DUN LAOGHAIRE INSTITUTE OF ART, DESIGN AND TECHNOLOGY

FlexiCare: A Digital Patient
Management System for
Physiotherapy

Author: Alice Corry

Student Number: N0O0211635

Supervisor: John Montayne

Second Reader: Cyril Connolly

Dissertation submitted in partial fulfilment of the degree

of BSc (Hons) in Creative Computing

Declaration of Authorship

Incorporating material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

You should document this in your submitted work if you have received significant help with
a solution from one or more colleagues. If you doubt what discussion/collaboration is
acceptable, consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone
else, which may well bring you under suspicion. Do not leave copies of your files on a hard
disk where others can access them. Remember that removable media used to transfer
work may be removed and/or copied by others if left unattended.

Plagiarism is an act of fraudulence and an offence against the Institute's discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please
refer to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Computing (Hons) course handbook. Please
read carefully and sign the declaration below.

Collusion may be defined as more than one person working on an individual assessment.
This would include jointly developed solutions, with one individual giving a solution to
another, who then makes some changes and hands it up as their work.

DECLARATION

| know the Institute’s policy on plagiarism and certify that this thesis is my work.

Wice Convy

FlexiCare: A Digital Patient Management System for Physiotherapy 1

Abstract

This paper presents the development of FlexiCare, a digital solution aimed at modernising
physiotherapy management for both clinicians and patients. It focused on improving the
management of patient data, treatment plans, communication and patient
self-management. The system was developed using an iterative SCRUM approach, which
divides a large project into a series of smaller sections called sprints. Key methods
employed included existing product evaluation, key user surveys and feasibility testing.

The FlexiCare backend development utilised Microsoft's ASP.NET Core MVC framework,
which is capable of intuitively and securely managing user data such as personal
information, exercise routines, and appointments. The backend uses C# code and Entity
Framework Core, Microsoft's Object-Relational Mapping (ORM) tool for mapping
databases and SQLite as a lightweight but reliable data engine. Key components included
the FlexicCare Manager for physiotherapists and administrators, role-based authentication
using Microsoft Identity and a separately designed FlexiCare API, which used JSON Web
Token (JWT) authentication and Swagger Support for the visual interface. Scaffolding was
used for the rapid development of views and controllers, while data seeding was employed
to populate the data with sample patient and exercise data for testing and development.

The frontend FlexiCare mobile development utilised React Native and Expo. Key tools
included Visual Studio Code for coding, Insomnia for API testing and Figma for Ul design.
Views like the login screen, task list and appointment page were developed to provide an
intuitive, yet visually pleasing user interface. Examples of features include secure
authentication through the login view using AuthContext, and a task page displaying a list
of assigned exercises with a daily streak feature for motivation. In addition, there was an
appointment page developed to feature a data carousel to easily navigate through
appointments and a feedback form that allows you to input data such as rep counts and
pain levels, using metrics and sliders.

Comprehensive testing was conducted on both the front and backend, using Jest and
MSTest, respectively, to ensure functionality across all systems and devices, various
conditions, and user inputs. FlexiCares development incorporated modern technology and
best practices in backend and frontend design, with secure data management, intuitive Ul
and detailed automated testing, This project demonstrates how careful research and an
iterative design process can come together to create a solution that addresses the
complex needs of the healthcare professional while still prioritising an efficient and
supportive user experience.

FlexiCare: A Digital Patient Management System for Physiotherapy 2

Acknowledgements

| would like to express my sincere thanks to everyone who supported me throughout my
thesis.

First, | am deeply grateful to my Project Supervisor, John Montayne, for his guidance,
helpful feedback, and encouragement. His expertise and patience made a massive
difference in this process.

| would also like to thank my lecturers at IADT for their valuable teachings and support
throughout my studies. Their input has been essential in shaping my research and
understanding.

A special thank you also to my family for their constant love, support, and encouragement.
Their belief in me kept me going, especially during challenging times.

Finally, | acknowledge the Learning Support at IADT for providing valuable resources and
assistance, helping me stay focused and on track with my work.

Thank you all for your support. This work would not have been possible without you.

FlexiCare: A Digital Patient Management System for Physiotherapy 3

Table of Contents

Declaration of AUuthOrship..........cccooiiiiiiiii s e e e nnnns 2
ADSEIACH.......ceee 3
Acknowledgements.........ccccii e —————————————————— 4
Table of Contents..........cuiiiiiiii i ————————————————— 5
1. INtrodUCHION.... .. ————————————— 7
(IR R [g 1T T A=Y o I o o PP 7
1.2. Patient Engagement Mobile ApPP.........uueeiiiiiiiiiiii e 7
2. RESEAICh......cco e ———————— 9
2.0 INTFOAUCTION. ...ttt e e e e e 9
2.2. Why Patient Engagement Matters. ... 9
2.3. Integrating Healthcare Systems.........ccccoiiiiiiiiiiiiiiiecce e 10
2.4. Patient Self-Management and OUICOMES............ceeiiieiiiiiiiiiiieeeeeee e 10
2.5. Keeping Healthcare APPS SECUNE......cccoiiiiiie it 10
2.6. Review of Similar AppliCatioNS.........ccoooi e 11
p R O o o T 11] T o TP PETRPO 13
3. Requirements and Feasibility.......cc..ccoommimmiiiiiiicccr e 15
3.1, USer REQUINEMENTS. ...ttt e e et e e e e e en e e e e e eeenes 15
3.2. Functional ReQUINEMENTS........coooi it e e e e e e e e 24
3.3. Non-functional requUIremMeNts......... ..o 24
3.4, SYSIEM MOUEL......eiiieeeeeiieeeiee et e e e e e e e e e 24
3.5. Feasibility STUAY........ooiiieie e 25
3.6, LIMItatioNS. ... e e e 26
I T =] o | 28
4.1, Program DESIGN.......couuiiiiiiiiiii et 28
4.2. User Interface DeSIgN..........ooommiiiiiiiiiii e 33
5. Implementation..........o i s nnnan 41
5.1. SCRUM MethodolOgy......cccuuiiiiiiiiiiiii it 41

FlexiCare: A Digital Patient Management System for Physiotherapy 4

https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.92r2ucmz0o5n
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.gy8pzlpq7uze
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.gbuz81d1qj5e
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.utpa2uic78fd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sscgm6qun9uj
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.1c1burili7rp
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.2b1exjhsrh57
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m0ca5zimumg3
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.y1fskar3ongb
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.j4yyzyaij8ia
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.mzo9kxk6t3n0
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.lvae5zpqg3xy
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.w2t6y1b5gr14
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m4nfjgqg3m43
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.4m3dcmeq1m2h
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.ogqgoqtte6it
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.n3wl9lq3h99d
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tw8g315bz2ij
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.s6eoop5g3z1n
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sfhw52mr53ji
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.wo9blezck1rp
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.4y8347jptojf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tmuevwlh6bt
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.fwtwp3owztc2
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.dwpiqym34apd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m5zwb0jxzoxd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.5n854vzcudxr

5.2. Development ENVIronmeNt..........cooooiiiiiiie e 41

5.3. Sprint 1: Python Development...........coo oot 42
5.4. Sprint 2: Backend Development...........cooooiiiiiiiiieeccce e 43
5.5. Sprint 3: Frontend Development.............oovuiiiiiiiiiiie e 54
6. Testing and ReESUILS........ccoomee e ———— 76
6.1. Usability TEStING....coiiiiiiiiiiieee s 76
I U o1 =1 (] o P 76
6.3, EVAIUGLION.......eeeiiiii 80
7. Project Management...........oooiiiiimieemmmiiii s 82
7.1 ProJECE PRASES.......uiiiiiiiiiiiieii ettt 82
7.2. Project Management TOOIS...........oooiiiiiiiiiiiii e 83
8. RefleCtion..... .. ———————————————— 88
8.1 Your VIiews 0N the Project.........ooooiiiiiiiiiie et 88
8.2 Completing a Large Software Development Project.............oooovviiiiiiiiiiiiiiiiieeeeee, 88
8.3 WOrking With @ SUPEIVISON.........ooiiiiiii e 88
8.4 TEChNICAl SKIllS.......ooiiiiiiiee e 88
8.5 Further Competencies and SKills.............oooormmmiiiiiiiii e 89
8.6. FUIUME PIANS.... ..o 89
L0 0 o o LT =T o R 91
ReferenCes.....ccoi i —————————— 92

FlexiCare: A Digital Patient Management System for Physiotherapy 5

https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.vsvachrccg3r
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.cpnqfskm034b
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.lzs0flzc8dym
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.z2jhcw8297qf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.dhyr53eljvmt
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tuu3aummbcjx
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.2e3wr2undhd8
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.y59w6twehukf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.8109q3oo46d1
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.5f6s1me68kv4
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.wzs0r9msbec
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.346e0h3rxh2q
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.7kuvbnlk810g
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.873mtmulevdf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.naeop9v4xnsu
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.6h5qpxdkzv1j
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.13vtmbeh7jq
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.euudlfnklt8v
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sbo4ljdh58w2
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.vjddrjprxfb1

1. Introduction

FlexiCare is a multi-faceted digital platform designed to make physiotherapy more efficient
and accessible for physiotherapists and patients. The project will be divided into two main
components:

1.1. Admin Web App

This web application will help physiotherapists manage their work more effectively. The
app will be built using ASP.NET Core, a C# framework designed for simplified web
development. This app will allow physiotherapists to digitally:

e Organise and access patient records
e Schedule and manage appointments
e Create, update, and monitor treatment plans.

The user interface will be designed using HTML views, and data queries will be handled
through REST to ensure fast and flexible access to information. With this system,
physiotherapists can easily add, edit or delete patient information, helping them save time
and reducing needless administrative tasks.

1.2. Patient Engagement Mobile App

This mobile app will help patients stay engaged and on track with their treatment plans.
Developed using React Native, it can work seamlessly on both I0S and Android Devices.
Patients will be able to:

e Track their daily exercises
e Receive reminders for upcoming appointments
e Access valuable educational resources related to their care

The app will feature a modern and simplistic design, using NativewindCSS, a tool for
efficient styling. The app will be tested using Jest to ensure high performance across
devices of various performance levels.

Flexicare will use SQLITE, a reliable and secure database system for storing essential
data such as patient information, treatment plans, exercise logs, and progress tracking.
This will ensure that both the web and mobile applications can manage data efficiently,
while maintaining a high standard of security and accessibility. Both Physiotherapists and
patients alike will be able to access and upload their information quickly and safely.

The primary goal of FlexiCare is to make physiotherapists' jobs easier by minimising time
spent on administrative tasks, while helping patients stay actively engaged in their
recovery. This project hopes to improve the efficiency of physiotherapy practices and the
patient experience by building a web app dedicated to physiotherapists and a mobile app
for patients.

