 

 Settings 

 

Figure 31: Settings Dialog Class 

The next major feature integrated into the application was the settings menu, which 

introduces user-configurable control over core aspects of the system. This modal 

dialog provides an intuitive interface for adjusting runtime parameters, with the 
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primary focus on allowing users to select among different object detection models 

included in the application. 

The primary motivation for implementing this feature arose from the need to cater to  

user preferences and varying hardware capabilities. Different object detection 

models exhibit significant differences in computational requirements and 

performance characteristics. By allowing users to select a model that aligns with their 

specific needs and hardware constraints, the application ensures consistent 

performance across a wide range of hardware. 

 Implementation 

The SettingsDialog class uses PySide6's widgets to provide user-friendly settings 

interface. Upon initialisation, the dialog dynamically identifies all available .pt 

(PyTorch) model files within the application's local assets directory. It then populates 

these model files into a QComboBox widget, facilitating straightforward model 

selection. This dynamic approach ensures scalability; new models can be effortlessly 

integrated into the application by simply placing the respective .pt files into the 

assets folder, without the need for additional code modifications. 

 

Figure 32: SettingsDialog Model Loading 

The settings dialog uses QSettings, Qt’s built-in persistent storage. Working similarly 

to web cookies, to manage application preferences and ensure consistency between 

sessions. When users open the settings menu, the dialog reads the previously 

selected model from QSettings and sets it as the default selection within the 

dropdown box. This provides continuity and improves user experience, minimizing 

the configuration effort across different usage sessions. If no previous model 

selection exists the user is prevented from running live or pre-recorded video 
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analysis until they select a model from the settings menu. This is achieved by 

disabling the buttons in the file dropdown. 

Once the Save button is pressed, the selected model preference is saved back to 

QSettings. The settings dialog then emits a custom-defined signal, settings_updated, 

containing the path to the newly selected model. This signal notifies all dependent 

components of the settings update. Connected slots within the main application then 

receive this signal and adjust the model loading to the updated path without requiring 

a restart. 

9.9.1.1 Refactoring 

The introduction of the settings feature required significant refactoring of existing 

functions to accommodate dynamic user preferences. Initially, the object detection 

model path was hardcoded into the program, significantly restricting flexibility and 

scalability. Migrating to the new design required removing these hardcoded 

dependencies, instead using a configurable approach. 

 Multi-Threading 

As the project progressed it became apparent that the current approach to the 

software design was becoming significantly more computationally intensive than 

initially forecasted. To address these performance concerns, multithreading and 

multiprocessing techniques were integrated into the software's design. 
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 Threading & Processing 

 

Figure 33: Multi-Processing Implementation 

Before implementing this, it was important to understand what threading and multi-

processing are and how they can be useful in a project.  
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9.10.1.1 Threading 

Threading involves executing multiple threads within the same process. These 

threads share memory and resources, this allows for fast communication and low 

overhead computing power. 

9.10.1.2 Multi-Processing 

Multi-processing is when multiple processes are executed simultaneously, each with 

their own separate memory space. This is well-suited to CPU bound or otherwise 

computationally intensive tasks. The processes run independently of each other, 

enabling parallel computation at the expense of higher resource overhead due to the 

additional management requirements of handling multiple processes. 

 Multi-Threading Implementation 

Multi-threading was used in the project to continuously capture video frames from 

the video source. The thread manages the capture processes by retrieving every nth 

frame and enqueues the frame into a thread-safe frame queue. Using a separate 

thread for frame capture prevents blocking operations, which allows the GUI and 

other components to remain responsive and minimizes delays in frame acquisition. 

9.10.2.1 Thread Safety 

In the context of this project and the frame queue, thread-safe refers to operations 

designed to function correctly when accessed simultaneously by multiple threads 

without causing data loss or race conditions. This means that, for example, the frame 

queue should have a locking mechanism and manage the consistency of shared 

data. In this project this is provided by default by the multiprocessing class’s Queue 

data structure. 

 Multi-Processing Implementation 

A separate process (processing_process) handles intensive video processing tasks 

independently. This process continuously fetches frames from the shared queue, 

performs model inference, and places processed frames into another queue for 

display. Utilizing multiprocessing ensures that heavy computational workloads do not 

impede or degrade GUI responsiveness, thereby maintaining a consistent and 

smooth user experience. 



