

Shrine Seeker

Ben Sharkey

N00212320

Supervisor:​ ​ Naoise Collins

Second Reader: ​ Catherine Noonan

Year 4 2024/25

DL836 BSc (Hons) in Creative Computing

Abstract

The aim of this project was to create a 16-bit adventure game with a heavy focus on evoking

a sense of nostalgia in the player for the classic titles of the 1990s. The aim with the game

was to create an experience that represents this era through the use of pixelated graphics,

chiptune sounds and simple, straightforward gameplay. The rationale for this project in

particular stems from the endurance of these retro titles and aims to provide an insight as to

why, after all these years, they are still some of the most enjoyed video games in the world.

The purpose of the game is to allow the players to explore the feeling of nostalgia as they

navigate a temple, armed with nothing but a sword. This simple yet intuitive concept places

emphasis on the core gameplay loop present in those retro titles and reinforces the nostalgic

experience with use of sensory immersion.

The development process can be broken down into a few key steps. First, pixel sprites were

gathered that accurately replicated the visual style of 16-bit games. Second, chiptune sounds

were gathered to complement the visuals. Third, the core game mechanics and logic,

including combat, player movement and enemy AI were implemented. Finally, these three

key components were tied together in order to create the project about to be presented.

Acknowledgements

First and foremost, I would like to thank my supervisor Naoise Collins for the invaluable

guidance and assistance throughout the development project. Furthermore, I would like to

thank all of my friends for their support. Last, but certainly not least, I would like to give

special thanks to my family, as without their unwavering support none of this would have

been possible.

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,
which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk
where they can be accessed by other. Be aware that removable media, used to transfer work, may
also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to
the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.
Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another
who then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own
work.

Student : BEN SHARKEY

Signed
​

Failure to complete and submit this form may lead to an investigation into your work.

Table of Contents
1 Introduction​ 1
2 Research​ 3

Chapter 1: Introduction​ 4
Chapter 2: The 8-bit and 16-bit Eras​ 5
Chapter 3: Impact on Modern Gaming​ 7
Chapter 4: Case Studies​ 8

3 Requirements​ 11
3.1 Introduction​ 11
3.2 Requirements gathering​ 12

3.2.1 Similar applications​ 12
3.2.2 Interviews​ 13

3.3 Requirements modelling​ 17
3.3.1 Personas​ 17
3.3.2 Functional requirements​ 18
3.3.3 Non-functional requirements​ 18
3.3.4 Use Case Diagrams​ 19

3.4 Feasibility​ 19
3.5 Conclusion​ 20

4 Design​ 22
4.1 Introduction​ 22
4.2 Program Design​ 22

4.2.1 Gameplay Loop​ 23
4.2.2 Object Management​ 23
4.2.3 Scene Management​ 23
4.2.4 Input System​ 23
4.2.5 Physics & Collision Detection​ 24
4.2.6 Game State Management​ 24
4.2.7 Enemy AI​ 24
4.2.8 Level Design Integration​ 24

4.3 User interface design​ 24
4.3.1 Visual Presentation​ 25
4.3.2 Heads-Up Display​ 25
4.3.3 Input Feedback​ 25
4.3.4 Menus​ 25
4.3.5 World Interaction​ 26
4.3.6 Storyboard​ 26

4.3.7 Level Design​ 26
4.3.8 Environment​ 26

4.4 Conclusion​ 28
5 Implementation​ 29

5.1 Introduction​ 29
5.2 Scrum Methodology​ 30
5.3 Development environment​ 31
5.4 Sprint 1 - Research & Concept​ 31

5.4.1 Goal​ 31
5.4.2 Item 1 - Research​ 31
5.4.3 Item 2 - Concept​ 32

5.5 Sprint 2 - Feasibility & Requirements​ 32
5.5.1 Goal​ 32
5.5.2 Item 1 - Core Engine Proficiency​ 32
5.5.3 Item 2 - Asset Creation​ 33
5.5.4 Item 3 - Core Mechanics​ 33
5.5.5 Item 4 - Level Design and Integration​ 35
5.5.6 Item 5 - Performance Optimization​ 36
5.5.7 Item 6 - Time Commitment​ 37

5.6 Sprint 3 - Key Mechanic​ 37
5.6.1 Goal​ 37
5.6.2 Item 6 - Key Mechanic Brainstorming​ 37

5.7 Sprint 4 - Prototype​ 39
5.7.1 Goal​ 39
5.7.2 Item 1 - Player Movement​ 39
Item 2 - Player Attack​ 41
5.7.3 Item 3 - Damage and Knockback​ 42

5.8 Sprint 5 - Level Design​ 43
5.8.1 Goal​ 43
5.8.2 Item 1 - Visual Design​ 43
5.8.3 Item 2 - Map Design​ 44

5.9 Sprint 6 - Mechanic Design​ 45
5.9.1 Goal​ 45
5.9.2 Item 1 - Chest​ 45
5.9.3 Item 2 - Door​ 47
5.9.4 Item 3 - Enemy Room​ 49

5.10 Sprint 7 - Audio Design​ 53
5.10.1 Goal​ 53
5.10.2 Item 1 - Audio Design​ 53

5.11 Sprint 8 - Finalization​ 54

5.12 Conclusion​ 54
6 Testing​ 55

6.1 Introduction​ 55
6.2 Functional Testing​ 55

6.2.1 Combat Mechanics​ 55
6.2.2 World Interaction​ 56
6.2.3 Game Progression/State​ 57
6.2.4 Discussion of Functional Testing Results​ 58

6.3 User Testing​ 59
6.3.1 Private Testing​ 59
6.3.2 Public Testing​ 59

6.4 Conclusion​ 60
7 Project Management​ 62

7.1 Introduction​ 62
7.2 Project Phases​ 62

7.2.1 Proposal​ 62
7.2.2 Requirements​ 63
7.2.3 Design​ 64
7.2.4 Implementation​ 64
7.2.5 Testing​ 65

7.3 SCRUM Methodology​ 65
7.4 Project Management Tools​ 66

7.4.1 Trello​ 66
7.4.2 GitHub​ 66

7.5 Reflection​ 67
7.5.1 Your views on the project​ 67
7.5.2 Completing a large software development project​ 68
7.5.3 Working with a supervisor​ 68
7.5.4 Technical skills​ 68
7.5.5 Further competencies and skills​ 68

7.6 Conclusion​ 69
8 Conclusion​ 70
References​ 71

1​ Introduction

The aim of this project was to create a 16-bit style adventure game, designed around the

feeling of nostalgia evoked by the classic titles of the 1990s. The application area for this

particular project lies within independent game development with the target audience being

players with a deep appreciation of both the aesthetic and mechanics offered by retro titles.

By replicating these properties, this project aims to provide a connection to the past of sorts,

allowing players to revisit or even discover anew the charm of 16-bit games.

The development process for this project involved the use of a wide range of software to

achieve the desired finish. Unity served as the core game engine, providing a solid

foundation for the physics, rendering and overall game logic required. Visual Studio Code

was used for creating the C# scripts. Piskel was used for editing sprites and making sure they

looked the best they possibly could in order to accurately reflect the retro look required for

the project scope. Finally, an online library called Epidemic Sounds was used to source the

chiptune music and sound effects that were used to enhance the auditory experience

offered by the game.

The project was managed through Trello, which provided a straightforward and easy to read

solution for managing the tasks and deadlines through the development process. Github

was used for version control, ensuring the code was kept clean and accessible as well as

making bugs easier to track down and fix. These tools proved to be essential in the making

the project as they assisted in maintaining a clean and efficient workflow throughout.

The requirements of the game were focused around delivering an experience that reflected

those classic 16-bit titles. This included engaging combat, a visually appealing retro art style

and intuitive controls for the player. The design phase included creating both the layout for

the temple and the sprites for the characters while also maintaining a consistent art style

and aesthetic. The implementation phase included the implementation of both the audio

and art assets as well as the creation and optimization of core game logic.

1

Testing was one of the most integral parts of the development process. In order to more

accurately gather user feedback and verify how playable the game was, the project was

showcased at Comic Con in Dublin on March 15th and 16th 2025. This presented an

opportunity to gather data, observe how players interacted with the game and identify bugs

present in the build. In the end, hundreds of people were able to play the game and provide

instant, accurate feedback that proved to be invaluable in the run to the final product. The

insights and experience gained from this testing environment contributed significantly to the

overall polish and playability of the final build, helping validate the aim and design choices

behind the project.

2

2​ Research

The research phase of this project was heavily based on the research paper we submitted as

part of the Research & Analytics module in Semester 1. The paper in question is based

around the impact of both 8-Bit and 16-Bit games on the modern title. The paper is as

follows.

Table of Contents

Chapter 1: Introduction​ 3

1.1 Background:​ 3

1.2 Research Question:​ 3

1.3 Research Objectives:​ 3

1.4 Research Methodology:​ 4

1.5 Report Structure:​ 4

Chapter 2: The 8-bit and 16-bit Eras​ 4

2.1 Technological Advancements:​ 4

2.2 Pioneering Games and Consoles:​ 5

2.3 Game Design and Mechanics:​ 5

Chapter 3: Impact on Modern Gaming​ 6

3.1 Game Design and Mechanics:​ 6

3.2 Storytelling and Narrative:​ 6

3.3 Player Experience and Nostalgia:​ 7

Chapter 4: Case Studies​ 7

4.1 Games:​ 7

4.2 Analysis:​ 7

4.3 Discussion:​ 8

Chapter 5: Community​ 8

5.1 Development of Gaming Communities:​ 8

5.2 Speedrunning:​ 9

5.3 Retro Gaming Competitions:​ 9

5.4 Role of Gaming Conventions:​ 9

Chapter 6: Conclusion​ 10

6.1 Summary of Findings:​ 10

6.2 Contribution to Knowledge:​ 10

6.3 Limitations and Future Research:​ 10

6.4 Final Thoughts:​ 10

References​ 11

3

https://docs.google.com/document/d/1tqgm7D-fuNB15JB-9D3CpQiNduZUjIqvafNjFoI3lMM/edit?tab=t.0#heading=h.8nhpb32ityjo

Chapter 1: Introduction

1.1 Background:

Both the 8-bit and 16-bit eras are some of the most important and vital in the history

of video games. Often referred to as the ‘Golden Age of Gaming’, these eras marked

a pivotal shift in the evolution of video games. Spanning the late 1970s to the

mid-late 1990s, these eras were characterised by their significant leaps in technology

and innovation in the video game space. They also hold the origin stories of many of

the industry’s biggest franchises that continue to influence the industry today.

The Nintendo Entertainment System and the Super Nintendo Entertainment System,

most commonly known as the NES and SNES respectively, were responsible for

bringing gaming to a worldwide audience.

1.2 Research Question:

In what way have the 8-bit and 16-bit eras of video games affected the development of

modern gaming, specifically in terms of mechanics, storytelling and especially player

experience?

1.3 Research Objectives:

In relation to the research questions, the following concepts will be explored;

1.​ Analysis of the technological advancements that both defined the 8-bit and 16-bit

eras and furthered their impact on game design.

2.​ A study of the core mechanics and game design techniques present during these eras

such as role-playing, platforming and puzzle-solving.

3.​ A breakdown of the influence that 8-bit and 16-bit games have had on both modern

game mechanics and design, especially the use of pixel art and retro aesthetics.

4

4.​ An exploration of the evolution of storytelling in video games, from the limited yet

creative methods used in early games to the more in depth and gripping narratives

associated with modern titles.

5.​ An assessment of how 8-bit and 16-bit titles have impacted player experience and a

brief look into the concept of nostalgia.

1.4 Research Methodology:

This research will be conducted with a mixed-methods approach in mind, aiming to combine

both quantitative and qualitative methods to create a deeper understanding of the topic.

These methods include literature review, case study analysis and a survey.

1.5 Report Structure:

The following paper will be broken down into a handful of key chapters. Chapter 2 will

contain an overview of the 8-bit and 16-bit eras including advancements in technology, core

game design principles and the most influential games of these eras. Chapter 3 will further

explore the impact of these eras of gaming as we know it today with a focus on storytelling,

game mechanics and of course the player experience. Chapter 4 will cover a handful of case

studies regarding specific games that demonstrate the influence of 8-bit and 16-bit games of

design. Finally, Chapter 5 will summarise all of the previous findings and provide an overall

conclusion to the research report.

Chapter 2: The 8-bit and 16-bit Eras

2.1 Technological Advancements:

The 8-bit and 16-bit eras are most known for the leaps they created in the technology used

to create games. The technological breakthroughs, such as the creation of more powerful

processors and rapidly improving graphics chips, allowed for the creation of more in depth

and immersive games.

