

Pinewood Rally – Unity Racing Game

Manu Jose

N00200555

Supervisor: Joachim Pietsch

Second Reader: Timm Jeschawitz

Year 4 2024/25

DL836 BSc (Hons) in Creative Computing

Abstract

The application I have built is a multiplayer racing game made using the Unity engine with

assets being designed in Blender, Figma and affinity designer. I also took assets from the

Unity asset store. The game itself has low poly graphics and a cartoony aesthetic. I felt this

would maximize performance and be more feasible to build by myself. The first steps in

development of this project were to research and study various racing games and how

multiplayer and artificial intelligence is implemented in them. I researched games similar to

the one I intended to make and how they utilize certain features to enhance user

engagement and enjoyment. I also did a research report on artificial intelligence in racing

games as part of my research and analytics module this year, which I used in deciding which

artificial intelligence model to use. That report also gave me an insight into effective game

design in terms of user engagement.

Acknowledgements

I would like to thank the staff and faculty of IADT for guiding and teaching me throughout

my years here. I would particularly like to thank Joachim Pietsch, my supervisor, and Tim

Jeschawitz, the second reader, for their supervision on this project. I could not have

undertaken this project without the continued support and teaching from them.

The incorporation of material without formal and proper acknowledgement (even

with no deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you

should document this in your submitted work and if you have any doubt as to what

level of discussion/collaboration is acceptable, you should consult your lecturer or the

Course Director.

WARNING: Take care when discarding program listings lest they be copied by

someone else, which may well bring you under suspicion. Do not to leave copies of

your own files on a hard disk where they can be accessed by other. Be aware that

removable media, used to transfer work, may also be removed and/or copied by others

if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute

discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute.

Please refer to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course

handbook. Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual

assessment. This would include jointly developed solutions as well as one individual

giving a solution to another who then makes some changes and hands it up as their

own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis

is my own work.

Student : Manu Jose

Signed

Failure to complete and submit this form may lead to an investigation into your work.

Table of Contents
1 Introduction .. 1

2 Research ... 2

2.1 Introduction ... 2

2.2 Waypoints and Vector Calculations .. 2

2.3 Machine Learning .. 2

2.4 Artificial Neural Networks ... 3

3 Requirements ... 4

3.1 Introduction ... 4

3.2 Requirements gathering .. 4

3.2.1 Forza Horizon ... 4

3.2.2 Gran Turismo ... 5

3.2.3 Art of Rally .. 5

3.3 Requirements modelling ... 6

3.3.1 Functional requirements ... 6

3.3.2 Non-functional requirements .. 6

3.4 Feasibility ... 6

3.5 Conclusion ... 7

4 Design ... 8

4.1 Introduction ... 8

4.2 Program Design ... 8

4.2.1 Technologies .. 8

4.2.2 Structure of Unity .. 9

4.2.3 Application architecture .. 11

4.3 User interface design .. 12

4.3.1 Level Design ... 12

4.4 Conclusion ... 12

5 Implementation .. 13

5.1 Introduction ... 13

5.2 Scrum Methodology .. 13

5.3 Development environment ... 14

5.4 Sprint 1 .. 15

5.4.1 Goal .. 15

5.4.2 Item 1 ... 15

5.4.3 Item 2 ... 15

5.4.4 Item 3 ... 16

5.5 Sprint 2 .. 16

5.5.1 Goal .. 16

5.5.2 Item 1 ... 16

5.5.3 Item 2 ... 17

5.6 Sprint 3 .. 18

5.6.1 Goal .. 18

5.6.2 Item 1 ... 18

5.6.3 Item 2 ... 18

5.7 Sprint 4 .. 19

5.7.1 Goal .. 19

5.7.2 Item 1 ... 19

5.8 Sprint 5 .. 19

5.8.1 Goal .. 19

5.8.2 Item 1 ... 19

5.8.3 Item 2 ... 20

5.9 Sprint 6 .. 20

5.9.1 Goal .. 20

5.9.2 Item 1 ... 20

5.9.3 Item 2 ... 21

5.10 Sprint 7 .. 21

5.10.1 Goal .. 21

5.10.2 Item 1 ... 21

5.11 Sprint 8 .. 21

5.11.1 Goal .. 21

5.11.2 Item 1 ... 22

5.11.3 Item 2 ... 22

5.12 Sprint 9 .. 22

5.12.1 Goal .. 22

5.12.2 Item 1 ... 22

5.13 Conclusion ... 22

6 Testing .. 24

6.1 Introduction ... 24

6.2 Functional Testing ... 24

6.2.1 Navigation .. 24

6.2.2 Car Tests ... 25

7 Project Management .. 27

7.1 Introduction ... 27

7.2 Project Phases ... 27

7.2.1 Proposal ... 27

7.2.2 Requirements ... 27

7.2.3 Design ... 27

7.2.4 Implementation ... 28

7.2.5 Testing .. 28

7.3 SCRUM Methodology .. 28

7.4 Reflection .. 28

7.4.1 Your views on the project .. 28

7.4.2 Completing a large software development project ... 29

7.4.3 Working with a supervisor ... 29

7.4.4 Technical skills .. 29

7.4.5 Further competencies and skills .. 30

7.5 Conclusion ... 30

8 Conclusion .. 31

References ... 33

1

1 Introduction
The overall aim of my project is to have a presentable and fully functional racing game by

the end of the academic year. This game should have multiplayer functionality and use

artificial intelligence for non-player characters (NPC’s) that the user can play against. Racing

is a hugely popular genre in the video game industry. However, most games released

nowadays have lifelike graphics and physics, cost upwards of €50 per title, are developed by

massive companies and often contain hidden costs in the form of downloadable content

that the user must pay extra for. This gives consumers the feeling that the price of the game

doesn’t include everything the game has to offer.