55 
 

Additionally, inter-thread and inter-process communication is managed through 

thread-safe and process-safe queues (mp.Queue). This strategy prevents the 

aforementioned race conditions and improves the responsiveness and stability of the 

GUI by ensuring that frame capture, processing, and display tasks occur 

concurrently yet independently. The combined implementation of threading and 

multiprocessing substantially improves the program's overall performance and 

responsiveness. 

 

Figure 34: Multi-Processing Worker 

The multi-processing worker function also utilises frame skipping if the frame queue 

exceeds its maximum size. This means that if the queue reaches its maximum size 

of 100 frames, then subsequent frames get skipped to prevent blocking behaviour 

from the program and allows the processing to catch up. 

 Threading Conclusion 

Learning how threading and multiprocessing functioned within the context of Python 

and how to integrate it into the program took a considerable  
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 Metadata Extraction 

Metadata refers to the descriptive information embedded within digital files such as 

video or images. This data typically contains information about the date and time of 

the recording, camera settings, GPS data and device information. This can be useful 

to SAR teams in many situations, such as an image or video become relevant to a 

case after the video was recorded. Metadata can give detailed information about 

where and when the video was recorded.  

The extraction of this data was done by using the pymediainfo package in the 

MetadataProcessor. 
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Figure 35: MetadataProcessor 

The get_metadata method is the only publicly available method on the class, this 

method calls all the necessary private methods so that the data can be collected, 

merged and returned in a single method.  

The approach was chosen for the class design to abstract some of the repeated 

actions away from the developer and to improve the code readability where the class 

methods are called. 
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Initially it was hoped that video metadata would contain geographic data that would 

allow the program to export or display the location of the video in some manner. 

Unfortunately, it was found that videos do not typically have geographic metadata. 

Despite this, the entirety of the video metadata is provided to the user in a Qwidget 

to the side of the video.  

 

Figure 36: Metadata Viewer 

When there is a video playing the main process calls the metadata viewer class 

which, in turn, uses the MetadataProcessor to take metadata from the same video 

source. The data is then presented to the user in a Qwidget that has been made 

scrollable due to the length of the data.  

 Archive Processor 

The next task in the development of the project was to implement a way for the user 

to export the processed footage in a way that both preserved the original footage 
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and had the object detection overlays baked into the footage. This feature 

unexpectedly turned out to be the hardest to implement. 

Initially there was difficulty in implementing this function of the application because 

each operating system works in a slightly different way when saving video formats 

due to the required codecs.  

During the development of this feature I realised that skipping frames on the frame 

capture method resulted in faster than real-time playback of the video. To fix this a 

refactor was required, the frame skipping was moved from the frame capture method 

to the frame processing method. This maintained the improved performance whilst 

allowing the video to be played back to the user at real time. This also allowed the 

Archive Processor to maintain the integrity of the processed file more in line with the 

original provided video with no loss of data. 

During the initial development of the archive processor the output video codec would 

have to be manually changed when testing the feature between different operating 

systems by altering the code. This was solved by changing the codec one that would 

work in an operating system agnostic way. For this reason, MP4V was chosen. 

 

The next difficulty was using the VideoQueue class that had been previously 

implemented. Previously, the VideoQueue class had been implemented as a regular 

class that can have may instances of the class as objects. In this project the 

VideoQueue class needed to be implemented as a singleton, meaning that there can 

only be a single instance of the class active in the program at any one time. It 

required some significant research and refactoring to the class to ensure that it could 

only be instantiated once. To achieve this class decorators were used calling the 

@classmethod decorator. This runs additional code before the method letting python 

know that the method modifies the class as a whole rather than a specific instance.  

Instead of passing ‘self’ to the class methods as is standard practice the class itself 

is passed in as seen in figure 33 below. 
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Figure 37: VideoQueue Class 

The instance property of the VideoQueue class ensures that there is only one 

instance of the class. The _lock property is important to ensure that the queue 

functions correctly in the multi-threaded environment it is being used in. _lock 

functions similarly to a database lock that prevents the writing of data whilst another 

process is writing or removing data. This helps to ensure data consistency when 

enqueuing and dequeuing. 