The 8-bit era was one of the earlier forms of gaming, meaning it had very limited features

even compared to the 16-bit era. During this era games had a very limited colour palette

that often resulted in very simple pixelated graphics. As well as this the sound capabilities

were limited to very simple sound effects and was home to a unique genre of music known

as chiptune music, [1] “a type of electronic music that utilises the sound chips found in

vintage arcade machines, computers, and video game consoles popular in the 1980s.” The

5

games in this era were also built on straightforward mechanics such as running, jumping and

attacking.

The 16-bit era had a lot more going for it than its counterpart, boasting enhanced graphics

and sound. The increased processing power present in this era allowed for the games to

have more detailed sprites, wider colour palettes and more smooth animation. Advanced

sound chips also made higher quality sound effects and music possible in these games,

creating a more immersive auditory experience for the player. Game developers also had

more freedom during this era, experimenting with more complex gameplay mechanics such

as challenging platforming, puzzle solving and role-playing elements.

2.2 Pioneering Games and Consoles:

These two eras are home to some of the most widely recognized gaming systems in history.

The 8-bit era had both the Nintendo Entertainment System and the Sega Master System

while the 16-bit era was home to the Super Nintendo Entertainment System and the Sega

Genesis/Mega Drive.

Throughout these two eras the aforementioned consoles became home to a lot of franchises

that would go on to shape modern gaming as we know it. Among these were titles such as

Super Mario Bros, Legend of Zelda, Sonic the Hedgehog, Final Fantasy, Streets of Rage and

Mortal Kombat.

2.3 Game Design and Mechanics:

The 8-bit 16-bit eras laid the foundation for many of the core game design principles and

mechanics that are still used in games today.

1.​ Platforming: Games such as Super Mario Bros. and Sonic the Hedgehog popularised

the platforming genre to a wider audience by emphasising the use of timing, precise

jumps and level design.

2.​ Role-Playing Games: Also known as RPGs, titles such as Final Fantasy and Dragon

Quest introduced more complex storylines, turn-based combat systems and

character development that had not been seen in many games before this.

3.​ Puzzle-Solving: Games such as Metroid and The Legend of Zelda presented an

environment to players in which thinking outside the box and solving puzzles was key

to progressing through the game.

6

Chapter 3: Impact on Modern Gaming

3.1 Game Design and Mechanics:

The design principles used during the 8-bit and 16-bit eras are still seen in the games that we

have today.

As mentioned previously, platformers such as Super Mario Bros. and Sonic the Hedgehog

introduced running and precise jumping. But these games also introduced the obstacle

avoidance mechanics that have shaped the way countless modern platforming games work.

Early RPGs then established the foundations of character progression, skill trees and the

turn-based combat systems which continue to be the centre of modern RPGs today. Finally,

games such as The Legend of Zelda and Metroid popularised the implementation of

environmental puzzles with item-based solutions as well as exploration mechanics that

continue to form the core of most modern day adventure games.

Additionally, the pixelated art style and retro aesthetic of these early games has experienced

a boom in popularity as of late. Modern day indie developers often pay homage to these

classic games by using pixel art and chiptune music to create a nostalgic experience.

3.2 Storytelling and Narrative:

Early games often relied on very limited storytelling, however they introduced narrative

elements that have evolved over time into the complex narratives we see today in modern

titles. These developments can be split up into three key categories;

1.​ Character Development: Iconic characters such as Mario, Link and Sonic established

their backstories and a strong sense of identity in their earlier appearances which

made room for more nuanced character development in their more recent games.

2.​ Worldbuilding: Games such as The Legend of Zelda and Final Fantasy created these

immersive worlds that were packed full of lore and history. This would go on to

inspire many of the open-world games we see today.

3.​ Nonlinear Storytelling: Although early games typically followed a more linear

narrative, modern games began to experiment with broader nonlinear narratives

with player choice. These decisions were inspired by those early linear titles such as

The Legend of Zelda: A Link to the Past.

7

3.3 Player Experience and Nostalgia:

The 8-bit and 16-bit eras had a big influence on both player expectations and preferences,

influencing the modern games we know today as a result. These influences can be split up

into 3 primary categories;

1.​ Nostalgia: Most gamers today grew up playing the classic 8-bit and 16-bit games of

yesterday and developers leverage this sense of nostalgia in order to appeal to this

demographic of players.

2.​ Player Agency: Early games gave players freedom and the ability to explore, which

inspired modern games to provide players with more of the same.

3.​ Immersive Experiences: Although early games were limited by the technology of the

time, they prioritized immersive experiences which led to the development of more

realistic game worlds full of detail and lore.

Chapter 4: Case Studies

4.1 Games:

For this section of the paper, we will examine two modern games that really show the influence that

8-bit and 16-bit games have had on modern titles:

Hollow Knight: A Metroidvania-style game that is most known for its focus on exploration,

challenging combat, and an atmospheric world full of character.

Undertale: A role-playing game that features a unique one-of-a-kind narrative, player choice, and an

innovative battle system.

4.2 Analysis:

Hollow Knight:

Game Mechanics: Hollow Knight focuses on precise platforming, independent exploration,

and a combat system reminiscent of classic Metroidvania games.

Visual Style: The game's pixel-based art style and limited color palette hold the same

aesthetics as the 8-bit and 16-bit era games we all know and love which gives the game a

nostalgic atmosphere.

8

Sound Design: The game features a chiptune soundtrack and the sound effects present make

the game feel like a retro title, enhancing the overall gaming experience for players who are

chasing a retro experience.

Narrative Structure: While the narrative is more subtle and open ended than other games of

its type, it encourages the player to explore independently and make discoveries by

themselves without guidance, similar to classic adventure games.

Undertale:

Game Mechanics: Undertale's innovative battle system gives players the choice to either kill

or spare their enemies which expands on the traditional concept of an RPG game.

Visual Style: The game's pixel-based art style and simple character designs pay homage to

the classic RPGs present on the likes of the SNES.

Sound Design: The game's chiptune soundtrack and retro sound effects create a nostalgic

and magical atmosphere, providing a very relaxing experience for players making their way

through the game.

Narrative Structure: The nonlinear narrative offers a unique gaming experience that is

reminiscent of the classic adventure games we all know and love. This is further expanded

with it’s aforementioned kill/spare system, forcing the player to form their own moral

compass in order to progress through the story and reach one of the multiple endings that

the game offers.

4.3 Discussion:

Both Hollow Knight and Undertale are perfect examples of how modern game developers

draw inspiration from both the 8-bit and 16-bit eras in order to build innovative and

engaging experiences. By utilizing classic game mechanics, art styles and sound design, these

games appeal to both older gamers seeking a sense of nostalgia and to the new generation

of players only just beginning their journey into gaming.

These games also showcase the enduring impact and appeal of pixel art and retro titles. By

embracing this era of gaming history developers can create visually distinct and memorable

games that stand out in the diluted modern market we find ourselves with today.

Writing about the influence of 8-bit and 16-bit games on the modern market directly

effected the development of this project and provided many invaluable insights. By

examining the mechanics, player experiences and style of storytelling present in these

games, the paper provided many guidelines for replicating the appeal of those classic titles.

9

In particular, the analysis of core gameplay principles and both pixel art and chiptune audio

provided a new perspective and inspiration for the design and general aesthetic of the game.

As well as this, exploring the concept of nostalgia and the overall importance of player

agency shaped the game’s emphasis on both exploration and immersion. Games such as

Hollow K night and Undertale provided invaluable information on retro aesthetics when

combined with modern gameplay which reinforced the project’s goal of creating a nostalgic

yet unique experience for the player. In the end, this research served as an extremely

valuable resource that ensured the game effectively captured the essence of games from the

16-bit era while maintaining a modern feel, appealing to all players both modern and retro.

10

3​ Requirements

3.1​ Introduction

The purpose of the requirements phase is to allow for developers to work out what the application

should be able to do. It is important to understand what the users would like the application to do

rather than the developer deciding what is required.

You can write a bit about your project area. Each paragraph has a blank line between it and the

previous paragraph

The requirements phase for this project was focused around realizing the core

functionalities and user expectations behind a 16-bit retro game. This stage was paramount

in ensuring the final build aligned with the project’s aim of evoking a sense of nostalgia in

users searching for those classic action-adventure games of the 1990s. The project’s

application area called for a very specific set of requirements tailored around replicating

both the core gameplay and aesthetic of that era.

Understanding the wants of the user was also invaluable in shaping an authentic 16-Bit

experience. This involved identifying key elements that resonated with long time fans of the

genre while ensuring the game remained accessible for those unfamiliar with the genre as a

whole. The core requirement/goal was to create a game that had a genuine ‘retro’ feel,

achieved through simple, engaging gameplay, charming pixel graphics and upbeat chiptune

audio.

To be more specific, user expectations were centered around intuitive controls, satisfying

mechanics and both a visually immersive and consistent environment. Players wished for a

straightforward experience that allowed them to explore a temple like environment, battle

enemies using a simple sword as their weapon and progress through the game without

needing to comprehend convoluted narratives or mind-bending mechanics.

In order to ensure the requirements were accurately reflecting user preferences, feedback

from players was considered throughout each stage of the development progress. The user

testing performed at Comic Con provided insights into player expectations that proved to be

invaluable in the extended development of the project. This real-world style of testing

helped refine the final game and ensured that it both achieved and provided the intended

nostalgic experience.

11

3.2​ Requirements gathering

3.2.1​ Similar applications

1. The Legend of Zelda: A Link to the Past (SNES)

Description:

●​ A Link to the Past is an action-adventure game that features puzzles, combat and

exploration. Players take control of a character named Link as he travels between the

worlds of light and darkness in order to rescue Princess Zelda and defeat the evil

known as Ganon.

●​ Link to the Past is mostly known for its imaginative level design.

Advantages:

●​ Incredible level design featuring intricate dungeons and an actively changing

environment.

●​ First of its kind item mechanics and puzzles.

●​ Interesting narrative and memorable characters.

●​ Accessible difficulty

Disadvantages:

●​ Some of the puzzles can be obscure and often vague, potentially leading to the

player becoming frustrated.

●​ The narrative has not aged well, although strong for its time it is now quite simple by

modern standards.

2. Castlevania: Symphony of the Night (PlayStation)

Description:

●​ Symphony of the Night is an action role-playing platformer featuring combat

mechanics and exploration. Players control a character by the name of Alucard as he

explores Dracula's castle, gaining abilities and items along the way.

●​ This game is known for its non-linear exploration, giving players more freedom over

how they experience the game.

12

Advantages:

●​ Non-linear exploration with an open, analogous castle.

●​ In depth RPG elements with both consistent character progression and item

collection mechanics.

●​ Beautiful pixel art and an atmospheric soundtrack to compliment it.

●​ An endless amount of replayability.

Disadvantages:

●​ Certain players may find the open ended nature of the castle tedious.

●​ The difficulty can suddenly spike in certain areas of the map, providing an

inconsistent experience and expectation.

3. Super Metroid (SNES)

Description:

●​ Super Metroid for the SNES is an action-adventure platformer featuring both

exploration and combat elements. Players control a character by the name of Samus

Aran as she explores the planet of Zebes.

●​ This game is known for its immersive atmosphere and its open ended non-linear

exploration.

Advantages:

●​ Atmospheric environments and immersive world design.

●​ Simple controls and fluid character movement.

●​ Places emphasis on exploration and independent discovery, enhancing the

experience of the player.

●​ Well designed levels.

Disadvantages:

●​ The game can be cryptic at times, providing limited guidance for progression.

●​ Some players may find the difficulty of the game frustrating.

3.2.2​ Interviews

Conduct interviews with 3 or 4 users to find out what the important features for them for the app

are. There may be various issues that arise in multiple interviews. These can be grouped together

into a number of themes.

13

As part of the research for the project a series of interviews were conducted in order to

gather more information regarding user expectations. The interview format is as follows;

1.​ What would you say are your favourite aspects of 16-bit video games?

2.​ What are some common frustrations would you say you experience when playing

these types of games?

3.​ What features would you say are most important to you when playing a 16-bit

adventure game?

4.​ In your opinion, how important are the visuals and sound design to your overall

enjoyment of retro games?

5.​ What level of difficulty would you say you find the most enjoyable when playing a

video game?

6.​ Any other comments or suggestions?

Based on notes taken during the interviews, here are four of the best interviews. All

interviews were done anonymously.

User 1:

1.​ What would you say are your favorite aspects of 16-bit video games?