In order to develop this game, I will mainly use the Unity game engine, which runs C# code

that will be written using Visual Studio Code. Designing for the game will be done using a

variety of programs. Blender will be used to create the 3D assets. It’s free, open source and

has a large community of people creating content to teach people how to use it. I also have

a personal passion for creating models in Blender, so I have a little bit of experience in it. I’ll

use Figma and Affinity Designer for creating the 2D assets such as buttons, logos,

speedometers, and other UI elements. I’ve gained experience in using both these apps

through other modules in Creative Computing. I will also need to use frameworks such as

Photon and Steamworks for the multiplayer aspect of the game. Photon is a widely used,

real-time multiplayer framework for game development and Steamworks is a set of tools

and services to help developers integrate their games with the Steam platform. Photon will

be the basis for the multiplayer in my game and, when implemented, Steamworks will allow

players to easily play my game with the friends they’ve connected with on Steam.

2

2 Research
2.1 Introduction
I did research into artificial intelligence in games as part of my project. There are three main

ways to use AI in a racing game. Those are waypoints and vector calculations, machine

learning and neural networks. I explored all these options when considering what to use for

my game.

2.2 Waypoints and Vector Calculations
One of the easiest ways to implement AI in a racing game is waypoints and vector

calculations. This technique involves placing a series of invisible points around the racetrack

in 3D space. These act like a path that the AI driver follows. The AI checks its position on

each frame and moves towards the current waypoint in the list. Once its close enough to

that waypoint it will switch its target to be the next waypoint in the list. This process is

repeated until the AI completes one circuit of the track, where it while either go back to the

first waypoint in the list or end the race.

To actually move the car the system calculates the direction vector between the car's

current position and the target waypoint. That vector is used to steer and accelerate the car

in the right direction. However, one issue with this approach is that it can sometimes look

robotic or unnatural. The AI either fully accelerates or fully brakes based on conditions, and

that can result in jerky or overly perfect movement if not tuned properly. This can be fixed

by adding conditions for the AI to follow. For example, if the AI is coming up to a sharp

corner, it slows down earlier and steers gradually instead of snapping its steering to the next

waypoint.

This system doesn’t rely on heavy computation or learning, so it’s great for performance,

especially since I want my game to run well on lower-end systems too. Even though it's

simple, it gives me enough control to fine-tune how the AI behaves on different tracks.

2.3 Machine Learning
There are many ways in which machine learning is used to create an AI driver, however

there are three main types, reinforcement learning, supervised learning and unsupervised

learning. All of these have positives and negatives. Reinforcement learning works by giving

the AI a reward based on how well it performs the task that it was assigned. In this case the

task would be driving around a racecourse in the fastest time.

3

Imitation learning is a type of supervised learning in which the AI is fed demonstrations such

as real human driving and uses that data to inform its own actions. A key detail when

training this AI is that the source its learning from must be from a control scenario where

the trainer does not know they are being observed. Otherwise, the trainer may drive more

carefully, or exaggerate certain aspects of their AI, which would create a bias.

 Unlike supervised learning, unsupervised learning is trained on data that has no predefined

labels or categories. The AI must figure out the patterns and structures present in the data

itself. In a racing game this is implemented by mimicking player behaviour such as driving

styles and patterns, dynamic difficulty and creating new AI behaviours. The AI can adapt to

the way the player drives because it’s not working towards a preprogrammed goal like

achieving the fast time or most points.

2.4 Artificial Neural Networks
A neural network is a form of artificial intelligence that allows computers to process data

similarly to how the human brain does. This allows it to quickly make complex decisions on

things like track layout, player actions, entry and exit points, driving lines and apex speeds. A

neural network used for racing games can be trained to optimize acceleration, braking,

overtaking etc. This helps when the playing is driving against multiple AI opponents because

it requires the bots to not only factor in the players movements but also the actions of every

other bot in the race. The biggest downside to this method is that it uses a large amount of

computational power and needs extensive training, which is unsuitable for many systems.

4

3 Requirements
3.1 Introduction
To define the requirements for the racing game, inspiration was drawn from a range of

existing titles such as Forza Horizon, Gran Turismo, and Art of Rally. While Forza Horizon and

Gran Turismo influenced the structure and flow of racing gameplay, Art of Rally provided a

strong reference for the stylized, minimalist visual approach. These games were analysed in

terms of gameplay mechanics, visual design, and user interface. This process helped shape

the functional and non-functional requirements of the project.

3.2 Requirements gathering
3.2.1 Forza Horizon

Forza Horizon is an open-world racing game

series known for its expansive

environments, large vehicle selection, and

balance between arcade-style fun and

realistic driving physics. It features both

single-player and multiplayer modes, with

seamless online integration. It is highly polished with responsive controls, detailed

environments and an extreme level of detail when it comes to the cars themselves. The

engine sounds are recorded for each car in the real world. The graphics on the car models

are almost life-like. Everything from the interiors to the engine bays are modelled

realistically. Unfortunately, all these positive aspects of the game make it unsuitable for low-

end systems and gives it a massive download size. The complexity of the cars upgrade

system means that there is a large learning curve for new players.

5

3.2.2 Gran Turismo

Gran Turismo is a long-running racing simulator focused on precision, realistic physics, and

authentic driving experiences. It appeals to players who are interested in learning real-world

driving techniques and car performance. Gran Turismo is similar to Forza Horizon; in that

they are both realistic racing games with a wide variety of vehicles and realistic physics.

Gran Turismo, however, focuses more on

technical fidelity and is more of a racing

simulator. The downside is that it is less

accessible to casual players due to the

steep learning curve and the simulation

physics, which also limits its stylization.

3.2.3 Art of Rally

Art of Rally is a stylized top-down rally racing game with minimalist, low-poly graphics and a

strong emphasis on atmosphere. It blends simple visuals with tight handling and challenging

tracks, offering a unique take on the racing

genre. It has a strong design language with

a low-poly, stylized aesthetic. This means

that it runs and performs well on any

system. The simple UI and controls make it

accessible for any player. The arcade

physics ensures the focus of the game is

more on enjoyment that realism. There is however a limited track list and vehicle choice as

well as customization of each of those. Theres also fewer game modes compared to the

larger titles.

6

3.3 Requirements modelling
3.3.1 Functional requirements

These functional requirements are necessary for the game to run as intended. They define

the minimum of what the game should do and focus on core gameplay features, multiplayer

functionality and artificially intelligent drivers.

• Players must be able to control the car using keyboard or controller inputs.