 Play / Pause 

The next feature goal was to add the ability to pause and resume playback of pre-

recorded videos in the app. This was an important quality of life feature to add to the 

application because it allows the user to freeze a potentially important frame. Initially 

I wanted to include the ability to scrub forwards and backwards through the video but 
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due to the way the video had been implemented this was impossible without major, 

foundational code structure and functional changes. As the video player class was 

not designed with this functionality in mind.  

The actual implementation of the play / pause is simplistic but required careful 

forethought in-order function correctly with the many moving parts of the program. 

Specific attention was paid to how the pausing would affect the archival feature. 

The first element added was a button that the user interacts with. This was implanted 

by added a QPushButton to the video player layout. 

 

Figure 38: Adding Play / Pause Button 

When the user presses this button, it calls the toggle_play_pause method of the 

VideoPlayer class. 
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Figure 39: toggle_play_pause Method 

This method stops the multi-threading timer which will stop the processing of frames 

in the worker threads. In order to start video processing and playback again the timer 

is restarted with a framerate of 33 frames per second. Alongside the pausing of the 

timer the text in the button is updated to relay its function when pressed a 

subsequent time.  

Initially during the development of this feature there were issues because the 

implementation was attempting to add a check to the get_frame method of the 

VideoProcessor. This caused issues because the archive_processor and model 

processing were still running meaning that errors were being generated when the 

video was paused because the VideoProcessor was no longer providing frames to 

the downstream processors.  

 

 Close Video 

Previously, upon a finishing a pre-recorded video or terminating the connected 

livestream video the last frame of the video would be permanently visible in the 

program. To fix this a close function was added that can be invoked by the user at 

any time before, during or after the playback of the video. This is a very important 

feature for the user experience because it allows the user to process multiple videos 



63 
 

without having to restart the program. Additionally, it solved the issue of multiple 

video player instances being able to be open in the program at one time.  

The initial implementation for the close method was overly complex because it 

involved trying to destroy the class. After attempting this route for the feature, it was 

realised that I could just call the parent class’s close function and emit a signal to let 

any other processes know that the VideoPlayer class was terminating. For example, 

the metadata viewer knows to close itself when the video is closed.  

The signal was added to the top level of the class, outside of the constructor. 

 

Figure 40: Closure signal 

The button itself was added via a QPushButton that calls the close method of the 

class. 

 

Figure 41: Close button QPushButton 
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Figure 42: VideoPlayer close method 

The super().close() calls the close function of the QMainWindow. This kills the child 

QWidget (VideoPlayer in this case.)  

 Binary Compilation 

For a program to be effectively distributed, it should be compiled into a standalone 

executable. PyInstaller, a Python library, facilitates this process by packaging Python 

applications with all their dependencies into a single executable file. “PyInstaller 

bundles a Python application and all its dependencies into a single package. The 

user can run the packaged app without installing a Python interpreter or any 

modules.” (PyInstaller, n.d.) 

Packaging the application into a single executable enhances user-friendliness 

significantly. Users are not required to install Python or manage dependencies 

manually, actions which typically demand technical expertise. Instead, most users 

are already comfortable with executing applications from a binary executable file. 

 Creating a binary 

One of the methods that can be used to create a binary of a Python program is to 

create what is called a Spec file. A Spec file explicitly instructs PyInstaller on the 

compilation process, detailing the source files, necessary dependencies, included 

data files, and additional configurations. 
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Figure 43: DroneLink Spec File 

As seen in figure 43, the spec file is structured into sections each with an important 

role. 

• Analysis: This part identifies the script (dronelink.py) intended for compilation 

and outlines paths (pathex) for source files and dependencies. It specifies 

additional data files required at runtime under the datas section, like asset 

files (src/assets). The hidden imports list explicitly includes modules and 
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submodules that PyInstaller may not automatically detect due to dynamic 

imports or indirect usage. 

• PYZ: This section packages Python bytecode compiled from the scripts 

identified during analysis into a zipped archive. It encapsulates the logic and 

dependencies of the application, improving efficiency and load performance at 

runtime. 