FlexiCare: A Digital Patient Management System for Physiotherapy 6

FlexiCare is designed to grow with time. As more users join the platform, the system can
handle increased data and traffic without compromising performance. Both applications
will be intuitive and user-friendly, making them accessible to those with limited technical
experience. While dealing with sensitive information, security is a top priority. Thus, the
system will ensure that all patient data remains protected.

Ultimately, FlexiCare seeks to become a simple, trusted, all-in-one solution for
physiotherapy, allowing therapists to do efficient work while supporting patients every step
in their recovery journey.

FlexiCare: A Digital Patient Management System for Physiotherapy 7

2. Research

2.1. Introduction

Healthcare is constantly evolving, and technology plays a bigger role than ever. Systems
like the proposed FlexiCare, a digital patient management tool, aim to enhance patient
care, especially in physiotherapy. This literature review explores essential themes in
designing and implementing such systems, focusing on information systems,
communication, patient involvement, and safety in healthcare. The aim is to present the
current landscape, highlight opportunities and challenges, and support the development of
FlexiCare. Understanding these topics is essential for creating a reliable, user-friendly
system that promotes communication, supports self-management, and ensures patient
safety.

2.2. Why Patient Engagement Matters

In physiotherapy, patient engagement is key to determining treatment success and overall
patient satisfaction. Engaged patients are more likely to follow their prescribed exercise
regimen, actively participate in their rehabilitation and communicate openly with health
professionals. This is crucial as it is what patient-centred care is about and it improves
clinical outcomes. Studies show that the more a patient is involved in their treatment plan,
the better the results and the lower the costs [1].

Introducing a physiotherapy tracking app to improve patient engagement could be an
effective first step. But how is that to be done? Well, in this study ,it is suggested that using
user-centered functions that address the patient's needs and preferences [1]. At a
minimum, the app should offer educational tools that could explain the details and
importance of the medical condition, the prescribed therapy, and why commitment to such
a therapy plan is of the essence. Secure messaging and video consultation can further
enhance the experience by allowing patients to communicate directly with the medical
professional, fostering real-time support.

Technology can create interactive opportunities that strongly boost user motivation.
Allowing for progress tracking and personalised feedback may let a patient visualise their
progress over time. "Seeing is believing," whereby an individual will feel a greater sense of
accomplishment and thereby may wish to continue trying. More importantly, they will feel
confident that what they are doing helps them to improve their abilities. This development,
when one comes to think about it, is not unlike that "aha" moment when patients
sometimes suddenly realise that the therapy is working and that they are getting better.

Emphasising patient engagement in physiotherapy apps heightens their commitment to
treatment and health overall. Patients who feel like active participants in their care are
more likely to stay committed and achieve better outcomes. At the core of the FlexiCare
approach, is the belief that a successful digital therapy application should educate,
communicate, and motivate , three components of a successful user experience for any
patient [2]. Moreover, while it is the app that is facilitating this, it is ultimately the thinking
behind it, coming up with such innovative features that allows patient engagement to
become possible in the first place [2].

FlexiCare: A Digital Patient Management System for Physiotherapy 8

2.3. Integrating Healthcare Systems

Integrating different healthcare systems is important but complex. The goal is to create a
seamless system that improves care for patients and simplifies work for professionals.
This means connecting health information systems (HIS) with everyday clinical practices in
for example, nursing and physiotherapy [3]. There are a list of challenges that include
interoperability issues, poor communication between systems, and restrictive regulations.
Still, integration is vital for improving healthcare delivery.

2.4. Patient Self-Management and Outcomes

Supporting patients in managing their own health is a cornerstone of modern healthcare,
especially those with chronic conditions [4; 5]. Physiotherapists are well-positioned to
provide structured, evidence-based self-management supports for their patients [4]

These supports might include one-on-one sessions, follow-ups, and tailored information. It
helps patients understand their condition, recognise warning signs, develop coping skills,
and take control of their lifestyle and medications. Regular feedback and encouragement
to make informed decisions are also important. Programs that use multiple strategies tend
to lead to better outcomes and higher quality of life [4].

To evaluate treatment success, healthcare systems often use patient-reported outcome
measures (PROMs). These tools gather data directly from patients about their health
status. Despite their value, PROMs are not always used consistently in physiotherapy due
to various barriers [6]. Mobile Health apps can incorporate PROMs and support
self-management, but user perceptions and experiences play a key role in their
effectiveness [7].

2.5. Keeping Healthcare Apps Secure

The prevention of cyber attacks on health information systems in healthcare services is
fundamental, mainly because these systems handle highly sensitive patient data.
Healthcare data, including electronic health records and personal health information,
needs strong security measures [3]. Protecting sensitive patient information, preventing
unwanted use, and stopping theft are all vital aspects of healthcare data security [3].

The increasing use of digital systems in healthcare, including connected medical devices
and electronic health records, has unfortunately also introduced significant cybersecurity
concerns [6]. Cybersecurity incidents are becoming more frequent and can seriously affect
healthcare organisations [7]. These effects range from the accidental release of protected
health information to disruptions in patient care [7].

In today's environment with advanced cyber threats, it is almost certain that successful
attacks will occur [7]. Therefore, healthcare organisations must have effective strategies to
respond to these incidents [7]. Recent events, such as ransomware attacks that have

FlexiCare: A Digital Patient Management System for Physiotherapy 9

taken parts of healthcare organisations offline, show the significant impact of these
incidents [7]. Understanding how organisations respond and how to improve these
responses is vital for maintaining safe and effective healthcare delivery globally [7].
Developers must implement a comprehensive set of multi-layered security measures,
including encryption, secure access mechanisms, and regular software updates [8].

Encryption is one of the most effective and straightforward tools for safeguarding data. It
ensures that information, whether it is being transferred or stored, is converted into
unreadable code unless accessed without a key. This means that if the data is intercepted
or accessed without permission, it remains unusable without the necessary keys to decrypt
it [9]. Even basic encryption methods can offer strong protection.

Keeping the app regularly updated is another critical step. As cyber threats evolve, older
versions of software may become more vulnerable. Developers must respond quickly
patching security flaws and releasing updates. A strong developer will also regularly audit
their own work to make sure no new bugs have introduced a problem into the app.[10]

Trust is the foundation of any healthcare relationship. If patients feel their data is not
secure, the credibility of the physiotherapy app is compromised. Protecting user data is not
optional, it is a fundamental responsibility. Developers must therefore incorporate strong
encryption, secure authentication methods, and regular updates to build and maintain trust
between patients and providers.[11]

2.6. Review of Similar Applications

Before beginning the development of FlexiCare, it is essential to analyse existing
applications that offer similar features. Studying comparable systems is an efficient way to
identify established best practices, common issues and gaps in the current functionality
that offer opportunities for innovation. It ensures FlexiCare can build upon proven
technologies and offer improvements where current solutions fall short. Table 1 compares
two such applications: Helix and PhysiApp, focusing on their key functionality, algorithms,
advantages and weaknesses.

Helix is a web-based application designed for physiotherapists. It helps manage patient
records, track progress and create personalised treatment plans. Helix uses integrated
algorithms to assist physiotherapists in monitoring patient outcomes and adjusting their
treatment plans accordingly. As shown in Table 1, Helix offers several advantages, such as
streamlining the physiotherapy workflow, providing customisable treatment plans and
using data-driven insights to support physiotherapists in making informed decisions.
However, two notable limitations were observed. It is a web application, not a permanently
downloadable app, requiring a stable internet connection to function correctly. Its relatively
complex design may also create a harsh learning curve for new users.

PhysiApp is a mobile application designed to support patients by tracking their exercises,
sending reminders, and offering feedback on their progress. It helps patients stay engaged
with their treatment plans by sending regular notifications and personalised exercise
suggestions. PhysiApp uses algorithms to track exercise completion, deliver personalised
reminders and feedback, and assist with goal setting and tracking. Its advantages include

FlexiCare: A Digital Patient Management System for Physiotherapy 10

keeping patients on track with their exercises through easy-to-follow progress tracking and
reminders/feedback. While PhysiApp accessibility is an improvement over Helix, as a
mobile app, it is limited to mobile devices. It is still noticeably complex and may not be
suitable to less tech-savvy users.

FlexiCare: A Digital Patient Management System for Physiotherapy 11

Table 1: Review of Applications with Similar Functionality

Application Helix PhysiApp

Category Physiotherapy Patient exercise tracking
management

Technology Web App Mobile App

Description and
functionality

Helix helps physiotherapists
manage patient records,
track progress, and create
personalised treatment
plans. It uses data-driven
tools to optimise treatment
based on patient needs.

PhysiApp supports patients
by tracking their exercises,
sending reminders, and
offering feedback on
progress. It engages
patients with their treatment
plans through notifications
and personalised exercise
suggestions.

physiotherapy
workflow

e Customisable
treatment plans

e Data-driven insights
for physiotherapists

Algorithms Patient data analysis e Exercise completion
Treatment plan tracking
optimisation e Personalised

e Progress monitoring reminders and
feedback
e Goal setting and
tracking
Advantages e Streamlines e Keeps patients

engaged and on
track with exercises
e Easy-to-follow
progress tracking
e Offers feedback and
reminders

Disadvantages

e Requires internet
access

e |t may be complex
for new users

e Limited to mobile
devices

e [t may not be
suitable for all
patients, especially
those less
tech-savvy

FlexiCare: A Digital Patient Management System for Physiotherapy

12

The images below display the user interfaces of Helix (Figure 1) and PhysiApp (Figure 2).
These examples provide valuable insight into how these existing applications support
physiotherapists and patients through their design choices. FlexiCare hopes to build on
these insights, by analysing the strengths and weaknesses of these designs. FliexCare’s
interface will deliver a more intuitive, accessible and user-friendly experience.

L C & nexushelx medicaidinector.com/ a ¢ 4L N ‘ :

Appointmants | s

w2 S
e tirant SreeOP OF + D) S it cond T O ot
bl L

Byl Ween Reors

P, 30 Age 630 W s + 4

- |

0335 pm - 04.85 pm
e Bewit. WiRoR 70091
Balie A1 BT, 5420 229 B0

ABo@

Helix Interface [12]

Stay on track and motivated Exercise with professionally Know what you did and how it Track your progress and results in
narrated videos went real time

- . D [] L)
5 Tatay & Track acherence

Lewes exiremity stieagihening uisey

Banded side sleps with Land areund the
beclyweight or simple ecuipment

°Sn=\ ®:

Figure 2: PhysiApp interface. [13].

2.7. Conclusion
This research has explored important themes involved in designing and developing a
digital patient self-management system like FlexiCare within physiotherapy. As healthcare

becomes increasingly more digital, patient engagement, integrated systems, data security
and supporting self-management are highlighted as key areas of importance. Patient

FlexiCare: A Digital Patient Management System for Physiotherapy 13

engagement in particular is vital to improving treatment motivation and outcomes, and this
should be supported through user-friendly, interactive technology. Integrating healthcare
systems is a significant challenge, but it is necessary to streamline digital care.
Encouraging patient self-management through feedback, educational content and other
tools can lead to self-supportive patients and better recovery outcomes.