• The game must support at least two players in a local multiplayer session over LAN

• The games user-interface must display race positions, lap count, race time, lap time

and speed.

• The game needs a menu system that allows players to choose races and cars as well

as host and join multiplayer sessions.

• Artificial intelligence should be able to make a full lap around each track smoothly

and react to obstacles on the road

3.3.2 Non-functional requirements

Non-functional requirements determine the quality and constraints of the game such as

performance and usability expectations as well as the visuals of the game.

• The game must maintain at least thirty frames per second on low-end hardware

• All menus and UI need to be easily readable and accessible to all types of users

• The visual style should be consistent throughout the game and match the intended

• Multiplayer performance should be reliable over local networks without any

noticeable lag or desynchronization

3.4 Feasibility
The project is considered feasible within the constraints of time, resources, and technical

skill. The tools chosen for development are accessible, well-supported, and align with the

scope of the project. Unity was selected as the primary game engine due to its strong

community support, cross-platform capabilities, and built-in tools for physics, animation,

and UI. Unity also integrates smoothly with external tools, enabling a streamlined workflow.

7

Blender was used to create custom 3D models, allowing full control over the visual style and

ensuring consistency with the intended cartoony aesthetic. For 2D assets and interface

design, Affinity Designer and Figma were used to design lightweight, readable UI elements

that enhance usability and match the game's visual direction.

For implementing multiplayer functionality, Photon Unity Networking (PUN) was initially

considered, but Unity NetCode for GameObjects (NGO) was ultimately chosen for tighter

integration with Unity and better control over synchronization in local multiplayer scenarios.

However, the experience with Photon remains a viable option for future online features.

The development was undertaken on readily available hardware with software licenses that

are free or affordable for students. The lightweight visual style also ensured performance

feasibility across a wide range of devices. Overall, the toolset and scope were carefully

selected to match the available resources and skills, making the project achievable within

the academic timeline.

3.5 Conclusion
The requirements outlined in this section were informed by a combination of industry

research, analysis of existing racing games, and practical considerations for development. By

studying games like Forza Horizon, Gran Turismo, and Art of Rally, I was able to identify key

gameplay and design elements that align with my game’s goals. The functional and non-

functional requirements reflect the core features needed to deliver a fun, accessible

multiplayer racing experience, while also considering technical constraints such as hardware

performance and network reliability. Together, these requirements provide a clear

foundation for development and ensure that the final product meets both player

expectations and project goals.

8

4 Design
4.1 Introduction
The design phase focuses on planning and structuring the key components of the game

before full implementation begins. This includes defining the visual style, gameplay

mechanics, user interface, and technical architecture needed to support both single and

multiplayer functionality. Given the project's low-poly aesthetic and focus on accessibility,

the design prioritizes clarity, simplicity, and performance. The phase also involves creating

visual assets, designing levels, and outlining how various systems—such as car physics, lap

tracking, and network synchronization—will interact within the Unity engine. This section

documents the design choices made and how they align with the requirements established

in the previous chapter.

4.2 Program Design
The game is structured around Unity’s scene and GameObject system. Key scenes include

the Main Menu, and Racetrack. I have a separate scene for each racetrack available in the

game Each scene contains relevant GameObjects, such as UI elements, player cars,

environment assets, and system managers. Prefabs are used extensively for modularity and

consistency, especially for repeatable elements like player vehicles, checkpoints, and UI

panels.

Unity's component-based model allows behaviours to be added via scripts, which are

attached to GameObjects. For example, player inputs, movement and physics handling are

implemented in a Drive script attached to each player vehicle. There is also an AI Controller

that references the Drive script, meaning that the Drive scripts receive inputs from the AI

Controller that tells the car how to behave. For the player cars the Drive script gets its inputs

from a Player Controller script that takes the players inputs.

4.2.1 Technologies

The technologies being used to create this application are:

• Unity (Game Engine)

9

• C# (Scripting Language)

• Blender (3D Modelling)

• Affinity Designer (2D Art & UI Assets)

• Figma (UI/UX Design & Prototyping)

• Photon Unity Networking (Multiplayer Networking)

These technologies were chosen because they provide a strong foundation for developing a

stylized, multiplayer racing game. Unity offers a comprehensive and flexible game

development environment with built-in support for 3D physics, animation, and user

interface design. C# is Unity’s primary scripting language and is well-documented and widely

used in game development. Blender enables the creation of custom 3D models tailored to

the cartoony art style of the game. For visual and interface design, Affinity Designer and

Figma were used to produce lightweight, clean, and consistent UI elements. Photon Unity

Networking (PUN) was selected for its ease of use, real-time synchronization capabilities,

and reliable cloud-based multiplayer architecture, making it ideal for implementing peer-to-

peer and online gameplay.

Other possible technologies which could have been used were Unreal Engine, Unity

NetCode for GameObjects, or Adobe Illustrator. These technologies were not suitable

because Unreal Engine is more geared toward high-end photorealistic games and can be

unnecessarily complex for an indie-styled racing game. Adobe Illustrator, while industry-

standard, was avoided due to cost, and Affinity Designer provided similar capabilities with a

more affordable license. These alternatives are more appropriate for larger teams or games

with different technical and visual requirements.

4.2.2 Structure of Unity

Unity follows a component-based architecture where all in-game objects are built using

GameObjects and components. Each object in a scene is made up of a combination of

scripts, colliders, renderers, and other modules that define how it behaves or appears. Unity

projects are organized into a structured folder system within the Assets directory, which

acts as the central hub for all game resources.

10

Key Folders in the Project:

• Assets/ - The main directory containing all the game files and resources.

• Scenes/ - Stores different Unity scenes (e.g. Main Menu, Lobby, Racetrack).

• Scripts/ - Contains all C# scripts that define game logic (e.g. Car Controller,

Race Manager).

• Prefabs/ - Holds reusable GameObjects like cars, checkpoints, and UI panels.

• Materials/ - Contains the materials used for objects in the game (colours,

textures).

• UI/ - Includes canvases, images, buttons, and layouts for the user interface.

• Photon/ - Contains Photon-specific assets, prefabs, and configuration scripts

for multiplayer.

• Models/ - 3D models imported from Blender for cars and environment assets.

• Audio/ - Stores sound effects and music used in the game.