• EXE Section: This is the final step where PyInstaller generates the executable 

binary. It bundles scripts, binaries, zipped data, and additional metadata from 

previous sections. Configurations here include defining the executable's name 

(DroneLink), controlling debugging behaviour (debug=False), and determining 

whether a console window will appear upon execution (console=True). UPX 

(ultimate packer for executables) compression (upx=True) is also applied here 

to reduce the size of the executable, improving portability and download 

speed. UPX is a compression tool solely designed to reduce file size of 

executable files.  

The created binary will only run on the operating system architecture that it was 

created on. For instance, a binary created on a Windows machine will only run on 

other Windows (Win32) machines, likewise with Ubuntu and MacOS. MacOS 

binaries require the binary to be created on the oldest version of the operating 

system you wish to support as new versions of the OS have backwards compatibility 

but in inverse may not be true. 

 Automating Compilation 

Instead of manually having to create binaries for each new version of the tool, it is 

possible to automate the compilation of the code into binaries by using the CI 

pipeline. The pipeline can then use containerised instances to create the binaries for 

the desired operating systems when code is merged into the main branch. 

This is achieved by defining jobs in the GitHub actions CI YAML file. 
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Figure 44: Binary Compilation Jobs 

As seen in Figure 44, the two CI jobs, build-windows, and build-linux will use the 

previously created spec file (Figure 43) in a docker instance. They achieve this by 

building an image from the windows/ubuntu-latest image and then installed the 

required Python version along with the needed packages. In this case that is 
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PyInstaller. After package installation, PyInstaller is run with the spec file provided in 

the repository. After compilation the binaries are available for download as a upload 

artifact. 

 Conclusion 

In summary, compiling a Python application into a standalone executable using 

PyInstaller significantly improves the ease of software distribution and user 

accessibility. By clearly defining the compilation process through a Spec file and 

automating the creation of executables via Continuous Integration pipelines, 

developers can efficiently produce consistent and reliable software binaries. This 

strategy not only simplifies deployment but also enhances the overall user 

experience by reducing complexity and dependency management. 

 Implementation Conclusion 

During the implementation phase, the design ideas were transformed into a fully 

working, modular application that could track and detect objects in drone footage in 

real time.  Class-based design, multiprocessing pipelines, and a non-blocking signal-

slot communication mechanism were used to prioritise performance, 

responsiveness, and maintainability.  While threading and multiprocessing facilitated 

effective frame recording and model inference without affecting user interaction, 

PySide6 integration allowed for a responsive and user-friendly GUI. 

Following iterative training with Ultralytics Hub and Google Colab Pro, deep learning 

models were trained and reviewed, and optimised models suited for high-

performance and resource limited scenarios were chosen. Important features 

including model selection, metadata extraction, live and pre-recorded video 

processing, and the ability to archive annotated material were created gradually and 

verified by both automated and manual testing. 

Despite challenges such as platform-specific codec support and GUI limitations, the 

final implementation delivered a reliable and extensible foundation for drone-based 

SAR tools. The modular structure ensures that future enhancements, such as 

geolocation integration or cloud-based analytics, can be incorporated with minimal 

architectural disruption. 
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10 Testing 

Throughout the project multiple methods were used to test and validate the usability, 

performance, and stability of the application across its various components. Given 

the program’s complexity, ranging from GUI responsiveness and multi-threaded 

video handling to real-time object detection; testing was approached in an iterative 

and modular manner. Early testing focused on manual testing of key features, whilst 

later testing relied heavily on automated unit testing of methods, classes and 

functions for ensuring the functionalities of the program continued to work as 

expected. 

In addition, user interface testing ensured that controls such as model selected, 

video playing and settings management operated as expected across different 

scenarios and edge cases. Continuous Integration pipelines were used to automate 

linting, test execution across multiple Python versions to catch platform specific 

errors. Manual testing was also conducted to attempt to simulate real-world SAR use 

cases and verify the reliability of object detection in varied environments. 

 Unit Testing 

Unit testing was used to verify the function of individual components of the 

application against a ground truth. In particular the elements that handled the 

processing side of the application in contrast to the GUI. The tests focused on 

ensuring that the processors in the application continued to output expected values 

and to guarantee that any changes would be durable. 

