
Adam Gallagher Decentralized CMS

i

Decentralized Content Management System

Adam Gallagher

N00211418

Supervisor: Mohammed Cherbatji

Second Reader: Sue Reardon

Year 4 2024/25

DL836 BSc (Hons) in Creative Computing

Adam Gallagher Decentralized CMS

ii

Abstract

The focus of this project is the design and implementation of a decentralized content management

system (DCMS). By combining decentralized storage and content management systems many of the

issues found in a traditional CMS are solved. Examples of these are single points of failure and

security vulnerabilities. Additionally, a DCMS would simplify the development of decentralized

applications by reducing both complexity and the level of expertise required. The goal of this project

was to build a secure DCMS that enables users or organizations to securely manage digital assets in a

decentralized way through a user-friendly dashboard and an API integration for other applications.

Unlike traditional centralized content management all data is stored using Gun JS a decentralized

database, improving security and resilience. Gun JS is a decentralized graph database used to store

data across peers in a network. The development of this application required several phases,

requirement gathering, design, implementation and testing. Software development best practices

were followed during this project including the use of the AGILE framework, splitting the work into

individual sprints. For future development could explore improved peer configuring for the storage

network and dev ops features such as database rollbacks. The system was successfully developed

with key features such as custom digital content creation, API integration and decentralized storage.

Adam Gallagher Decentralized CMS

iii

Acknowledgements

At this point I would like to take this opportunity to give a massive thank you to my supervisor for

this application, Mohammed Cherbatji, his support and guidance cannot be undervalued. This

project would not be possible without his help. I am also grateful to all my lectures who kept me

motivated and helped me throughout this process. I would also like to give a thank you to my fellow

students who helped with testing and supporting me during the development of the application.

Adam Gallagher Decentralized CMS

iv

The incorporation of material without formal and proper acknowledgement (even with no

deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should

document this in your submitted work and if you have any doubt as to what level of

discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,

which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk

where they can be accessed by other. Be aware that removable media, used to transfer work, may

also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to

the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.

Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another
who then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own

work.

Student : Adam Gallagher

Signed

Failure to complete and submit this form may lead to an investigation into your work.

Adam Gallagher Decentralized CMS

v

Abbreviations and Acronyms

CMS Content management system

DCMS Decentralized content management system

DStorage Decentralized storage

SHA Secure hash algorithm

AES Advanced encryption standard

IDB Indexed database

JWT JSON web token

UI User interface

API Application Programming interface

JSON JavaScript object notation

TS Typescript

JS JavaScript

CSS Cascading style sheets

HTML Hypertext markup language

Adam Gallagher Decentralized CMS

vi

Table of Contents
Chapter 1. Introduction .. 1

Chapter 2. Research .. 3

2.1 Introduction .. 3

2.2 Concept 1 – Decentralized Storage ... 3

2.2.1 Use cases ... 3

2.2.2 Types of Decentralized Storage .. 4

2.2.3 Views of Decentralized Storage .. 5

2.3 Concept 2 – Content Management Systems .. 6

2.3.1 Definition... 6

2.3.2 Types of CMS ... 6

2.4 Concept 3 – Integrating both concepts together .. 7

2.4.1 Development ... 7

2.4.2 Benefits of a decentralized content management system ... 8

2.5 Conclusion ... 8

Chapter 3. Requirements .. 9

3.1 Introduction .. 9

3.2 Requirements gathering ... 10

3.2.1 Similar applications ... 10

3.2.2 Survey .. 11

3.3 Requirements modelling ... 11

3.3.1 Functional requirements ... 11

3.3.2 Non-functional requirements ... 12

3.4 Feasibility .. 12

3.5 Conclusion ... 13

Chapter 4. Design .. 14

4.1 Introduction .. 14

4.2 Program Design ... 14

4.2.1 Technologies ... 14

4.2.2 Structure of Next JS ... 15

4.2.3 Design Patterns ... 15

4.2.4 Application architecture (1 page) ... 16

4.2.5 Database design .. 17

4.3 User interface design .. 18

4.3.1 Wireframe ... 18

4.3.2 User Flow Diagram .. 19

Adam Gallagher Decentralized CMS

vii

4.3.3 Style guide ... 20

4.4 Conclusion ... 21

Chapter 5. Implementation ... 22

5.1 Introduction .. 22

5.2 Scrum Methodology .. 22

5.3 Development environment ... 22

5.4 Demo application .. 23

5.5 Sprint 1 .. 25

5.5.1 Goal ... 25

5.5.2 Item 1 .. 26

5.5.3 Item 2 .. 26

5.5.4 Item 3 .. 26

5.6 Sprint 2 .. 27

5.6.1 Goal ... 27

5.6.2 Item 1 .. 27

5.6.3 Item 2 .. 28

5.7 Sprint 3 .. 31

5.7.1 Goal ... 31

5.7.2 Item 1 .. 31

5.7.3 Item 2 .. 33

5.7.4 Item 3 .. 34

5.7.5 Item 4 .. 38

5.7.6 Item 5 .. 40

5.7.7 Item 6 .. 41

5.7.8 Item 7 .. 42

5.7.9 Item 8 .. 44

5.8 Sprint 4 .. 46

5.8.1 Goal ... 46

5.8.2 Item 1 .. 46

5.8.3 Item 2 .. 49

5.8.4 Item 3 .. 52

5.8.5 Item 4 .. 53

5.8.6 Item 5 .. 54

5.8.7 Item 6 .. 55

5.9 Sprint 5 .. 55

5.9.1 Goal ... 55

Adam Gallagher Decentralized CMS

viii

5.9.2 Item 1 .. 56

5.9.3 Item 2 .. 57

5.9.4 Item 3 .. 58

5.10 Sprint 6 .. 60

5.10.1 Goal ... 60

5.10.2 Item 1 .. 60

5.10.3 Item 2 .. 62

5.11 Sprint 7 .. 63

5.11.1 Goal ... 63

5.11.2 Item 1 .. 63

5.11.3 Item 2 .. 64

5.11.4 Item 3 .. 66

5.12 Sprint 8 .. 67

5.12.1 Goal ... 67

5.12.2 Item 1 .. 67

5.12.3 Item 2 .. 68

5.12.4 Item 3 .. 69

5.12.5 Item 4 .. 70

5.12.6 Item 5 .. 71

5.13 Conclusion ... 72

Chapter 6. Testing ... 73

6.1 Introduction .. 73

6.2 Functional Testing ... 73

6.2.1 Navigation ... 73

6.2.2 API ... 74

6.2.3 UI CRUD ... 75

6.2.4 Discussion of Functional Testing Results .. 76

6.3 User Testing .. 77

6.3.1 Discussion of the user testing ... 78

6.4 Conclusion ... 78

Chapter 7. Project Management .. 79

7.1 Introduction .. 79

7.2 Project Phases ... 79

7.2.1 Proposal .. 79

7.2.2 Requirements .. 79

7.2.3 Design .. 80

Adam Gallagher Decentralized CMS

ix

7.2.4 Implementation .. 80

7.2.5 Testing ... 81

7.3 SCRUM Methodology .. 82

7.4 Project Management Tools ... 82

7.4.1 GitHub ... 82

7.4.2 Journal ... 82

7.5 Reflection .. 83

7.5.1 Views on the project ... 83

7.5.2 Working with a supervisor .. 83

7.5.3 Technical skills ... 83

7.6 Conclusion ... 84

Chapter 8. Conclusion ... 85

Chapter 9. References ... 86

Chapter 10. Appendix ... 88

Adam Gallagher Decentralized CMS

1

Chapter 1. Introduction
The aim of this project is to develop a decentralized content management system (CMS). Traditional

content management systems use centralized systems that are prone to errors and vulnerable to

cyber-attacks. These pose serious risks for fields where reliability and accuracy are critical. By using

decentralized storage technology this could solve these issues. Storing application data in a fault

tolerant decentralized database could help increase efficiency, transparency, and security while also

reducing the technical barrier for the creation of decentralized applications. This proposed project

would store and manage user’s custom digital assets though a user-friendly dashboard and provide

an API integration that can be used for external applications for example websites or mobile apps.

The research portion of this project aims to explain what decentralized storage and content

management systems are with a focus on security and their positive and negative features.

The application is developed using Next JS. This framework combines front end and back-end

capabilities so the UI components and API routes can be stored in monolith code base. For data

storage Gun JS is used. This is a distributed, peer to peer, decentralized database where data is

spread across a network with no centralized authority. The node JS crypto library and the

jsonwebtoken (JWT) library are used for handling encryption and decryption in the CMS. These are

specifically used for verifying and generating data signatures to protect against unauthorised

database tampering. The MetaMask SDK enables connection to the Ethereum network for

decentralized authentication in the system. Additionally in the dashboard the Tip Tap library is used

for creating a rich text editor component and the IDB library is used to streamline the IndexedDB

integration.

To ensure best software development practices and receive continuous feedback the AGILE

framework was used. Trello was the primary tool in managing the backlog and tracking progress

during the implementation phase of this project. Git/GitHub was used for managing version control

in the project. Additionally, a personal journal was kept recording the process. This aided with

reflecting on the overall process and problem-solving during development.

Technical and functional requirements were created to aid in the development of this project. The

functional requirements focus on the usability of the CMS including features and interactions with

the UI. Technical requirements were specific to the development of the application, this includes

possible frameworks, databases, authentication and encryption methods. These where selected

through a process of researching similar CMS products and testing frameworks and libraries.

The design phase had two primary goals, UI design and the system architecture. For the UI design

the Shadcn UI framework was used, providing a colour and typography palettes and a suite of

prebuilt components. In Figma through iterative design from wire frames the UI was created. System

architecture diagrams were drafted in Figma alongside the UI.

Prior to the start of the implementation phase a demo application was developed validate the

feasibility of a decentralized CMS. This application could read and write custom data to the Gun JS

database, serving as a proof of concept. The main implementation phase was split up into two-week

sprints following the scrum agile framework. Each sprint had a backlog of tasks with the aim of

finishing these by the end of the two weeks. If not complete a task would be pushed into the

following sprint. Regular meetings where organised during sprints with the supervisor to track

progress and receive feedback. This approach supported continuous feedback and improvements to

the overall application.

Adam Gallagher Decentralized CMS

2

Testing the application was done using automated jest tests and user testing. The user testing

focused on the functionality and usability of the system for developers. Jest validated API routes

with mocked responses to ensure proper functionality without a dedicated testing environment.

Functional testing was carried out through development process verifying the application performed

as expected. To further test the capabilities of the system two sample applications were developed

using the CMS as a backend. This demonstrated the viability of the system and find issues with the

system.

Adam Gallagher Decentralized CMS

3

Chapter 2. Research

2.1 Introduction
This section explores the connection between decentralized storage systems (dStorage) and content

management systems (CMS), with a proposal for the development of a decentralized CMS platform.

Decentralized CMS offers significant advantages over traditional centralized systems which rely on

centralized storage that introduces singles points of failure and vulnerability to cyber-attacks. These

are seen specifically in relations to cost, data security and system robustness. It achieves this by

spreading data across network of nodes.

This paper explores the different types of both decentralized storage and CMS technologies and the

views of them in the technology sector. It also investigates how these two technologies could be

combined into a single system. This paper highlights potential benefits of a decentralized CMS in

industries where data integrity and resilience are vital.

2.2 Concept 1 – Decentralized Storage

2.2.1 Use cases

2.2.1.1 Internet of things

One of the most promising uses of decentralized is within the internet of things (IOT) field. A

common issue with current IOT technologies is when users are locked into specific vendors specially

when they are using different hardware, limiting interoperability and making device integration

complex. With decentralized storage users can be connected to any network they require (Chamria,

2024). An example of this is ADEPT (autonomous decentralized peer to peer telemetry) developed

by Samsung and IBM this is a decentralized network for IOT for data sharing and coordination

between IOT devices.

2.2.1.2 Public Records

Decentralized storage shows promise in the relation to storing sensitive government documents for

example property records, financial data or tax information. Currently these types of data are stored

in siloed centralized database which causes issues with managing this data. Centralized databases

are vulnerable to cyber-attacks and manipulation. It is also difficult to gain useful insights into this

data. A decentralized approach could enhance security and increase transparency within a

government (Chamria, 2024). A real-world example of this can be seen in Brazil with Ubiquity. This is

an American based start-up working with the Brazilian Government to update Brazil’s real estate

records by introducing decentralized storage technology. They aim to make a tamper proof,

transparent system for tracking real estate.

2.2.1.3 Healthcare

The healthcare industry could benefit from a decentralized system for storing and managing

sensitive patient data. Historically, the healthcare industry stored all its data in paper records but in

recent years it has switched to digital records. Despite switching to a digitized system there remains

issues. Traditional centralized digital storage is prone to unauthorized users and data breaches. A

decentralized approach could offer stronger security, prevent tampering of records and build trust

among health care workers and patients. This in tail could potentially reduce mistakes and provide a

Adam Gallagher Decentralized CMS

4

better service (Chamria, 2024). An example of this can be seen with an American based blockchain

start-up called Gem. Gem uses blockchain technology to provide real-time, secure access to medical

records. Using Ethereum smart contracts Gem provides patients with control over their own health

records while allowing for secure sharing of data with authorized professionals. This promotes a

patient first approach to healthcare record management.