• Animations/ - Holds animation clips and controllers if used for UI or objects.

Unity Hierarchy and Flow:

• Scenes: Each game level or menu is saved as a .unity scene file. Scenes hold all the

GameObjects active during that part of the game.

• GameObjects: The basic building blocks of Unity, used for everything from cars and

cameras to menus and checkpoints.

• Components: Behaviours or properties attached to GameObjects - e.g., Rigidbody for

physics, Collider for interaction, custom scripts for game logic.

• Scripts: Written in C#, scripts control logic such as movement, UI updates,

multiplayer syncing, and race progression.

11

4.2.3 Application architecture

The architecture of the game is explained in the diagram below. The car object has the

necessary components for it to function, those being the rigidbody, and colliders. It also has

player controller, AI controller, checkpoint and drive script. The drive script has values and

methods passed down to it because it handles the actual physics and forces that drive the

car. The AI controller has the waypoints for the race passed into it. These waypoints are

game objects in the 3D space of the racetrack. The car object is then placed in the race

scene where the player can control it or the AI drives it. Before the race scene, the main

menu takes in the players name and car selection to then pass to the race scene where they

are displayed.

12

4.3 User interface design
The UI design consists of the heads-up display on the car and the main menu. I

designed them in Figma. I tried to make them look like a sign and be flat

because it fits with the games simple theme and aesthetic.

4.3.1 Level Design

I made and textured the racetracks in Blender using data from google earth to

get accurate height values. I didn’t make it at accurate scale but instead made

the tracks wider in accordance with the size of the cars that I had modelled.

The textures I made were just simple block colours because I wanted to keep the aesthetic

and feel of the game.

4.4 Conclusion
The design phase paid out the groundwork for creating an efficient racing game that focus

on performance and visual consistency. Key design decisions such as using component-

based architecture in Unity, low poly visuals and modular prefabs allowed for streamlined

development and scalability. By planning out the key systems like artificial intelligence, car

physics and user interface early on, the implementation phase was smooth and focused. The

design aligns with the project’s goals of stylized visuals and engaging gameplay while also

supporting good performance.

13

5 Implementation
5.1 Introduction
This section outlines the process of bringing the game design to life within Unity. It details

how the planned systems, assets, and interfaces were built and integrated to form a fully

functional racing game. Each part of the implementation, from car movement and race logic

to multiplayer setup and UI integration, was developed using Unity’s tools and scripting in

C#. The implementation phase focused on translating design concepts into interactive

features while maintaining performance, consistency, and the intended visual style. This

section also highlights the challenges faced during development and how they were

resolved through testing, iteration, and adaptation.

5.2 Scrum Methodology
For the implementation of this project, the SCRUM methodology was adopted as an agile

framework to manage development tasks efficiently and stay organized throughout the

academic year. SCRUM emphasizes iterative progress through Each sprint concluded with a

review and reflection on what was completed, what could be improved, and what the next

steps would be.

The use of SCRUM also helped manage risk by allowing features to be developed

incrementally rather than all at once. For example, early sprints focused on core gameplay

elements like physics and controls, while later sprints added layers of polish such as UI

14

refinement and multiplayer support. This iterative development process ensured that the

project was always in a playable state and helped identify bugs or issues early on.

The methodology also provided a framework for reflecting on progress and making

informed decisions. Features were frequently tested and adjusted based on feedback or

technical constraints. By breaking the project into smaller, manageable pieces and

continuously evaluating the results, SCRUM allowed the project to evolve organically while

still meeting the original goals. Overall, it proved to be an effective method for managing a

solo game development project within the scope of an academic timeline.

5.3 Development environment
The development of the game took place primarily in Unity, using Visual Studio as the

integrated development environment (IDE) for writing and debugging C# scripts. Unity was

chosen for its wide feature set, real-time editor feedback, and excellent support for both 3D

game development and multiplayer functionality through third-party frameworks like

Photon Unity Networking.

All game assets, scripts, and scenes were managed within Unity’s editor interface, allowing

for rapid prototyping and testing. Visual Studio provided syntax highlighting, error checking,

and deep integration with Unity, which made it easier to write and debug scripts efficiently.

The Unity Console was used frequently during testing to log output, monitor performance,

and catch any runtime errors or warnings.

Version control was handled using Git through GitHub, which allowed for regular commits,

backups, and version tracking. This also made it easier to roll back changes when bugs were

introduced or when experimental features needed to be removed. GitHub Issues and

commit messages were also used to keep track of completed tasks and bugs found during

testing.

Additionally, Trello was used to organize tasks in a kanban-style board, reflecting the

SCRUM methodology used throughout development. Each card represented a task, such as

implementing a UI feature or designing a new track segment and was moved from “To Do”

to “In Progress” to “Done” as the project progressed. This visual task management helped

maintain focus and ensure a clear record of what was completed in each sprint.

15

5.4 Sprint 1
5.4.1 Goal

The goal for sprint one was to create a foundation from which I could further develop the

racing game. I did this by implementing basic car movement and making a simple testing

environment to test the driving mechanics.

5.4.2 Item 1

I created a Car Controller script using Unity’s rigidbody

and wheel colliders. The player can steer, accelerate,

brake and reverse using keyboard controls. Forces and

torque are applied to the rigidbody to simulate an arcade-

style driving experience. The simple

The wheel transforms are separate objects to the body of the car. I had trouble with getting

them to rotate correctly because the rotation is calculated in the script and is linked to the

wheel colliders. I fixed this issue by tweaking the values and axis from which to rotate the

wheels and constantly testing the code.

5.4.3 Item 2

The second item for this sprint was to

create a temporary environment to test the

Car Controller. I did this with Unity’s terrain

object. I used one terrain object as a plain

flat surface that would act as road to drive

on and elevated it in certain areas to test

how the car responds to inclines.

16

5.4.4 Item 3

I also started using Blender to model a simple car that I can use in the game. I used a

blueprint as a reference and modelled my car around that. Following tutorials, I found on

YouTube helped greatly with the process of learning Blender.

5.5 Sprint 2
5.5.1 Goal

The goal for this sprint was to further develop the controls of the car as well as its physics

and keep practicing and improving my skills in Blender. I also started modelling a couple

racetracks in Blender that I can use in the game.