However, no digital solution is possible without strong cybersecurity. Within the world of
healthcare, patient confidentiality is paramount above all else, and as cyber threats rise,
safeguarding patient information through encryption, secure authentication and regular
updates is crucial. The trust in any healthcare system depends directly on the strength of
these protections.

The review of Helix and PhysiApp highlights important lessons for FlexiCare, highlights
aspects that are successful and can be built upon, and areas of weakness such as intuitive
design, that can be learned from.

In conclusion, the development of FlexiCare is not as simple as creating an app, it is about
enhancing care, empowering patients to be self-supportive and self-managing, and
supporting professionals through an efficient design. By learning from current challenges
and addressing existing best practices, FlexiCare has the potential to set the standard for
digital physiotherapy tools.

FlexiCare: A Digital Patient Management System for Physiotherapy 14

3. Requirements and Feasibility

A clear understanding of the system requirements and feasibility is essential for building a
complicated, yet effective and user-intuitive application such as FlexiCare. This section will
outline the key features required to meet the goals of the project, and will explore potential
technical and practical challenges that may arise during development. It will also introduce
the initial system model and outline the project’s early roadmap. This will ensure that the
development is structured and informed from the outset.

The requirements are divided into three primary categories:
o User requirements
e Functional requirements
« Non-functional requirements

3.1. User Requirements

User requirements specify what the end-user aims to achieve with the software. These are
generally not technical requirements, but rather are focused on the wants and needs of the
user, and serve as the foundation for designing a user-friendly and effective application. In
the case of FlexiCare, gathering accurate user input prior to development was essential to
ensure that the final product directly aligns with the needs and expectations of both
physiotherapists and their patients.

A targeted user survey was conducted to obtain these insights.
3.1.1. Survey

A survey was conducted with practising physiotherapists to collect meaningful input on
what they consider essential in a physiotherapy tracking and management application.
This survey served as a critical tool, offering valuable insights into both common current
issues and desired potential features. By capturing real-world experiences and
expectations, it was possible to gather the understanding required for an application that
can truly support and enhance physiotherapy care.

The survey was distributed anonymously via Google Forms, ensuring that participants
could provide honest and uninfluenced feedback. Ten professionals from a range of age
groups, practice settings and levels of experience participated. The hope of this mix was to
provide a balanced perspective and have a general overview of a larger proportion of the
potential user base

The questionnaire was designed to gather both quantitative data, in the form of multiple
choice rankings, and qualitative feedback, such as questions with open-ended comment
responses. Physiotherapists were asked to evaluate the usefulness of various proposed
features, and their responses highlighted a value for simplified record-keeping and
appointment management. The survey results will be used as the basis for the FlexiCare
design, ensuring it meets the needs of physiotherapists and enhances patient care.

FlexiCare: A Digital Patient Management System for Physiotherapy 15

3.1.2. Why the Survey Matters

Conducting user-research is not just a formality but rather a vital step in the development
of any application, particularly within healthcare. Direct input from users is indispensable
for a variety of reasons:

1. Real-World Relevance

By consulting physiotherapists early in the process, it ensures that FlexiCare addresses
actual needs rather than simple assumptions. This reduces the risk of developing features
that could be unused or considered unhelpful.

2. User Validation

A survey can act as a validation tool for potential features or tools. If a concept ranks
highly among the participating user-base, it signals that it is in high demand. This can help
prioritise development resources and time.

3. Design Focus

It can help define the personas and use cases that guide UX design. Knowing who the
user is and what they value means every interaction in the app can be shaped around their
expectations.

The survey results offer valuable insights into the challenges physiotherapists face when
supporting patients with exercise issues. As seen in Figure 3, a significant 85.7% of
respondents identified low patient motivation as a major barrier, with 57.1% reporting that
patients frequently forget to perform their prescribed exercises. Additionally, 42.9%
highlighted physical discomfort, pain, or uncertainty about proper technique as common
factors that hinder adherence. These insights point to a consistent need for tools that can
provide both guidance and encouragement throughout the rehabilitation process.

What are the biggest problems your patients have with doing their exercises?
7 responses

They lose motivation 6 (85.7%)

They forget to do them 4 (57.1%)

The exercises hurt or are

o
uncomfortable)

They don't have time —2 (28.6%)

They’re not sure how to do the
exercises correctly

They're scared of hurting
themselves

3 (42.9%)

1 (14.3%)

Figure 3: Survey Results - What are the biggest problems your patients have with doing their exercises?

FlexiCare: A Digital Patient Management System for Physiotherapy 16

As shown in Figure 4 when asked about desired features in a physiotherapy app, the vast
majority (85.7%) of physiotherapists rated explicit exercise videos and timely reminders as
the most valuable tools to assist patients. These were closely followed by
progress-tracking features and adjustable exercise plans, with 57.1% of participants

expressing strong interest in tools that allow for flexibility and individualisation of therapy
routines.

How important are these app features to help patients stick to their exercises?

b d d o

Clear videos showing how Reminders to do the Setfing goals and tracking Making exercise plans that Feedback on how well thay Information about thelr
to do the exercises exercises progress can be adjusted are doing the exercises condition

Figure 4: Survey Results - What are the biggest problems your patients have with doing their exercises?

On the clinical side, Figure 5 shows 71.4% of respondents indicated that chronic pain and
arthritis are among the most prevalent conditions affecting their patients, while 57.1%
noted that post-surgical recovery was a primary concern. These findings underscore the
importance of tailoring exercise content to support long-term conditions and
recovery-focused rehabilitation.

What types of physical problems do your patients have when they struggle to keep up with their
exercises?
7 responses

Hypermobility

Chronic pain 5 (71.4%)
Recovery from surgery —4 (57.1%)
Arthritis 5(71.4%)

Nerve or brain problems (like st... 3 (42.9%)

Foot, ankle, or lower limb issue... —1 (14.3%)
Any of the above as one’s pers... 1(14.3%)
Any physical issue. It's more d... 1(14.3%)
Could be a combination of above —1(14.3%)
0 1 2 3 < 5

Figure 5: Survey Results - What types of physical problems do your patients have when they struggle to keep up with
their exercises?

In terms of features and functionality, Figure 6 shows 85.7% of participants expressed a
strong preference for the ability to customise exercise plans within the app, reinforcing the
importance of adaptable treatment options. Moreover, as seen in Figure 7, the same
percentage agreed that including clear exercise demonstrations and reminder features

FlexiCare: A Digital Patient Management System for Physiotherapy 17

would be particularly beneficial in helping patients stay on track. An additional 71.4%
supported the inclusion of relevant patient health information within the app to provide
context and improve care coordination.

Would you want to be able to customize exercise plans for your patients in the app?
7 responses

® Yes
® No
' Maybe

Figure 6: Survey Results - Would you want to be able to customise exercise plans for your patients in the app?

What features do you think would help your patients most in an app?

7 responses

Exercise videos 6 (85.7%)
Tools to track progress 4 (57.1%)
Reminders to do the exercises 6 (85.7%)

A way to track pain or difficulty 2 (28.6%)

Information about their health p... —5(71.4%)
Connecting with fitness tracker... —1(14.3%)
Motion tracking with AR techno... —1(14.3%)
Exercise classes or regular one... —1(14.3%)
Links to other literature or relev... —1 (14.3%)
Clear instructions —1 (14.3%)
0 1 2 3 4 5 6

Figure

7: Survey Results - What features do you think would help your patients most in an app?

These findings highlight a clear direction for the FlexiCare app: it must prioritise intuitive,
user-friendly features that promote motivation, enable personalisation, and reduce
uncertainty around exercise routines. By addressing core issues such as motivation,
memory, pain, and confidence in technique, the app can significantly improve patient
engagement and hopefully support better outcomes in physiotherapy care.

3.1.3. Personas

Personas are fictional, but data-driven profiles are designed to represent the key user
types who are likely to use a software application. The idea is to help developers better
understand real users' motivations, behaviours, needs and potential frustrations. They are
developed using user surveys, like that conducted above, with qualitative and quantitative

FlexiCare: A Digital Patient Management System for Physiotherapy 18

data, focused on user goals, behaviours, environment, pain points and needs. Personas
serve as a powerful tool to guide design decisions and ensure that the final product
remains focused on real-world usability and relevance.

The following is an illustration of the first persona, Sarah Thompson. Her profile reflects
the needs and preferences of a key user group identified during the user research phase.

Goals:

Current Behavior:

e Provide personalized care to patients, helping them

e Sarah typically communicates with patients during
recover from chronic pain and surgery. i

in-person appointments and provides printed
exercise plans.

e Ensure patients stick to their prescribed exercise
plans for betier recovery outcomes. e She frequently follows up with patients via phone
or email for reminders and feedback.

e Improve the management and monitoring of

patient progress through more efficient tools. o Sarah often struggles with patients forgetting
exercises or not adhering to their plans
consistently.
Pain Points: Needs:
e Paticnts forget to do their exercises or lose ® An casy-to-usc app that allows her to assign and

motivation. adjust exercise plans remotely.

Managing and tracking patient progress manually
is time-consuming and inefTicient.

Difficulty in offering personalized follow-ups
outside of appointments.

Tools for tracking patient progress and reminding
patients of their exercises.

Clear videos and instructions to ensure patients are
performing exercises correctly.

e [Lack of a system to easily adjust exercise plans ® A way to engage patients with additional resources
based on patient feedback or progress. (e.g., educational content) to boost motivation.

e A customizable system that fits her patients”
individual needs.

Figure 8: Physiotherapist Sarah Thompson's Fictional Persona

While it's important to support physiotherapists like Sarah with tools to track progress and
customise exercise plans, it's equally vital to meet the needs of patients like John, the
second persona. Physiotherapists need efficient systems for monitoring, while patients
require a simple, engaging platform that encourages regular participation and proper
technique. Balancing both perspectives ensures the app supports effective care and
sustained patient engagement.

FlexiCare: A Digital Patient Management System for Physiotherapy 19

Relieve chronic pain and improve mobility through
regular exercise.

Follow the exercise plan provided by his
physiotherapist to ensure long-term improvement.

Current Behavior:

John sometimes forgets to complete his exercises,
especially on busy days.

He struggles with maintaining the right form
during exercises and often feels unsure if he's

doing them correctly.

e Stay motivated and track his progress in order to
feel empowered in managing his health. e He often experiences pain during exercises, which
leads to frustration and occasional skipping of

sessions.

e John typically uses printed instructions but finds
them hard to follow without a visual guide.

Pain Points: Needs:
e Lack of motivation to complete exercises ® An app that provides clear, casy-to-follow exercise
consistently, especially when he feels pain or videos and reminders.
discomfort.