2.2.2 Types of Decentralized Storage

2.2.2.1 Blockchain storage

Figure 22-1 Blockchain diagram.

The most widely recognized solution for decentralized storage is blockchain technology. Blockchain

uses distributed ledger technology (DLT). The DLT serves as a decentralized database of transactions

between different parties in chronological order. Each operation is grouped into a block, which is

cryptographically linked by a pointer to the previous block creating a chain of blocks (See Figure 2-1).

This data structure ensures traceability. Additionally, Sharding is used in this technology for

optimisation. This is the process of dividing files into smaller parts (shards) then each shard is

duplicated across multiple nodes in the network to prevent data loss during transmission.

Additionally, the data is encrypted using private keys preventing the sensitive data being viewed by

other nodes in the network. Every interaction is permanently recorded in the ledger; this enables the

system to confirm and synchronise transaction data across the nodes in the blockchain. The data in

blockchain is immutable and designed to save these interactions forever (Moore, 2023).

Despite these advantages there is a significant flaw with blockchain technology in relation to scaling

and storing large files. It is estimated that storing one megabyte of data can cost up to seventeen

thousand US dollars due to the cost of energy (Pinto, 2020).

Adam Gallagher Decentralized CMS

5

2.2.2.2 Decentralized cloud storage

Figure 2-2 IPFS diagram

Another decentralized storage solutions is decentralized cloud storage which works similarly to

blockchain by distributing data across a network of nodes (see Figure 2-2). Unlike traditional

centralized servers’ data can be retrieved from a nearby node reducing latency and possibly

improving speed. These systems often use the Interplanetary File Storage Protocol (IPFS). IPFS is a

peer-to-peer protocol designed replace conventional hypermedia protocols such as HTTP and HTTPS.

IPFS enables users to access and share large volumes of data through content addressing as opposed

to location-based addressing. When a file is added to IPFS a hash is created, this is a unique identifier

for the data. This type of cryptographic data is a Merkle Directed Acyclic Graph (DAG). This is a

special data structure for modelling other types of data structures. This is optimised to remove

duplicate content in the network. The purpose of IPFS is to connect all nodes in a network with a

centralized approach to share all data.

Additionally, for easing the access to data IPFS uses Inter Planetary Naming System (IPNS). This is the

process of connecting the hash code for content in the network with a readable format. When data

is requested from the network, the network calculates which node holds the required content and

retrieves it (IPFS Documentation | IPFS Docs, n.d.).

2.2.3 Views of Decentralized Storage

2.2.3.1 Props and cons of decentralized systems

One of the primary benefits of a decentralized system is its high reliability. When data is spread

among multiple hosts in network redundant, copies are stored as well. This eliminates a single point

of failure. So, if there is a hardware failure backup copies of the data are available. Another benefit is

its reduced cost. In a decentralized network machine requirements are lower which then reduced

the need for expensive high-performance hardware and software. There is also the possibility for

millions of peers to store data in a decentralized network, significantly increasing the availability of

storage space.

Adam Gallagher Decentralized CMS

6

However, there are some issues with this approach. A major concern is the lack of trust with peer-to-

peer systems, this exists for several reasons. By distributing data, it bypasses centralized regulations.

Additionally, there is a lack of accountability in the occurrence of data loss, where a centralized

solution has clear accountability (A Comprehensive Survey on Blockchain-Based Decentralized

Storage Networks, 2023).

2.3 Concept 2 – Content Management Systems
2.3.1 Definition

2.3.1.1 What is a CMS?

A content management system (CMS) is a piece of software that helps users manage digital content

in a simple efficient way. Teams can use a CMS to create, edit, organize and publish their content. It

acts as a single point of contact to store data and provide automated processes for collaborative

content management and creation. Some examples of popular CMS are Pocketbase, Joomla and

Drupal. (Who, what, and types of content management systems? n.d.).

2.3.1.2 Key features of a CMS

One of the primary features of a CMS is the ability to assign different user roles. This functionality

enables users to access appropriate digital content relevant to their responsibilities. These roles can

include standard organization roles, application management roles and resource-based roles that

define permissions. The main function of a CMS is digital asset management serving as a central hub

for digital assets to be managed and to create rules and workflows to define how the content can be

utilized. Every asset created must enforce a strict type for that asset’s custom attributes.

2.3.2 Types of CMS

2.3.2.1 Headless

A headless CMS separates the content management backend from the front-end presentation layer.

This architecture provides the user with the freedom and flexibility to create and manage content

with their own external applications or other specific use cases. One of the advantages of a headless

CMS is that users can manage their content centrally and distribute it across multiple channels such

as websites or mobile applications (Osman, 2024).

2.3.2.2 WCMS

Another common type of CMS is the web content management system (WCMS). A WCMS allows

users to manage digital components of a website without requiring any knowledge of web

development technologies such as HTML or JavaScript. Unlike other CMS which deal with content

across multiple channels such as web or print, a WCMS can only manage web content. (Jones, 2024).

2.3.2.3 ECMS

Enterprise content management systems (ECMS) are also commonly used. These systems collect and

organize an organization’s documentation. They ensure important information is delivered to the

correct audiences within the organization such as employees, customers or business stakeholders.

Adam Gallagher Decentralized CMS

7

An ECMS enables all members of a company to access the content they need to complete projects

and make important business decisions. The primary benefit and purpose of this type of software is

to increase efficiency and productivity by providing easy access to digital content. (Jones, 2024).

2.4 Concept 3 – Integrating both concepts together
2.4.1 Development

2.4.1.1 User authentication

For user authentication MetaMask will be integrated into the system. MetaMask is a cryptocurrency

wallet that provides a browser extension designed for interacting with the Ethereum blockchain. By

using this extension, traditional centralized authentication methods such as usernames and

passwords are not needed. Instead, the user authenticates by connecting to their wallets and

retrieving their cryptographic signature (Use MetaMask SDK with React UI | MetaMask Developer

Documentation, n.d.). This approach benefits user privacy and security because user data is not

stored in a centralized server which reduces risk of data breaches.

2.4.1.2 Data storage

For storing the users generated data Gun JS will be used. Gun JS is a peer-to-peer, decentralized

database designed for synchronisation in distributed systems. It operates based on the principles

similar blockchain and decentralized cloud storage defined in the previous section (See Chapter

2.2.2). Gun JS is known for its peer-to-peer data synchronisation which enables multiple nodes in a

network to update data. This includes peers that temporarily loses connection, it does this by

caching data locally on the peer’s device and automatically syncing it when connection is restored.

Additionally, this database uses a graph model which allows for flexible storage of complex data.

Gun JS has a built-in cryptographic library named Security, Encryption, Authorization (SEA). This

ensures privacy and provides user authentication. (GUN — the Database for Freedom Fighters - Docs

v2.0, n.d.).

2.4.1.3 Dashboard / API development

For the dashboard UI and API development the Next JS framework will be used. Some of the key

features of Next JS includes support for server side and client-side rendering of components which

enhance the performance of application allowing many of the API calls to be made on the server and

delivered to the client. Next JS offers both UI and API capabilities which makes it well suited for

making a headless CMS dashboard. It also supports custom middleware and Typescript both of

which improve the development process. It’s important to note that the entry point to the data,

dashboard and API being developed can run locally or be hosted as a centralized application,

however the user’s generated data is stored in a decentralized style (Next.Js by Vercel - the React

Framework, n.d.).

2.4.1.4 Styling

Next JS, by default is configured to use Tailwind CSS as a styling framework. Tailwind offers utility

classes that can be used for style components efficiently without writing vanilla CSS. This will be

used in conjunction the Shadcn component library for UI design. Shadcn was chosen as it has many

Adam Gallagher Decentralized CMS

8

pre-built components and its compatible with React and Tailwind CSS. This will greatly improve the

development process. (Shadcn, n.d.).

2.4.2 Benefits of a decentralized content management system

The primary and most important benefits of a decentralized content management system (DCMS)

are seen in its increased security. By distributing the data among peers in a network it makes it

harder for malicious users to compromise the system. If one or more of the peers, go offline the

content will still be accessible via the other peers in the network. These factors contribute to

increased privacy of users. Another benefit of this is the reduced cost as the user is not relying on a

centralized server for storing their data. (Gagan, 2023). Additionally, a DCMS would streamline the

process of building decentralized applications by reducing the need for specialized technical

knowledge.

2.5 Conclusion
Through examining the current state of decentralized storage and CMS technology, the research

section of this paper has outlined the potential for a decentralized CMS (DCMS) and the inherent

benefits that come with the merging of these two technologies. A DCMS addresses the

vulnerabilities of traditional centralized content management such as single points of failure, lower

reliability and lack of transparency. Decentralized technology resolves many of these issues while

reducing the cost of running a CMS. As discussed above, decentralized storage is not without flaws

due to its circumvention of certain regulations and lack of accountability for data loss or outages.

Despite these challenges, developers are starting to recognize the flaws with traditional centralized

systems. The proposal of a decentralized content management system highlights the promising

future of greater adoption of decentralized systems especially in areas where access and cost are

important like healthcare, public records and internet of things.

Adam Gallagher Decentralized CMS

9

Chapter 3. Requirements

3.1 Introduction
The requirements phase is necessary to the development process, as it informs what the application

should be capable of from a usability and technical perspective. It ensures that the system is created

with user needs as opposed to developer assumptions. The aim of this project is to develop a

decentralized CMS with a focus on security.

The primary functional requirement for the decentralized CMS is to allow users to manage custom

digital assets with their own custom properties and values. Every digital asset will have full CRUD

capabilities (Create, Read, Update, Delete). As a headless CMS the platform provides an

automatically generated API integration which can be used in external projects. The dashboard and

API will have collections with properties and single valued resource routes. With this custom,

dynamic API documentation will be generated on the platform to ensure a quality developer

experience. There will also be a login and registration flow integrated into the API for decentralized

user authentication. API logs will be saved to the dashboard to ease with bug fixing in external

applications making API requests.

Separate from the API registration the dashboard user authentication will be handled using the

MetaMask SDK which connects to the Ethereum network for blockchain based decentralized user

authentication.

Security and decentralized storage are the main goals for the technical requirements. User created

data will be stored in Gun JS a distributed, peer to peer, decentralized database where data is spread

across a network with no centralized authority. To ensure security all user generated data is

encrypted using a combination of AES (Advanced Encryption Standard) and RSA for handling public

and private keys. Additionally, every individual entry to the database is signed with a unique digital

signature to verify the authenticity of the data.

Adam Gallagher Decentralized CMS

10

3.2 Requirements gathering
3.2.1 Similar applications

3.2.1.1 Pocket base

Figure 3-1 Pocketbase CMS.

One of the first CMS applications that was studied was Pocketbase. Pocketbase is an open-source

lightweight headless CMS. Pocketbase provides core backend functionalities like authentication,

data storage and file management making it well suited for smaller low complexity projects. The

main benefits of this CMS are its simplicity and ease of deployment. All the application data is stored

in one SQLite file which is a lightweight serverless relational database. This is what enables it to be

deployed without a complex backend.

Another major strength of this Pocketbase is its comprehensive documentation. The documentation

provides usable detailed guides and practical code snippets covering many different situations and

use cases.

While Pocketbase is easy to use and effective for smaller applications its centralized approach and

SQLite architecture limit its resilience. Despite this Pocketbase simplicity and user-friendly design

gives great insight into the functional requirements for a CMS (See figure 3-1).

Adam Gallagher Decentralized CMS

11

3.2.2 Survey

Figure 3-2 CMS questionnaire.

To support the requirement gathering a survey was created for the application. It was distributed to

several software developers – the intended users for the application (See figure 3-2). The goal of this

was to gain insights into the required features and find out what aspects are most important to the

users. Some of the core features found from this includes clear dynamic documentation based on

created resources, built in routes for user authentication in the API, a devops page for seeing the

status of API requests and the ability to configure a decentralized network.

3.3 Requirements modelling
3.3.1 Functional requirements

1. Store Data in a decentralized database with encryption decryption functionalities. This includes

integrity verification using data signatures and generating API keys.

Adam Gallagher Decentralized CMS

12

2. Define custom collections with unique properties and values with full CRUD functionality.

3. Create single variable data resource with full CRUD functionality.

4. The developer using the CMS should be able to authenticate themselves using the MetaMask

wallet SDK, there should also be a separate login / registration flow for users authenticating from

external applications that are using the CMS as a backend.

5. The application should have an API integration which can be used outside of the dashboard in

external applications for a backend.

6. The user should be able to see all rows in dashboard and have custom documentation with its end

points automatically generated.

7. API calls should be stored in the application so the developer can see when and what type of calls

were made. This will aid in bug fixing for developers using the CMS as a backend.