5.5.2 Item 1

At the beginning of the project, I used a single script called CarController.cs to manage

everything related to the player’s car — input handling, physics, acceleration, steering, and

braking. This worked fine for quick prototyping, but as the game grew more complex, I

started to notice that the script was becoming bloated and difficult to manage. It became

clear that I needed a cleaner and more modular approach, especially as I began planning for

AI-controlled cars and multiplayer functionality.

17

To solve this, I decided to split the

original script into two parts:

Drive.cs and PlayerController.cs.

The Drive script is now responsible

for handling all the physics-based

movement like applying force to

the rigidbody, turning the wheels,

and simulating acceleration.

Meanwhile, the Player Controller

script is used to capture the

player’s input and feed it into the Drive script. This separation made it much easier to debug

issues and to eventually plug in different types of input sources — whether it’s a human

player or an AI.

5.5.3 Item 2

 I improved my Blender models and started working

on a racetrack model. I used a Blender add-on to

find a racetrack on google earth and retrieve the

terrain data. I then used that to create the track

model as accurate as possible. I had issues with the

car model when importing to unity because the cars

orientations weren’t the same In Unity. In Blender, the

z-axis is up, and the y-axis is the forward axis. In Unity

it’s the inverse, so I had to account for this when

importing my assets to Unity.

18

5.6 Sprint 3
5.6.1 Goal

The goal for this sprint was to start working on the artificial intelligence system and keep

working on my Blender assets.

5.6.2 Item 1

For the AI in the game, I used a simple

waypoints model. The car accelerates

and keeps the steering pointed at the

current waypoint. The brake is also

applied as the car gets closer to the

waypoint. This prevents the car from

skidding too far if there’s a sharp turn but has the unfortunate effect of also causing the car

to break when there’s no need to. To combat this, I made It so that the AI keeps track of the

next waypoint as well as the current waypoint. If the angle to the next waypoint is greater

than 20 degrees, for example, the acceleration will be set to 0 and the brake will be set to 1

until the upcoming angle is below 20 degrees.

5.6.3 Item 2

I also used this sprint to create more car models, making sure to keep in mind that I need to

set the up and forward axis to work in Unity. I tried to keep the models simple while keeping

them recognizable as the cars they’re meant to represent.

19

5.7 Sprint 4
5.7.1 Goal

The goal of this sprint was to further develop the AI so that it moves more smoothly around

the track and deal with what happens when the car gets stuck.

5.7.2 Item 1

With the way I was doing the waypoints, the car wouldn’t steer to the next waypoint until it

reaches the current one. To fix this I added a tracker in front of

the car that the car will steer to. This way the, the tracker will start

moving to the next waypoint before the car and the

car will dynamically steer to the next waypoint. I also

updated the braking and acceleration. Instead of

them being solid values of 1 and 0, the force of each

will increase or decrease incrementally based on how

sharp the corner is and how fast the car is going. I

also added a respawn system so that if the car gets

stuck it will respawn at the last waypoint that it passed and reset the cars rotation if it is

flipped upside down. I also added a ghosting script so that when the car respawns, it will has

collisions with other cars turned off and the cars material will flash transparent for a few

seconds.

5.8 Sprint 5
5.8.1 Goal

For this sprint I needed to make the respawn system work with player cars. I also needed to

add engine sounds and skidding sounds to the car.

5.8.2 Item 1

To make the car respawn, I couldn’t use the same code as I did for the AI because the player

doesn’t access the waypoints. So, I created a checkpoint system. The checkpoints followed

the same course as the waypoints, but they also had collision triggers on them so that the

player car would know which checkpoint it’s on. When the player car got stuck it would be

reset to the centre of the last checkpoint the player passed. I also changed the AI code to

use this checkpoint system to maintain consistency in the gameplay.

20

5.8.3 Item 2

I found a couple engine and tyre skid sounds and applied them to the car. These were

reliant on the drive script, so they were not affected by the player controller or the AI

controller. The engine sound was played on awake and looped for the duration of the race

level. The engine sounds pitch is raised or lowered as the car speeds up or slows down to

give the illusion of changing gears.

The skid sound relies on the wheel

colliders, which have forward and

sideways slip values. If the values

for forward and sideways slip are

greater than or equal to a certain

value, the skid sound will play. I

also added a smoke prefab and a skid trail that is positioned on each wheel and will emit

under the same conditions.

5.9 Sprint 6
5.9.1 Goal

This sprint, I started to create the main menu scene, the first scene that would load

when the game is launched. I also wanted to add a way to select the car that the player

would be racing with.

5.9.2 Item 1

I created my own main menu assets such as buttons and the

background using Figma. I had to make sure the individual

components had no background. Importing and using them in Unity

was a simple and straightforward process. Theres also a player name

input field in the main menu. The name that the player inputs is saved into Unity’s

PlayerPrefs so that the player doesn’t have to input their name each time.

21

5.9.3 Item 2

For selecting the car, I made a rotating display with each

of the car choices. The cars were placed in a circle around

a central camera. Using “A” and “D” the player can look at

different cars. The game remembers the car that’s

currently visible and uses that in the race level. This

selection is also saved into PlayerPrefs.

5.10 Sprint 7
5.10.1 Goal

Although I have car selection working in the main menu, it doesn’t relate to anything in the

actual race scene. The goal of this sprint was to set up the race monitor that starts the race

and load the players car correctly.

5.10.2 Item 1

The first step was to create the race monitor script. This

script contains the prefabs of each car that I’ve created as

well as the countdown at the start of the race and the

spawn points for all the cars. When the race starts a

random car prefab with the AI script enabled is spawned at

each spawn point and the countdown plays. The player car

has the player controller enabled, and the AI controller disabled. The race monitor also

spawns the player at a random spawn point each time as well.

5.11 Sprint 8
5.11.1 Goal

I needed to create a heads-up display (HUD) with information that the player might need

during the race. I also decided to add a rear-view mirror so the player could see any cars

coming up behind them.