"I love exploring and the sense of independence. Finding those hidden areas and secret items

is really satisfying."

2.​ What are some common frustrations would you say you experience when playing

these types of games?

"Sometimes the controls can feel quite clunky, or the puzzles can be too obscure and difficult

to figure out."

3.​ What features would you say are most important to you when playing a 16-bit

adventure game?

"Exploration and combat are the most important to me. I like a nice balance between the

two, makes the game feel more full."

4.​ In your opinion, how important are the visuals and sound design to your overall

enjoyment of retro games?

"The art and sounds are crucial! They set the tone and make the game immersive. Without

them the game would feel a lot different."

5.​ What level of difficulty would you say you find the most enjoyable when playing a

video game?

14

"I think a moderate challenge is the best for me. I don't like it to be too easy or too

frustrating."

6.​ Any other comments or suggestions?

"A map system would be really helpful, especially given that it’s set in a temple. People could

get lost!"

User 2:

1.​ What would you say are your favorite aspects of 16-bit video games?

"For me that nostalgic feeling and the simple gameplay loops are what I enjoy most."

2.​ What are some common frustrations would you say you experience when playing

these types of games?

"Repetitive combat is a big one, or having to backtrack a lot around the map can get boring

quickly."

3.​ What features would you say are most important to you when playing a 16-bit

adventure game?

"Fast paced combat and a good story are essential for me. I like to feel invested in the world

the game is creating."

4.​ In your opinion, how important are the visuals and sound design to your overall

enjoyment of retro games?

"The design of the pixel art and chiptune music are a huge part of the appeal of retro games

as a whole. They need to be done right"

5.​ What level of difficulty would you say you find the most enjoyable when playing a

video game?

"I prefer a game that's challenging, but fair. I find easier games quite boring, I like that

feeling of achievement when you beat a powerful boss!"

6.​ Any other comments or suggestions?

"Make sure the controls are responsive. They’re super important!"

User 3:

1.​ What would you say are your favourite aspects of 16-bit video games?

"I quite enjoy the challenge and satisfaction of overcoming difficult enemies or puzzles."

15

2.​ What are some common frustrations would you say you experience when playing

these types of games?

"The level design can be confusing sometimes and makes it easy to get lost."

3.​ What features would you say are most important to you when playing a 16-bit

adventure game?

"I love exploring the world and trying to learn all of the lore behind it"

4.​ In your opinion, how important are the visuals and sound design to your overall

enjoyment of retro games?

"Well they create the atmosphere of the whole game in my opinion, so I’d say they’re pretty

important!."

5.​ What level of difficulty would you say you find the most enjoyable when playing a

video game?

"I like a game that has a progressing difficulty, starting easy and getting harder."

6.​ Any other comments or suggestions?

"I would love to see a nice variety of both enemies and environments."

User 4:

1.​ What would you say are your favorite aspects of 16-bit video games?

"That sense of adventure is probably my favorite thing about 16-bit games, nothing beats

the old Zelda games!."

2.​ What are some common frustrations would you say you experience when playing

these types of games?

"Sometimes I find the combat is too simple, or that the enemy AI is poor."

3.​ What features would you say are most important to you when playing a 16-bit

adventure game?

"The combat must be fun. If it’s not, then it drags down the whole game."

4.​ In your opinion, how important are the visuals and sound design to your overall

enjoyment of retro games?

"The art and music in a game are extremely important! It's what keeps me coming back to

retro games."

5.​ What level of difficulty would you say you find the most enjoyable when playing a

video game?

"I prefer an easier, more casual gaming experience."

16

6.​ Any other comments or suggestions?

"I would like the game to have a unique feel, and not just be a carbon copy of other games."

3.3​ Requirements modelling

3.3.1​ Personas

Around the theme of the project there are two distinct personas that the game aims to

please: People who are interested in exploring the feeling of nostalgia, and people who are

rediscovering it through games that remind them of their childhoods.

Andre is the first of these two personas. A student that just about missed out on that 90s era

of games who now wishes to explore it and see what he’s been missing.

17

Andrew is the second of the two personas. A veteran artist who grew up playing retro games

from their very conception who wishes to return to them and rediscover that feeling of

nostalgia.

3.3.2​ Functional requirements

1.​ The game should allow players to explore the temple in an engaging way, with some

hidden areas and secrets to discover.

2.​ The combat system should feel responsive and fluid.

3.​ The graphics and soundtrack should be of a good quality to further the atmosphere

of the game.

4.​ The controls for the game should be simple and easy to understand.

5.​ The difficulty curve throughout the game should remain fair, but challenging.

6.​ The level design should be designed to minimize frustration or confusion.

7.​ The game should offer a unique twist, and avoid feeling generic.

8.​ Items that the player discovers should have a clear purpose and be easy to

understand.

3.3.3​ Non-functional requirements

1.​ The game should have an easy to understand interface and feature intuitive controls

in order to minimize the learning curve players experience.

2.​ The game should maintain a consistent frame rate of at least 30 FPS in order to

ensure the gameplay is smooth and responsive.

3.​ The code base itself should be well-organized and documented to allow bug fixes to

be executed swiftly.

18

4.​ The game should be accessible for players at all skill levels.

3.3.4​ Use Case Diagrams

This is a use case diagram depicting the standard experience a player will have when

playing the game.

3.4​ Feasibility

The primary development engine chosen to create this project is Unity, a very popular game

engine known for its easy to use feature set and cross-platform capabilities. The scripting

capabilities and editor software offered by Unity allow for a tighter, streamlined workflow

when developing 2D games. This makes it the perfect engine to create the desired retro

gameplay and general aesthetic needed for this project.

Visual Studio code was utilized for all of the scripting throughout the project due to it’s

lightweight nature and ability to seamlessly integrate itself with the Unity engine. The visual

assets were created using a software by the name of Piskel, a free to use sprite suite

typically used to both create and animate high quality 2D sprites. The audio used throughout

the game was sourced from an online library called Epidemic Sound, a royalty-free music

library. The reasoning behind this choice was to ensure the audio design was of a

professional grade and was without any licensing complications.

Version control for this project was managed through GitHub, which provided a reliable and,

most importantly, secure platform for both storing and tracking the changes being made to

the code at each stage. Project management was done through Trello, which offered a

19

flexible and easy to understand solution for managing deadlines, tracking progress and

prioritizing certain tasks.

In terms of the technical feasibility, all the aforementioned applications present little to no

compatibility issues. Unity’s compatibility with Visual Studio Code is something that has

already long been established within the industry. The files that Piskel outputs are fully

compatible with Unity’s formatting from the get-go which eliminates any potential issues

that could happen with asset integration. Finally, the files present in the Epidemic Sound

library are all ready to use with Unity’s audio system right out of the box, allowing instant

integration without having to compress files or sacrifice quality.

With that being said, potential challenges do exist in the form of optimization. While Unity is

fully capable of producing competent 2D titles, careful optimization of game logic and visual

assets is needed in order to maintain a consistent framerate, especially on lower end

systems. The number of on-screen sprites has to be monitored as well as the number of

calculations that are being performed at each frame.

Another potential issue lies within the implementation of enemy AI and collision detection.

While Unity does provide tools to make this easier for the developer, extensive testing and

scripting may be required in order to achieve the ideal level of complexity and

responsiveness. Making sure that the game feels challenging yet remains fair to the player is

a delicate balancing act and a key part of delivering an enjoyable experience.

The use of Epidemic Sound for all of the audio assets does mitigate licensing concerns, but it

can become limiting when trying to keep all sounds within the same aesthetic. The audio

design must enhance the experience for the player, not take away from it.

Overall, the technologies chosen to develop the game provide a solid foundation in the

creation of a 16-Bit title. With the right planning, optimization and testing, these challenges

can be effectively addressed and make for a high quality and, better yet, an enjoyable

gaming experience for the player.

3.5​ Conclusion

Following this chapter, we’ve established the requirements and technological framework

needed for the development of the project. Through user interviews and detailed analysis, a

20

clear set of functional requirements was defined that prioritizes core gameplay elements

such as engaging combat, open ended exploration and an immersive auditory experience.

The game must offer a sense of achievement when exploring, deliver enjoyable combat and

provide both a visually and aurally satisfying atmosphere for the player. Easy to understand

controls, a balanced difficulty curve and a clear level design are all essential pieces of the

project. They serve as the foundation for the design and implementation of the game and

ensures that the final build aligns with both the expectations of the user and scope of the

project.

A handful of non-functional requirements were also established in order to ensure the

quality of the project. A user-friendly interface, well-organized code and a consistent frame

rate are all things that would assist in heightening the level of quality the final build

possesses. As well as this, accessibility was touched on, bringing the idea that the game

must be playable by players of all skill levels. These non-functional requirements are crucial

in ensuring the success of the game as they all directly impact and alter the experience the

player has when playing.

The analysis of the project’s feasibility demonstrated how viable the project was from a

technical standpoint, outlining the applications chosen as well as the potential challenges

they may produce. Unity, Visual Studio Code, Piskel and Epidemic Sound were all selected

specifically for their suitability, efficiency and, most importantly, their compatibility with the

concept. Although potential issues such as optimization and complex enemy AI

implementation were identified, they were deemed to be manageable as long as the

development process was met with careful planning and in depth testing. GitHub and Trello

were chosen for version control and project management respectively in order to further

support the feasibility of the project, ensuring that the development process was structured

correctly and managed closely.

In short, this chapter has laid the foundation for the development of the game, focusing on

user-centric functional requirements, non-functional considerations and a sound feasibility

assessment. The requirements and planned technologies established provide a great

foundation for both the design and implementation phases and ensure the creation of a

high quality and nostalgic 16-bit title.

21

4​ Design

4.1​ Introduction

This chapter will detail the design of the project, building upon both the functional and

non-functional requirements specified in Chapter 3. The primary purpose of the design

phase is to turn those requirements into a fleshed out blueprint that will be used to create

the game’s structure and general player interaction. The overall aim is to ensure that the

final game meets the identified needs and goals in an effective manner, particularly when it

comes to evoking that desired feeling of nostalgia in the player as they progress through the

game.

The design of the game is divided into two key areas:

●​ Program Design: This surrounds the underlying structure and systems that govern

how the game functions including the core design of the game. Examples of this

could be player movement, enemy AI, level progression and combat. It will also

address how the game states are managed as well as the overall architecture of the

game’s logic.

●​ User Interface/Player Experience Design: This area focuses on how the player

themselves interact with the world and its systems. This includes the responsiveness

of the controls, the way information is presented visually, and the overall flow of the

player’s experience. This aspect of development is crucial in achieving the

aforementioned needs and goals.

The application for this project is a top-down 2D adventure game set within a temple.

The player controls an adventurer armed with nothing but a sword as they navigate the

environment, uncover secrets and battle enemies. The game places heavy emphasis on

both exploration and combat, giving the player freedom to progress however they please

while giving them a satisfying combat experience akin to those classic games from the

90s. This chapter will outline how those core elements are both structured and

presented to the player in order to create an engaging and cohesive experience that

meets the requirements of the project.

4.2​ Program Design

The program design section focuses on providing the game’s systems and logic a structure

that is built around maintaining an efficient coding environment. The aim is to use this

structure to create a modular and easy to understand architecture that simplifies the

development process and allows for easy modifications.

22

4.2.1​ Gameplay Loop

The game will follow a fairly simple gameplay loop, consisting of the following stages;

●​ Initialization: Setting up the initial game states and core systems as well as loading

the various assets such as the sprites and audio.

●​ Input Handling: Processing input provided by the player through either a keyboard or

controller in order to produce the intended actions.

●​ Update: Updating the game state based on the input provided by the player, time

progression and general game logic such as the physics and enemy AI. This stage is

where the majority of the game’s calculations and logic execution will occur.

●​ Rendering: Visualizing the current game state on the screen including characters, UI

elements and the backgrounds.

4.2.2​ Object Management

All entities within the world will be managed using a system that allows for an efficient

creation, updating and destruction process. This system involves component-based

architecture that uses reusable behaviours such as SpriteRenderer components as well as a

focus on OOP scripting. This approach to object management promotes modularity and

reduces the chance of code duplication throughout the development process.

4.2.3​ Scene Management

The different areas/screens in the game such as the rooms and menus will all be organized

into scenes. A scene management system will be used to handle both the loading and

unloading of scenes while transitioning to the next state. This system ensures a smoother

game flow for the player.

4.2.4​ Input System

A dedicated input system will be implemented to handle the specifics of input devices. This

system will map physical inputs to in-game actions, making it easier to add support for

different input devices in the future without having to make any significant changes to the

code.