8. The CMS will use the provided Gun JS public peer by default, but the dashboard should have the

functionality to configure multiple other peers in the storage network.

3.3.2 Non-functional requirements

Nonfunctional requirements are vital for ensuring a quality application. This is done my prioritising

quality, efficacy and reliability. These do not directly affect the core functionality of the CMS but are

still necessary. In this section the focus will primarily be on security and performance.

Security is a major concern in this application especially due to the decentralized naturel of Gun JS.

In these types of systems, no single peer has supremacy over the data stored. Each peer in the

network has equal rights to alter or create data. With this comes a risk of unauthorised manipulation

of the data. To prevent this the application will use a combination of AES and RSA encryption the

Node.js crypto library ensuring data is not stored as readable plain text. Decryption is only possible

with the correct RSA private keys.

Additionally, to ensure data integrity, every entry added into the database has a unique data

signature. The signature is generated by stringifying the data then encrypting it. When data is

returned from the database, both the response and the data signature are decrypted and compared.

A mismatch could signify data manipulation from an unauthorized user. With this then a rollback

could be performed.

Next JS provides preloading of components on the server before serving the client this can increase

the performance as the browser does not have to fetch and load all the client components

improving page loading times and enhancing the overall user experience.

3.4 Feasibility
Next JS 15.2.3 is a React framework designed for building full-stack web applications. It utilizes React

Components to build user interfaces, and Next JS provides additional features and optimisations.

Next JS supports built in API routing and optimisations on the React 19 library, such as the inclusion

of server-side rendering of UI. With both front end and back-end capabilities this will be the

foundation for the CMS.

Adam Gallagher Decentralized CMS

13

For data storage Gun JS will be used. Gun JS is a distributed decentralized database that operates by

caching data on multiple peers in a network and synchronizing when data updates occur. By

distributing the data across multiple peers with no single peer with overall control the data storage

becomes decentralized. Due to the decentralized nature of the system, encryption and

authentication is critical. Gun JS includes a security encryption and authentication (SEA) framework,

but it will not be used in this project due to compatibility issues with Next JS. To address this

compatibility, issue the node JS crypto library will be utilized for generating public and private RSA

key pairs for encrypting and decrypting private data. For secure authentication on the server the

Json web token (JWT) library will be utilized. To further ensure security the application will use a

combination of AES for encrypting content and RSA for secure key pairs. Additionally, every entry

will be signed with a unique digital signature ensuring the system can verify data has not been

tampered with.

For authenticating users on the client providing access to the dashboard the MetaMask SDK will be

utilized. This SDK is specially designed for React and enables connection to the MetaMask wallet and

Ethereum network for decentralised authentication. However, there is a compatibility issue with

React version 19. When using Node version 23.8.0 and NPM version 10.9.0 the SDK will cause an

invalid dependency tree during package installation. This error does not prevent the application

from working. To resolve this the --force flag must be added when installing Node packages inside

the application.

For testing the API routes the Jest testing framework will be used. Jest has the function to mock

responses and simulate behaviour with API routes, including logging without mutation of the actual

database. This enables safe and isolated testing eliminating the need for a dedicated testing

environment or database.

Design is not the primary focus of this project, therefore for simplicity and convenience, the Shadcn

component library was selected. Shadcn provides pre-styled components, many of which come with

built in functionality such as the data tables filtering and sorting methods. Shadcn is built using

Tailwind CSS, so the components are easily customizable for the specific use cases within the

application.

3.5 Conclusion
The requirements section of this paper has clearly displayed the technical and functional

requirements for developing the proposed decentralized content management system. Functional

requirements such as the creation of custom user defined digital assets and dynamic API generation

have been identified as core features to the systems usability. The technical requirements focus on

security and the need for AES and RSA encryption, digital signatures and decentralized storage using

Gun JS. User authentication is handled through the integration of the MetaMask SDK. This offers

block chain-based user verification. Auto-generating API routes and documentation based on user

generated data is needed for the usability of this system. These requirements are the foundations

for this system and inform the following phases in this project.

Adam Gallagher Decentralized CMS

14

Chapter 4. Design

4.1 Introduction
This chapter outlines the design for the decentralized content management system (DCMS). The goal

of this chapter is to provide a clear plan to ensure the application meets the functional and technical

requirements established is the previous chapter (See chapter 3).

There are two primary goals in this phase. The first is to design the user interface (UI) based on the

requirements. The second goal is to develop the system architecture for the system. The UI was

created using the Figma design tool through an iterative process, ensuring the required features

were incorporated. The Shadcn UI library was utilized to support this phase by offering pre-built

components with a typography and colour palettes.

Concurrently with the UI design, the system architecture was designed with a similar iterative

approach. The goal of the design was to plan for the implementation phase and design a system that

matched the technical requirements.

4.2 Program Design
This section outlines the technical design of the project, setting the foundations for the development

of the decentralized content management system. The primary goal for this was to prepare for the

development phase. The technologies chosen during the requirements Next JS, Gun JS and

MetaMask informed the systems architecture. This was crucial in verifying the feasibility of the

application by establishing plan for the development.

4.2.1 Technologies

The primary technology in this project is the Gun JS database, a graph-based peer-to-peer,

decentralized database designed for synchronisation in distributed systems. This database works by

caching data on across multiple nodes or peers in a network. Other decentralized databases were

considered, such as Orbit DB and the IPFS protocol. Ultimately, Gun JS was chosen for its usability

and suite of built in libraries such as SEA (Security, Encryption, Authentication). Despite the SEA

libraries advantages this library was not actually utilized in this project due to compatibility issues.

To solve the encryption and decryption requirements two Node JS libraries were used, crypto and

JWT. These provide the generation of API keys using RSA public and private keys, ensuring secure

authenticated access to the API. The purpose of these was to secure data in the decentralized

database as any peer could potentially modify data. To further prevent unauthorized data mutation

the crypto library was used to enforce data signatures, ensuring the integrity of data. Additionally,

AES encryption will be used alongside RSA encryption. This was chosen as it has no size limit for

encryption like RSA encryption.

The MetaMask wallet SDK is used for authenticating the user in a decentralized way. This SDK was

chosen as it offers a developer-friendly method for authenticating in decentralized applications. This

helps streamline the development process and giving the application access to the public wallet

address of the user which is needed for performing encryption and decryption.

The project will be built in the Next JS framework. Next JS provides front-end and back-end

capabilities allowing the dashboard and API to co-exist in the same codebase. This prevents issues

Adam Gallagher Decentralized CMS

15

with hosting multiple codebases for one project, creating a better developer experience. Typescript

was chosen which offers the flexibility of vanilla JavaScript but with a strict type system that helps

prevent logical errors in the code.

4.2.2 Structure of Next JS

The bulk of the Next JS application is contained within the src directory. Within this directory there

are several sub directories, the types directory holds the Typescript interfaces for enforcing a

strongly typed code base. The Utils directory which contains three files api.ts, index.ts and

security.ts. Index.ts is for generic utility functions which are used throughout the application. Api.ts

and security.ts are for utility functions that are specific the API integration and the security aspect of

the application. Additionally, the src directory contains the UI components directory which holds all

the custom components and installed Shadcn prebuilt components.

In this src directory, there is an app folder this specifically holds the application logic such as the

page routing and API. Next JS uses directory-based routing and can handle both front-end and back-

end capabilities. There is an API directory within the app folder, and each subdirectory in this

represents an API route. Each one of these routes will have a route.ts file which defines what code

will run depending on the type of http request made to it (e.g. POST, GET, PUT, DELETE).

There is a collection directory for handling CRUD operations on user-defined collections. Similarly,

there is a singles directory for handling CRUD operations on user defined single-valued database

entries. There is also two separate authentication folders named auth and userAuth. The Auth route

is for handling the first-time authentication of the developer using the dashboard. It stores the users

MetaMask wallet address and generates an ENV file with the default parameters needed to run the

CMS. The userAuth route is used to handle registration and login by real users accessing the backend

through an external application using the CMS as a back-end. This route manages unique registration

and returns a JWT token which can be validated.

In the root of the project outside the src directory various config files are used to configure the

application, for example, package.json, .env and tailwind.config.ts. Additionally, in the root directory

there is a public folder. The public folder is used to store app data including configured peers and the

users MetaMask wallet address. Additionally, for storing user defined models (representation of

properties for a row in DB) for database entries are stored in the IndexedDB on the client using the

idb library. No actual database entries are stored in the public directory or the IndexedDB.

There is another directory named radata, which is where the Gun JS entries are cached from the

server. When Gun JS data is accessed from the client, the data is cached in the browser’s local

storage. Within radata, there is a JSON file named !.json, which holds the Gun JS data is a graph

representation. It’s worth noting when Gun JS is run in dev mode many temporary radata files are

written into the root of the project. This happens when there is a synchronization between the peers

in the network. The temporary files only show up in development mode due to write access

restrictions. When the application is built this behaviour does not occur.

4.2.3 Design Patterns

The project structure follows Next JS best practices, utilizing the monolith design pattern. In this

pattern, all elements of the application- front-end, back-end and testing are bundled together into a

single codebase. The application also uses file-based routing to handle both the API routes and the

Adam Gallagher Decentralized CMS

16

page routing. This simplifies the design of the project and improves the developer experience

removing the need to host multiple projects for one CMS instance.

4.2.4 Application architecture (1 page)

Figure 4-1 Application architecture.

The basic architecture overview of the application consists of a Next JS dashboard, where users can

authenticate using MetaMask wallet authentication. From this dashboard, the user can view their

data, which is stored in a Gun JS database. This works by distributing data across a network of peers.

Thanks to Next JS file-based routing, the hosted dashboard also functions as an API integration

allowing external applications to interact with it (See figure 4-1).

Adam Gallagher Decentralized CMS

17

Figure 4-2 Client server split for the CMS.

The application is built as a monolithic Next JS project with both the front-end and back-end all

contained under the same codebase. The server portion handles all the CRUD routes for collections,

singles, and external application user authentication. The server also includes helper routes to

provide the front end with additional functionalities. Examples include saving API response statuses

and generating the .env file during initial setup.

The client side is responsible for rendering the UI components. From the client users can view all

stored data and interact with the endpoints via the dashboard UI. Additionally, a documentation

page is automatically generated for the user defined collections and singles, improving the

experience of using the CMS (See figure 4-2).

4.2.5 Database design

Figure 4-3 Diagram for how Gun JS network works.

Gun JS is a decentralized database made in JavaScript that stores data in the cache of nodes across a

network. None of these nodes have centralized authority over the data. Meaning any peer in the

Adam Gallagher Decentralized CMS

18

network can update data. When data is updated, Gun JS synchronises data across the other peers in

the network. Gun JS is offline-first, meaning if a peer if a peer loses connection, changes stay in the

local cache then are synced with the network once the connection is restored. Gun JS is a graph

database, where all entries are connected through relationships. However, the graph capabilities are

not utilized in the CMS. The data base is used in the same way as a non-relational database just for

decentralized storage (See figure 4-3).

4.3 User interface design
This section focuses on the process of designing the user interface. The Figma design tool was used

for this section. The designs created using the requirements and research sections to ensure a

useable implementation that meets the required functionality. The design process followed an

iterative approach starting with basic wireframes (See figure 4-8). With every iteration the design

was refined further.

4.3.1 Wireframe

Figure 4-4 Database page wireframe

Adam Gallagher Decentralized CMS

19

Figure 4-5 Status page wireframe.

The first stage in the UI design process was wireframing. A wireframe is a barebones representation

of the UI that does not contain colour of typography. It is used to rapidly prototype the core features

of the application. Above you can see the side navigation bar which is used for switching between

different pages in the CMS (See figure 4-4). Additionally, the collection inner side bar can be seen.

This inner bar which is used for navigation between the user created collections along with a button

to add a new row. All user generated rows will be shown with their defined properties in a table

component. This wire frame served as a first draft, highlighting primary features that needed to be

included such as the create collection component form and the controls for doing full CRUD

operations.

4.3.2 User Flow Diagram

Figure 4-6 User flow diagram.

This user flow diagram was created to provide a clearer understanding of how data is saved and

used within the application (See figure 4-6). Starting from the left when a user is authenticated, the

Adam Gallagher Decentralized CMS

20

user object is stored. This object contains information about the user. Once authenticated, a user

can then define models, which consists of custom properties. Each property consists of a name and a

type, which can be either string, number, Boolean or rich text. This is done to enforce strict type

validation. Items are added to the database with values for their defined properties.

4.3.3 Style guide

Figure 4-7 Colour palette.

Figure 4-8 Typography palette.

Adam Gallagher Decentralized CMS

21

Shadcn provides a typography and colour scheme (see figures 4-7, 4-8), which were used through

the application design to simplify the design and development processes. Since Shadcn is built with

Tailwind CSS, the application also uses Tailwind spacing variables to provide a consistent spacing

system across the components and pages.