® A simple system to track his progress and sce
e Difficulty remembering to do exercises, especially improvements over time.

with a busy personal schedule.

e Feedback on his form and how well he is doing the
e Uncertainty about performing exercises correctly, exercises.
which sometimes leads to discomfort or fear of
nury- e Information on how the exercises help with his
specific condition, boosting motivation and
e Frustration with a lack of engagement or feedback understanding.
from his physiotherapist between sessions.

® An engaging and user-friendly platform that offers
reminders and encouragement to stay consistent.

Figure 9: Patient John Miller's Fictional Persona

These personas help highlight the distinct needs, behaviours, and goals of both the
physiotherapist and the patient. They will serve as a guide for designing the FlexiCare app
to properly address their specific requirements.

3.1.3. Use Case Diagram

The use case diagram shown in Figure 10, based on the personas, represents the
interaction between users and the system. This diagram outlines the system's key
functions and how the physiotherapist and the patient interact with it. It highlights each
user's various tasks, such as the physiotherapist managing patient records and

FlexiCare: A Digital Patient Management System for Physiotherapy 20

customising exercise plans. In contrast, the patient tracks progress, follows exercise
instructions, and receives reminders. The diagram serves as a visual representation of
how both users engage with the app to achieve their goals.

Interaction Between Users and System

J—

)

Track Progress

— Manage
Patient

Records sl e
Follow

Exercise
Instructions

Customize
Exercise Plans n

Receive
Reminders

Figure 10: Use Case Diagram
3.1.4. Use Cases

The use cases represent possible scenarios or ways in which users interact with the
software based on the use case diagram. These scenarios are based on the personas and
are placed in typical situations where they would utilise the application. For example, a
physiotherapist like Sarah might use the app to assign and adjust exercise plans for a
patient, track their progress, and send reminders. On the other hand, a patient like John
might use the app to receive exercise instructions, set personal goals, track his progress,
and receive reminders to stay motivated. These use cases help illustrate how the
application meets the needs of physiotherapists and patients in their daily interactions.

FlexiCare: A Digital Patient Management System for Physiotherapy 21

Physiotherapist Use Cases (Sarah Thompson)
Use Case 1: Assign and Customise Exercise Plan
Scenario:

Sarah must assign a personalised exercise plan to a new patient. She logs into the app
and selects the patient’s profile. Based on the patient's condition and progress, she
customises the exercise plan, adding specific exercises and setting goals.

Steps:

1. Sarah logs into the app.

2. Sarah selects the patient from the list.

3. Sarah creates or adjusts an exercise plan based on the patient’s needs.

4. Sarah assigns the exercise plan to the patient and sets progress goals.

5. Sarah can adapt the plan as needed based on patient feedback or progress.
Outcome:

The patient receives their customised exercise plan, and Sarah can track their progress
remotely.

Use Case 2: Monitor and Track Patient Progress
Scenario:

Sarah wants to track how well her patients are doing with their exercise plans. She checks
the app to review the progress reports, noting how often exercises are completed and
whether the patient is meeting their goals.

Steps:
1. Sarah logs into the app and goes to the patient’s profile.

2. She views the progress tracker, which includes completed exercises, time spent, and
any adjustments made.

3. Sarah provides feedback or adjusts based on the patient’s progress and performance.
4. Sarah can also send reminders or additional resources if necessary.
Outcome:

Sarah can track the patient's progress effectively and make necessary adjustments to the
exercise plan.

FlexiCare: A Digital Patient Management System for Physiotherapy 22

Patient Use Cases (John Miller)
Use Case 3: Follow Exercise Instructions and Track Progress
Scenario:

John logs into the app to view his daily exercises. He watches the exercise videos and
follows the instructions to ensure he performs the exercises correctly. After completing the
exercises, he tracks his progress in the app.

Steps:

1. John logs into the app.

2. John views his assigned exercises for the day.

3. John watches the explicit exercise videos and follows the instructions.

4. After completing the exercises, John logs the results (e.g., number of reps, duration).
5. John checks his progress in the app to see how well he's sticking to his plan.
Outcome:

John stays on track with his exercises and can monitor his improvements.

Use Case 4: Receive Reminders and Set Goals

Scenario:

John often forgets to do his exercises. The app sends him daily reminders, encouraging
him to complete his exercises. John also sets personal goals within the app to stay
motivated and track his progress.

Steps:

1. John receives daily push notifications reminding him to complete his exercises.

2. John opens the app to check his exercises for the day.

3. He sets personal goals within the app (e.g., increase repetitions and reduce pain).
4. John works on his exercises, marking them as complete once done.

5. The app tracks his progress towards meeting his goals and provides motivational
feedback.

Outcome:

Through reminders and goal tracking, John stays motivated and consistent with his
exercises.

FlexiCare: A Digital Patient Management System for Physiotherapy 23

3.2. Functional Requirements

The functional requirements describe the core features and functions of the FlexiCare
system. Derived from the survey results, personas, and case scenarios, these
requirements ensure that the app meets the needs and expectations of both the
physiotherapists and the patients. Functional requirements outline the elements of the user
interface (Ul), detailing the actions users can take and the system’s responses to these
interactions. For example, the Ul may include features like customisable exercise plans for
physiotherapists, detailed exercise videos, and reminders to ensure patients stay on track
with their routines. Each feature is designed to enhance the user experience, providing
efficient interaction with the app and helping users achieve their goals, whether managing
patient progress or staying engaged with prescribed exercises.

This application has the following functional requirements:

e Web and Mobile App: FlexiCare will have both a web app for physiotherapists and a
mobile app for patients.

e Manage Patient Profiles: Physiotherapists can create and update patient profiles,
assign exercises, and track progress.

e Assign Exercises: Physiotherapists can set up and adjust exercise plans for
patients.

e Track Exercises: Patients can log their completed exercises and note any
pain-related issues.

e Exercise Videos: Clear exercise videos and instructions will guide patients in
performing exercises correctly.

e Feedback: Physiotherapists can give feedback to patients on their performance.

e Customisable Plans: Physiotherapists can personalise exercise plans for each
patient.

3.3. Non-functional requirements

The non-functional requirements focus on how the system should perform to meet user
expectations. To meet the scope of this project, FlexiCare must be a responsive web
application, ensuring smooth functionality across different screen sizes, devices and
browsers. The database must be highly reliable, ensuring that data is stored safely and
can be quickly accessed. Additionally, the login functionality must be secure, protecting
user information through encryption and using previously discussed features like
two-factor authentication to ensure only authorised users can log in. These requirements
aim to ensure that FlexiCare remains dependable, accessible and secure for all users.

3.4. System Model

The system model for the FlexiCare application, shown in Figure 11, is divided into three
layers: the client side, the server side, and the data layer.

FlexiCare: A Digital Patient Management System for Physiotherapy 24

The client-side layer manages the user interface for physiotherapists and patients,
allowing interactions like viewing treatment plans, tracking exercises, and receiving
feedback. For this application, this was built using React Native, which provides a
seamless and responsive experience across mobile devices. NativewindCSS was utilised
for styling, ensuring a clean, modern design, while Jest was used for testing, ensuring the
app performs correctly on various platforms.

The server-side layer hosts the application, handles user management, processes data,
and computes personalised exercise plans and progress tracking. This was developed
using ASP. .NET Core, a C#-based micro-framework that simplifies web application
development. ASP. .NET Core was paired with HTML views to render the physio web app
interface and REST to handle data queries efficiently, allowing flexible database
interaction.

The data layer consists of a database for storing patient information, exercise data,
treatment history, and the recommendation model used to tailor treatment plans. For the
data layer, SQLite was chosen as the relational database system. It stores all critical
information, such as patient data, treatment plans, exercises, and progress tracking,
offering a reliable and scalable solution for data management

& paTA LAYER

— £_ 2
: R rivensne ' (9
2\ CLIENT-SIDE) ¢ ¥

Patient

— O : Information
L J—— e =4

Physiotherapist User
ul Management

_R_A
> B
4 bl

o Exercise
4 O |: Data DB
6_"_\ progress J 1]

updates Application Data
Host Processing

Patient UI

R_ A
> (B
'3 w

(Treatment
History DB

Personalized
Plan

Computation %

Recommendation
Madel

Figure 11: FlexiCare System model Diagram

During development, Git and GitHub were used for version control, enabling efficient
tracking of code changes and ensuring secure backup management throughout the
development process.

FlexiCare: A Digital Patient Management System for Physiotherapy 25

3.5. Feasibility Study

Developing the FlexiCare application involves addressing several potential challenges that
could impact the project’'s success. Table 2 outlines the major challenges anticipated
during development, along with descriptions and proposed solutions. ldentifying these
challenges early helps ensure that appropriate strategies are put in place to manage risks,
maintain progress, and deliver a functional and user-friendly application.

FlexiCare: A Digital Patient Management System for Physiotherapy 26

Table 2: Assessment of Major challenges

Challenge Description Solution

Inexperience with C# Limited experience in C# Use available tutorials and
programming may slow community support to learn
development. and improve C# skills.

Understanding of System | Building a system with Study similar systems and

Design multiple layers (client, break the tasks into smaller,
server, and data layers) can | manageable parts for
be complex. easier development.

Time Constraints Limited time to complete Plan the project well, set
the project may affect some | clear priorities, and focus
features. on completing the most

critical features first.

Data Accuracy Ensuring the system gives | Carefully design the
accurate and reliable database and test the
recommendations. system regularly to improve

the accuracy of
recommendations.

Cold Start Problem New users or Use demographic data and
physiotherapists may not initial user input to create
have enough data for basic recommendations
personalised until more data is gathered.
recommendations.

User Engagement Keeping patients engaged | Add reminders, progress
with their treatment plans is | tracking, and motivational
challenging. feedback to keep patients

motivated and involved.

3.6. Limitations

The development of the Physio web application faces some limitations. The project is
being developed on consumer-grade hardware (desktop/laptop), which might limit the
system's performance, particularly when handling large datasets or an expanding user
base. The absence of specialised server infrastructure also poses scalability challenges,
potentially affecting the system’s ability to manage increased traffic as the application
grows.

FlexiCare: A Digital Patient Management System for Physiotherapy 27

Regarding the user interface (Ul), the focus has been on building a basic but functional
design. Both the Physio web app (developed using ASP.NET Core with HTML views) and
the accompanying patient mobile app will be designed to meet essential usability
requirements. More advanced features, aesthetic enhancements, or complex Ul
interactions will only be implemented if time allows within the project schedule.

Time constraints also represent a significant limitation for the project. Careful prioritisation
of core features is necessary. Specific enhancements and additional features may be
deferred to deliver a stable and fully functional product by the project deadline.