22

5.11.2 Item 1

The HUD contains a map of the track with arrows that show the location of each car and a

leaderboard that displays the top four racers. It also has the rear-view mirror on it. The map

uses a secondary camera that looks down on the scene. I added the arrows as objects on

the cars that are on a separate layer so only the map

camera can see them. I made it so that the player can

enable or disable the HUD by pressing “H”.

5.11.3 Item 2

The leaderboard works off the checkpoint system. The car

at the furthest checkpoint is in first place. On occasions where multiple cars are at the same

checkpoint, the car that entered that checkpoint first gains the higher position in the race.

5.12 Sprint 9
5.12.1 Goal

The goal for sprint nine was to implement multiplayer functionality using the Photon engine.

5.12.2 Item 1

I managed to successfully add photon to unity and set it up so that it creates a room for the

player to play in with other players. Unlike for the local

game, networked players don’t need the drive and

controller scripts. Instead, I had to add Photons own

components to each necessary game object such as the

car body and wheel objects. The networked payer then

received the cars position and rotation as well as any

physics components such as the rigidbody. This phase

was difficult to test because although Unity 6 has the capability to show multiple games

running at the same time, it responded with many errors. So, I decided to build the game

and use that version as the second player. This worked but it took a long time to build after

each update to the code or assets.

5.13 Conclusion
To summarize this section, the game currently has two scenes, the main menu and the

racetrack scene. The main menu allows the player to pick a name and car. When the player

23

presses the start button the game loads the next scene. In this scene the game loads car

prefabs at predetermined spawn points and enables the AI controller script on any AI cars.

When the race starts, a countdown plays and when that ends the player gains control of the

car. The drive script holds the main physics of the car and receives values for acceleration,

steering and braking from the player controller and AI controller scripts. The player has a

heads-up display that shows a mini map that views the cars positions on the track, a

leaderboard that displays their current position and a rear-view camera.

The AI uses a waypoint system with a tracker ahead of the AI car. The tracker follows the

waypoints, and the car follows that tracker. The AI also has various statements that controls

its braking and acceleration if there’s a sharp corner coming up. The player controller reads

the players inputs for acceleration, braking and steering and passes them to the drive script.

24

6 Testing
6.1 Introduction
I tested the game countless times throughout its development. I ran the game to see what

differences I’d made after each new implementation of a feature. This was particularly

important when laying out the waypoints and deciding what acceleration, brake values to

give the AI car to make sure that the car successfully made it around the track with any

major issues.

6.2 Functional Testing
6.2.1 Navigation

Test

No

Description of test

case

Input Expected

Output

Actual Output Comment

1 Player name input Type players

name into the

input field

Player’s name

is saved in

PlayerPrefs

and reloads

next time the

game is run

PlayerPrefs

saved the

name, and the

input field

successfully

retrieved and

displayed it

2 Start race button Click start

button

Race level

should be

loaded

Race level

loaded

successfully

3 Quit button Click quit

button

Game should

close

Game closed

successfully

4 Restart button Click restart

button

Game should

reload current

race scene

Scene

reloaded

successfully

5 Car selection Select car

using A and D

Game should

load the race

scene with the

Game loaded

the scene with

the correct car

model

25

selected car as

the player car

5 Multiplayer button Click

multiplayer

button

Log should

show the

system

connecting to

network and

creating room,

then loading

scene

Log showed

the intended

responses and

loaded scene

6.2.2 Car Tests

Test No Description of test

case

Input Expected

Output

Actual Output Comment

1 Test that the AI car

follows the waypoints

correctly

 Car follows

waypoints

and

completes

the circuit

Car

successfully

followed

waypoints and

completed the

circuit

2 Test cars respawn

points

 Car should

respawn at

the last

checkpoint

Car respawned

at the last

checkpoint

that it passed.

Multiplayer

tests

Test that networked

cars spawn into the

scene

 Networked

cars spawn

into the seen

and move

Networked

cars spawned

and moved

correctly but

26

based on

player inputs

respawn and

ghosting

weren’t

working

27

7 Project Management
7.1 Introduction
This chapter describes how the project was managed and how well the student kept within

the project guiderails. It shows the phases of the project, going from the project idea

through the requirements gathering, the specification for the project, the design,

implementation and testing phases for the project. It also discusses Trello, GitHub and

project member journal as tools which assist in project management.

7.2 Project Phases
7.2.1 Proposal

The initial proposal outlined the goal of building a stylized, low-poly multiplayer racing game

using Unity. The idea was inspired by arcade racers and games with accessible design and

fun gameplay. The scope was realistic for a solo project and focused on core gameplay

features, basic AI, and local multiplayer support, with the potential for future online

functionality.

7.2.2 Requirements

Requirements were gathered through research into existing racing games and their

mechanics. Functional and non-functional requirements were defined based on features like

car control, multiplayer functionality, and visual consistency. Tools like personas and use

cases were used to guide feature priorities and usability expectations. Requirements also

included performance targets, accessibility, and responsive UI.

7.2.3 Design

The design phase focused on planning the technical architecture and visual identity of the

game. A modular system using Unity’s prefabs and component-based structure was chosen

for flexibility. Custom 3D assets were made in Blender, and the UI was prototyped using

28

Figma and Affinity Designer. This stage also covered level design, player HUD elements, and

the waypoint system for AI.

7.2.4 Implementation

The game was implemented incrementally using SCRUM methodology. Features were

developed in sprints, starting with basic car physics and movement, followed by AI, race

logic, and multiplayer. Key systems like the Drive script, Player Controller, AI Controller, and

UI components were built and integrated. Each sprint helped refine and build on previous

work, ensuring a consistent development pace.

7.2.5 Testing

Testing took place throughout development, focusing on functional testing of car

mechanics, AI behaviour, and user interface interactions. Each feature was tested after

implementation to catch bugs early and ensure everything worked as expected. Multiplayer

was tested in local network conditions to evaluate synchronization and lag. Informal user

testing also provided valuable feedback on usability.

7.3 SCRUM Methodology
The sprint system allowed me to focus individual parts of the development process. Instead

of worrying about the bigger picture. Each sprint had a clear goal, whether it was building

basic car movement or refining AI behaviours, I could break it down into smaller, more

manageable tasks. This process helped me catch bugs early and adjust priorities moving

forward rather than doing everything all at once. Using this approach meant I could also

prototype, and test features quickly and made it easier to adapt when unexpected issues

came up.