4.4 Conclusion

Figure 4-9 Final iteration database page

A final design for the UI portion was created through the iterative process, evolving from wire

frames to the final high-fidelity prototype. The final prototype incorporates the functional

requirements gathered from the research and requirements phases of the project. The Figma design

tool enabled efficient prototyping and a suite of tools which aided in the iterative design process

(See figure 4-9).

The technical design in this chapter outlines the applications foundational architecture along with a

diagram for the client and server interactions. The technical planning and design aided in identifying

compatibility issues with the technology and providing time to solve these issues before the

implementation phase.

Choosing the component library Shadcn, along with the Tailwind CSS framework helped maintain

consistency throughout the application while also reducing the complexity of the implementation

phase.

Ultimately, the design phase provided a guide for the development of the decentralized content

management system. This was done through planning and preparing for the implementation phase.

Adam Gallagher Decentralized CMS

22

Chapter 5. Implementation

5.1 Introduction
The application developed for this project is a CMS that stores data in a decentralized database. The

purpose of this section is to document the process of developing the application. The application

was built using Next JS as the foundation, which provides both front-end and back-end functionality,

enabling the UI and API to coexist in one monolith codebase.

Gun JS was used for the database, which is a distributed, peer to peer, decentralized graph database.

It works by caching data across multiple peers in a network where no one peer has centralized

authority over the data. Despite Gun JSs graph functionality, these features are not used in the

application.

For decentralized user authentication, the MetaMask SDK is utilized. This works by connecting the

users MetaMask wallet retrieving their cryptographic signature for authentication.

The design of the application uses the Shadcn component library in combination with the Tailwind

CSS framework. Additionally, the TipTap framework was used to develop the rich text editor

component. For storing data on the client, the IDB library was used for easy access the browsers

IndexedDB. These elements were discussed further in previous chapters (See chapters 3.3, 4.2).

5.2 Scrum Methodology
For the management of this project the scrum agile framework was used for ensuring best

development practices. The implementation phase of this project consisted of seven sprints. A sprint

is a two-week period where a list of tasks or tickets would be created and put into a prioritized list

named a backlog. Each task in the backlog would be assigned a story point value.

A story point is a representation of how difficult a specific task would be. Minor bug fixes would have

a low story point while a larger feature would have a higher point value. The points help manage

workload over a sprint and prevents tasks being carried over to the next sprint.

During each sprint weekly meetings where organised with the project supervisor. This was done so

feedback and project guidance could be given. At the start of each sprint a backlog refinement

would be done where tasks are added and story pointed. Once the backlog has been refined tasks

are then selected for the upcoming sprint. Any tasks that are not complete within the sprint are

carried over to the next sprint.

In this project the backlog was managed using a Trello board. This gave a visualisation of the backlog

and enabled tracking the state of a task. Additionally, tasks were also tracked in the personal

reflection journal and in todos.txt in the codebase.

The benefits of the scrum methodology are seen in the speed and quality of development. Managing

tasks in a backlog ensures consistent development and productivity which causes faster features

being added to the code base. Also, with consistent feedback from the supervisor a high level of

quality is maintained throughout the development process.

5.3 Development environment
For the development environment of this application visual studio code was utilized. Additionally,

for testing the API both the Thunder client and Postman rest clients were utilized. By default, Gun JS

Adam Gallagher Decentralized CMS

23

is configured without any peers. To solve this, the Gun JS developers provided a public Heroku server

peer that any Gun JS instance can connect to. For the development of this application this public

peer was used alongside a local peer running from local host.

The workflow used for version control was with Git and GitHub. For simplicity after any new feature

of bug fix was added a commit would be made directly to the main branch. The name of each

commit would be related to the task being completed from the task backlog.

5.4 Demo application

Figure 5-1 Pre sprint demo CMS.

Before the first sprint, a demo application was created (See figure 5-1). This demo was built using

Gun JS, TypeScript, and React. There was no styling in this application, but custom collections could

Adam Gallagher Decentralized CMS

24

be created with their own properties and stored in the Gun JS database. Additionally, single entries

in a collection could be retrieved alongside the entire collection.

Figure 5-2 Pre sprint sample API POST route.

The proof-of-concept code above was moved over to a Next JS codebase. There were no issues with

this integration, as the demo was written in vanilla React, which is fully compatible in Next JS. Linting

rules were established to ease the development process and maintain a consistent style across the

codebase. The biggest feature added in the new codebase before the first sprint was seen above.

The proof-of-concept Gun JS code was converted into basic API routes where an arbitrary string

could be posted to the database, and all strings could be returned from the database where the user

ID (which is hard-coded as admin for this stage) matches the database entry. These routes had no

encryption or authentication at the time of creation (See figure 5-2).

The biggest challenge with this was in the GET route. Gun JS offers built-in functions for retrieving

and setting data in the database. The map function loops through the data in each Gun JS reference.

A Gun JS reference is just the name-value for where data is stored in the database. Gun JS is a graph

Adam Gallagher Decentralized CMS

25

database; that's why it needs its own specific map function, as opposed to the built-in map function

that works on arrays. The once built-in method gets data once and takes in a callback where data

can be transformed or returned. By combining map and once, data can be retrieved from the Gun JS

reference and pushed to a results array variable, which is sent to the client. Gun JS requires a

timeout promise to block the thread while the results variable is assigned before being returned to

the client. This can be seen at the bottom of the code and is a pattern that is repeated throughout

the API code.

Figure 5-3 Model save route.

During this phase, a model save route was added. When the user defines a collection from the UI

with custom properties, these models must persist between refreshes so the developer using the

CMS can add rows that match their own defined models with strict type validation. This route takes

a model, stringifies it, and then pushes it to the public directory in a file named models.json (See

figure 5-3).

5.5 Sprint 1
5.5.1 Goal

For the first sprint, the top priority was to finish the data model, as it would inform the entire

development process alongside the completion of the design process. The only programming task in

this sprint was the inclusion of cleaning up the API response body by removing redundant

properties.

Adam Gallagher Decentralized CMS

26

5.5.2 Item 1

The primary goal of this sprint was to finalize the data model. This item was the top priority, as it

would inform the entire development phase. Using Figma and draw.io data, several data models

were designed. These can be seen above (See figure 4-1, 4-2, 4-3).

5.5.3 Item 2

Figure 5-4 Create collection component.

Alongside Item 1, the final iteration of the UI designs had to be completed. Before starting this item,

Shadcn components had been selected from their documentation, and a wireframe had been

created for the structure of the application. The work of this item involved placing the selected

components into the wireframe and tweaking the final iteration. Additionally, a custom component

for the collection creator was created (See figure 5-4).

5.5.4 Item 3

Figure 5-5 Clean response function.

Adam Gallagher Decentralized CMS

27

The final item in this sprint was a small bug/quality of life fix for the Gun JS get route. As Gun JS is a

graph database, the response returned from the API had boilerplate code with pointers to other

entries in the graph database. Since the CMS did not need graph functionality, this was redundant

and had to be cleared from the response. The response array would be passed into the function, and

all its graph pointers were stored in the _ property. The response would be mapped, and the _

property would be dropped. This made the response more human-readable and usable throughout

the rest of the codebase (See figure 5-5).

5.6 Sprint 2
5.6.1 Goal

Shadcn UI framework was configured in the project. Another task taken on in this sprint was getting

user authentication working with the MetaMask SDK. This also led into the next task of writing first-

time project setup code for developers using the CMS. The API routes were expanded from the

demo in this sprint as well, and the creation of tokens was started in this sprint but carried over to

the next sprint.

5.6.2 Item 1

Figure 5-6 Connect wallet component.

Adam Gallagher Decentralized CMS

28

The first item in this sprint was to get user authentication with the MetaMask SDK. MetaMask

provides a React SDK that connects the browser to the user's MetaMask wallet to enable

decentralized user authentication with the wallet's private key. The private key in MetaMask is

what's used for signing and verifying transactions of cryptocurrency. A ConnectWallet component

was made that simply calls the connect function, which opens the MetaMask Chrome extension and

asks for the user's password. Any component using this SDK must be wrapped in the MetaMask

provider component (See figure 5-6).

5.6.3 Item 2

Figure 5-7 Auth user route.

Additionally, the first-time login route was added to the codebase. This route is designed for the

first-time setup of the application. The current code stores the user's public wallet address from the

MetaMask SDK and saves it in the public directory. In future sprints, this route will be used for

generating the public and private RSA keys / API key for authentication using the crypto / JWT

libraries. Additionally, this route will create the application's env file, which is needed for the

Adam Gallagher Decentralized CMS

29

application to run properly. These features were developed at the end of the sprint and can be seen

below (See figure 5-7).

Figure 5-8 Create token & generateRSAkey.

Figure 5-9 Create ENV function.

Adam Gallagher Decentralized CMS

30

Figure 5-10 Updated user auth route for first time setup.

Starting from the top, the first function defined is createToken. This helper function takes in a

private RSA key and a session data string, which includes the date set up and public wallet address

and generates an API token using the JWT library (See figure 5-8).

The generateRSAkey function uses the crypto library to generate the public and private RSA keys,

which are used for encrypting and decrypting the user's data in the Gun JS database. The key pair

generation is a promise that calls the generateKeyPair function. This function takes in a config with

the public and private key encoding (spki and pkcs8), and both are using the PEM format, which

prefixes the key with a "start of key" string. This promise is awaited to resolve, then returned. There

is also a catch block within the promise callback to log any errors while generating the key pairs.

The createEnvFile function takes in the key pairs after they have been generated and the wallet ID.

This function starts a session and then uses that to create an API token. When this is done, the

function checks if an .env file has been created. If the file has not been created, it will create the .env

file and append the generated keys and the Gun JS public hosting URL to the file (See figure 5-9).

The final POST route is what's called when the user logs in. If the auth.json file does not exist, it

means it's the user's first time logging in and entering the project setup phase. In this case, the

defined functions above are called, generating the .env file with its keys and the Gun JS hosting URL

(See figure 5-10).

This is necessary to ensure the security of the decentralized database. Without the starting hosting

URL, the database cannot function as a decentralized database, as the data would only be stored in

the local cache, essentially making it a centralized database. Also, having tamper-proof encryption is

critically important to ensure data safety and user privacy.

Adam Gallagher Decentralized CMS

31

5.7 Sprint 3
5.7.1 Goal

Many tasks were taken on in this sprint. The most important items were the inclusion of encryption

and security in the application. The API was the primary focus completing the collection CRUD

routes, along with the single-valued routes. The save API response helper route would be created as

well. Additionally, this sprint marked the start of the UI development phase.

5.7.2 Item 1

Figure 5-11 Encryption decryption and data signature functions.

The first item in this sprint was the inclusion of encryption, decryption, and data signatures in the

API. This is vital to the overall security of the CMS and database. The first function created for this

was the encryptData function. This takes in a data variable—any item about to be added to the

database—then converts it to a buffer using the crypto library after stringifying the data. It is then

encrypted using the generated public RSA encryption key and returned from the function as a string.

This function is called in the API routes before data is added to the Gun JS database.

The next function created in this sprint was the decryptData function. This function takes in an

encrypted string, then converts it to a buffer data type. Using the crypto library and the private RSA

key, the data is decrypted and then parsed using the JSON.parse method to convert it back into a

regular TypeScript object.

Additionally, the generateSignature function was created as part of this sprint. The purpose of this

function is to verify the integrity of data and ensure it has not been tampered with. The function

takes in data that will be added to the database, then uses the crypto library to create a SHA-256

Adam Gallagher Decentralized CMS

32

signature of the data. It updates the signature using a stringified version of the data. A sign buffer is

created using the private key, and this is returned from the function as a string.

Both the encrypted data and the data signature require the private key to be decrypted. Once this is

done, both items are compared. If they do not match, it means the data has been tampered with by

an unauthorized user (See figure 5-11).

Figure 5-12 Add new row route with encryption & data signatures.

Above is an example of the encryptData and generateSignature functions being used in the create

route. The route takes the modelId, which is a unique string used for storing data in the database

using the title as an ID. This is done by creating a reference to the Gun JS database with this unique

ID. Then, the route gets the body variable, which is the data that will be added to the database. This

data is then encrypted, and a data signature is generated. These are put into a newData variable,

along with an id property that generates a unique ID for referencing this specific entry in the

database. Finally, using the reference and the set method, this new data is added to the database

with a callback for error handling (See figure 5-12).

Adam Gallagher Decentralized CMS

33

5.7.3 Item 2

Figure 5-13 Verify token function.

Figure 5-14 Authorisation middleware.

The next item completed in this sprint was the inclusion of authenticated routes. For each route, an

API token must be present to authenticate the user hitting the endpoint. It's worth noting that while

this is referred to as middleware throughout the project, it technically is not middleware. In Next JS,

Adam Gallagher Decentralized CMS

34

when middleware is created, it runs in an edge environment as opposed to a Node environment like

the resource routes. This causes issues, as the JWT and crypto packages cannot be run in edge

environments—only in Node.

The authorization middleware function takes in an AUTH header and checks that it is present and

that it passes the verifyToken function.