23

4.2.5​ Physics & Collision Detection

A 2D collision detection system will be implemented to handle interactions that occur

between game objects. This system will determine when objects overlap or collide and will

trigger an appropriate response such as damage or preventing movement.

4.2.6​ Game State Management

A system will be put in place to track each game state as well as which one is active at any

given time including player health, inventory, death conditions and overall progression. This

system will allow the game to be more flexible and elevate the player experience during

gameplay.

4.2.7​ Enemy AI

Enemy behaviour will be implemented through dedicated AI systems. This system involves

defining different enemy types with their own specific movement patterns, attacks and

reactions to the player. This AI should be designed to provide a challenging yet fair

experience for the player.

4.2.8​ Level Design Integration

The level design system will be integrated into the game through a system that both loads

and renders the environment. The environment itself will be built using Unity’s Tilemap

Editor. The system will also handle object collisions through the use of a layer system within

Unity itself.

By structuring the game in such a way, the development process will be much more

manageable and will allow for an easier debugging experience as well as allowing easier

implementation of new features. This overall design is built to prioritize the maintainability

and clarity of the codebase throughout the development process.

4.3​ User interface design

This section describes how the interface is designed. The section will differ depending on whether

an app or a game is being developed.

This section will outline how the game’s interface is designed, focusing on how information

is presented to the player and how they will interact with the world. Given the nature of the

game, the interface will prioritize direct interaction with the world and will aim for a clean,

uncluttered experience.

24

4.3.1​ Visual Presentation

The game’s world is the primary visual interface that the player will see, rendered in a 2D

pixel art style. Key information will be integrated into this render where possible in order to

minimize the possibility of breaking immersion for the player, examples for this include:

●​ Player Character: A defined sprite with an animation tree that conveys actions such

as moving, attacking, and taking damage in a clear and easy to understand manner.

●​ Enemies: Distinct sprites with animation trees that indicate their current state and

attack animations.

●​ Environment: A tile-based world that is visually consistent with the desired 16-bit

aesthetic, providing both clear pathways and appropriate obstacles.

4.3.2​ Heads-Up Display

Essential information will be displayed in real time through an unintrusive HUD. Examples for

this include:

●​ Player Health: A simple visual representation of the player’s health in the form of a

heart counter in the top left corner of the screen. It should be positioned in a way

that is easily visible but not in a way that affects the player's experience while

playing.

●​ Item Display: If additional items are added beyond just keys, it may be worth adding

a small section in the corner of the screen that shows what items the player holds

and how many of each they possess.

4.3.3​ Input Feedback

Player input should be responsive and easy to understand. Visual feedback will be provided

for actions such as enemies flashing upon being hit and various animations such as opening

a chest or swinging the sword.

4.3.4​ Menus

The menus throughout the game will be kept simple and remain in line with the retro

aesthetic that the game is aiming for. This will be done through the use of pixelated fonts

and chiptune music in the background as well as 16-bit style selection noises when the

player hits a button in the menus.

25

4.3.5​ World Interaction

All interaction with the world such as opening doors or interacting with objects will be

context-sensitive and visually indicated in a clear way. For example, a subtle context clue

prompt could pop up over the character’s head when standing near an interactable object,

or the player sprite will change when performing certain actions.

Overall, the goal of the UI’s design is to be informative and functional without distracting the

player or taking away from their overall experience with the game. Clarity is key when

designing the user interface, ensuring that the focus remains on both the action and

exploration in the world.

4.3.6​ Storyboard

Spawn:

26

Level Design:

Open Chest:

27

Unlock Door:

Enemy Combat

28

Enemy Room:

4.3.7​ Level Design

The game isn’t exactly split up into ‘levels’, instead, it is one big level that the player can

explore. The room transitions are handled through the Cinemachine plugin for Unity

however the entire temple has been fit into a single scene. This has been done to remove

load times and to ensure the flow of the game is the best it possibly can be for the player.

4.3.8​ Environment

The game puts the player in a mysterious temple that they must explore. The aesthetic of

the temple is made to look as if it’s been abandoned for some time now.

29

The player can interact with a few objects including a chest that they find a key in. They can

then use this key to escape from the spawn room.

Upon escaping from the spawn room the player will find themselves face to face with

multiple paladin-like enemies wearing blackened suits of armor. This is the theme for the

rest of the game as the player will move through the rest of the temple fighting these

entities in an attempt to survive the onslaught.

30

4.4​ Conclusion

This chapter detailed the design framework for the project, translating the aforementioned

requirements into a blueprint for use during development. The design is primarily

segmented into Program Design and Player Experience, expanding on both the technical

architecture and the way that the player interacts with the world.

The Program Design section outlines the core systems that will be used to drive the game

including the gameplay loop, a component based object management system, a scene

manager, a dedicated input system, a 2D collision detection system, a game state manager,

enemy AI and the integration of level design. This structured approach ensures a modular,

maintainable, and efficient codebase throughout the development process.

The section on Player Experience aims to lay out a structure that aims to prioritize a clean

and immersive experience. Key information will be integrated directly into the world with a

minimal HUD that displays essential elements such as player health and held items. Controls

will be responsive and boast clear visual feedback with simple, retro style menus and

context-sensitive world interactions that are all designed to enhance player experience, not

take away from it. The game features an interconnected temple in a single scene in order to

eliminate load times and improve the flow of the game. The gameplay loop involves

unlocking the door to escape the first room using a key found in a chest and then navigating

the rest of the temple while battling any enemies that the player crosses paths with.

31

In short, this chapter laid out the design plan that expands on both the technical and

experiential aspects of the project. The outlined structure and considerations for the user

interface aim to create an engaging and cohesive experience that both understands and

meets the requirements of the project and delivers that desired sense of nostalgia for the

player.

32

5​ Implementation

5.1​ Introduction

This chapter details the implementation process for the project that will be used to bring the

design plan outline in the previous chapter to life. The game has been developed with the

use of the following key technologies:

●​ Unity: Unity is a game engine known for its 2D capabilities, visual development

environment, and C# scripting. It provides the foundation for the structure, physics,

collision detection, and asset management within the game. The integrated tilemap

editor was crucial in creating the environment that the player moves around, and its

animation system allowed for the creation of dynamic character and enemy sprites.

●​ Visual Studio Code: Visual Studio Code was used as the primary IDE for scripting in

C#. Its debugging tools, lightweight nature, and seamless integration with Unity

allowed for an efficient and organized development process for all of the game’s logic

including the enemy AI, player controls and the management of game states.

●​ Piskel: Piskel is a free online sprite editor that was used in the creation of some of

the visual assets present in the game. As a software that boasts both an intuitive

interface and specialized tools it allowed for the creation of multiple authentic

looking sprites that matched the desired aesthetic for the game.

●​ Epidemic Sound: Epidemic Sound is an online library of royalty-free music and sound

effects that fueled the game’s audio design. The selection of chiptune audio offered

was crucial in recreating that feeling of nostalgia and aided in immersing the player

into the world.

The application for this project is a top-down 2D adventure game set within a temple. The

player is put in control of a lone adventurer armed with nothing but a sword as they navigate

through the temple battling enemies.

5.2​ Scrum Methodology

As a solo developer, the use of SCRUM methodology provided an invaluable foundation and

structure throughout the implementation of the game. By adopting the core principles

associated with the methodology, the project was able to benefit from a clear roadmap

throughout its eight distinct sprints. In this case, the product backlog served as a dynamic

list of assets and game features that were constantly being refined based on the

development progress and various insights that emerged throughout. Planning sprints at the

33

beginning of every two week cycle allowed for focus on a smaller array of tasks, ensuring a

more concentrated development experience.

Daily self-reflection became a crucial practice throughout the development cycle in order to

maintain momentum and identify potential roadblocks early on. By reviewing the previous

day's work and outlining the tasks for the day ahead, it created a sense of accountability and

accomplishment. Further reviews at the end of each sprint provided an opportunity to

assess the implemented features and ensure they were in line with the project's scope and

requirements. These reviews were crucial in identifying what areas were in need of

improvement.

The sprint retrospectives were very beneficial in optimizing the workflow throughout the

development process. Reflecting on both the successes and challenges of each individual

sprint allowed for continuous improvement in both time management and overall

development strategies. For example, challenges encountered during the Feasibility sprint

directly formed the planning and execution of the sprints that came after. This led to a much

more streamlined process.

The structured nature of the SCRUM methodology in this solo project allowed for a more

organized and adaptable development process. The sprints being divided up into two week

long segments ensured a more focused style of development and allowed for a more

concentrated level of refinement based on the ongoing testing stages. For example, personal

playtesting that was conducted following the Character Design sprint formed the eventual

movement and animations implemented in the Mechanic Design sprint.

In short, the use of SCRUM methodology in a solo setting provided the project with the

structure and feedback loops needed to ensure that the game met the project scope and

made for a focused and refined development process from start to finish.

5.3​ Development environment

Visual Studio Code is the primary IDE utilized during the development of the project. VS

Code’s lightweight nature, combined with it’s C# support and pre existing integration into

Unity made it the ideal choice for scripting. Its debugging tools and seamless integration

with version control tools significantly streamlined the coding process. The ability to

navigate through project files with ease, refactor code and identify errors within scripts

contributed to a more organized and efficient workflow throughout the development

process.

34

Git was employed for use as the version control system for the project, with GitHub serving

as the remote repository. The use of Git ensured that the tracking of all code changes and

storage of the project in a secure location was made simple and seamless. Regular

patch-note style commits were made to document the evolution of the project throughout

the various sprints with descriptive comments ensuring that the implemented changes were

easy to follow and understand. GitHub served as the central remote location for the project

files. Using Git for version control proved to be invaluable in maintaining the integrity of the

code and managing the development history of the project.

5.4​ Sprint 1 - Research & Concept

5.4.1​ Goal

The first sprint was focused around the following goals;

●​ Research similar games

●​ Identify a solid concept for what the project should be

5.4.2​ Item 1 - Research

In order to gather information, a research paper was written in Term 1 during the Research

& Analytics module. This was an extremely important phase as it ensured that the project

wouldn’t be developed blindly or without foundation. It also allowed for both a deeper

understanding and easier implementation of the common niches found in most games.

This section was code free as it was before Unity was even opened for the first time, but it

provided a lot more clarity on the technical scope of the project which will be touched upon

more in the following sprint, ‘Feasibility’.

5.4.3​ Item 2 - Concept

Following the research phase the concept was then ironed out. The loose concept for the

game was fueled by a past idea for a passion project and was finally expanded upon through

the use of the research. Nostalgia was to be a big focus for the project, as the nature of the

game would make it extremely easy to invoke those feelings in the player. As a result, the

aforementioned research paper spoke a lot on nostalgia as an emotion and went on to form

the foundation for the overall scope and goals of the project.

The concept began as a simple and loose idea focused around recreating a very popular

Zelda title, ‘Minish Cap’, and eventually evolved into what the project would become: A 2D

adventure game focused on invoking that feeling of nostalgia in the player.

35

5.5​ Sprint 2 - Feasibility & Requirements

5.5.1​ Goal

The goal of the second sprint was as follows;

●​ Analyse the feasibility of each area of the game

●​ Break that feasibility down into easy to read steps

5.5.2​ Item 1 - Core Engine Proficiency

Originally, Godot was to be considered the primary game engine for developing the game.

Upon delving deeper into the available libraries and general technologies available however,

it was decided that Unity would instead serve as the core engine. Unity as an engine is the

more feasible choice for the game given its strong 2D development capabilities.

36

5.5.3​ Item 2 - Asset Creation

The choice to use Piskel and Epidemic Sound for asset and audio design respectively was a

choice fueled by each software’s accessible and manageable tool set fit for a solo developer.

As well as this, their pre-existing compatibility with Unity made it a no-brainer as the

connection minimized technical hurdles.

5.5.4​ Item 3 - Core Mechanics

The next step was to ensure that the planned mechanics such as player movement, enemy

AI and combat were actually feasible under the timeframe. This is where the likes of Trello

came in to organize the tasks ahead and track them to ensure completion. Keeping Unity’s

scripting capabilities and established game development principles in mind, it was deduced

that the feature list would be feasible.

37

A big use that Trello had during the early days of the project’s development was noting

down games that were focused on certain things as well as tutorials that may become useful

down the line. These focuses included things such as Enemy AI, Level and Art Design as well

as games that focused on a Key Mechanic of sorts, although more on those mechanics in

Sprint 3.

This is where Trello really proved its merit, as without it the research phase would’ve been a

million times more difficult and nowhere near as organized.