Additionally, API development will be essential for interacting with the patient's mobile app
and the web-based physiotherapy management system. This may introduce some
complexities in synchronising data across platforms and ensuring that the API functions
correctly across different environments (web and mobile).

FlexiCare: A Digital Patient Management System for Physiotherapy 28

4. Design

This section outlines the design of the application. The objective of the design phase is to
provide developers with a clear blueprint to build an application that meets the
requirements outlined in the requirements section.

The design process divided into two key areas:

1.

2.

Program Design

User Interface Design

4.1. Program Design

4.1.1. Technologies

The FlexiCare application is built using the following two technologies, as outlined in
Figure 12:

1. React Native (Mobile Application):

Enables cross-platform compatibility for both IOS and Android with a single
codebase.

Support rapid development with a strong ecosystem and community support.

Styled using NativewindCSS, providing a utility-first approach to responsive and
customisable Ul components.

Previously used in related projects, allowing faster development through existing
expertise.

2. ASP.NET Core (For web app, web server, and API):

A new, modern framework, providing opportunities for growth and learning
Supports both MVC (Model-View-Controller) and API architectures.

Offers high scalability, flexibility and robust performance for web and backend
systems.

Utilises SQLite as the default database, simplifying setup and focusing efforts on
application logic

HTML files are used as part of the MVC views within ASP.NET Core to render
content and display the web app interface.

This combination of technologies ensures efficient development and seamless integration
across both mobile and web platforms, with a clean and maintainable codebase.

FlexiCare: A Digital Patient Management System for Physiotherapy 29

Physio Application System Overview

[PATIENT MOBILE APP

,4.-_‘-" -

Tailwind
Css 4
internal logic ==

=
REST API ::{:_N ETS T dataqueries ———> [__

ASPNET SQLite
J Core /C# \
N ET HTML views & ___
% REST
ASPNET
Core

Figure 12: FlexiCare System architecture and technologies
4.1.2. Structure of Technologies
1. React Native (Mobile Application)
React Native is organized into a modular structure:
e /node_modules: Project dependencies.
e /assets: Static files (e.g., images, illustrations & icons).
e /components: Reusable Ul components.
e /constants: Reusable constant values for icons
e /app: Contains the pages/views of the app.
o [(protected): The pages of the app that require Authentication
m /(tabs): Contains pages which can be navigated to using the TabBar
o laccount: Login & onboarding pages can be viewed without Auth
o [_layout: Root layout file where AuthContext is in
e /services: Helper functions & API functions
e /interfaces: Typescript type interfaces for APl models
e context: Contains the Auth context used to maintain Auth state

e tailwind.config.js: Configuration for NativewindCSS - based on TailwindCSS.

2. ASP.NET Core Structure (For Web App, Web Server, and API)

The ASP.NET Core solution is divided into two main area (MVC and API) within a single
folder.

FlexiCare: A Digital Patient Management System for Physiotherapy 30

e Controllers: Handles HTTP requests (MVC returns views, and API returns data)
e Models: Shared data structures across MVC and API.

e Services: Business logic used by both projects.

e Data: Contains the database context.

e Views: Only in the MVC project, contains Razor views for Ul.

e wwwroot: Only in the API project, status assets (JavaScript, CSS, images).

4.1.3. Design Patterns
1. Model-View-Controller (MVC)
Within the ASP.NET Core web application the MVC pattern is implemented:
e Model: Handles the data and business logic.
e View: Displays the user interface (Ul) using Razor views (HTML + C#).
e Controller: Manages user input, updates the model, and returns the view.

This structure keeps the app organised and easy to maintain.

2. Client-Server (API)
The API project follows the Client-Server approach:
e Client: The React Native mobile app makes requests to the server.
e Server: The API processes these requests and responds, typically with JSON.

This allows the mobile app to interact with the backend.

3. Object-Oriented Programming (OOP)

Both the MVC and API parts of the application use Object-Oriented Programming (OOP)
principles:

e Classes and Objects: Core parts of the system such as the Patient, Exercise, and
Appointment are represented as classes.

e Encapsulation: Data and methods are bundled together inside classes, hiding
complexity and making the code more manageable.

e Inheritance: Code reuse is achieved by allowing one class to inherit properties and
methods from another. For example, the BaseController class sets standard

FlexiCare: A Digital Patient Management System for Physiotherapy 31

navigation behaviour, and all other controllers inherit from it, automatically applying
consistent behaviour across the application.

Polymorphism: Each controller inherits functionality from the ASP.NET controller
class, while also implementing specific actions on top of this as required by each
individual controller class.

OOP helps in building a modular, reusable, and easy-to-manage codebase.

4.1.4 Application Architecture

The application has a layered architecture, as shown in Figure 13, dividing the mobile and
web apps into clear sections for better organisation and scalability.

1. ASP.NET Core Architecture (Web App)

MVC (Model-View-Controller): Separates concerns into Models (data), Views (Ul),
and Controllers (logic).

API Layer: Handles RESTful APl requests for data exchange with the mobile app.

Database Layer: Uses SQLite, the default database in ASP.NET Core, for local
storage and database interaction. Entity Framework Core is used to interact with
database.

2. React Native Architecture (Mobile App)

Ul Layer: Built with reusable components and screens (e.g., Home, Profile).

Navigation Layer: Managed with React Navigation for screen transitions (e.g.,
stack, tab navigation).

State Management: Manages app state with Context API.

API Layer: Communicates with the backend using Axios or Fetch for AP| requests.

Styling: Uses NativewindCSS or custom styles for responsive Ul design.

This architecture ensures the application is modular, easy to maintain, and scalable for
future development.

FlexiCare: A Digital Patient Management System for Physiotherapy 32

Layered Architecture: React Native Mobile App & ASP.NET Core Web App

] MOBILE APP

<

Navigation
Layer

= DATABASE LAYER

NET
y L
OS0!

Core
Ul Layer State AP Layar AP Layer Controllers
Management

Figure 13 : Application Architecture Diagram

4.1.5 Database Design

The database schema is designed to handle the relationships between physiotherapists,
patients, treatments, exercises, and appointments.

ProgrammeExercise s

ExerciseCategoryld + ExerclseCategory

MName

Exerciseld
Notes
PatientProgramme

Programmeld

Id

EndDate

Patientld

Session Programmeld

StartDate
Id

Done INTEGER Pragramme
ExerciseCategoryld

ExerciseDate

Exerciseld

Naotes

Patientld Hame

PatientProgrammeld Duration

Programmeld BUTOE

ProgrammeTreatment

Appointment Id
Programmeld
Id INTEGER Treatmentld
Patient/d
Physicld
When

Id

Mame
Phone

Id Address

|
Name Emal

Subtitle

Figure 14 : Entity Relationship diagram

FlexiCare: A Digital Patient Management System for Physiotherapy

The Entity Relationship Diagram (ERD), shown in Figure 14. for the FlexiCare system
highlights how key tables such as Physios, Users, Treatments, Programs, Exercises and
Appointments are interconnected. Each table is connected using foreign keys, helping to
keep the system organised and allowing the application to efficiently manage patient
records, treatment plans, exercise schedules, and appointments.

The Physios table stores information about physiotherapists. The physio_id acts as
a primary key and is used in both the Users table (to link each patient to their
physiotherapist) and the Programs table (to assign physiotherapists to patient
programs).

The Users table stores patient details. Each patient is linked to a physiotherapist
through the physio_id foreign key.

The Treatments table lists available treatment options. Each treatment can have
one or more related exercises, which are stored in the Exercises table.

The Programs table records the rehabilitation programs assigned to patients, and
connects patients, physiotherapists, and exercises together.

The Appointments table manages scheduling between patients and
physiotherapists, storing information about upcoming and past sessions.

4.2. User Interface Design

This section outlines the planned user interface (Ul) design for the FlexiCare mobile
application. This initial version will use this design as a basic frame, and the mobile
application Ul will be subsequently developed based on this concept. These designs will
follow a user-centered approach, aiming to deliver a clear, intuitive experience that
supports patient engagement and effective treatment tracking.

4.2.1. Ul Inspiration
i et o < £ i ol - m .. -_ ---) ._E_
: 1258 88.1.. = 128/80 .. — AdaKita Guarantees s ‘/1"/_-1’1”7
Koy | W = s T fmeserea | |0 L
o B it oY] | withDousie securty "
"5 “ o v s ot ey s —
{ED }QAML— I'r’\ol = [l I| @b/
=2 |
! Lr—%— ~ % = ,
° — Earn points and
fi Saving Is Now Easier, | o | spend your points like
More Practical, And \ 7T you use your money
Safer With AdaKita ?| it
— _ \ g J) S
Figure 15: Metrics Bar Charts [14] Figure 16: Modern Onboarding Design [17]

FlexiCare: A Digital Patient Management System for Physiotherapy 34

wal T -
Friday s &
daty 36 2074 -
IHH HBEE
. P g Add activity *
Activities from lately Statistics
oo o Moening checkiin
Weekly Finish
planning workoul F Duratan
Priaritiecd 5 o o [e o0 o
m @ tasks
e o#, Eiid
83%
ARUICK TIPS i Compieted
Sew o planning? | - “
Dbl stanec waih i ik psnnet doesn’| Aditional @ QW E R T YL I:GP
e 13 Y wehia Lttt vl =
fasks ASIDIF GHJ KL
CHEED | 50% e zxcvenuf@
v Compinto s spacs oo
A\, v
= ¢

e

Coffesstaries

P escsirs O
faee0 ©
P Contns
2 Logew
a

Figure 17: Home Page Statistics [15]

Figure 18: Account Settings [16]

Figures 15-18 show app designs from Dribbble that were used for inspiration. These
designs helped shape the look and feel of the project, giving ideas for layout, color

schemes, and user interface elements.

4..2.2. Wireframes

Ankl
Exercise Analysis Feedback 5

Total Exercises Completed
20

Average Pain Level

Welcome, Alice Today's Tasks

Calf Raises 0
Reps: B0 per side Sets: d cols

Ankle Alphabet 9
Reps: slphabet per foot - Sets; 73 sels

) % =] >}

Homo Tasks My Program Appaintmarnts Sattings

Figure 19: Homepage design

FlexiCare: A Digital Patient Management System for Physiotherapy

Back
35
Bird-Dog a
Reps: 10-12 per side Sets 3 zets -
CYrantow
50
i Cat-Cow Stretch =
Reps: 8-10 per side Sets 3 sels
3.0
2.0 »
Day 1 Day 2 Day 3 Dy 4 Day 5 Mobility
Hip Circles ?
. oo Do Reps: 10 per direction per leg Sets: 3 sets ™
50
a0
30
50 T-Spine Rotation @
10 - Reps: 10-12 per side Sote Zoots
0
Squats Push-ups Lunges Planks

@ %] £ 8 o

Home Tashs My Program Appoiniments Sattings

Figure 20: Today’s Tasks design

35

Homepage

The homepage, shown in Figure 15, provides a snapshot of the user’s treatment progress,
displaying key statistics in a visually engaging format. It includes graphs showing pain
levels and the number of reps completed over time. The page also provides stats on the
total number of exercises completed and calculates the average pain level. This overview
gives patients insight into their progress.