The verifyToken function works by taking the token and decoding it using JWT. Verifying it with the

public key. If the decoded variable is returned, the function will return true, as the token is valid. If

the token is invalid, this variable will not be returned, and the function will return false. This function

also includes a check to ensure that both a token and a public key are provided (See figure 5-13, 5-

14).

5.7.4 Item 3

Figure 5-15 Get single row route with data signature verification.

In this item in the sprint, the other resource routes (get single, update, delete) were added to the

collections API. Additionally, the data signature verification code was added as part of this item. The

Adam Gallagher Decentralized CMS

35

first one implemented was the get single route, which can be seen above. This route is essentially

the same as the get all route, but a rowId is passed to the route with the modelId.

After checking the auth token, a reference to the Gun JS database is made using the modelId. Using

the Gun map and once methods, all the data under this reference is checked to see if the id matches

the rowId passed to the route. If the IDs match, the data is decrypted, and the validity of the

signature is checked. If the signature is valid, that row is then pushed to a results array, which is

returned at the end of the code (See figure 5-15).

Figure 5-16 PUT route in API

Adam Gallagher Decentralized CMS

36

The next route added was the update (or PUT) route. This works similarly to the create and get

single routes. After the authentication middleware, the route gets a reference to the Gun JS

database. There is also a check to ensure that a body and modelId are passed to the route.

It uses the map and once methods to decrypt the data and verify that all the data signatures are

valid. If the data is valid and matches the rowId, it will create a combinedBody variable. This is a

combination of the updated body passed by the user and the decrypted data from the database.

This is then encrypted, and a new signature is generated in the newBody variable, along with the

rowId.

This is then added to the results variable using the getGunEntryId function, which returns the

pointer value of the entry in the database. While this pointer isn't often used in the application

(since graph functionality isn't needed), it is necessary in this case.

If the data in the map function is valid but does not match the rowId, it is also added to the results

variable. This is because for the update to work, the whole collection must be updated at once. This

can be seen at the bottom of the route with the ref.put method, where the entire reference is

overwritten with the results variable.

This is not an optimal solution, but there is no obvious drop in performance. Ideally, this will be

updated to a more efficient method in the future (See figure 5-16).

Adam Gallagher Decentralized CMS

37

Figure 5-17 Delete row route.

Similar to the update route, the delete route was more complicated to implement than initially

expected. The same pattern of authenticating, getting a reference, and then using the map and once

methods was used. In the once callback, the data is decrypted, and the data signature's validity is

checked.

If it's valid and the response id matches the row id, the pointer value, in the database for the item to

be deleted is assigned to the rowToBeDeleteId variable. At the end of the route, if the

Adam Gallagher Decentralized CMS

38

rowToBeDeleteId variable is truthy, it will then get the row at the variable’s pointer value and

update it to be null, deleting the item (See figure 5-17).

5.7.5 Item 4

Figure 5-18 API register user route.

Also, in this sprint, user login and registration were added to the API. This is separate from the

MetaMask dashboard authentication. This is because we want the API to handle user authentication

for apps that use the CMS as a backend. This does not mean they should be authenticated to use the

dashboard, only the app that uses the CMS.

Above is the register route. An email and password are passed to the route, and these are validated.

If they are invalid, an error is returned from the route. If valid, the data is encrypted, and a data

signature is generated. Then, Gun makes a reference to the database using the email. Using map and

once, the route checks if the email is unique (i.e., if there is already an entry in the database under

the user's email). If the email is unique, the reference uses the set method to add the encrypted

email and password to the database. If this is successful, a response is sent to the client with a

success message and a JWT token verifying the authenticated user (See figure 5-18).

Adam Gallagher Decentralized CMS

39

Figure 5-19 API login user route.

Also, in this item is the login route. This works in an equivalent manner to the registration route. The

email and password are passed to the route, then validated. If valid, Gun makes a reference to the

email and uses the map and once methods on the reference. In the once method callback, the email-

password pair is decrypted, and the signature is checked. If valid and the decrypted password

matches, it means the user is authentic, and the correctPassword variable is set to true.

At the end of the route, if the correctPassword is true, the route sends a positive response to the

client with a JWT token (See figure 5-19).

Adam Gallagher Decentralized CMS

40

5.7.6 Item 5

Figure 5-20 Save response status route.

One of the most key features found during the requirements phase was the inclusion of an API

status page. This page shows all the API calls made and their status codes. This aids developers when

using the CMS, as they can see where API calls are failing and fix these issues.

The routes above take in a StatusFromAPI type, which has a URL property and a status property, and

pushes them to the response.json file in the public directory. There is another GET route that simply

returns all the statuses from the file as well (See figure 5-20).

Adam Gallagher Decentralized CMS

41

5.7.7 Item 6

Figure 5-21 Src directory.

The API work was now complete, aside from bug fixes and improvements. This item marks the start

of the UI development phase of the implementation process. In the Next JS app directory, the pages

directory was added, with subdirectories for database, documentation, profile, and status. Due to

Next's directory-based routing, these all correspond to pages within the application.

Additionally, several Shadcn components were added to the application. These can be seen in the UI

directory and include Card, Separator, and Button (Figure 5-21).

Figure 5-22 Code for MetaMask login button.

Adam Gallagher Decentralized CMS

42

Figure 5-23 MetaMask login component UI.

Using the Card and Button components, the ConnectWalletButton component had styles added. The

component works very simply—it uses the built-in Card component for styling and checks if an

account variable exists in a useEffect. If that variable exists, it means the user has been

authenticated with the MetaMask SDK. If they are authenticated, they are redirected to the

database page (See figure 5-22, 5-23).

5.7.8 Item 7

Figure 5-24 Side navigation bar code.

Adam Gallagher Decentralized CMS

43

Figure 5-25 Side navigation bar.

With the routes for the pages of the CMS defined, a side navigation bar was added for switching

between the pages. It was created by using a div with multiple buttons for each route. When a

button is pressed, the useRouter hook is used to change the path in the app to the selected route.

Additionally, the usePathname hook and conditional styling with the ternary operator are used to

highlight the currently selected route in black, while the other buttons are grey (See figure 5-24, 5-

25).

Figure 5-26 Custom hook for user authentication.

Adam Gallagher Decentralized CMS

44

Figure 5-27 React context for auth data.

Additionally, the entire UI section of the application is wrapped in an AuthContext, which uses a

useAuthentication custom hook that reads the context to determine whether the user has been

authenticated. If the user has not completed decentralized authentication through MetaMask, the

hook reroutes them to the login page. The AuthContext has two state variables: one for whether the

user is logged in and another for the user's wallet address (See figure 5-26, 5-27).

5.7.9 Item 8

Figure 5-28 Status table.

Adam Gallagher Decentralized CMS

45

Figure 5-29 Shadcn config for status data table.

The API status page was added to the application. This was one of the features discovered during the

requirements phase. Users can see their API requests and their status codes. This component was

built using the Shadcn DataTable component. This is a prebuilt component that has filtering

functionality built into its tables.

The Table component requires a columns config object. The config requires a unique accessorKey, a

header, and an optional cell property. Above, you can see the first property in the config is for

including a checkbox to select rows in the table. After that, there is the status column, which holds

the status code and dynamically changes colour based on that code. Using a ternary, if the status is

200, it will be green; otherwise, it will be red.

The last two columns are the URL and createdAt properties, which hold the API URL and the time the

API request was made, respectively.

Adam Gallagher Decentralized CMS

46

5.8 Sprint 4
5.8.1 Goal

The first item in this sprint was the creation of the database page, which included making the

CollectionTable and InnerSidebar components. CRUD functionality from the UI was implemented

during this sprint. The User’s page was also added, along with the Documentation page. Refactoring

of the singles API was necessary and completed during this sprint.

5.8.2 Item 1

Figure 5-30 Database page with collection table and CRUD buttons.

Figure 5-31 Generate columns function for collection table.

The first item in this sprint was the development of the collections table. This table needed to show

all the entries in each collection with their correct properties, while also being able to perform full

CRUD from the UI with the correct validation for a user-defined collection. The most challenging part

of this was getting the Shadcn data table to dynamically generate columns. Multiple attempts were

made, but the above is the current and most simple implementation. It loops through a properties

array and returns them as a ColumnDef with a properties array (See figure 5-31).

Adam Gallagher Decentralized CMS

47

Figure 5-32 API request to get all rows for a selected collection.

Before the table is rendered, the UI uses a useEffect hook to get all rows for the selected collection.

If the getAllCollectionRows function's return value is truthy, the data state variable is assigned the

response (See figure 5-32).

Figure 5-33 useReactTable hook for generating dynamic data table for collections.

After the columns are generated using the selected model's properties parameter, it uses the

Shadcn useReactTable hook with the columns and the data returned from the Gun JS database. This

works in a similar way to the status table (See figure 5-33).

Adam Gallagher Decentralized CMS

48

Figure 5-34 Id filter bar for collection table.

At the top of the component, there is a filter bar for filtering the table by each entry's ID. This part of

the component checks that data exists first and that its length is greater than zero. If this is true, a

search bar is rendered. OnChange, there is a callback that takes in the event object and uses the

table's ID column setFilterValue to update the table with the filtered result (See figure 5-34).

Figure 5-35 Table body component with radio for row select.

Adam Gallagher Decentralized CMS

49

Additionally, in the table, there needed to be functionality to select a column. With a row selected,

the user would be able to perform an update or delete on the item. This is done in the TableBody

component. The rows are mapped, and a TableRow component is rendered. If the TableRow is the

ID column, it will render a radio button. The radio button's onChange property sets the selectedRow

to row. original, which contains the data added in the row (in this case, it is the ID string). If the map

function is not mapping over the ID, it just renders the value as a string (See figure 5-35).

5.8.3 Item 2

Figure 5-36 Add new row component with validation.

The next item in this sprint was the inclusion of the add new row pop-up. Similar to the collection

table, this component needed to dynamically generate the properties for the user-defined collection

and have appropriate form validation for each field. This component was made using the Shadcn

Dialog component, which works as a button that, when clicked, opens a pop-up component (See

figure 5-36).

Adam Gallagher Decentralized CMS

50

Figure 5-36 Code for making dynamic add row form component.

This component dynamically creates inputs for each property based on what the collection model's

properties have for the type parameter. If the type is a Boolean, a checkbox is rendered. If the type

is a string, a text box is rendered, and if it's a number, a number box is rendered. Each input has a

Form Error component that renders the error message if its validation fails. As this form is filled in,

the form state variable is updated, which is then passed to the validateForm function before creating

a new entry in the Gun JS database (See figure 5-36).

Adam Gallagher Decentralized CMS

51

Figure 5-37 validateForm function.

Figure 5-38 validateFormField helper function.

Adam Gallagher Decentralized CMS

52

This function takes in a form, an array of properties, and an errors setter. The function works by

using the type in the properties array and the value from the form and passing them to the

validateFormField function, which is a switch statement with regex patterns for each type of

property (string, Boolean, number). There is a catch-all conditional statement in the validation that

checks that a value has been passed, and if the property passed to the function is the ID, it is skipped

because the ID is generated by the app, not the user's input in the form, so it does not need to be

validated. Numbers must be valid numbers, strings must have at least three characters, and they

must not have any special characters. If any of the validation fails, the validateForm function returns

false, preventing a new entry from being added to the database. Also, the errors are set from the

validation to update the UI with the error message from the validateFormField function (See figure

5-37, 5-38).

5.8.4 Item 3

Figure 5-39 Update Row form component code.

The next item in this sprint was the inclusion of the update row pop-up button. Functionally, this

works in almost the exact same way, but as you can see above, this button takes in a selectedRow

parameter. The component renders the form like the addRow component, but with the selectedRow

variable, the form is prefilled. This component uses the same code for validation, setting errors, and

dynamically creating form inputs. This pop-up was also made using the Shadcn Dialog component.

When the validation passes, instead of hitting the collection create route, it hits the collection

update route with the new updated body (See figure 5-39).

Adam Gallagher Decentralized CMS

53

5.8.5 Item 4

Figure 5-40 Delete row pop up component.

Figure 5-41 handleDeleteRow function.

Similarly, to create and update, delete collection was added to this sprint. This component was built

using the same Shadcn Dialog component and the pattern of passing in a selected row to update the

Gun JS database. The component pop-up has a button to verify that the user wants to delete the

row. When clicked, the button calls handleDeleteRow, which is an asynchronous function that uses

the modelId and the selectedRowId to hit the delete endpoint and delete the row. If a response is

returned from the deleteRow function, the resetPopUp function is called, which closes the pop-up

window (See figure 5-40, 5-41).

Adam Gallagher Decentralized CMS

54

5.8.6 Item 5

Figure 5-42 Singles create row route.