5.5.5​ Item 4 - Level Design and Integration

The next step was figuring out what scale level would be feasible under the timeframe. It

needed to be something that the player could explore but not so big that it would sacrifice

quality under the time constraints. It was ultimately decided that the map would be a

medium size consisting of a few rooms that the player could navigate between while playing.

38

5.5.6​ Item 5 - Performance Optimization

Optimization was an ongoing focus throughout the entire development process. Achieving a playable

and enjoyable frame rate with the intended feature list is only achievable with careful asset

management and efficient scripting practices. If the game cannot achieve an ideal frame rate it will

directly impact the player experience which is a critical aspect of the final product given the focus on

invoking that sense of nostalgia in the player.

39

5.5.7​ Item 6 - Time Commitment

Utilizing SCRUM methodology and dividing the game into eight two-week long sprints will prove

invaluable to the development process. Given the scope of the project, allocating sufficient time to

each key area is extremely important as lacking on even one of them can cause a domino effect to

the other areas. Upon analyzing and bringing the scope closer to its final form, it was deduced that

the eight sprints should be more than enough to cover the requirements and feature list.

Considering the solo nature of the project, time management becomes even more important to the

success of the development process. By focusing on the core mechanics as well as implementing a

single, interconnected level, it will ensure that the design will be manageable within the capacity of a

solo developer.

5.6​ Sprint 3 - Key Mechanic

5.6.1​ Goal

The goal of the third sprint was to figure out how to make the game unique through the

implementation of a key mechanic.

5.6.2​ Item 6 - Key Mechanic Brainstorming

During the initial research phase for this sprint there were many different mechanics considered.

Among these were an Undertale style combat minigame system, a parry system and charged sword

attacks. The minigame system was deemed unsuitable as it ran too far out of the project scope and

would stick out. The parry system was a mechanic that was heavily considered however given the

timeframe the project had to work under it didn’t seem feasible. There is a good chance that if

implemented it would come out rushed and end up being frustrating for the player, hindering the

player experience and breaking immersion if it wasn’t a smooth or reliable feature during combat.

40

Trello was a big help in brainstorming and recording all of these ideas as it served as a board where

games that served as inspiration could be pinned and saved for further analysis.

The interactive process here involved multiple periods of brainstorming and prototyping in the game

engine itself. Several mechanics were implemented briefly and tested, with each one being evaluated

thoroughly for how well it would integrate with the gameplay loop and what it would bring to the

player experience. It also involved a critical assessment of how these potential mechanics would

interact with existing enemy designs and the overall exploration of the world.

41

5.7​ Sprint 4 - Prototype

5.7.1​ Goal

After spending the first few sprints gathering research and finalizing the overall scope of the

project it was finally time to start the development process. The goal of this sprint was to

create a loose grey box prototype.

The overall aim here was to create a simple prototype in which the player could move

around a blank world. Below is a short video that shows the final prototype that this sprint

produced.

 Major_Project_Tech_Demo_-_SampleScene_-_Windows_Mac_Linux_-_Unity_2021.3.…

The player model was the focus of this prototype. The idea here was that if the character

was developed before anything else it could be dropped into any environment and would

mean that features could be developed and implemented with the specific player model in

mind instead of just a greybox placeholder.

Following the design of the player sprite the next step was to begin scripting.

5.7.2​ Item 1 - Player Movement

At the start of the script, the foundation for a simple state machine was created. This

will be used to manage all function,lity for the player and streamline it in future

scripts.

42

https://drive.google.com/file/d/1lFl0Fb6lG7zW8cfQw80RYTlAdu3YQtP5/view?usp=sharing

Within the Fixed Update, raw values are pulled and read from Horizontal and Vertical

axes.

If movement input is detected and the player is in either the walk or idle state,

‘UpdateAnimationAndMove()’ is called.

UpdateAnimationAndMove() updates the parameters required by the animator

based on the input provided and then calls ‘MoveCharacter().

MoveCharacter() simply normalizes the vector and utilizes the attached Rigidbody2D

to move the character model.

43

Item 2 - Player Attack

Now that the movement functionality had been set up, the next step was to begin

implementing some attack functionality for the player. The goal for this was to enable the

player to start up an attack animation and play a corresponding sound effect to go with it.

Within the Fixed Update, there is a check for an ‘attack’ input. This will also only trigger as

long as the player is not already attacking or in a stagger state.

AttackCo() is a coroutine that performs the following in sequence:

●​ Sets the ‘attacking’ boolean to true. This is a boolean that triggers an animation state

in the blend tree present in the Unity editor.

●​ Sets the current player state to ‘attacking’.

●​ Plays the appropriate audio alongside the attack if assigned in the editor.

●​ Pauses for a single frame using ‘yield return null’

●​ Resets the attacking boolean back to false.

●​ Pauses for a further 0.3 seconds to prevent the player from attacking non stop.

●​ Resets the player state back to walk as long as the player is not interacting with

anything.

44

5.7.3​ Item 3 - Damage and Knockback

Now that basic attack functionality has been implemented, damage is next. This next part of

the script is set up to handle the player taking damage, reduction of their health, triggering

both visual and audio based feedback using a signal system and applying a brief knockback

effect. As well as this, simple game over functionality must be implemented for when the

player’s health hits zero. The first piece added to the script is the Knock() function.

●​ The Knock() function takes two floats, knockTime and damage, as parameters.

●​ The damage float is used to reduce currentHealth.RuntimeValue.

●​ playerHealthSignal is then raised, this is the signal that updates the heart count

visible to the player in the UI.

●​ If the player still has health, the KnockCo() coroutine is started

●​ If the player’s health reaches zero, the game object is deactivated

KnockCo() is a coroutine that raises the playerHit signal, a signal that handles the visual and

audio feedback for taking damage. If the playerRigidBody exists, it will pause based on the

value of knockTime and then set the velocity of the rigid body to zero before setting the

current player state to idle.

45

5.8​ Sprint 5 - Level Design

5.8.1​ Goal

Following the creation of a character model with both movement and attack, the next step is

to create a level for them to roam.

5.8.2​ Item 1 - Visual Design

As mentioned previously, the game takes place in an interconnected temple. It was

extremely important that the correct assets were chosen here to align with the game’s

desired retro feel. Many of the game’s assets were sourced from a paid package created by a

developer known as ElvGames, an extremely talented 2D artist in the indie game space.

https://www.gamedevmarket.net/asset/crypt-16x16-pixelart-tileset-rogue-adventure

The reasoning behind this choice stems from the requirements of the game. These assets

directly align with the desired retro feel of the game as well as processing the ability to

invoke a sense of nostalgia in the player.

This is another time when the use of Trello became particularly useful. Having a board where

games with a focus on art direction could be pinned and analysed further became invaluable

to making a final decision on assets as it provided a much simpler and streamlined way to

gather inspiration.

46

https://www.gamedevmarket.net/asset/crypt-16x16-pixelart-tileset-rogue-adventure

5.8.3​ Item 2 - Map Design

A big part of designing the world itself was ensuring that it was balanced in terms of scale.

The level had to be big enough to make the player feel like they had something to explore,

but not so big that they felt as if they were doing more walking than actual playing.

As touched on briefly, the decision was made to have the map consist of a handful of

medium size rooms as seen below.

47

5.9​ Sprint 6 - Mechanic Design

5.9.1​ Goal

Now that the character model and level had been implemented it was time to focus on

some mechanics so that the player wouldn’t just be wandering around an empty world.

5.9.2​ Item 1 - Chest

The treasure chest located in the first room primarily relies on a single script. The first step

was to make sure the chest could detect when the player is in range and could allow

interaction via a certain input in order to both open the chest and retrieve the contents

within.

The Update() function checks if the ‘Interact’ button has been pressed. As well as this it

checks if the playerInRange boolean is set to true. This boolean is from a secondary script

called Interactable which is a simple script that is attached to all interactable objects that

handles things such as player range and the context clue signals.

If the chest is not already open, OpenChest() is called, but if the chest is already open then

ChestOpenAlready() is called. OpenChest() displays the description of the item in the chest

on screen for the player to see and adds the item to the player’s inventory. As well as this, a

signal triggers for the character to visually turn around and raise the item to the camera,

plays the appropriate sound effect and marks the chest as open. Here is a quick breakdown

of this line by line.

Activates the ‘dialogBox’ game object that is used to display text on screen.

48

Sets the text for this dialog box to match the item’s description of the chest’s contents which

is an ‘Item’ object.

Calls the AddItem() function to the playerInventory, which is an ‘Inventory’ object, to add

the contents of the chest to the player’s inventory.

Sets the current item in the player’s inventory to the item that was just acquired.

Triggers the raiseItem signal. This is the signal that tells the character model to turn around

and raise the acquired item up to the camera, a classic animation in this genre of game.

Triggers the context signal. This tells the game that the chest is no longer interactable and as

a result should not provide a context clue if the player is within range anymore.

Sets the isOpen boolean to true. This is done to prevent the chest from being reopened a

second time.

This sets the ‘opened’ boolean on the chest’s Animator component to true, which triggers

the opening animation.

49

Finally, if assigned, the appropriate sound effect will play alongside the opening animation.

As a whole, that is the OpenChest() function line by line. Handling a chest that has already

been opened through the ChestAlreadyOpen() function is a very simple piece of code that is

split into only two lines. The first line deactivates the dialog box on screen, and the second

line triggers the raiseItem signal for the second time. This causes the character model to

lower the item and return to its original visual state.

5.9.3​ Item 2 - Door

In order to use the key retrieved from the chest on the door to escape from the first room,

the Door script checks if the interact button has been pressed while the player is in range. As

well as this, it checks if the door is of the ‘key’ type, a type that is defined in an enum at the

top of the script.

50

If the conditions are met for the if statement, it checks if the player has a key in their

inventory.

If the player has a key, it will then play the appropriate sound effect if assigned, then

decrease the player’s key count and call the Open() function to open the door.

51

The Open() function opens the door by disabling both the sprite and its assigned collider

before setting the open boolean to true.

In turn, the Close() function does the exact same thing but in reverse, turning everything

back on and setting the open boolean to false.

5.9.4​ Item 3 - Enemy Room

The enemy room is a mechanic that has been in countless games. Upon the player entering

the room, the doors close behind them and only reopen when all enemies have been

defeated.

Using OnTriggerEnter2D, the coroutine ActivateAfterDelay() is run following a short delay

after the player has entered the trigger collider of the room.

52

ActivateAfterDelay() activates the virtual camera for the room before pausing for the

specified time.

It then iterates through the array of enemies and pots, activating their game objects in the

hierarchy. CloseDoors() is then called to close all of the doors that are connected to the

room.

EnemiesActive() is a function that both counts and returns the amount of enemies currently

active in the hierarchy from the enemies array. It loops through the array and adds up all

active enemies in the activeEnemies int. It will then return the final count once it reaches

the end of the array.

53

CheckEnemies() is a function that is used to verify if the enemy count has reached zero. This

is the function used to determine when the doors should reopen. It starts by calling

EnemiesActive() to get the current count of enemies and calls OpenDoors() if the number

returned is zero.

CloseDoors() is the function used to close the doors when the player enters the room. It

loops through a ‘doors’ array and calls Close() for each one, playing the appropriate sound

effect alongside it if it’s been assigned.

OpenDoors() does the exact same thing but in reverse, looping through the array and

opening all of the doors.

54

When the player exits the room it is handled with an OnTriggerExit2D function. This does the

exact same thing as the OnTriggerEnter2D function but in reverse, setting all enemies and

pots to false and turning off the virtual camera assigned to the room.

5.10​ Sprint 7 - Audio Design

55

5.10.1​ Goal

The goal for this sprint was to pick out appropriate sound effects and background music for

the game. This is extremely important as having a chiptune style soundtrack that matches

the tone and visuals of the game is what will tie it all together and really give it that nostalgic

feeling.

5.10.2​ Item 1 - Audio Design

As mentioned multiple times throughout this report, Epidemic Sound served as the library

from which all of the sound effects for the game would be sourced. Below is an example of

the sound effects that Epidemic Sound offers.

It took a while to pick out the sound effects and background music due to it having to be

something that really fit the tone. As well as this, there were a lot of sound effects needed

including attack sounds, item pickup, both dealing and receiving damage among many

others. In the end however the chosen audio ended up working extremely well and

improved player experience and general game immersion massively.

The audio was all implemented using Unity’s audio manager system. The sound effects were

then called upon throughout scripts as shown in Sprint 6. An example of this can be seen

below.

Overall, although challenging, the audio design process of the game was extremely

rewarding and vastly improved the quality of the game.