Unit tests we implemented using PyTest, a testing framework for the Python 

language. To ensure the tests were always consistent across changes to the local 

Python and project environment, the tests were run as part of a containerised 

environment in a continuous integration pipeline provided by GitHub Actions. This 

container would be completely isolated from my local system as it runs in the cloud 

and thus separated from any changes or quirks of my local system. This meant that 

every time the tests were run it was in the exact same environment providing a solid 

foundation for the tests to be accurate.  



70 
 

 

Figure 45: CI Test Job 

The ‘test’ job runs in a ubuntu container and will run the tests a total of 3 times on 

different Python versions. This is to catch errors that may be related to the version of 

Python the user is running if building the application from source. 

The CI ‘test’ job had a number of steps.  
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• Firstly, the code is checked out using the checkout@v4 GitHub action. This 

checks out the code to the container 

• If the container has previously ran in its current configuration, then the pip 

packaged are loaded from the cache GitHub action. This prevents having to 

redownload the packages every time the job is run, reducing the time it takes 

to complete the job. 

• Python is then installed to the container according to the matrix defined in the 

strategy key. 

• The PIP packages are then installed into the Python environment. 

• Linting is performed on the Python code to ensure that the code conforms to 

Pythonic code standards and that there is not redundant code. For example, it 

catches unused imports and variables that are defined but never used. This 

step ensures that any submitted code is of a high quality. 

• The PyTest unit test suite is then run on the code. This step will also create a 

coverage report. This gives information on how much of the code is covered 

by tests and can help highlight areas that need more tests to special attention.  

• The coverage report is then uploaded as a job artifact to GitHub, allowing 

developers to view the report after the job has been completed.  

  Integration Testing 

Integration testing was considered to validate the interactions between the 

processing and GUI logic. Given the real time nature of the application, it was 

important that the UI correctly handled all the core functions.  

The primary tool for integration testing was PyTest-Qt. PyTest-Qt is an extension to 

PyTest that facilitates GUI testing by simulating user interactions with Qt widgets. 

This would allow the test suite to mimic actual user behaviour such as clicking 

buttons, selecting models and beginning processing on a video. 

However, due to the limitations on running Qt applications inside headless, 

dockerised CI environments, these integration tests were not implemented. Qt 

applications require a display server in order to function. There are some tools (such 

as xvfb) that simulate a display server, allowing a dockerised application. The real-

world implementation of this, on the other hand, turned out to be vastly more 
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complex than initially thought. Especially with the added complexity of handling multi-

threading. Instead, the GUI would be manually tested  

  Manual Testing 

During the course of development, manual testing was conducted on both the 

graphical user interface and the object detection model. This testing process 

involved verifying that each feature of the GUI operated correctly during regular 

usage, ensuring that expected user workflows, such as loading models, managing 

video playback, and adjusting settings, functioned without errors or unexpected 

behaviour. Throughout development, special attention was also paid to identifying 

and executing potential edge cases, such as providing invalid file inputs, abruptly 

terminating video streams, or adjusting settings during active detection, to observe 

how the application handled unexpected or abnormal user actions. 

The manual testing approach for the GUI emphasized not only validating the correct 

behaviour under standard conditions but also challenging the system’s robustness 

under unusual scenarios that a real-world user might encounter. Testing sessions 

frequently involved switching models mid-playback, rapidly changing settings, 

introducing corrupt media files, and forcing resolution changes to validate that the 

application could recover gracefully without requiring a restart or leading to a crash. 

In addition to the GUI, the model's behaviour was manually tested by running it 

against a variety of video samples representing different environments and 

conditions. These tests verified the model's ability to maintain detection accuracy 

under varying lighting conditions, image qualities, and object densities. Real-world 

SAR video data were incorporated to ensure that object detection results were 

consistent, reliable, and free of critical failures such as frame freezes or detection 

hangs. 

Manual testing cycles were performed iteratively throughout the project's 

development, with observations carefully noted and used to guide bug fixing and 

feature refinement. This manual validation process played a crucial role in ensuring 

the overall stability, usability, and performance of the final application 
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11 Further Development 

There are many potential areas for further development of the DroneLink application. 