This item in the sprint was the inclusion of the singles page, which works very similarly to the

collections page, but instead of the user-defined data having multiple properties, it is a single name-

value pair. This took longer to implement than expected due to refactoring that had to be done in

the API. From the UI side of things, creating rows and dynamic forms with validation was very similar

to the collections, so adjusting the code and patterns was relatively easy. Previously, in the singles

API, data was stored in a Gun reference under the singles' unique name. This had to be changed so

that all singles are stored under the same ref, ‘singles.’ With this change, it reduces the complexity of

the UI, as multiple API requests don’t have to be made to get all singles. Now, one API request can

be made, which accesses the singles ref in the Gun JS database and returns all the user-defined

singles. Above is an example of these changes throughout the singles API. Now, the Gun reference

comes from the string ‘singles,’ as opposed to the specific singles name. This was done for every

route in the singles directory (See figure 5-42).

Adam Gallagher Decentralized CMS

55

5.8.7 Item 6

Figure 5-42 Get all registered user’s route.

Additionally, in this sprint, the user view page was added, which shows what users have registered

using the CMS. This simple route was added. After authenticating the user's API token, the route

gets a reference to users in the Gun JS database. Then, using this ref, it applies the map and once

methods on the ref. In the once callback, the data is decrypted, and its data signature is verified to

ensure the data has not been tampered with. If the data is valid, it is pushed into the results array,

which is then returned to the client at the end of the route. There is a check to ensure that users

were found.

5.9 Sprint 5
5.9.1 Goal

This was a smaller sprint than previous ones. The primary goal for it was to write unit tests for the

singles and collections API routes. Another item included in this sprint was the ignore header to

prevent redundant API calls from being saved to the dashboard. The collection creator component

had a bug that was fixed in this sprint.

Adam Gallagher Decentralized CMS

56

5.9.2 Item 1

Figure 5-43 Ignore header in collection create route.

The first item in this sprint was the inclusion of the ignore header. Whenever the user was navigating

between pages on the dashboard, the CMS was saving all the individual API requests, which was

making the application slower and adding redundant API requests to the status page. This pattern is

now applied to every single route in the API. The route tries to access the ignoreHeader and assigns

it to a variable. Whenever the saveResponseStatus function is called, there is a check to see if the

ignoreHeader is not present using AND chaining. If the ignoreHeader is not present, the API will save

the response, and it will show up on the status page. Otherwise, it will not be saved (See figure 5-

43).

Adam Gallagher Decentralized CMS

57

5.9.3 Item 2

Figure 5-44 Sample jest unit test.

A big item in this sprint was the inclusion of unit tests for the API routes. Tests were written for all

routes that require CRUD functionality. Jest has the functionality to mock responses, so you can

correctly test the API's error handling and success responses without worrying about connections or

database mutation. This also removes the need for a testing environment in this situation. Accessing

the global fetch property and assigning it to jest.fn enables mocking responses. The API URL, model

ID, and an error response are mocked globally, as they are used in other tests in this file. The first

test suite, getAllCollectionRows, has a beforeEach callback that clears the previous mocked values.

The first test creates a mock response and calls the getAllCollectionRows function using the

mockModelId. The test expects the fetch to be called with the mockApiUrl and the mockModelId. It

is also expected to have the JSON content type, authorization header, the ignore header, and be a

GET request. The response is also expected to match the mock body. Tests matching this pattern of

mocking responses and verifying they include the correct URL, and headers are seen throughout the

collections and singles tests (See figure 5-44).

Adam Gallagher Decentralized CMS

58

Figure 5-45 Error handling test.

Additionally, there are tests to ensure the correct error messages are sent to the client if the

network response is failing (See figure 5-45).

5.9.4 Item 3

Figure 5-46 Collection creator component with validation.

Adam Gallagher Decentralized CMS

59

Figure 5-47 Collection creator validation code.

The create collection component had a bug where a user could define a model that had no

properties. This was a significant bug that could break the UI and make endpoints in the API

unreachable. The solution to this was the inclusion of the validateNewCollection function. This

function takes in a model that the user is creating and checks that it has at least one property. If it

does not, it sets the error message state variable and returns false. The handleCreateCollection

function works by creating a newCollection variable with a unique modelId, name, properties, and

an empty items array. If this newCollection passes the validation function, the new model is written

to the public directory, and the component is reset (See figure 5-47, 5-46).

Adam Gallagher Decentralized CMS

60

5.10 Sprint 6
5.10.1 Goal

The first item in this sprint was the development of an app separate from the CMS that uses it as a

backend. Additionally, this item exposed a bug in the collections table, which was addressed in this

sprint.

5.10.2 Item 1

Figure 5-48 Sample Todo app which use the CMS as a backend.

The main item in this sprint was the development of a sample application that uses the

decentralized CMS as a backend. This was done to highlight the CMS's capabilities while also finding

bugs and testing to see what additional features are required. Originally, a note-taking application

was going to be created, but this was limited in terms of features. To address this, a Todo tracker

app was developed. The application was built using vanilla React and JavaScript, with Bootstrap

styling for ease of development. In the application, users can create, read, update, and delete todos.

They can also mark them as complete. The notes are all stored in the Gun JS decentralized database.

Todos can be seen in the CMS and have CRUD functionality there as well, which updates the UI (See

figure 5-48).

Adam Gallagher Decentralized CMS

61

Figure 5-49 Todo app component code.

For each CRUD operation, a helper function was created in the todo app that simply makes a fetch

request to the specified endpoint with the API key generated by the CMS. In the App route

component's body, there are two state variables: Todo and todos. Todo represents the current todo

that the user is creating, which by default has an id, a body, and an isDone property, the latter of

which defaults to false. Below the starting state variables, there is a useEffect that makes an API

request to the CMS to fetch all the todos. If the response is truthy and the length is greater than

zero, it will call setTodos, which fills out the UI with all the user-created todos. There is a

handleInputChange function that is called in the onChange property of the text box in the UI. This

sets the current Todo, and when the user clicks the create todo button, the handleAddTodo function

is called. This sends the new todo to the create route and adds it to the decentralized database. The

function also pushes that todo to the todos array, so the application doesn't have to wait for the API

to respond with the new todo added. There is also a toggleDone function. When a todo is displayed

in the UI, the user can click the checkbox beside the todo to mark it as done. To handle this, the

handleToggleDone function maps through all the todos, finds the one that matches the given index,

then sets the todo's updated isDone property to the opposite of its current value (true or false). It

Adam Gallagher Decentralized CMS

62

then sends the new data to the API to update the decentralized database. This also updates the

todos array in the function, so the user doesn't have to wait for the useEffect to run and fetch

everything again. There is also a handleDelete function that takes in a todo id and the index of the

todo in the todos array. This function uses the filter method to remove the todo that matches the

index passed into the function (the index of the selected todo to be deleted). It then updates the

todos array with the filtered array and sends the todo id to the delete route to handle deleting the

selected todo (See figure 5-49).

5.10.3 Item 2

Figure 5-50 transformBoolStringsInForm and transformBoolToStringValue functions.

During the process of creating this application, a major bug was found in the CMS. When creating a

Todo, the isDone property was being sent to the API as a Boolean value, but in the CMS, it was

adding them to the database as a stringified ‘true’ or ‘false’, as opposed to an actual Boolean value.

This caused two large issues. The stringified Booleans from the CMS caused the Todo app to not

render correctly. Also, the actual Boolean values did not render on the CMS because the CMS was

expecting a string, not a Boolean.

To solve this bug, two functions were written: transformBoolStringsInForm and

transformBoolToStringValue. The first function takes in a form object, which comes from the add to

collection and update collection components. Then, mapping the object entries, the callback checks

if the values are stringified ‘true’ or ‘false’, and then converts them to the actual Boolean values. This

is done before adding Boolean values into the Gun JS database.

Adam Gallagher Decentralized CMS

63

Another function had to be written to do the opposite of this, so true Boolean values could be

displayed in the database. This was harder to implement than initially expected, so ChatGPT was

used to write this function. The function takes in a collection array and maps through it. In the

callback, it maps each collection in the array and converts the true Boolean values to their stringified

counterparts. This is used in the collections table when a Boolean value needs to be displayed in the

table (See figure 5-50).

5.11 Sprint 7
5.11.1 Goal

The primary goals for this sprint were to develop the last features (configure peers and rich text) in

the CMS, and to develop another sample application that shows off the features of the CMS.

5.11.2 Item 1

Figure 5-51 Configure peer component

The first item in this sprint was the inclusion of the configure peer’s component. This will enable the

developer using the application to configure peers from the UI, as opposed to editing the env file

manually. By default, the CMS is configured with the Gun JS public network's open peer, which is

Adam Gallagher Decentralized CMS

64

written into the env file on project setup. Additional peers are stored in a peers.json file in the public

directory. A route was created to add a peer URL to this JSON file. Whenever the Gun JS library is

used, this JSON file is read, and the Gun object is instantiated with these peers. A basic configure

peer component was made, which allows the user to add new peer URLs to this JSON file by hitting

the endpoint (See figure 5-51).

5.11.3 Item 2

Figure 5-52 Richtext config object.

Adam Gallagher Decentralized CMS

65

Figure 5-53 Richtext component in create row.

The next item in this sprint was the inclusion of the rich text property to the CMS. Before adding this,

the CMS had the capability to have Booleans, numbers, and plain string values. Adding in a rich text

editor introduced a new level of complexity beyond a plain string. A rich text editor is a body of text

that has built-in markup capabilities. For the rich text editor in this application, the user could write a

paragraph and have the text be a header style, bold, italicised, numbered list, or a bullet list.

To ease the development of this feature, the Tip Tap framework was used. Tip Tap is a React library

that makes creating rich text editors much easier. It does this by using built-in components and

configs for generating them. The developer just must configure the config correctly with its

functionality and styling, then pass it into the EditorContent component (See figure 5-52). The config

is set using the useEditor Tip Tap hook. There is an optional variable, content, sent to the config —

this is for when users are updating data. There is an onUpdate property, which sets a state variable

in the parent with the rich text value, which is plain HTML that is sanitized before being added to the

DB to prevent bad actors from sending malicious content to the database. The rest of the config

consists of CSS styles for the heading and list items (See figure 5-53).

Adam Gallagher Decentralized CMS

66

5.11.4 Item 3

Figure 5-54 updated encryptData function.

During the user testing and creation of the rich text editor component, a major limitation of the CMS

was found. Due to the use of RSA encryption, which is limited to 256 bytes for data it can safely

encrypt, this was fine before the rich text component was added. But with its inclusion, the size of

data being added to the database was much larger, and this would have to be improved.

The solution to this size problem was to use AES encryption along with SHA encryption, which is a

common convention in software development. The encrypt and decryptData functions were

updated using ChatGPT to reflect this change in design. In figure 5-69, the improved encryptData

function can be seen. This function takes in the JSON to be encrypted, then generates a random

aesKey along with an iv key. iv stands for initialization vector and is random noise added to the

encryption so that even if the same data is encrypted, the output will be different. Using the AES key

and the iv, the JSON is encrypted. Then the AES encryption string is encrypted again using the public

RSA key. The twice-encrypted data, along with the AES decryption key and the iv, are returned in the

function.

Adam Gallagher Decentralized CMS

67

The encrypted data needs to be decrypted with the private RSA key to reveal the AES encryption

string, which then can be decrypted using the encrypted key in the return statement. AES does not

have a size limit when encrypting data, so this solves the "too large payload" error with RSA (See

figure 5-54).

5.12 Sprint 8
5.12.1 Goal

This sprint had one primary goal, which was to find and solve as many bugs as possible in the

application. This was done to improve the overall usability and performance of the CMS.

5.12.2 Item 1

Figure 5-54 Bug spreadsheet for tracking progress.

As mentioned in 5.12.1, the purpose of this sprint was to find and solve bugs and overall make

improvements to the code of the application. The process of doing this was carried out by building

Adam Gallagher Decentralized CMS

68

the CMS and running the test applications that use it, then trying to find bugs by completing tasks.

The bugs were tracked in a spreadsheet with a description of the issues and steps to recreate it,

along with its status. This ensured the bugs would be managed and solved within the sprint.

Whenever a new bug was found, the spreadsheet would be updated (see figure 5.54).

5.12.3 Item 2

Figure 5-55 Status page converted to an asynchronous server component

At this point in the process, the main features of the CMS were developed, but there was a major

issue with the CMS: the performance of the application was very slow. Some pages would take

upwards of ten seconds to load in. There were two primary reasons for the poor performance of the

CMS. The first was the size and complexity of the project—the project was very bloated and needed

optimisation.

Additionally, Next JS can prerender components on the server and even make API requests, then

serve the client the component with the API data. None of these features were used before this item

in the sprint. To improve the performance, each page in the CMS was converted into a server

component that would get the data, then serve the client with the data already preloaded. This

reduced the load time significantly.

This can be seen in the status page. The page is loaded asynchronously, which can be seen at the

page function declaration. The page makes an await request to the getResponseStatus function,

which returns the API status data. This is then passed to the StatusWrapper component, which is the

bundled client component for this page (See figure 5-55).

Figure 5-56 Database load time before server components

Adam Gallagher Decentralized CMS

69

Figure 5-57 Database load time after server components

The load time was almost halved when loading the database page with and without server

components (See figure 5-56, 5-57).