56

6​ Testing

6.1​ Introduction

The following chapter details the testing processes utilized in order to ensure the functionality,

quality and overall positive player experience of the game. This phase was crucial in both identifying

and addressing bugs and validating that the game met the requirements outlined earlier in this

report, especially the idea of invoking a sense of nostalgia while providing an engaging gameplay

experience for the player. There were three primary rounds of testing: functional testing, private user

testing, and public user testing. These were all invaluable in gathering comprehensive feedback and

helping to ensure that the final product was polished.

6.2​ Functional Testing

6.2.1​ Combat Mechanics

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

01 Hit Detection (Player to
Enemy)

Attack
button
when
facing
enemy

Enemy takes
damage and
gets
knocked
back

Enemy took
damage
and got
knocked
back
successfully

02 Hit Detection (Enemy to
Player)

Player
makes
contact
with the
enemy.

Player takes
damage and
gets
knocked
back

Player took
damage
and got
knocked
back
successfully

03 Hit Detection (Enemy to
Enemy)

Guide
enemies
to make
contact
with
each
other

Enemies
pass
through
each other
without
doing any
damage.

Initially,
enemies
did do
damage to
each other
and often
triggered a
glitch in
their
transform
properties
that would
send them

This was
fixed by
adding in a
layer system
that kept
them from
interacting
with each
other.

57

shooting
across the
map.

04 Damage Logic Trigger
damage
both
ways

The correct
about of
damage gets
applied
upon
contact

Both the
player and
enemy took
the correct
amount of
damage

6.2.2​ World Interaction

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

01 Chest Interaction Player
presses
the
interact
button
when in
range of
the chest

Chest
opens with
an
animation
and the
character
turns
around to
the camera
holding the
retrieved
item

Initially,
there was a
bug that
prevented
the player
from
interacting
with
anything
else in the
world after
opening the
chest.

This was
simply a
sequence
error in the
script and
was fixed
relatively
quickly.

02 Key Use Player
presses
the
interact
button
when in
range of a
door after
opening
the chest

The door
should be
unlocked
and
opened
following
the
interaction.
This also
shows that
the
inventory
system is
functioning
.

Door
opened and
allowed the
player to
pass
through
without
issue.

03 Object Interaction Player
presses
the

A text box
should pop
up on

Initially, the
text popup
would

This was
discovered
to be a

58

interact
key when
in range
of an
interactab
le object
such as a
graveston
e or sign.

screen that
details the
writing on
the sign or
gravestone
. The
player
should be
able to
remove
this from
the screen
as well by
pressing
the
interact
button a
second
time.

remain
stuck on
the screen
even if the
player
pressed the
interact key
a second
time.

simple
scripting
error in the
function that
handled the
dialog box
and was
fixed
without
much issue.

6.2.3​ Game Progression/State

Test
No

Description of test case Input Expected
Output

Actual
Output

Comment

01 Game Over Player
receives
damage
equivale
nt to
their
health

The player
model
should
disappear
and signal
the game
over state.

The player
model
disappeare
d and
forced the
player to
restart the
game.

02 Enemy Room Functionality The
player
enters
the
enemy
room

The doors
should close
behind the
player
following a
short delay.

Initially
there was a
bug where
the doors
would close
before the
player even
made it into
the room.

This was the
first bug that
presented
significant
difficulty in
the
developmen
t process.
This bug was
fixed with
the addition
of the delay

59

timer that
forced the
doors to wait
a few
seconds
before
closing
following the
player's
entry into
the room.

03 Enemy Room Functionality
Cont.

The
player
defeats
all
enemies
in the
room.

The doors
should
reopen
following
the death of
all enemies.

Initially,
there was
an issue
where the
doors
would not
reopen,
locking the
player in
the room.

This was an
extremely
difficult fix
as it required
rewriting a
lot of the
room’s
scripting and
completely
overhauling
how it
detected the
enemies. An
array system
had to be
implemente
d in which
the script
would check
if the enemy
objects in
the array
were still
active in the
hierarchy in
order to
deduce
whether or
not the
doors should
be opened.

6.2.4​ Discussion of Functional Testing Results

60

The functional testing phase ended up being invaluable to the development process of the

game. By testing features as they were added there were a lot of bugs discovered and fixed

in a relatively short amount of time. This allowed the game to be more polished at each

stage of development instead of having a lot of issues build up at the end. Some bugs, such

as ones present in the enemy room, were extremely difficult fixes and had they not been

discovered at the relatively early stage that they were, there's a high chance that they would

still be outstanding even now in the final weeks.

6.3​ User Testing

User Testing was split into two distinct rounds.

●​ Private Testing

●​ Public Testing

6.3.1​ Private Testing

Private Testing was the first round of user testing done for the game. This round of testing

was performed by friends, family and fellow students. This was done early on in

development, around February, and as a result became invaluable in forming the foundation

of the game. It was during this round that the interviews detailed in 3.2.2 were held.

This round primarily yielded a lot of quality of life related feedback. Testers observed that

the movement felt a bit slippery at first and that the collision registration felt inaccurate,

causing players to get stuck on the corners of various objects.

6.3.2​ Public Testing

Public Testing was the final round of user testing conducted on the game and it took place

on quite a grand stage: Comic Con Dublin 2025. The game was showcased alongside many

extremely talented indie developers to tens of thousands of people over the course of a

weekend in March. This provided a rare opportunity for a project to have an abundance of

testers and helped greatly in identifying the areas that the game was struggling in but also

excelling in.

The game received a lot of positive praise at the event, with testers speaking highly of its

nostalgic feeling and fitting soundtrack. Testers also fell in love with the visual style,

complementing the implementation of the visual assets and various smaller details such as

the fonts and item sprites utilized.

61

Feedback was also given by both Black Shamrock, Larian Studios and 2K, three of the biggest

game development studios in the world. They observed that although the game was lacking

content in its early stage, it had a lot of potential:

2K Notes:

Love the visuals, very reminiscent of legend of zelda. The presentation was the perfect

length. The game itself has a huge amount of potential, but I think 2 rooms with a little

combat is just below the threshold of a full vertical slice. Would have liked to have seen

more.

Black Shamrock Notes:

Solid foundation for a great game. Its quite light on the content side, but I highly recommend

this be worked on more and resubmitted in august. If there was just a little more content at

the same level of quality of what we saw in the presentation, this could be an easy inclusion.

Beyond this, there were a few key bugs discovered throughout the event. Testers noticed

that when resetting the game the variables would not reset with it and so the attack powers

of the enemies would double each, causing players to die in one hit after only the third

reset. As well as this, enemy collisions were not always fluid with testers being unable to

attack enemies if they were positioned in a specific way to the player or sometimes even

being clipped through the map boundaries. It was the discovery of bugs such as these that

really hammered home the reasoning behind doing the public user testing as they are bugs

that likely wouldn’t have been discovered had the project only gone through private testing.

6.4​ Conclusion

This chapter has gone into detail about the three distinct rounds of testing conducted

throughout the development process of the game. The first stage, functional testing,

involved examining gameplay mechanics as they were implemented. This round involved

testing of the combat system to ensure accurate hit detection and damage application, the

functionality of world interactions such as opening doors and chests and finally, the core

game progression and state management such as the intended behaviours of specific areas

such as the enemy rooms. This first phase proved to be invaluable in both identifying and

fixing a multitude of bugs early on in the development process which prevented them from

building up and becoming a bigger problem toward the end of the project.

62

Around halfway through development the project began user testing, which was divided into

two rounds. The first of these two rounds was focused around private testing with friends,

family and fellow students. This took place at the start of February and identified key

quality-of-life issues such as the player movement not being up to par and some inaccuracies

with collision detection that led to the character model becoming stuck in the environment.

The final round of user testing took place during a public showcase at Comic Con Dublin

2025. This event was incredible for the project as it provided a massive opportunity to

expose the game to a wide and unbiased audience of testers. This audience included

thousands of attendees as well as multiple veteran game studios. The game received praise

for the atmosphere it creates and the soundtrack. As well as this, testers really appreciated

the visual style and attention to detail that the game displayed in its art and UI elements.

This large scale testing also dug up some critical bugs that had not been found during the

limited private user and functional testing. This included scaling issues upon resetting, ghost

attacks and map clipping. The discovery of these bugs proved the importance that this

testing had, as this level of user feedback in the later stages of development provided

insights that likely would have gone unseen otherwise.

Overall, the testing phase was a success and proved to be extremely valuable to the

development of the project.

63

7​ Project Management

7.1​ Introduction

This chapter goes into detail on the strategies and tools that were utilized in order to

manage the development cycle of the project. The chapter will be split up into multiple

sections, starting with the initial concept stage followed by the gathering of requirements,

the overall design, the implementation phase, and finally, the testing methods used at each

stage of the project’s life. As well as the breakdown of each stage, the chapter will also cover

the aforementioned tools used to manage these stages including Trello and GitHub. The

overall aim of this chapter is to provide an overview of the project’s management and

highlight both the successes and pitfalls of the methods used.

7.2​ Project Phases

In this section, describe each of the following project phases. Explain any issues which arose for each

of the phases.

7.2.1​ Proposal

The proposal phase involved deciding on the concept for the game and fleshing it out into an actual

proposal that could be used as the grounds for a project. The stage was relatively easy compared to

the rest due to the concept being based on a passion project. This made it simple to flesh it out and

decide on the specific details that would give it enough weight to be used for the project.

Trello was extremely useful during this phase as it served as a space to store similar games for

inspiration in an easy to read format. Using the notes feature on Trello made it a lot easier to pick

these games apart for their key features. Below is an example of these notes, based around a small

Indie game called Nuclear Throne.

64

7.2.2​ Requirements

The requirements phase was quite simple from the get go. The desire was to create a 2D

game that invoked the same feelings of nostalgia as the early Gameboy titles from the 90’s

and early 2000’s. Through the use of personas and research performed in the Research &

Analytics module, the aforementioned list of both functional and non functional

requirements were settled upon.

Functional Requirements:

1.​ The game should allow players to explore the temple in an engaging way, with some

hidden areas and secrets to discover.

2.​ The combat system should feel responsive and fluid.

3.​ The graphics and soundtrack should be of a good quality to further the atmosphere

of the game.

4.​ The controls for the game should be simple and easy to understand.

65

5.​ The difficulty curve throughout the game should remain fair, but challenging.

6.​ The level design should be designed to minimize frustration or confusion.

7.​ The game should offer a unique twist, and avoid feeling generic.

8.​ Items that the player discovers should have a clear purpose and be easy to

understand.

Non-Functional Requirements:

1.​ The game should have an easy to understand interface and feature intuitive controls

in order to minimize the learning curve players experience.

2.​ The game should maintain a consistent frame rate of at least 30 FPS in order to

ensure the gameplay is smooth and responsive.

3.​ The code base itself should be well-organized and documented to allow bug fixes to

be executed swiftly.

4.​ The game should be accessible for players at all skill levels.

A number of interviews were also conducted during this phase that fed into the final list of

requirements. By interviewing people who would usually play these games it helps form a

much clearer picture of player expectations and in turn leads to a better, more polished and

user centric final product.

7.2.3​ Design

The requirements for the project were a heavy influence on the design choices made in this

phase. The assets, audio and general feel of the project had to be centered around

delivering an experience akin to that of the games that inspired the concept. As part of the

final non-functional requirement, ‘The game should be accessible for players at all skill

levels.’, it was also important that the asset chosen be clearly defined and easy on the eyes.

Regardless of what difficulty the game was developed around, if the assets were hard on the

eyes it would naturally increase the difficulty and reduce player experience entirely which is

something that directly goes against the project scope.

7.2.4​ Implementation

The implementation phase did present a few obstacles. As covered earlier on in the report,

there were multiple major bugs that were uncovered during development that took quite a

while to fix. Outside of these bugs however, implementing everything together proved to be

very fun. With the use of Unity’s tilemap system and audio manager, the implementation of

assets was very simple and streamlined. The blend tree systems in Unity’s animation suite

also proved to be very easy to use, tying the character and enemy models together and

drastically improving the look of the game.

66

GitHub proved to be invaluable during this phase as well, providing a way to manage and

track the game’s code at each state and provide a streamlined level of version control for the

project. The simplicity of GitHub’s interface was also a massive help, minimizing stress

during this phase.