Today’s Tasks

The “Today’s Tasks” page, shown in Figure 16, lists the exercises that the user needs to
complete for the day. The exercises are categorised by the specific treatment program,
allowing users to quickly identify which exercises are part of each treatment. The page is
designed to provide users with a clear, organised view of what is expected of them, with a
simple layout that highlights the exercises they need to focus on today.

Hyper Mobility ° Hyper Mobility Ankie
Start Date: 1st March 2025 Duration: 60 days
Calf Raises
+ Reps: 15-20
[o) > * Sets: 3 sets
= Ankle « Frequency: 3-4 times per
week
* Rest: 30-45 seconds between
sets
:g Back >
Ankle Alphabet
+ Reps: 1 full alphabet per foot
(@] s « Sets: 2-3 sets
= Moblhty) + Frequency: 3-4 times per
week
+ Rest: 30 seconds between
: sets
® Mike

- Pregram author

Single-Leg Balance
* Reps: Hold for 30 seconds
= per side
Previous Programs - Sets: 3 sets
+ Frequency: Daily
+ Rest: 30-45 seconds between

Back Pain | End Date: 05/15/2025 i

Knee Injury | End Date: 05/15/2025
Ankle Inversions/Eversions

+ Reps: 12-15 per direction

= Sets: 3 sets

Toe Fracture | End Date: 05/15/2025 « Frequency: 3-4 times pet
week

* Rest: 30-45 seconds between

Post-Surgery | End Date: 05/15/2025 sets

m] % = @

Home Tasks MyPragram Appoimtments Seftings Eccentric Heel Drops

* Reps: 10-12

Figure 21: My Program design Figure 22: Treatment Exercise design
My Program

The “My Program” page, shown in Figure 17, provides detailed information about the
user’s current program, including an overview of the treatment plan, start and end dates,
and specific goals. The page also includes a list of treatments being followed and a history
of previous programs, offering users a clear view of their ongoing and past treatments.
This helps patients track their progress and stay on top of their recovery journey.

FlexiCare: A Digital Patient Management System for Physiotherapy 36

Treatment Exercises

When the user selects a treatment from the “My Program” page, they are directed to the
“Treatment Exercises” page, shown in Figure 18. This page lists all the exercises included
in that specific treatment. Each exercise is presented with basic details such as the name,
number of reps and sets, and any relevant notes or instructions. The layout ensures users
can easily navigate through the exercises to find what they need to complete.

< Exersise 2 ol & >
Ankle Alphabet ° Exercise Feedback

Ankle Alphabet
° Reps _Sets
11 3/3
Pain Lave| 0/10

- Reps: 1 full alphabet per foot i
+ Sets: 2-3 sels
- Frequency: 3-4 times per week
+ Rest: 30 seconds between sets ' Mo Pain
Details:
+ Equipment: None (optisnal: chair or eushion)
+ Muscles Worked: Ankle stabilisers, calves, foot muscles
- Benefits: Increases ankle mobility, strengthens stabilising muscles,
improves balance and joint control,
How to Perform:
1. Sit with your legs extended of In a chalr, keeping your back stralght
2. Lift one foot and “write” the alphabet in the air with your big 1oe, maving
thraugh full ankle motion (up, down, in, out)
3. Repeat with the other foot
4 Complete 2-3 sets with 30 seconds rest between sels.
Tips:
= Try closing your eyes for added challenge.
« Focus on controlled, precise movemeants.

vour feedback (optional)

@ Completa

Figure 23: Individual Exercise design Figure 24: Feedback design

Individual Exercise

The “Individual Exercise” page, shown in Figure 19, provides in-depth information about a
specific exercise, including a detailed description, equipment required, and step-by-step
instructions. A button to mark the exercise as complete allows users to track their
progress. This page is designed to provide users with all the information they need to
perform the exercise correctly and stay on track with their treatment program.

FlexiCare: A Digital Patient Management System for Physiotherapy 37

Feedback

The “Feedback” page, shown in Figure 20, allows users to provide details on the exercise
they just completed. Users can enter the number of reps and sets done, along with their
pain level and any additional notes they might have. This feedback is essential for
physiotherapists to assess the user’s progress and make any necessary adjustments to
the treatment plan. It also helps users reflect on their experience with the exercises.

. My Account
My Appointments et i

Calendar This Week This Month All

Profile >

0
4 February 2025 > £ S i lon & siompton

fon T i hi i S5 :
Mo ue Wed Thu Fri Sat Sun Pl 5
My programs & training diary

26 27 28 29 30 31 1

Support >
View/Create tickets.,

H
9 10 n 12 132 14 15 Social >
Irite friends, share & follow s

Feadback
Yoir fes i
app...

ek will helo s 1o impeove aur >

23 24 25 26 27 28
Visit website

v example oo, >
Regarding: Backpain

Physio: Dr Lynne Bell

Location: Kilbarrack Physiotherapy and Acupuncture Clinic

formaticn for offline +
Time: 16:00 =
Regarding: Insoles
Physio: Dr Veronica Daniels
Lacation: The Podiatry Clinie Wicklow Street
Time: 18:00
[# = @ @ % 8 @
Heire Tasks My Program Appaintments Settings Hame Tasks MyProgam Appointments Settings
Figure 25: Appointments designs Figure 26: Settings design
Appointments

The “Appointments” page presents a calendar view, where users can see their upcoming
appointments and sessions. By clicking on a specific day, the user can view a detailed list
of appointments scheduled for that day. This feature helps users stay organised by
providing a clear, easy-to-read schedule of all their physiotherapy sessions and ensuring
they never miss an appointment.

Utilities

The "Utilities" section of the application includes critical features such as the Login,
Register, and Settings pages, which are vital for user account management. The Login

FlexiCare: A Digital Patient Management System for Physiotherapy 38

page provides users with secure access to their personal profiles, while the Register page
allows new users to create an account, entering the necessary information to get started.
The Settings page enables users to update their personal information, adjust notification
preferences, and modify other aspects of their account, ensuring they have full control
over their experience. These utilities provide essential functionalities for managing user
accounts and ensuring smooth interaction with the app.

4.2.3. Refined Design Language

The wireframes have been updated to make the design easier to use and navigate. The
layout is cleaner, with fewer distractions, so users can find what they need more quickly.
Buttons and menus are more transparent and straightforward, making it easier for users to
complete tasks with less effort. These changes help make the design more intuitive and
user-friendly.

The colour scheme has also been slightly changed to improve the look and make things
easier to read. The new colours help text stand out and make buttons more noticeable.
These changes were made to improve accessibility for all users, including those with
different vision levels. The spacing and arrangement of elements have been enhanced to
make the design feel more balanced and pleasant. These updates focus on creating a
better user experience while keeping the design consistent with the brand.

Edit Profile
Full Mame
Alice Corry
alicecorry83(@icloud.com
Editprofile Email Address
Program Settings Mobile Number
o Theme 0831234567
Notifications Enabled Address
123 Sesame Street,
MNarnia,
Share on social media New Earth
Save
@ Feedback
Logout >
& = 2 = fh i= =2 =
Home Tasks Program Appointments Settings Homo Tasks Program Appaintments Settings
Figure 27: Settings designs Figure 28: Edit profile design

FlexiCare: A Digital Patient Management System for Physiotherapy 39

Feedback
Your feedback will help us improve our

app.. Let us know about any new features
you would like to see.

Submit

A = 2 =

Home Tasks Program Appoiniments Settings

Figure 29: Feedback designs

Sign in to your
Account

Check your email

Email Address

alicecorry@icloud.com

Password

sescences

Privacy policy = Terms of service

Figure 30: Sign in design

Welcome,
Alice

20/ 24 3.5/10
Track

Your
Pain I
Levels []

12 13 14 15 16 17 18

See more >

How

Many

Reps? I I
Done! []

12 12 14 15 16 17 18

See more >

— -—

i = 2) =3
Hame Tasks Frogram Appointments Settings

Figure 31: Dashboard designs

FlexiCare: A Digital Patient Management System for Physiotherapy

e
2

My Appointments

April 25, 2025

Wed Thu Fri Sat Sun
23 24 25 26 27

[OR

Tue 9:30 Dr. Lynne Bell
29 am Kilbarrack Physiotherapy

Tue 9:30 Dr. Lynne Bell
29 am Kilbarrack Physiotherapy

Tue 9:30 Dr. Lynne Bell

20 e [T NP | RN A —
il i= = =
Hema Tasks Program Appoinbments Settings

Figure 32: Sign in design

40

Today's Tasks < Exercise 2 of 6 >
ApiliZs 202 Ankle Alphabet

0 Day Streak
Complete your

bulld & straak

o

Calf Raises
Reps: B-10 per side Sets: 3

Ankle Alphabet Reps: 1 full alphabet per foot
Reps: 1 per foot Sets: 2-3 ° s :;.2 3 Ip 4
Bls: £-d 5215

Frequency: 3-4 times per week
Rest: 30 seconds between sets

Details:
Bird-Dog
Reps: 10-12 per side Sets: Equipment: None
Muscles Worked: Ankle stabilisers,
calves, foot muscles
Cat-Cow Stretch Benefits: Increases ankle mobility,
feps: B:10 per side Sets: 2-3 strengthens stabilising muscles,
improves balance and joint contraol,
How to perform:

1. Sit with your legs extended orin a
fzh = 2 & = fk = 2 = =
Hame Tasks Frogram Appointments Settings Hema Tasks Program Appeinitmenls Settings

Session Feedback
on Ankle Alphabet
Reps Sets

3 3
Pain Level

z 5
Notes
Submit
i E b1 3=
Home Tasks Progrm Appoistments Setfisgs
Figure 33: Tasks designs Figure 34: Exercise design Figure 34: Session feedback

design

FlexiCare: A Digital Patient Management System for Physiotherapy 41

5. Implementation

This chapter discusses the implementation of the individual components of the application.
While the previous chapter described the system’s design, this section focuses on the
development of the Web Server, API Server and Mobile Application.

5.1. SCRUM Methodology

A simplified version of the SCRUM methodology was used to manage the development
process. The project was broken down into smaller, manageable tasks and completed
over short development cycles, known as sprints.

Each sprint was focused on a specific area of the system:

e Sprint 1: Initial development attempt using Python.

e Sprint 2: Development of the backend infrastructure using C#, including the
FlexiCare manager and API.

e Sprint 3: Development of the mobile frontend using Javascript, focusing on user
interface design and client-side functionality.

The benefit of the SCRUM principles was that at the end of each sprint, it was possible to
review the progress of and adjust the project priorities, such as timeline, to any challenges
identified. .