5.12.4 Item 3

Figure 5-58 IndexedDB utility file.

Another optimisation and bug fix came from removing the dependence on JSON files in the public

directory. The application wrote and read from the public directory for peers, API status response

handling, first-time login, and managing models. When running in development, this was optimal as

it was very fast and allowed shared data between the client and the server. Unfortunately, when the

application is built, files in the public directory are treated as static and cannot be mutated. This

caused many issues in the application; for example, new models could not be created.

To solve this problem for the models, IndexedDB was used. IndexedDB is a built-in database in every

browser that stores key-pair values that can persist between refreshes and cache clears. Each CMS

project generates its own IndexedDB store and stores the models there. This enables new models to

be created in a built project, and IndexedDB performance is better than reading a JSON from the

server. This also enables multiple CMS to run on the same client without unnecessarily sharing

models.

Adam Gallagher Decentralized CMS

70

To ease the use of IndexedDB, the IDB library was used. This removes some of the boilerplate from

writing to IndexedDB in vanilla TypeScript. Three functions were made for saving models, retrieving

models, and generating the IndexedDB store. Along with IndexedDB, models are also stored in Gun

JS as a fallback, so if the user accesses the CMS from a different client, they will still be able to use

their models even if they are not cached in IndexedDB (See figure 5-58).

5.12.5 Item 4

Figure 5-59 Server validation.

Another improvement made to the CMS was in the server. Up to this point, the only validation was

done on the actual CMS client; no server validation was done in the resource routes. This is needed

to ensure the security and safety of the API. The function takes in the body being added to the

Adam Gallagher Decentralized CMS

71

database and the resources model. It then compares them to ensure the body does not contain

properties not specified in the model. It’s worth noting that the body does not need to contain every

property in the model; for example, if the user is updating only one property on a row in the

database, this validation will still work. Rich text types must start with a greater-than symbol to be

valid rich text. For numbers and strings, the types must match the model using the typeof operator.

Ordinary strings must not contain special characters and must be at least three characters long (See

figure 5-59).

5.12.6 Item 5

Figure 5-60 Improved authentication middleware.

The final task completed in this sprint was improving the MetaMask authentication to something

more robust, which improves performance. The main body of this task was moving the current user

authentication from a custom hook and context to a middleware function and a cookie. The

outdated version would get the account variable when the user authenticated using the MetaMask

wallet, then write it to a custom React context. The custom React hook for authentication would

then check this context; if the user was not authenticated, they would be redirected to the login

page. This custom hook used a useEffect, which would cause multiple redirects and re-renders,

greatly slowing down the performance when navigating between pages. The new version takes the

same account variable and writes it to a cookie, which is then checked in middleware that runs when

the user goes to a page route. The logic is the same, where it checks the cookie and if it’s not

present, it will redirect to the login route.

Adam Gallagher Decentralized CMS

72

5.13 Conclusion
In summary, this chapter covered the specific development process involved in building this

application. The application enables users to create a decentralized back-end for an external

application in a user-friendly way, greatly reducing the complexity when developing decentralized

systems. Users can create custom collections with properties for four different types: Boolean,

string, numbers and rich text. Users can perform full CRUD on these either from the CMS dashboard

or from the API generated from the project. The CMS also includes single valued routes. These can

manage single values in an application or feature flags in external applications. The CMS also

provides decentralized user authentication from the API. Additionally, the CMS dynamically

generates documentation based on the resources the user created.

The purpose of this section was to document the development process of the decentralized CMS.

This chapter demonstrates the experience gained with Next JS, Gun JS, IndexedDB and MetaMask

SDK while also displaying project management and problem-solving skills. Finally, this section shows

projects focus on security and optimisation.

Adam Gallagher Decentralized CMS

73

Chapter 6. Testing

6.1 Introduction
This section dedicated to the testing of the decentralized CMS. The purpose of testing in the

application is to find functional bugs in the implementation of the application and improve the

overall usability. This section is split into two primary focus areas.

1. Functional testing

2. User testing

Functional testing is the process of verifying that the systems feature work as expected. This includes

the testing of API routes, CRUD operations and navigation between pages in the CMS. The primary

purpose of this is to find bugs within the application.

User testing focuses on the usability of the application. This process involves getting real users to

complete tasks within the application. Design and accessibility issues were identified during this

process. The users provide feedback for improving the application.

6.2 Functional Testing
This section covers the functional testing done on the CMS. This was done using the black box

testing method. This is where the internal logic is not relevant to the tester, only that the expected

outcome is met. These functional tests fall under three categories.

1. Navigation

2. API

3. UI CRUD

The navigation handles navigating between pages in the CMS for authenticated and un-

authenticated users. The API testing is specifically for testing the API CRUD routes in a rest client not

on the CMS UI. UI CRUD is the opposite of this, it tests performing CRUD from within the application

user interface itself.

6.2.1 Navigation

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

1 Authenticate and
redirect to database
page

Click the login
with MetaMask
account button /
type in
password

MetaMask
extension
will pop up
and the user
can
authenticate
and redirect
to the
database
page

MetaMask
extension
will pop up
and the user
can
authenticate
and redirect
to the
database
page

Passed

Adam Gallagher Decentralized CMS

74

2 Use side nav to
navigate to the
singles, status,
profile, user’s pages

Click on the tabs
in the side nav

App
redirects to
selected
page

App
redirects to
selected
page

Passed

3 Un authenticated
users should redirect

to login page when
trying to access
database page

Unauthenticated
user changes
the URL to
/database

Redirects to
route login
page

Redirects to
route login
page

Passed

6.2.2 API

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

1 Add new row to existing
collection

Send a
body
object
with
collection
to
collection
create
route

Return
status 201
with id,
encrypted
data and
data
signature

Return
status 201
with id,
encrypted
data and
data
signature

Passed

2 Get all rows in a collection Send a
GET
request
to the
API with
model id
query
param

Return all
rows in the
specified
collection
decrypted

Return all
rows in the
specified
collection
decrypted

Passed

3 Get single row in a
collection

Send a
GET
request
to the
API with
model id
and row
Id

Return
single
selected
row

Return
single
selected
row

Passed

4 Update selected row Send PUT
request
to API
with
model id
and row

Return
status 200
with id
encrypted
data and
data
signature

Return
status 200
with id
encrypted
data and
data
signature

Passed

Adam Gallagher Decentralized CMS

75

id query
params

5 Delete selected row Send
DELETE
request
to API
with
model id
and row
id query
params

Return 200
status with
success
message

Return 200
status with
success
message

Passed

6 Get all rows in a collection
without an auth API token

Send a
GET
request
to the
API with
model id
query
param,
exclude
the auth
token
header

Return
status 401
with error
message

Return
status 401
with error
message

Passed

6.2.3 UI CRUD

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

1 Create new model with
collection creator
component

Open
collection
creator
component
put in
three
properties
for bool
string and
number

New
collection
added to
side bar

New
collection
added to
side bar

Pass

2 Add new row to collection Open add
new row
component
add in
values for
three
properties

New row
added to
the table

New row
added to
the table

Pass

Adam Gallagher Decentralized CMS

76

3 Update row Select row
and click
update,
make
change to
every
property

Row is
updated in
the table

Row is
updated in
the table

Pass

4 Delete row Select row
and click
delete
button

Row is
removed
from table
UI

Row is
removed
from table
UI

Pass

6.2.4 Discussion of Functional Testing Results

The functional testing in this section evaluates and validates the functionality of the core features of

the CMS.

Navigation:

Test 1: This test was a success, using MetaMask the user authenticated then redirected to the

database page. This verifies the authentication middleware is functional and met the expected

outcome.

Test 2: This test was a success. The user could navigate between the pages using the side navigation

bar and the loading logic was successful rendering the correct page.

Test 3: This was a success. If an unauthenticated user altered the URL to redirect to a page the

authentication middleware would redirect them to the login page. This verifies the security of the

routes in the CMS.

API:

Test 1: This test ran successfully. There were no issues when creating a new row and adding it to the

decentralized database returning a success message to the client.

Test 2: This ran correctly all data for a selected collection was returned and decrypted from the

database, this verifies the decryption is working along with the GET all route.

Test 3: This test met the expected outcome, the selected row from the database was decrypted and

returned to the client.

Test 4: This test ran successfully, the selected row was updated, and the success status was returned

to the client.

Test 5: This was a successful test; the user deleted the selected row from the database returning a

successful response to the client.

Test 6: This test was a success, the API rejected the request for data because the authentication

header was not present, returning an unauthorized response.

Adam Gallagher Decentralized CMS

77

UI CRUD:

Test 1: This was a successful test; the user created the model with three properties.

Test 2: This test matched the expected outcome; the user selected the created model and added a

new row to the database.

Test 3: This test was a success, The user selected the created row and made an update request, the

data was modified with a success response status.

Test 4: The delete functionally worked as expected, the user selected the row to be deleted and

pressed the delete button.

6.3 User Testing
The purpose of the user testing is to evaluate the usability and user experience of the CMS.

Additionally, it helps identify bugs or usability issues with the application. The user tests were

conducted on three software developers as they are the target audience for the CMS. They were

assigned three tasks to complete – create a model, add a row to the database and update the row.

When they were completing these tasks their interactions with the user interface were recorded to

ensure there were no usability issues. In addition, the developers were timed while completing the

tasks. After the tasks where complete feedback was gathered from the users. The tasks were

designed to replicate typical CMS usage, and the primary focus of the testing was on the database

interactions.

User
Id

Create
model task
time

Add row task
time

Update row
task time

Thoughts
on create
task

Thoughts
on add
task

Thoughts
on
update
task

1 9 seconds 16 seconds 31 seconds “Straight
forward
easy to
add
properties”

“Same as
create
very
simple to
add rows”

“Had
issues
finding
the
update
button”

2 8 seconds 10 seconds 36 seconds “No
problems
defining a
model”

“Very
simple and
functional”

“Wasn’t
clear on
how to
update”

3 12 seconds 17 seconds 23 seconds “Quick and
easy to
find and
create”

“The data
in the
form was
in a
different
order to
the model
I created”

“No
problems
updating
the data”

Adam Gallagher Decentralized CMS

78

6.3.1 Discussion of the user testing

All three software developer testers were able to complete the tasks in a reasonable time. During

the feedback, the developers expressed issues with update functionality. The update button is not

visible until the user selects a row from the database table. Additionally, a small issue was found

where the add row form properties were in a different order to the model create and the database

row. This caused minor confusion for the tester.

Despite these issues, the testers had positive feedback saying they would all use this product again

in the future. The testers suggested improvements based on the issues they had while using the CMS

these include making it clearer how to update and delete rows. In future iterations these usability

issues will be fixed, improving the overall user experience.

6.4 Conclusion
In conclusion this chapter discussed the testing process for the decentralized CMS. The results for

the functional testing performed as expected without any key issues or bugs. The user testing

revealed minor issues with the usability of the CMS that in future iterations will be improved on, to

provide a better user experience.

Adam Gallagher Decentralized CMS

79

Chapter 7. Project Management

7.1 Introduction
The purpose of this section is to describe the management of the software project from start to

finish. Project management and organization were paramount in ensuring the project requirements

and goals were met. This chapter discusses every phase in the process, covering how the project

evolved and why proper management was essential for a successful application.

Several tools were used for project management. The primary tool used was Trello; this organized

the project backlog, which tracked progress on tasks to be completed during each phase of the

project. Additionally, a combination of a todo.txt file and a personal journal was used specifically for

breaking down larger tasks into smaller tasks, along with reflections and ideas. GitHub was the tool

used for version control of the CMS. This ensured the project source code was managed correctly.

This section concludes with a critical reflection on the project management process, discussing

learning experiences and challenges faced throughout the project.

7.2 Project Phases
The project was divided into defined phases for a structured approach to the creation of the CMS.

Each phase had a specific focus. This approach ensured that specific goals could be established and

met for each distinct phase. Additionally, having phases helped maintain focus throughout the entire

project while supporting continuous feedback from the project supervisor.

7.2.1 Proposal

The project started with the proposal phase, establishing a foundation for the rest of the project.

The goal of this phase was to establish the focus of the project and identify research topics. The aim

for the project was chosen during this phase: to create a decentralized content management system

which would ease the development of decentralized applications. The research section for this

project was written during this phase, focusing on types of decentralized storage and content

management systems. The integration of these two technologies was also explored, highlighting

their potential benefits.

Additionally, during this phase, the project scope was defined, including planned features and

project goals. A formal proposal document was written. Following this, a project proposal meeting

was held with the supervisor to discuss the project overview and receive feedback. This phase was

vital for establishing the project goals and setting realistic deliverables.

7.2.2 Requirements

The requirements phase was critical to the development of the project. It created clear and

achievable goals based on user requirements, as opposed to assumptions. This phase consisted of

researching the technical feasibility and user needs; subsequently, this would create the foundation

for the design and implementation phases. A feature questionnaire for the target audience and a

competitor analysis established the functional requirements.