7.2.5​ Testing

The testing phase was quite broad, as it began very early on in the project’s development

cycle with functional testing. Functional testing was conducted throughout the entire

development cycle as features and mechanics were tested as they were implemented to

ensure that they were functional and worked well with each other. Aside from this, there

were also two different rounds of user testing conducted in order to maximize the amount

of testing performed on the game. Private user testing primarily took place in February and

consisted of friends, family and fellow students testing the game and providing feedback and

gameplay features and bugs. The final round of user testing was especially surreal as it took

place during a showcase at Comic Con Dublin 2025. Exposing the game to thousands of

testers in this public setting was instrumental in uncovering a lot of key bugs as well as

confirming what areas the game was excelling in.

7.3​ SCRUM Methodology
The use of sprints during the implementation of the project provided a more focused

approach to developing all of the different elements required by the game. Although the

time centric nature of the sprints did force a sense of urgency, the rigid two week duration

did also present some obstacles. These obstacles were primarily with the more complex

tasks that simply couldn’t be completed in a two week period. Despite this, the structure of

the sprints was extremely effective in breaking the large number of tasks into various,

manageable categories and was instrumental in maintaining momentum throughout

development.

SCRUM methodology as a whole ended up being largely beneficial as well. The product

backlog created a roadmap of sorts, and the aforementioned sprint structure ensured more

focused periods of development. Frequent self-reflection aided in the tracking of project

progress, while the sprint reviews ensured that the development principles and overall

project improved from sprint to sprint. The nature of SCRUM overall provided a sense of

always having a milestone ahead to reach for which was incredibly motivating throughout

the development process. Ultimately, the structure and adaptability that the framework of

SCRUM provided proved to be crucial in guiding the development of the game and put a

major focus on organization and continuous improvement throughout.

67

7.4​ Project Management Tools

7.4.1​ Trello

Trello by nature is a web-based application typically used to manage project progression

using a flashcard format. These ‘flashcards’ are typically split up into lists that represent

different categories of research or tasks of a certain status such as being in progress or

completed. Each of these cards can contain various bits of information such as notes on the

task or a due date.

During the project Trello served as the primary tool for organizing tasks throughout each of

the sprints. At the beginning of each sprint the Trello board was loaded with various tasks

that corresponded to that sprint. An example of this can be seen below.

Having this visual representation of project progress provided a clear and easy to read

overview that made it much easier to identify weaker areas of the project during

development. It was also particularly useful when tackling larger tasks, providing the ability

to break them down into smaller, bite-sized steps.

7.4.2​ GitHub

GitHub by nature is a web-based platform based around the version control system, Git. Git is a

version control system used to track changes made to files over time, allowing developers to easily

revert to previous versions and sort their tasks into different ‘branches’. GitHub is an extension for

Git that provides the developer with a remote repository for storing the code and various files for the

68

project on the cloud along with an array of tools for both managing and collaborating on the project

if needed.

For this project, GitHub was used as the primary repository for storing the project files. The ability to

consistently commit code to the repository as features were implemented ensured that a log was

kept of the project’s history. This log also made it simple to rollback to a previous version if needed

when bugs arose, making diagnosing and fixing these bugs much easier in the long run.

7.5​ Reflection

7.5.1​ Your views on the project

As a whole I believe the project went quite well. There were some issues in terms of time

constraints that resulted in there being less features in the final product than what was

originally pitched. There were many things that had to be scaled back including the

implementation of puzzles and more in depth combat mechanics as well as a boss enemy

variant. This was due to there being a lot of complications during the implementation of the

enemy rooms in the build up to the Comic Con showcase. It was due to these complications

that the decision was made to pivot to a more straightforward combat demo that then

ended up being the final product. I feel that this was less than ideal given the original scope.

The project as a whole faced a lot of scaling back due to time. The original concept would

have seen the game be an open world RPG style experience with multiple hours of

gameplay. Upon the timeline being released this was quickly scaled back to include only a

69

temple and instead be made up of rooms of varying puzzles and enemy types with the game

ending with a challenging boss fight. This was then scaled back even further following the

complications faced during the implementation of the enemy room. Although this was very

unfortunate I feel as if the project still went well.

7.5.2​ Completing a large software development project

I learned a lot about time management from this project. Completing a large software

project as a solo developer in a relatively short amount of time was a massive learning

experience that forced me to work outside of my comfort zone, manage a large multitude of

tasks simultaneously and learn how to tie every aspect of the project together into one

finished product.

7.5.3​ Working with a supervisor

Working with a dedicated project supervisor was a first for me. Working with Naoise helped

massively throughout the project as his support helped me stay on the right track. Weekly

meetings ensured that I never strayed too far from the original scope and that I always had

plenty of feedback to work with. Another massive perk I found to having a supervisor was

the experience that they bring to the table. Some tasks can’t simply be looked up online and

learned in an afternoon from scratch, so having a supervisor with years worth of experience

in the game development industry proved to be invaluable in completing some tasks as I was

able to get quick answers to my questions and concerns while implementing various

mechanics.

7.5.4​ Technical skills

I feel as if I learned a lot from a technical standpoint throughout the development of this

project. It was my first time working on a solo project to such a scale and my first time

working with many 2D features in Unity such as the lighting systems. I learned a lot more

about how to control game objects in the hierarchy, using them to control enemies

spawning in. As well as this, I was able to learn a lot more about the use of audio managers

for sound effects and blend trees for four-way directional animations. All of these things

were extremely important in achieving the eventual final product and I feel as if I have

become a much better and more competent developer as a result.

7.5.5​ Further competencies and skills

In terms of skills that will help me going forward as a developer in the workplace I feel as if

I’ve learned a lot. Learning how to handle larger scale software projects and using tools such

as Trello and GitHub to manage it has improved my skills as a developer as a whole, and I

feel as if it has prepared me even more to break into the workplace. On top of this, I’ve now

70

learned a lot more about how important it is to organize research and tasks into an easy to

read format, as if you fail to keep these things organized it causes the entire project to suffer.

7.6​ Conclusion

Write a couple of paragraphs summing up the chapter. Explain what area your project is about.

Describe what the chapter has discussed.

The chapter provided an overview on the methods and tools used throughout the

development process. Included in this overview was the progression through the various key

phases from the initial proposal and gathering of requirements to the design phase where

the focus was centered around aligning the game’s aesthetic with its requirements and

goals. The implementation phase followed and with it came challenges in the form of

complex bugs. Despite these setbacks however the use of Unity’s library of features and

GitHub’s version control capabilities made the development process a lot less stressful. The

testing phase was conducted throughout all of these previous phases with extensive testing

performed with the addition of every new feature. The testing phase culminated with a

public showcase of the game at Comic Con Dublin 2025. This public showcase was invaluable

in exposing large bugs that would’ve been extremely difficult to discover during private

testing.

This chapter also covered the use of SCRUM methodology throughout the project and the

various benefits it provided during development. By breaking the project up into several two

week long sprints it made both managing larger tasks and maintaining momentum a lot

easier. While the sprint system did pose a few challenges in terms of time management, it

still proved to be beneficial overall in streamlining the workflow of the project. The use of

Trello also helped a lot in managing larger tasks and visualizing ideas for the project by

providing a space where all research could be pinned and saved for inspiration. In short, this

chapter has gone into detail on the methods used to manage the project, highlighting both

the successes and shortcomings of each method.

71

8​ Conclusion

In conclusion, this project initially stemmed from a passion project built upon the desire to

explore nostalgia as an emotion and eventually evolved into a top-down 2D game. The

overall aim was to provide the player with an engaging experience that evoked this feeling of

nostalgia through the use of simple gameplay mechanics and a charming visual style.

The project utilized a range of different technologies within Unity. The tilemap editor was

used to create the world that the player finds themselves in and the audio manager was

used to give the project more charm and weight. As well as this, Unity’s animation suite was

key in streamlining the implementation of assets, especially through the use of blend trees.

GitHub was then utilized as a remote way of storing the project files and having a level of

version control in order to simplify both tracking down and fixing the various bugs that

surfaced throughout development.

The project had a very structured approach, starting with research into both the target

audience and overall genre that the game was aimed at. This built into the design phase as

the research conducted assisted in capturing that desired nostalgic aesthetic and ensured

accessibility. Although challenging, the implementation phase produced a functional game

that showcased the desired core mechanics. Testing was also conducted throughout every

stage of the project’s life and was split up into three phases: functional testing, private user

testing, and public user testing. All three of these stages played a massive part in both

identifying and rectifying issues that may have remained unseen otherwise.

Overall, the project delivered a game that was both playable and that met the aims and

originally set out. Project management, through the use of Trello and SCRUM methodology,

was crucial in organizing the workload, tracking tasks, and maintaining momentum

throughout the development cycle. Key takeaways include the importance of in depth

testing, the various challenges that come with solo development, and the value of structure

in the methods used to manage the project.

In terms of further development, adding in additional enemy types and expanding the world

beyond the temple would make for an even more enjoyable experience. As well as this, the

addition of both puzzles and perhaps a dialog/quest system would really expand the

possibilities of the game.

72

References

The Department of Technology and Psychology in IADT uses APA referencing style.

Use alphabetical order for your references.

This site gives details about how to cite websites using APA:

https://www.wikihow.com/Cite-a-Website-in-APA

The following is a useful site for creating citations for APA for websites.

http://www.citationmachine.net/apa/cite-a-website

You can also use the Referencing tab within Microsoft Word to enter reference information

manually. Word then creates an APA style reference.

Munjal, S. (2022, April 12). Unity vs Godot: Major differences you must know. Java

Assignment Help. https://www.javaassignmenthelp.com/blog/unity-vs-godot/

Allen, D. (2023). 16-Bit Games We Still Enjoy Today. [online] TheGamer. Available at:

https://www.thegamer.com/16-bit-era-games-snes-genesis-still-hold-up/ [Accessed 22 Nov.

2024].

Bowden, T. (2024). Pixels to Reality: The Evolution of Video Game Art. [online] RMCAD.

Available at: https://www.rmcad.edu/blog/the-evolution-of-video-game-art/ [Accessed 27

Nov. 2024].

English, K. and D.I.D Electrical (2023). An Exhaustive History of Eight Generations of Video

Game Consoles: 1967 to 2018. [online] DID Electrical. Available at:

https://www.did.ie/blogs/gadgets/an-exhaustive-history-of-eight-generations-of-video-game

-consoles-1967-to-2018 [Accessed 27 Nov. 2024].

Gamestate (2023). Evolution of Video Game Graphics. [online] Gamestate. Available at:

https://gamestate.com/blogs/news/the-evolution-of-video-game-graphics-from-8-bit-to-hd-

and-vr?srsltid=AfmBOoqC1fsM5bcvtVUrQFOjz9F-CXsRg7adwWKP-0MCRH2jxmBtCOpA

[Accessed 22 Nov. 2024].

73

http://www.citationmachine.net/apa/cite-a-website
https://www.javaassignmenthelp.com/blog/unity-vs-godot/
https://www.thegamer.com/16-bit-era-games-snes-genesis-still-hold-up/
https://www.thegamer.com/16-bit-era-games-snes-genesis-still-hold-up/
https://www.rmcad.edu/blog/the-evolution-of-video-game-art/
https://www.did.ie/blogs/gadgets/an-exhaustive-history-of-eight-generations-of-video-game-consoles-1967-to-2018
https://www.did.ie/blogs/gadgets/an-exhaustive-history-of-eight-generations-of-video-game-consoles-1967-to-2018
https://gamestate.com/blogs/news/the-evolution-of-video-game-graphics-from-8-bit-to-hd-and-vr?srsltid=AfmBOoqC1fsM5bcvtVUrQFOjz9F-CXsRg7adwWKP-0MCRH2jxmBtCOpA
https://gamestate.com/blogs/news/the-evolution-of-video-game-graphics-from-8-bit-to-hd-and-vr?srsltid=AfmBOoqC1fsM5bcvtVUrQFOjz9F-CXsRg7adwWKP-0MCRH2jxmBtCOpA

Gordon, W. (2021). What’s the Best Way to Play Retro Games? [online] Wired. Available at:

https://www.wired.com/story/best-way-to-play-retro-games-virtual-console-emulator/

[Accessed 27 Nov. 2024].

Hernández, M. (2024). History of eSports: How Did Video Game Competitions begin?

[online] Telefónica. Available at:

https://www.telefonica.com/en/communication-room/blog/history-of-esports-how-did-vide

o-game-competitions-begin/ [Accessed 6 Dec. 2024].

Hurley, R. (2024). Retro-futurism: How the past influences visual design in video games.

[online] Available at:

https://illustro-iadt.figshare.com/articles/thesis/Retro-futurism_How_the_past_influences_

visual_design_in_video_games/25407934?file=45037816 [Accessed 22 Nov. 2024].