Whilst the current implementation focuses on real time object detection and tracking 

with the goal of aiding Search and Resue applications. 

A clear path for growth in the project would be to tailor the system for different 

operational demands in sectors such as defence, policing, surveying and others. 

Each of these sectors has unique requirements that could be met though the 

publishing of modules for the base program, introducing features tailored to each 

industry.  

For instance, in the defence sector there is a demand for autonomous systems 

capable of target recognition, tracking hostile assets and conducting semi or fully 

autonomous reconnaissance. DroneLink could be expanded to include model 

training on camouflaged personnel, military equipment or in structure detection to 

map out possible static defences. Combining this further with tools to autonomously 

control the drone based on its detections and classifications could be a desirable 

feature for this sector. 

Similarly, for policing applications, the software could be optimised for urban 

environments, with software capabilities added to aid in crowd monitoring, traffic 

control or with facial recognition to aid in the tracking of persons of interest. Further 

expansion of the metadata extraction tool in the application would be desirable for 

this use case to aid in the building of a case against an individual.  

Additionally, surveying features could be added to the software to allow for not only 

human detection but for infrastructure analysus, for example, the model could be 

trained to identify potential faults in buildings, bridges or other infrastructural 

buildings. Integration with Geographic Information Systems (GIS) would enable the 

automatic mapping of detected features would add a huge capability to the program. 
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12 Conclusion 

The aim of this project was to develop a real-time item recognition and tracking 

system to support drone-based Search and Rescue (SAR) operations. Throughout 

the project, I had to learn and apply principles of modularity, performance 

optimisation, usability, and maintainability, recognising their importance for real-world 

SAR applications where dependability and efficiency are critical. 

During the initial research phase, a gap was identified in the availability of open, 

flexible, and cost-effective SAR solutions. Addressing this gap required learning 

about recent advances in AI, computer vision, and object detection technologies. I 

designed and implemented a full system capable of processing both live and 

recorded video streams, incorporating object detection and multi-object tracking 

using DeepSORT. I developed independent and concurrent modules for video 

processing, model inference, and metadata extraction through multithreading and 

multiprocessing, gaining practical, professional grade experience in managing 

parallel systems 

Model training and optimisation involved learning to use platforms such as Ultralytics 

Hub and Google Colab Pro. This allowed me to create models specifically adapted to 

drone footage, balancing detection accuracy against computational demands. For 

the user interface, I studied and implemented PySide6 to ensure that SAR personnel 

could operate the system intuitively, without requiring specialist technical knowledge. 

Although learning to use these platforms and packages was essential to the 

development of the project, the complexity and depth of the required learning to 

correctly implement many of the features significantly slowed down the initial 

development of the features. Substantial time had to be dedicated to understanding 

new frameworks, tools and best practices before implementing the features. This 

overall lead to less features being in the program than initially desired. 

A significant focus was placed on system validation. I learned to integrate unit testing 

into a containerised Continuous Integration (CI) pipeline to maintain backend 

reliability across different Python environments. Manual testing complemented this 

process by validating the graphical interface, user workflows, and overall system 

behaviour under realistic and extreme conditions. 
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The project presented several challenges, such as the difficulties associated with 

GUI testing within Docker containers and the limitations on performance during video 

archiving. I researched and applied practical solutions to address these issues and 

outlined opportunities for further enhancements. 

The final outcome is a fully functional and extensible application designed to assist 

SAR teams by reducing search times, minimising human error, and has the 

capability to provide a ‘force multiplier’ to SAR teams. This project reflects the critical 

role of machine learning, computer vision, and software engineering practices in 

creating effective, real world technological solutions 

 Final Words 

Beyond the technical outcomes of the project, the process of researching, designing, 

planning and developing this system has been a valuable opportunity to 

independently build my skills and to critically identify areas of weakness in my 

professional capacity. It has provided clearer insight into the challenges involved in 

bringing a major software project from concept to delivery under tight time 

constraints. 

Many of the skills developed throughout this project, particularly in technical 

planning, self-learning, and system integration, will support my ongoing professional 

growth. Recognising the areas where my knowledge is currently limited will also 

allow me to more effectively target future learning and development 

.  
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