5.2. Development Environment

Development was primarily carried out for this project using Visual Studio Code (VS Code)
as the integrated development environment (IDE). This was selected for its flexible,
extensive extension possibilities, and pre-configured tools for debugging, linting and
version control.

During Sprint 1, for the Python-specific development, PyCharm was utilised to take
advantage of its Python-specific features. Similarly, when starting working with C#,
JetBrains Rider was used for a short time, as it provided helpful tools for .NET
development. However, VS Code was eventually returned to, as it offered a more unified
and comfortable environment for working across different parts of the project.

For any database-related development and testing, TablePlus was used, which provided a
user-friendly interface for managing databases and running SQL queries efficiently.

Overall, the combination of these tools supported a smooth and productive development
workflow throughout the project.

FlexiCare: A Digital Patient Management System for Physiotherapy 42

5.3. Sprint 1: Python Development
5.3.1. Early Attempt

Development was first started using C#, but there was also interest in trying out Python'’s
Flask and GraphQL. JetBrains PyCharm was chosen as the development environment.
Work during this spring was focused on building the API, and no effort was put into
creating user interfaces or using MVC patterns yet. The goal was to understand how Flask
and GraphQL could be used to handle backend tasks like routing, data handling, and
queries.

First, the Flask project was set up and connected to GraphQL. A PostgreSQL database
was also configured for use with the project. The database tables were created, and a
connection between the app and the database was established. Models were created to
represent the data needed by the application, such as users and authentication
information. Seeders were written to fill the database with sample data

o owner estimated_row total_size data_size Index_size
8 KB

» Functions
« Tables
appointments 3 pi C a ry - == B8 KB

8 KB

8 KB
B KB

treatments
users

Figure 23: Flask Database in TablePlus

Next, GraphQL schemas were created to define the types of data that the APl would use.
These schemas were connected to the database models so that the data could be
queried. Queries were added to fetch data, such as retrieving a user profile or getting a list
of all users. Three key mutations were then created: register, login, and logout. The
register mutation allowed new users to be created by accepting their emails, hashing their
passwords, and saving the information in the database. The login mutation was used to
authenticate users, while the logout mutation was created to log users out and invalidate
their sessions.

5.3.2. Reflection of Sprint 1

After some development, it was decided that Flask and GraphQL were not the best fit for a
large, long-term project. Because of this, the backend development was switched back to
C#. Even though these tools were not continued, the experience was useful. A better
understanding of how they work was gained, and it is likely that they will be used again in
future, smaller projects.

FlexiCare: A Digital Patient Management System for Physiotherapy 43

5.4. Sprint 2: Backend Development

The backend is the part of an application that users do not directly see but is essential for
making everything function properly. It manages the logic, database interaction and the
communication between the database and the client interfaces (such as mobile or web
apps). For FlexiCare, the backend is responsible for securely handling user data and
storing important information such as fitness activities and exercise routines. Ensuring that
both the physiotherapists and patients have a smooth and reliable experience when using
the FlexiCare system.

Sprint 2 will outline the development of FlexiCares backend, outlining the key technology
used and the structure of the system.

As previously mentioned, ASP.NET Core MVC, a powerful framework developed by
Microsoft, will be utilised in this project. As seen in Figure 24, this framework is broken
down into four projects: FlexiCareManger, FlexiCareManagerTest, FlexiCareAPITest and
FlexiCareAPI. In addition, to make backend development more efficient and to extend the
capability of C#, several essential extensions, shown in Figure 25, were added to the
project.

FlexiCare: A Digital Patient Management System for Physiotherapy 44

EXPLORER
 PHYSIOBACKEND
» vscod
» FlexiCareAPI

» FlexiCareAPITest

+ FlexiCareManager

+ FlexiCareManagerTest
.gitignore
= FlexiCaresln

INSTALLED

-NET Install Tool
T!' 5 nincetalle and man

&N

c#

Figure 24: FlexiCare ASP.NET Core MVC Projects Figure 25: FlexiCare C# Extensions

In the C# Language package management is handled by NuGet, which works similarly to
npm (Node Package Manager) in the JavaScript world. Using simple terminal commands,
packages can be added directly to the project. When the project is built, these packages
are automatically downloaded and available for the application. These include:

e dotnet add package Microsoft.EntityFrameworkCore.Design

e dotnet add package Microsoft.EntityFrameworkCore.SQLite

e dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design
e dotnet add package Microsoft.EntityFrameworkCore.SqlServer

e dotnet add package Microsoft.EntityFrameworkCore.Tools

FlexiCare: A Digital Patient Management System for Physiotherapy 45

5.4.1 FlexiCare Manager
The FlexiCare Manager project forms the core of the backend system. It is responsible for:
e Setting up the data model and database structure.

e Providing physiotherapists with the ability to manage patients, design personalised
programmes, and schedule appointments.

e Allowing practice managers to control the system, including adding new exercises,
registering new physiotherapists, and managing users.

This backend ensures that the physiotherapy workflows are streamlined and all
administrative tasks are handled efficiently.

To begin, Dotnet provides a command that can create a shell project containing a blank
folder for Models, Views, Controllers, etc. For example: “dotnet new mvc -o
FlexCareManager” would create a structure similar to that seen in Figure 26.

" FlexiCareManager

» Areas

> bin

» Controllers
> Data

> Migrations

> wwwroot

Figure 26: Example of FlexiCareManager Shell Folder

Data Model

The first step in developing the FlexiCare manager was to create the data model. This
involved designing C# classes that represent the main entities of the system (e.g., Patient,
Physio, Appointment, Exercise), as seen in Figure 27. These classes were later used to
build the database. Relationships between entities were also established. For example,
the Appointment entity has relationships with both Patient and Physio entities.

FlexiCare: A Digital Patient Management System for Physiotherapy 46

2 Name {

? Phone

? PatientId
Mame = "Pa

Patient? Patient {

Figure 27: Examples of C# Classes
Object-Relational Mapping

To map these classes to database tables, Entity Framework Core, Microsoft's
Object-Relational Mapping (ORM) tool, was used. The mapping process was managed
using a DbContext class, which specifies which class should be linked to which database
table. This approach allows normal C# statements to easily access the database. For
example, the statement shown in Figure 28 does the following:

o Accesses the Exercise database table
o Where the ID column matches my local ID field
o Links to the ExerciseCategory table for the ExerciseCategory linked to this Exercise

o Populates the result into a local variable exercise

exercise = await context.Exercise
.Include(e =»> e.ExerciseCategory

.FirstOrDefaultAsync(e =»> e.Id == id);

Figure 28: Example C# Statement for Accessing the Database

FlexiCare: A Digital Patient Management System for Physiotherapy 47

Migration Building

Once the base data model was sufficiently developed (it is not necessary for it to be one
hundred percent final initially), the entity framework was used to create a migration. A
migration generates code to create or update the database based on the current model,
such as in Figure 29. This process was relatively straightforward as the generated
migration code could be reviewed if needed. However, in practice it tended to be accurate
and did not require manual editing. This does not mean that the original model was
correct. It was necessary to adjust the initial model, create another migration and update
the model database again. For example, when the appointment model was added, the
following commands were ran:

e dotnet ef migrations add Appointment

e dotnet ef database update
Up(MigrationBuilder migrationBuilder

migrationBuilder.cCreateTable(
name:
columns:

Id = table.Column< f » nullable:
.Annotation("Sqlite N

Mame = table.Column< by - nullable:

Phone = table.Column< type: “ ', nullable:

Address = table.Column< »(type: XT", nullable:

1,
constraints: table =»

table.PrimaryKey("PK_Client”, x => x.Id);

migrationBuild reateTable(
name : "
columns

Id = table.Column< "INTEGER", nullable:
.Annotation("Sqlite N
Mame = table.Column< ", nullable:

I
constraints: table =>

table.PrimaryKey("P

Figure 29: Example of Migration Builder
Seeding

To make development and testing easier, seed data was added to the database. Seeding
involved writing code that:

e Checked if specific tables (e.g. Patient) were empty.
e Inserted sample test data if no records were found.

An example of the patient seed can be seen in Figure 31.

FlexiCare: A Digital Patient Management System for Physiotherapy 48

Fho
- FPhan

Phone. -

var patient in patients)
patient.Email = patient.Mamel.Replace(” ',). ToLower [)

ange(patients);

Figure 31: Example of Patient Seed Code

Seeding also allowed for creating relationships between tables (such as linking patients
with appointments) and inserting random values to simulate real ones. An example of this
can be seen in Figure 32. This approach made it easy to reset the database and quickly
repopulate it without manually entering test data each time.

id Seed(Fle

{context.Appointment.Any())

ents = con ent.ToList();
ients.Any(

context.pP 3. ToList():

Any())

r random = rne
appointments =

ch (var petient in patients)
nt numberCfAppointments — random.Next{1l, 3);
t 1 - 8; 1 < numberGfAppointments; it+)

appointments.Add{ne
{
PatientId = ient.Id,
.AddHours(random.Next (8, 17)),
Physio

Appointment.AddRange (appointments);

Figure 32: Example of Appointment Class Seed Using Link to Physio Class

FlexiCare: A Digital Patient Management System for Physiotherapy 49

SQLite

Following the setup of the models and basic database seeding, SQLite was chosen as the
data engine for the development of FlexiCare. It was the logical choice for a range of
practical reasons:

e VS Code is bundled with SQLite by default, offering built-in support.

e |t is lightweight and gentle on the limited computing resources available during the
project.

e All the data is stored in a single file (flexicare.db), which makes it easy to reset the
database if necessary. Simply by deleting the flexicare.db file, re-running the
migrations and re-seeding the database with test data.

e This was not a decision on the deployment platform. Entity Framework works with
the most popular database platforms and insulates the application from the specific
choice. Migrating to another platform would only involve changing a small
configuration before re-running the migrations and seeding.

Views, Controllers and Scaffolding

Once the models and database were established correctly, the next step was to create
Views and Controllers to allow users to interact with the system. To streamline
development, Microsoft provides a tool that can automatically generate Controllers and
Views based on a model using a single command, called scaffolding. For example, the
following scaffolding command was used to create a controller and views for the
ExerciseCategory model:

dotnet aspnet-codegenerator controller -name ExerciseCategoriesController -m
ExerciseCategory -dc FlexiCareManager.Data.FlexiCareManagerContext
--relativeFolderPath Controllers --useDefaultLayout --referenceScriptLibraries
--databaseProvider sqlite

This lone command creates a controller and five views (Index, Details Create, Edit, Delete)
automatically linked to the controller.

While in some cases the scaffolded code required slight modification, it offered a strong
starting point and saved a lot of manual effort. These minor adjustments included styling
tweaks, to ensure the layout and visuals better aligned to FlexiCare’s desired design, and
navigation updates. For example, Figure 32 shows the Programme page. On this page it
was necessary to modify the New button to route to the ProgrammeExcercisesController
to add exercises, rather than back to the main Programme controller. This was similarly
done for the Edit, Delete and Back Buttons. After creating or editing, it had to be ensured
that the controller was redirecting the user to the correct plate.