The technical feasibility was explored during this phase. A major challenge was the limited

decentralized frameworks with low-quality documentation. To overcome these challenges, demo

Adam Gallagher Decentralized CMS

80

applications were developed to explore these tools. Ultimately, Gun.js was selected for the

decentralized database due to its simplicity compared to other options such as the IPFS protocol.

Overall, the requirements were managed successfully. Supervisor meetings were essential for

estimating project scope and providing guidance during the technical feasibility section.

7.2.3 Design

The design phase played a critical role in the development of the decentralized CMS. Figma was used

for both the software architecture and the user interface; this ensured alignment between both the

functional and technical requirements. A major challenge encountered was designing the

architecture. Decentralized systems introduce an elevated level of complexity, especially when

incorporating safe user authentication and encryption. Supervisor feedback and support were

essential for navigating these challenges. During the supervisor meetings, discussions were held

about the project design, along with proposed frameworks for development. This guidance was

particularly important for the CMS architecture.

7.2.4 Implementation

Figure 7-1 GitHub commits on project repository

The entire project followed the Agile framework; this was especially important during the

implementation phase. Managing large requirements by breaking them into small tasks and tracking

them in a Trello backlog ensured steady progress and planned execution.

Next JS simplified the process significantly by following the monolith design pattern. By combining

both backend and frontend, the development process was managed more efficiently. Additionally,

by abstracting complicated decentralized user authentication, the MetaMask SDK was essential to

the implementation phase.

A significant challenge during this phase was over-scoping certain tasks. Tasks were selected for each

sprint based on an estimated level of complexity. Sprint number three was an example of this (see

Adam Gallagher Decentralized CMS

81

Chapter 5.7). Sprint five had too many tasks whose complexity was underestimated. This created a

large workload, which caused difficulties, specifically with technical debt and poor optimization.

Eventually, these problems were fixed in future sprints, but better planning would have prevented

these issues. The workload completed in this sprint can be seen above in the repository insights

commits graph (see Figure 7-1).

Additionally, adaptability was essential during this phase of development. Proper planning

prevented issues, but not everything could be predicted. Unexpected bugs and issues came up,

which caused changes to the development process. An example of this was the inclusion of AES

encryption due to the size limitations of RSA.

Overall, this phase was managed successfully. In future developments, better planning will be

implemented to prevent over-scoping, leading to a better-structured and more manageable

development experience. This phase highlights the importance of planning and adaptability.

7.2.5 Testing

The Jest testing framework provided automated API testing, which made the development process

more streamlined. Before committing changes, the tests would be run to ensure the API was not

affected. This made the API development process more manageable. Additionally, two sample React

web applications that use the CMS as a backend were developed to test the CMS functionality. This

revealed logical errors in the code and enabled the expansion of the CMS.

User testing was conducted with three real users. These users were experienced software

developers who were given tasks to complete—create a model and add and update a row in the

database. The users were timed while completing these tasks and interviewed once finished. Their

interactions were recorded in the personal journal. Having actual users provide feedback on the

application was essential, and their suggested improvements will be addressed in the future.

Adam Gallagher Decentralized CMS

82

7.3 SCRUM Methodology

Figure 72 Trello board from sprints.

The project was divided into eight two-week sprints. Tasks were stored in a backlog in the Trello

application; this enabled proper planning for each sprint. A story point value, which is an estimation

of the level of difficulty a specific task has, was assigned to each task in the backlog. At the start of

each sprint, tasks were moved from the backlog lane to the in-progress bar (see Figure 7-2).

The tasks were generated based on the research and requirements phases. Most of the tasks were

specific coding features that were to be implemented. The SCRUM methodology ensured that each

sprint was organized and planned, improving the development of the CMS.

7.4 Project Management Tools
7.4.1 GitHub

GitHub and Git were used for version control in this project. This ensured the project was managed

correctly and enabled changes to be made to the repository from different clients. An extremely

simplistic workflow was established for making changes to the project. Every change would be

pushed to the main branch with a commit message that matched a selected task from the Trello

board.

7.4.2 Journal

Throughout the entire process, a personal journal was kept. This was used to prototype ideas or take

notes during supervisor meetings. Having this informal journal benefited the project; being able to

quickly brainstorm ideas and solve problems was essential in developing the CMS.

Adam Gallagher Decentralized CMS

83

7.5 Reflection
7.5.1 Views on the project

Ultimately, the project met the required results in developing a decentralized content management

system, making this a major success. Reflecting on the experience, overcoming challenges, designing

a complicated system and producing a polished final application has been incredibly rewarding. The

experience gained in managing a large software project has been extremely valuable. Learning new

paradigms and approaches for secure decentralized software was extremely challenging. Despite

this, overcoming these obstacles not only contributed to the success of this project, but also

provided invaluable experience and knowledge gain in the security and decentralized technology

fields.

An important learning outcome from this project was the importance of strategy and planning. The

requirements and design phases ensured proper planning for the success of the implementation

section. Additionally, the use of the agile framework ensured consistent structured work while

enabling constant feedback and improvement.

7.5.2 Working with a supervisor

Working with Mohammad was invaluable to the development and completion of this project. His

experience and guidance were essential, without this specially in the planning and requirements

gathering phase the project would not have been feasible. Additionally, Mohammad helped in

expanding and formulising the proposal and recommending frameworks – Next JS, Shadcn which

greatly improved the development experience. Ultimately, creating a decentralized content

management system would not have been possible without the supervisor support and feedback.

7.5.3 Technical skills

A major benefit gained from the large software project was improvements in problem solving along

with technical planning and learning new frameworks. These technical skills are essential in

software development. The biggest challenge in relation to this was learning Gun JS and learning the

fundamental paradigms of decentralized technology. While Gun JS abstracts a lot of complexity it is

still very different to traditional database solutions. Additionally, securing decentralized applications

is extremely complicated. While these were challenging it was incredibly rewarding developing these

skills, improving networking and security skills which are essential to secure software.

While Next JS improved the developer experience greatly it came at a reasonably high learning

curve, specifically with the API development and edge-based middleware. In addition to learning

more about these, front end development skills were improved significantly. Specifically in relation

to Typescript and optimising a large, structured project. Using Typescript for this project came with

challenges, since users could define their own models that could have an arbitrary number of

properties with several different types figuring out how to handle that in a strongly typed language

was challenging. Solving difficult problems like this improved programming and problem-solving

skills.

Adam Gallagher Decentralized CMS

84

7.6 Conclusion
As mentioned above this project met required result of developing a decentralized content

management system making is a significant achievement and major success. During this process

many complex challenges were overcame. Examples of these are learning new decentralized

paradigms, solving security and performance problems, and designing software architecture. These

are essential skills which provide a strong foundation for a future in decentralized software

development.

The experience gained from managing a large-scale project was incredibly educational, improving

management and critical thinking skills. Additionally, working with a supervisor was invaluable to the

process, providing feedback and guidance ensured the project was done to a high standard while

developing essential skills for a future in software development. Additionally receiving advice on

what tools and frameworks to use along with discussion on the feasibility of the decentralized CMS

was essential to this project’s success. Additionally, the project provided the opportunity to develop

technical skills specifically in Next JS, Gun JS and Typescript.

Adam Gallagher Decentralized CMS

85

Chapter 8. Conclusion
The primary focus of the application was the integration of decentralized storage technologies with

content management systems to solve common issues with traditional centralized CMS solutions. An

example of this is single points of failure and a higher risk of data loss. The primary goal of this

project was to develop a user-friendly decentralized CMS. This was achieved by making it

significantly easier and more efficient to create decentralized applications. Security was a major

focus during the project; ensuring the user's data was secure was vital to the viability of this project.

This was achieved through secure encryption and data verification with unique digital signatures.

Using Next JS and Gun JS provided a positive developer experience, thanks to the monolithic

architecture and developer-friendly features of both frameworks. To summarise, the integration of

these two technologies resulted in a decentralized content management system that combines the

flexibility of modern web frameworks with the resilience and transparency of decentralized storage.

Adam Gallagher Decentralized CMS

86

Chapter 9. References
A comprehensive survey on Blockchain-Based Decentralized Storage Networks. (2023). In

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026822

Arcana Network. (2023, December 8). What is Decentralized Cloud Storage and How does it Work?

What is Decentralized Cloud Storage and How does it Work? | by Arcana Network | Medium

Blockchain-based decentralized storage networks: A survey. (2020). In

https://www.sciencedirect.com/science/article/abs/pii/S1084804520301302

Chamria, R. (2024, April 30). Significant use cases of blockchain in decentralized storage. Blockchain
Deployment and Management Platform | Zeeve.

https://www.zeeve.io/blog/use-cases-of-blockchain-in-decentralized-storage/

From content management to enterprise content management. (n.d.). In

https://dl.gi.de/server/api/core/bitstreams/91e426ed-6bc8-4be5-9101-
a980c08ab198/content

Gagan. (2023, February 21). Why Decentralized CMS is the Future of Content Management for Web
3.0 and Beyond. Publive Blog.

https://blog.thepublive.com/cms/why-decentralized-cms-is-the-future-of-content-
management-for-web-3-and-beyond

GUN — the database for freedom fighters - Docs v2.0. (n.d.).

https://gun.eco/docs/Installation#server

Immutability and Decentralized Storage: An analysis of Emerging threats. (2019). In
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8941045

Irfan Khalid, M. (n.d.). IEEE Xplore Full-Text PDF:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026822

IPFS Documentation | IPFS Docs. (n.d.).
https://docs.ipfs.tech/

Jones, S. (2024, August 5). 6 Different types of content management systems. MadCap Software.
https://www.madcapsoftware.com/blog/types-of-content-management-systems/

Moore, J. (2023, September 21). blockchain storage. Search Storage.
https://www.techtarget.com/searchstorage/definition/blockchain-storage

Next.Js by Vercel - the React framework. (n.d.).
 https://nextjs.org/

Öfverstedt, L. (2018). Why Go Headless – A comperative study between traditional CMS and the
emerging headless trend. In

https://www.diva-portal.org/smash/get/diva2:1206058/FULLTEXT01.pdf

Osman, M. (2024, August 27). What is a headless CMS? We’ll explain. Blog LIVE.
https://www.wix.com/studio/blog/headless-cms

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026822
https://arcana-network.medium.com/what-is-decentralized-cloud-storage-and-how-does-it-work-6b8dc168ed60
https://www.sciencedirect.com/science/article/abs/pii/S1084804520301302
https://www.zeeve.io/blog/use-cases-of-blockchain-in-decentralized-storage/
https://dl.gi.de/server/api/core/bitstreams/91e426ed-6bc8-4be5-9101-a980c08ab198/content
https://dl.gi.de/server/api/core/bitstreams/91e426ed-6bc8-4be5-9101-a980c08ab198/content
https://blog.thepublive.com/cms/why-decentralized-cms-is-the-future-of-content-management-for-web-3-and-beyond
https://blog.thepublive.com/cms/why-decentralized-cms-is-the-future-of-content-management-for-web-3-and-beyond
https://gun.eco/docs/Installation#server
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8941045
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026822
https://docs.ipfs.tech/
https://www.madcapsoftware.com/blog/types-of-content-management-systems/
https://www.techtarget.com/searchstorage/definition/blockchain-storage
https://nextjs.org/
https://www.diva-portal.org/smash/get/diva2:1206058/FULLTEXT01.pdf
https://www.wix.com/studio/blog/headless-cms

Adam Gallagher Decentralized CMS

87

Pinto, R. (2020, February 21). Costs of storing data on the blockchain.

https://www.1kosmos.com/blockchain/cost-of-storing-data-on-the-blockchain/

Shadcn. (n.d.). shadcn/ui. Shadcn/Ui.

https://ui.shadcn.com/

Use MetaMask SDK with React UI | MetaMask developer documentation. (n.d.).

https://docs.metamask.io/wallet/connect/metamask-sdk/javascript/react/react-ui/

Who, what, and types of content management systems? (n.d.).
https://www.oracle.com/ie/content-management/what-is-cms/

https://www.1kosmos.com/blockchain/cost-of-storing-data-on-the-blockchain/
https://ui.shadcn.com/
https://docs.metamask.io/wallet/connect/metamask-sdk/javascript/react/react-ui/
https://www.oracle.com/ie/content-management/what-is-cms/

Adam Gallagher Decentralized CMS

88

Chapter 10. Appendix
Decentralized CMS Repository

https://github.com/AdamGallagher27/Y4-Final-Project

External Todo App

https://github.com/AdamGallagher27/Y4-Todo

External Hospital App

https://github.com/AdamGallagher27/Y4-Hospital

Figma Design file

https://www.figma.com/design/paDUSko74HXXJbEI0C5Rpv/Final-Figma?t=M3OjBx83fOnJbL4k-1

https://github.com/AdamGallagher27/Y4-Final-Project
https://github.com/AdamGallagher27/Y4-Todo
https://github.com/AdamGallagher27/Y4-Hospital
https://www.figma.com/design/paDUSko74HXXJbEI0C5Rpv/Final-Figma?t=M3OjBx83fOnJbL4k-1