7.4 Reflection
7.4.1 Your views on the project

In my opinion, the project went well. The game performs well, and no massive bugs have

been found. If I were to start from the beginning again, I would have more time making

29

some features integrate better with each other. For example, I created a shader graph in

Unity so that the game would be cel-shaded but when implemented, I found that it wouldn’t

work with the ghosting script and didn’t appear as intended on certain parts of the car

models I had created. I also tried to implement multiplayer using the Photon Engine but had

issues that I couldn’t fix before the deadline. Nonetheless, it gave me a fundamental

understanding of how multiplayer works in games. The AI aspect of the game was very

insightful and interesting, however. Between the research I did on it and the actual

implementation of AI into my own game, it taught me the impact that effective game design

can have on the players experience.

7.4.2 Completing a large software development project

This project taught me how important proper planning is when designing and developing

large software projects. I learned to adapt when features weren’t working as expected and

how to stay focused on one goal, prioritizing core functionality over less essential features. I

also gained experience with prototyping and testing my work based on feedback. Overall,

this experience has helped me understand the full lifecycle of a major game project.

7.4.3 Working with a supervisor

Working with a supervisor was a very positive experience. I was given space to experiment

with my ideas while receiving helpful feedback and direction on what I should be focused on

next. Having an outside perspective on what I was building helped me stay on track and

evaluate my progress realistically.

7.4.4 Technical skills

Throughout the project I improved my skills in both Unity and C#. I now have a better

understanding of Unity’s component-based system and of how to work with prefabs, scenes

and physics systems. Even features that I failed to implement such as the shader graph and

multiplayer have strengthened the skills I needed to create this game by teaching me how

to use the Unity’s shader graph and Photon’s engine for multiplayer. I also learned how to

use Blender, which I only had a very basic understanding of before undertaking the project. I

can now confidently design and create a 3D model that is optimized for use in games and

30

can correctly export it to Unity. I particularly liked using Blender because it allowed me to

explore a more creative side of my personality.

7.4.5 Further competencies and skills

In addition to technical skills, I also developed a variety of soft skills. Time management and

task prioritisation were essential in completing this project. Communicating my progress

through documentation and supervisor meetings were also a valuable skill. These skills will

definitely help me in any future workplace environments.

7.5 Conclusion
The aim of this project was to create a low-poly racing game with multiplayer capabilities

that balanced semi-realistic physics with fun gameplay. By focusing on core features like car

control, AI opponents and clean UI, I was able to create an enjoyable gaming experience.

Although I wasn’t able to achieve all the goals of the initial proposal, the experience I gained

through the process has been invaluable. Unity, C# and Blender were key technologies that

supported development and allowed for efficient repetition of design and implementation

phases.

Research into artificial intelligence and similar racing games played an important role in

shaping the behaviours of the AI drivers, with techniques like waypoints and vector

calculations helping control the AI. The project was managed using SCRUM methodology,

which helped break the work up into more manageable sprints and kept development on

track.

Overall, the project has given me valuable hands-on experience in game development and

large-scale project planning, from design to implementation. It has also helped build both

technical and soft skills that would be beneficial in a professional setting. Future

improvements could include expanding the game with more tracks, enhancing the AI system

and adding multiplayer functionality.

31

8 Conclusion
This project’s main goal was to design and develop a stylized, low-poly racing game with

both singleplayer and multiplayer functionality using Unity. The game aimed to strike a

balance between realism and arcade style gameplay, while remaining accessible and

lightweight enough to run on lower-end systems. The core features included responsive car

physics, AI opponents, modular UI elements, and a flexible structure to support local

multiplayer.

The technologies chosen played a crucial role in bringing the game to life. Unity provided a

powerful game engine with support for 3D physics and asset management, while Blender

enabled the creation of custom low-poly assets. Figma was used to design clean, intuitive UI

elements. C# is the language used by Unity so gaining an understanding of it was

fundamental in creating the game.

The project design was driven by research into modern racing games and artificial

intelligence in games. Techniques such as waypoint-based AI and conditional

braking/acceleration were implemented to simulate challenging yet fair AI opponents. The

design process also included careful planning of user interface, scene flow, car selection

mechanics, and race logic, all of which were structured using Unity’s prefab and component-

based model.

Implementation was guided by the SCRUM methodology, allowing for structured,

incremental development through a series of focused sprints. Each sprint added meaningful

progress, from core driving mechanics to AI systems, race logic, HUD design, and multiplayer

setup. Testing was performed continuously to ensure functional correctness, smooth AI

navigation, and overall gameplay reliability. From a project management perspective,

dividing the workload into phases helped keep development organized and manageable.

Overall, this project gave me a deeper understanding of the game development lifecycle and

taught me valuable skills that I can use in the workplace. Skills like Unity and Blender as well

as planning and testing will be essential if I want to continue in the game development

industry. Future improvements to this project could include refining the AI system further,

polishing the visuals and UI and most importantly, fully implementing online multiplayer

mechanics using frameworks like Photon.

32

33

References

1. Beirne, D. (2007). Artificial Intelligence for Games Racing Game AI An

Investigation into AI Techniques for Motorsport Simulation Games

myGameDemos. com.

htp://mygamedemos.com/Abertay/David%20Beirne%20CS%201130A%20Art

ificial%20Intelligence%20for%20Games%20-%20Racing%20Game%20AI.pdf

2. Blender 4.0 Reference Manual — Blender Manual. (2024). Blender.org.

https://docs.blender.org/manual/en/4.0/

3. Bo�no, A., Picardi, D., & Strada. (2020). POLITECNICO DI TORINO A

comparison of Different Machine Learning Techniques to Develop the AI of a

Virtual Racing Game Supervisor Candidate.