Irfandi (2023). The Nostalgia Effect: How Retro Games Influence Modern Gaming. [online]

Medium. Available at:

https://medium.com/@dq_irfandi/the-nostalgia-effect-how-retro-games-influence-modern-

gaming-8925be77694e [Accessed 22 Nov. 2024].

Jabr, F. (2024). John A. Long - Publications List. Publicationslist.org, 14(6).Jack, P. (2023). Why

Emulators Are Important to the Future of Games Preservation. [online] CBR. Available at:

https://www.cbr.com/retro-games-need-emulation-for-games-preservation/ [Accessed 27

Nov. 2024].

Jouanna Bondakji (2023). 8-Bit Games We Still Enjoy Today. [online] TheGamer. Available at:

https://www.thegamer.com/8-bit-era-games-nes-master-system-still-hold-up/ [Accessed 22

Nov. 2024].

Kent, S.L. (2001). The ultimate history of video games. New York: Random House

International ; London.Mahardy, M. (2014). 9 Game Franchises That Returned from the Dead

- IGN. [online] IGN. Available at:

https://www.ign.com/articles/2014/05/28/9-game-franchises-that-returned-from-the-dead

[Accessed 27 Nov. 2024].

74

https://www.wired.com/story/best-way-to-play-retro-games-virtual-console-emulator/
https://www.telefonica.com/en/communication-room/blog/history-of-esports-how-did-video-game-competitions-begin/
https://www.telefonica.com/en/communication-room/blog/history-of-esports-how-did-video-game-competitions-begin/
https://illustro-iadt.figshare.com/articles/thesis/Retro-futurism_How_the_past_influences_visual_design_in_video_games/25407934?file=45037816
https://illustro-iadt.figshare.com/articles/thesis/Retro-futurism_How_the_past_influences_visual_design_in_video_games/25407934?file=45037816
https://medium.com/@dq_irfandi/the-nostalgia-effect-how-retro-games-influence-modern-gaming-8925be77694e
https://medium.com/@dq_irfandi/the-nostalgia-effect-how-retro-games-influence-modern-gaming-8925be77694e
https://www.cbr.com/retro-games-need-emulation-for-games-preservation/
https://www.thegamer.com/8-bit-era-games-nes-master-system-still-hold-up/
https://www.ign.com/articles/2014/05/28/9-game-franchises-that-returned-from-the-dead

Mason, G. (2016). Nine Ways the the 8-bit Era Made Gaming What It Is Today.

Eurogamer.net. [online] 15 May. Available at:

https://www.eurogamer.net/nine-ways-the-the-8-bit-era-made-gaming-what-it-is-today

[Accessed 27 Nov. 2024].

Matthew, P. (2024). The Rise of Gaming Conventions and Their Impact on the Industry.

[online] Medium. Available at:

https://medium.com/@pierce.matthew/the-rise-of-gaming-conventions-and-their-impact-o

n-the-industry-dc4a06ee99c1 [Accessed 6 Dec. 2024].

Mubarak (2024). What Do 8-Bit and 16-Bit Actually Mean? A Simple Guide to Classic Gaming

Terms. [online] Retro News. Available at:

https://www.retronews.com/what-do-8-bit-and-16-bit-actually-mean-a-simple-guide-to-clas

sic-gaming-terms/ [Accessed 22 Nov. 2024].

Parker, B. (2024). The Rise of Speedrunning: Gaming’s Fastest Phenomenon. [online]

Medium. Available at:

https://medium.com/@bparks918/the-rise-of-speedrunning-gamings-fastest-phenomenon-

283da6436fae [Accessed 6 Dec. 2024].

Potila, T. (2023). Soundtrap | What Is Chiptune And How To Make Chiptune Beats. [online]

Soundtrap. Available at:

https://www.soundtrap.com/content/blog/how-to-make-chiptune-beats. Rajpurohit, P.

(2024).

Evolution of Video Game Graphics - Then Vs Now. [online] 300Mind Blog. Available at:

https://300mind.studio/blog/the-evolution-of-video-game-graphics/ [Accessed 27 Nov.

2024].

Scott Daniel (2024). The Rise of Retro Gaming: Nostalgia in the Digital Age. [online] Medium.

Available at:

https://medium.com/@scottdaniel_20892/the-rise-of-retro-gaming-nostalgia-in-the-digital-

age-ff5c90ddde85 [Accessed 27 Nov. 2024].

75

https://www.eurogamer.net/nine-ways-the-the-8-bit-era-made-gaming-what-it-is-today
https://medium.com/@pierce.matthew/the-rise-of-gaming-conventions-and-their-impact-on-the-industry-dc4a06ee99c1
https://medium.com/@pierce.matthew/the-rise-of-gaming-conventions-and-their-impact-on-the-industry-dc4a06ee99c1
https://www.retronews.com/what-do-8-bit-and-16-bit-actually-mean-a-simple-guide-to-classic-gaming-terms/
https://www.retronews.com/what-do-8-bit-and-16-bit-actually-mean-a-simple-guide-to-classic-gaming-terms/
https://medium.com/@bparks918/the-rise-of-speedrunning-gamings-fastest-phenomenon-283da6436fae
https://medium.com/@bparks918/the-rise-of-speedrunning-gamings-fastest-phenomenon-283da6436fae
https://www.soundtrap.com/content/blog/how-to-make-chiptune-beats
https://300mind.studio/blog/the-evolution-of-video-game-graphics/
https://medium.com/@scottdaniel_20892/the-rise-of-retro-gaming-nostalgia-in-the-digital-age-ff5c90ddde85
https://medium.com/@scottdaniel_20892/the-rise-of-retro-gaming-nostalgia-in-the-digital-age-ff5c90ddde85

Steinberg, N. (2018). The 15 Greatest Video Game Reboots That Breathed New Life into a

Franchise. [online] HowStuffWorks. Available at:

https://electronics.howstuffworks.com/greatest-video-game-reboots-that-breathed-new-life

-into-a-franchise.htm [Accessed 27 Nov. 2024].

Thompson, M. (2024). From 8-bit to Hyper-Realism: The Evolution of Video Game Graphics |

Gaming. [online] Landofgeek.com. Available at:

https://www.landofgeek.com/posts/evolution-video-game-graphics-8-bit-hyper-realism

[Accessed 27 Nov. 2024].

Vento, J. (2024). How Old-School Games Are Inspiring a New Generation of Indie Developers.

[online] Medium. Available at:

https://medium.com/@DarkRa/how-old-school-games-are-inspiring-a-new-generation-of-in

die-developers-5dedb17ca3e1 [Accessed 27 Nov. 2024].

Wells, S. (2024). The Evolution and Impact of Gaming Consoles: A Comprehensive History.

[online] The Lifestyle Daily. Available at:

https://www.lifestyledaily.co.uk/article/2024/08/14/evolution-and-impact-gaming-consoles-

comprehensive-history [Accessed 27 Nov. 2024].

Wulf, T., Bowman, N.D., Rieger, D., Velez, J.A. and Breuer, J. (2018). Running Head: Video

Game Nostalgia and Retro Gaming. Media and Communication, [online] 6(2), pp.60–68.

Available at:

https://www.cogitatiopress.com/mediaandcommunication/article/view/1317/781

[Accessed 27 Nov. 2024].

Yoon, S. (2024). Gaming Culture: A New Language for the Digital Age. [online] Forbes.

Available at:

https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-lang

uage-for-the-digital-age/ [Accessed 6 Dec. 2024].

76

https://electronics.howstuffworks.com/greatest-video-game-reboots-that-breathed-new-life-into-a-franchise.htm
https://electronics.howstuffworks.com/greatest-video-game-reboots-that-breathed-new-life-into-a-franchise.htm
https://www.landofgeek.com/posts/evolution-video-game-graphics-8-bit-hyper-realism
https://medium.com/@DarkRa/how-old-school-games-are-inspiring-a-new-generation-of-indie-developers-5dedb17ca3e1
https://medium.com/@DarkRa/how-old-school-games-are-inspiring-a-new-generation-of-indie-developers-5dedb17ca3e1
https://www.lifestyledaily.co.uk/article/2024/08/14/evolution-and-impact-gaming-consoles-comprehensive-history
https://www.lifestyledaily.co.uk/article/2024/08/14/evolution-and-impact-gaming-consoles-comprehensive-history
https://www.cogitatiopress.com/mediaandcommunication/article/view/1317/781
https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-for-the-digital-age/
https://www.forbes.com/sites/forbesbooksauthors/2024/05/14/gaming-culture-a-new-language-for-the-digital-age/

	
	
	1​Introduction
	2​Research
	
	Chapter 1: Introduction
	1.1 Background:
	1.2 Research Question:
	1.3 Research Objectives:
	1.4 Research Methodology:
	1.5 Report Structure:

	Chapter 2: The 8-bit and 16-bit Eras
	2.1 Technological Advancements:
	2.2 Pioneering Games and Consoles:
	2.3 Game Design and Mechanics:

	Chapter 3: Impact on Modern Gaming
	3.1 Game Design and Mechanics:
	3.2 Storytelling and Narrative:
	3.3 Player Experience and Nostalgia:

	Chapter 4: Case Studies
	4.1 Games:
	4.2 Analysis:
	4.3 Discussion:

	3​Requirements
	3.1​Introduction
	3.2​Requirements gathering
	3.2.1​Similar applications
	3.2.2​Interviews

	3.3​Requirements modelling
	3.3.1​Personas
	3.3.2​Functional requirements
	3.3.3​Non-functional requirements
	3.3.4​Use Case Diagrams

	3.4​Feasibility
	3.5​Conclusion

	4​Design
	4.1​Introduction
	4.2​Program Design
	4.2.1​Gameplay Loop
	4.2.2​Object Management
	4.2.3​Scene Management
	4.2.4​Input System
	4.2.5​Physics & Collision Detection
	4.2.6​Game State Management
	4.2.7​Enemy AI
	4.2.8​Level Design Integration

	4.3​User interface design
	4.3.1​Visual Presentation
	4.3.2​Heads-Up Display
	4.3.3​Input Feedback
	4.3.4​Menus
	4.3.5​World Interaction
	4.3.6​Storyboard
	4.3.7​Level Design
	4.3.8​Environment

	4.4​Conclusion

	5​Implementation
	5.1​Introduction
	5.2​Scrum Methodology
	5.3​Development environment
	5.4​Sprint 1 - Research & Concept
	5.4.1​Goal
	5.4.2​Item 1 - Research
	5.4.3​Item 2 - Concept

	5.5​Sprint 2 - Feasibility & Requirements
	5.5.1​Goal
	5.5.2​Item 1 - Core Engine Proficiency
	5.5.3​Item 2 - Asset Creation
	5.5.4​Item 3 - Core Mechanics
	5.5.5​Item 4 - Level Design and Integration
	5.5.6​Item 5 - Performance Optimization
	5.5.7​Item 6 - Time Commitment

	5.6​Sprint 3 - Key Mechanic
	5.6.1​Goal
	5.6.2​Item 6 - Key Mechanic Brainstorming

	5.7​Sprint 4 - Prototype
	5.7.1​Goal
	5.7.2​Item 1 - Player Movement
	
	
	Item 2 - Player Attack
	5.7.3​Item 3 - Damage and Knockback

	5.8​Sprint 5 - Level Design
	5.8.1​Goal
	5.8.2​Item 1 - Visual Design
	5.8.3​Item 2 - Map Design

	5.9​Sprint 6 - Mechanic Design
	5.9.1​Goal
	5.9.2​Item 1 - Chest
	5.9.3​Item 2 - Door
	5.9.4​Item 3 - Enemy Room

	5.10​Sprint 7 - Audio Design
	5.10.1​Goal
	5.10.2​Item 1 - Audio Design

	6​Testing
	6.1​Introduction
	6.2​Functional Testing
	6.2.1​Combat Mechanics
	6.2.2​World Interaction
	6.2.3​Game Progression/State
	6.2.4​Discussion of Functional Testing Results

	6.3​User Testing
	6.3.1​Private Testing
	6.3.2​Public Testing

	6.4​Conclusion

	7​Project Management
	7.1​Introduction
	7.2​Project Phases
	7.2.1​Proposal
	7.2.2​Requirements
	
	7.2.3​Design
	7.2.4​Implementation
	7.2.5​Testing

	
	7.3​SCRUM Methodology
	7.4​Project Management Tools
	7.4.1​Trello
	7.4.2​GitHub

	7.5​Reflection
	7.5.1​Your views on the project
	7.5.2​Completing a large software development project
	7.5.3​Working with a supervisor
	7.5.4​Technical skills
	7.5.5​Further competencies and skills

	7.6​Conclusion

	8​Conclusion
	References