htps://webthesis.biblio.polito.it/secure/18168/1/tesi.pdf

4. Build A Mul�player Kart Racing Game - Unity 6 Compa�ble. (2025). Udemy.

htps://www.udemy.com/course/kart-racing/?couponCode=ST7MT290425G1

5. Cechanowicz, J., Gutwin, C., Bateman, S., Mandryk, R. L., & Stavness, I. (2014).

Improving player balancing in racing games. Annual Symposium on Computer-

Human Interaction in Play. htps://doi.org/10.1145/2658537.2658701

6. Chan, M. T., Chan, C. W., & Gelowitz, C. (2015). Development of a Car Racing

Simulator Game Using Ar�ficial Intelligence Techniques. International Journal

of Computer Games Technology, 2015, 1–6.

htps://doi.org/10.1155/2015/839721

7. Funselektor Labs. (2020). Art of Rally [Video game]. Funselektor Labs Inc.

8. Gil-Aciron, L. A. (2022). The gamer psychology: a psychological perspec�ve on

game design and gamifica�on. Interactive Learning Environments, 1–25.

htps://doi.org/10.1080/10494820.2022.2082489

9. Jaffe, A., Miller, A., Andersen, E., Liu, Y.-E., Karlin, A., & Popovic, Z. (2012).

Evalua�ng Compe��ve Game Balance with Restricted Play. Proceedings of the

AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment, 8(1). htps://ojs.aaai.org/index.php/AIIDE/ar�cle/view/12513

http://mygamedemos.com/Abertay/David%20Beirne%20CS%201130A%20Artificial%20Intelligence%20for%20Games%20-%20Racing%20Game%20AI.pdf
http://mygamedemos.com/Abertay/David%20Beirne%20CS%201130A%20Artificial%20Intelligence%20for%20Games%20-%20Racing%20Game%20AI.pdf
https://docs.blender.org/manual/en/4.0/
https://webthesis.biblio.polito.it/secure/18168/1/tesi.pdf
https://www.udemy.com/course/kart-racing/?couponCode=ST7MT290425G1
https://doi.org/10.1145/2658537.2658701
https://doi.org/10.1155/2015/839721
https://doi.org/10.1080/10494820.2022.2082489
https://ojs.aaai.org/index.php/AIIDE/article/view/12513

34

10. JimenezBloggerFebruary 03, E., & 2009. (2009, February 3). The Pure

Advantage: Advanced Racing Game AI. Game Developer.

htps://www.gamedeveloper.com/design/the-pure-advantage-advanced-

racing-game-ai

11. Playground Games. (2021). Forza Horizon 5 [Video game]. Xbox Game

Studios.

12. Polyphony Digital. (2022). Gran Turismo 7 [Video game]. Sony Interactive

Entertainment.

13. Stryker, C., & Kavlakoglu, E. (2024, August 16). What is Artificial Intelligence

(AI)? IBM. htps://www.ibm.com/topics/ar�ficial-intelligence

14. Tomlinson, S., & Melder, N. (n.d.). An Architecture Overview for AI in Racing

Games.

htps://www.gameaipro.com/GameAIPro/GameAIPro_Chapter38_An_Archite

cture_Overview_for_AI_in_Racing_Games.pdf

15. Unity Technologies. (2023). Unity - Manual: Unity 6 User Manual.

Unity3d.com.

htps://docs.unity3d.com/6000.0/Documenta�on/Manual/UnityManual.html

https://www.gamedeveloper.com/design/the-pure-advantage-advanced-racing-game-ai
https://www.gamedeveloper.com/design/the-pure-advantage-advanced-racing-game-ai
https://www.ibm.com/topics/artificial-intelligence
https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter38_An_Architecture_Overview_for_AI_in_Racing_Games.pdf
https://www.gameaipro.com/GameAIPro/GameAIPro_Chapter38_An_Architecture_Overview_for_AI_in_Racing_Games.pdf
https://docs.unity3d.com/6000.0/Documentation/Manual/UnityManual.html

	1 Introduction
	2 Research
	2.1 Introduction
	2.2 Waypoints and Vector Calculations
	2.3 Machine Learning
	2.4 Artificial Neural Networks

	3 Requirements
	3.1 Introduction
	3.2 Requirements gathering
	3.2.1 Forza Horizon
	3.2.2 Gran Turismo
	3.2.3 Art of Rally

	3.3 Requirements modelling
	3.3.1 Functional requirements
	3.3.2 Non-functional requirements

	3.4 Feasibility
	3.5 Conclusion

	4 Design
	4.1 Introduction
	4.2 Program Design
	4.2.1 Technologies
	4.2.2 Structure of Unity
	4.2.3 Application architecture

	4.3 User interface design
	4.3.1 Level Design

	4.4 Conclusion

	5 Implementation
	5.1 Introduction
	5.2 Scrum Methodology
	5.3 Development environment
	5.4 Sprint 1
	5.4.1 Goal
	5.4.2 Item 1
	5.4.3 Item 2
	5.4.4 Item 3

	5.5 Sprint 2
	5.5.1 Goal
	5.5.2 Item 1
	5.5.3 Item 2

	5.6 Sprint 3
	5.6.1 Goal
	5.6.2 Item 1
	5.6.3 Item 2

	5.7 Sprint 4
	5.7.1 Goal
	5.7.2 Item 1

	5.8 Sprint 5
	5.8.1 Goal
	5.8.2 Item 1
	5.8.3 Item 2

	5.9 Sprint 6
	5.9.1 Goal
	5.9.2 Item 1
	5.9.3 Item 2

	5.10 Sprint 7
	5.10.1 Goal
	5.10.2 Item 1

	5.11 Sprint 8
	5.11.1 Goal
	5.11.2 Item 1
	5.11.3 Item 2

	5.12 Sprint 9
	5.12.1 Goal
	5.12.2 Item 1

	5.13 Conclusion

	6 Testing
	6.1 Introduction
	6.2 Functional Testing
	6.2.1 Navigation
	6.2.2 Car Tests

	7 Project Management
	7.1 Introduction
	7.2 Project Phases
	7.2.1 Proposal
	7.2.2 Requirements
	7.2.3 Design
	7.2.4 Implementation
	7.2.5 Testing

	7.3 SCRUM Methodology
	7.4 Reflection
	7.4.1 Your views on the project
	7.4.2 Completing a large software development project
	7.4.3 Working with a supervisor
	7.4.4 Technical skills
	7.4.5 Further competencies and skills

	7.5 Conclusion

	8 Conclusion
	References