FlexiCare: A Digital Patient Management System for Physiotherapy 50

Programme
Core Strength Builder - 7 Days

Duration

Author [er. Emily Clark

Programmes Exercises

er

Exercise Day MNotes

S | (e Jove

1 mes

Glute Bridge 2

2 Lo J o

‘ B3
: B

Figure 32: FlexiCare Web Application Programme Page
Layout and Design

Given that FlexiCare’s web app was primarily intended for office use (physiotherapists and
administrators), the visual design was kept simple and functional. The application was
largely maintained with the original default Bootstrap appearance however, minor
enhancements were necessary, and these included branding elements such as the logo
and Favicon, and improved navigation. An example of the web app is shown in Figure 33,
where the focus is firmly placed on functionality and inactivity rather than complex
aesthetics.

FlexiCare Home Patisnts Appointments Hello alice.govemnor@flexicare.ie! Logout

Settings

Treatments H Exercise Categories || Exercises Programmes Physios

Figure 33: Example of FlexiCare Web Application Layout
User Roles and Navigation

From early in FlexiCare's development, three key user roles were identified:
Administrators, Physiotherapists and Patients. However, at this point the web application is
primarily focused on Administrators and Physiotherapists, since Patients are expected to
interact mainly through the mobile app. Navigation was customised depending on the user
role by setting a Navbar variable, such as that in Figure 34, with the potential to load
different views depending on the currently logged-in user.

FlexiCare: A Digital Patient Management System for Physiotherapy 51

if (luser.Identity!.IsAuthenticated

ViewData["Navbar”
RedirectToAction("No
return;

User.IsInRole("ADMINISTR

ViewData["Mavbar”] = "_AdministratorMav";

return;
User.IsInRole("PHY:

ViewData["Mavbar"]

return,

Figure 34: Example of Navibar Variables

Authentication and Authorization

To manage users and secure the system, Microsoft Identity was integrated into the
backend. It added users and roles and allowed them to be easily integrated with
controllers, while automatically providing functionality for secure user login/logout. The
package only required some modifications, such as adjustments to the visuals to match
FlexCare’s style and the removal of some features that require a functional email service
(like Forgot Password).

= "ADMINISTRATOR, PHYSIO"

AppointmentsController

Figure 35: Updated Controller User Role Requirement

Role-based access control was also implemented. Controllers had to be changed to
account for the role restrictions to ensure that only users with the appropriate role could
access certain parts of the application as shown in Figure 35. The database seeding was
also updated to create user roles (Administrator, Physio, Patient) and sample users for
each role, shown in Figure 36.

await IdentitySer =.AddRoles(userManager, "alic = re.ie”, [adminRolel]);

ch (patient in patients)

email = patient.Name!.Replace|
await IdentityService.AddRoles(

physio in physios)

noTitle = physio.Name!.Replace
email = noTitle.Replace(" ', '

rvice.AddRoles(userManager, email.ToLower(), [physioRole]};

FlexiCare: A Digital Patient Management System for Physiotherapy 52

Figure 36: Updated Database Seeding for User Roles
5.4.2 FlexiCare API

The FlexiCare APl was designed separately to the FlexiManager, due to its different
functionality. By maintaining separate projects, it allowed for simpler configuration of
identities and ensured the systems could operate and be modified, independently.

The integration between the FlexiCare APl and Manger was managed by sharing the
same database. As this stores all essential data such as user accounts, roles, patient data
and progress tracking, it has everything necessary for the API to function. This shared
data structure allows the two components to be fully synchronised, ensuring that both have
access to the latest patient details.

app.UseSwaggerUi(options

options.DocumentPath

1)

Figure 37: Swagger Support Configuration Command

Swagger support came as part of the default Microsoft solution, it just needed to be
configured as shown In Figure 37. It provides a visual interface for interacting with the API,
such as in Figure 38. Swagger makes development much more efficient, allowing easy
experimentation without requiring the full front-end interface, streamlining the testing and
debugging process.

FlexiCareAPI | v1 ==&

hiipe:icoamock7ITH o

FlexiCareAPI ~

fregister v

Sl /login

B /refresh b

{confirmEmail R

8 /resendConfirmationEmail W

= /forgatPassword e

8l /resctrassword

SN (manages26a E

fmanage/infe L)

o /manage/ info ~
Patient ~

fapifPatient/me b

fapi/Paticnt fme oy

Session 5

Schemag R

FlexiCare: A Digital Patient Management System for Physiotherapy 53

Figure 38: FlexiCare APl Swagger Interface

Authentication and Authorisation

Once again, Microsoft Identity was used for authentication, but it was configured to use
JWT (JSON Web Token) in this instance., shown in Figure 39. When a user logs in
through the app, they receive a JWT access token. This token serves as proof of identity
and authorises the user to perform actions on the system. Microsoft Identity uses this
token to check if the user exists and then creates a user object. By using JWT, the API
ensures that user credentials are verified in a secure manner.

builder.Services.AddAuthentication{JwtE
builder.services.AddAuthorization();

builder.Services.AddIdentityApiEndpoint
.AddEntityFrameworkStores<Fl ¢

Figure 39: JWT Configuration

Once that was completed, the controllers within the APl were modified to require
authentication via the access token, ensuring that each request was valid before allowing
any access to sensitive data or operations. For example, a Patient would only be able to
access and manage their own personal data, ensuring that no user could view or modify
another patient's information.

Requests Exposed

In addition to the default requests provided by Microsoft Identity for user management,
several custom API endpoints were developed for specific functions. For example:

PUT Patient, shown in Figure 40, allows the app to enable patients to update their details,
such as contact information.

PUT = hitps://localhost 1/apifpatient/me

Body I:I Auth

Figure 40: PUT Patient Request Code

GET Patient, shown in Figure 41, returns all the information allocated to a specific patient,
such as their personal details, appointment data and scheduled exercise sessions.

FlexiCare: A Digital Patient Management System for Physiotherapy 54

Figure 41: GET Patient Request Code

PUT Session, shown in Figure 42, is used by the patient app to mark an exercise session
as completed. After a patient finishes their exercise routine, they can provide feedback on
their session. This feedback helps physiotherapists monitor progress and adjust treatment
if necessary.

: true,
"alorious”,

Figure 42: Put Session Request Code
5.4.3 Reflection of Sprint 2
The Development of FlexiCare’s backend had several advantages and challenges.

On the positive side, using VS Code streamlined the process by offering an all-in-one
solution, with the addition of Microsoft's extensive tutorials and resources, free and open
source tools, and cross-platform support (Windows, Linux & Apple). With the addition of
helpful features like scaffolding, migrations are on well-supported frameworks. In addition,

FlexiCare: A Digital Patient Management System for Physiotherapy 55

C# being a compiled language helped catch errors early and autocomplete suggestions
improved efficiency.

However, on a negative standpoint, C#’s syntax was a bit overly complex and off-putting,
making the code difficult to read and review. Additionally, the compiled language aspect
brought problems. For example, saving a changed source typically refreshed the
application, but on occasion, the server itself required restarting, and it was not overly
explicit when this was necessary.

FlexiCare: A Digital Patient Management System for Physiotherapy 56

5.5. Sprint 3: Frontend Development

The frontend is the part of an application that users interact with directly, visually
representing the data and functionality managed by the backend. Sprint 3 outlines the
development of the FlexiCare mobile application using modern frontend technologies,
including the tools, libraries, and frameworks employed to create an efficient, visually
pleasing and intuitive user experience.

5.5.1. Fundamental Desgin

To initiate the frontend development process, the project employed the create-expo-stack
initialiser, a standard tool for creating React Native applications using the Expo framework.
During setup, configuration flags were used to include Expo, Expo Router with tab
navigation, and NativeWindCSS, TailwindCSS adapted for React Native, as shown in
Figure 43.

200

npx create-expo-stack@latest

npm install

Figure 43: Expo Framework Setup

The development of the web application consisted of Visual Studio Code (VSC) as the
primary code editor, Insomnia for testing against the backend API, and Figma for creating
and iterating Ul designs.

In addition to this, several additional packages were integrated to support the required app
functionality, as shown in Figure 44:

o0 ®

npm install axios
npm install jest

npm install expo-secure-store
npm install expo-splash-screen

npm install expo-status-bar
npm install expo-system-ut
npm install expo-video

npm install react-native-reanimated
npm install react-native-safe-area-context
npm install react-native-select-dropdown

Figure 44: Additional Expo Packages Required

FlexiCare: A Digital Patient Management System for Physiotherapy 57

Jest was installed to enable unit testing.

Expo Splash Screen was used to provide a customised loading/splash screen,
incorporating the FlexiCare logo and brand colours.

Expo Status Bar allowed customisation of the phone’s status bar (where battery
and network carrier symbols are located) to align with the application's theme.

Expo Video provided built-in support for a video player.

Expo System Ul enabled the configuration of global layout styling parameters.

Expo Secure Store facilitated secure key-value storage on the device, which is
used to manage sensitive data such as authentication tokens.

These packages were configured as plugins in the app.json file, establishing a splash
screen with the FlexiCare logo and brand colours, as shown in Figure 45.

Figure 45: Code Snippet Showing Plugin Integration and Splash Screen Design

To enhance performance and usability:

Reanimated was used to implement smooth, customisable animations.

Safe Area Context replaced the default React Native SafeAreaView component to
ensure compatibility with various screen dimensions, camera notches, cutouts, etc.

React Native Select Dropdown was integrated to support dropdown menu inputs.

For handling HTTP requests, Axios was selected over JavaScript's built-in Fetch API due
to its more intuitive configuration. Axios allowed authentication headers (e.g. bearer

FlexiCare: A Digital Patient Management System for Physiotherapy 58

tokens), as shown in Figure 46, to be declared once globally within the AuthContext,
enabling both secure and consistent API requests across the entire application without the
need for repetitive code re-declaring them each time..

"Authoriz

Figure 46: Global Axios Authentication Token

TypeScript interfaces were created to mirror the backend APl models, for improved
efficiency; three of these are shown in Figure 47.

Figure 47: TypeScript Interfaces for APl Models

Additionally, an .env file was created to store variables that would be used throughout the
entire application, as shown in Figure 48.

RL=https://www.flexicare. ie
URL=http://localhost:5000

Figure 48: .env File Set-Up

FlexiCare: A Digital Patient Management System for Physiotherapy 59

TailwindCSS's configuration file was customised, as shown in Figure 49, to include the
FlexiCare brand's colour palette, as defined in earlier Figma designs, to input the required
visuals for the application.

Figure 49: TailWind Configuration for FlexiCare Colour Pallete

To keep images organised, subfolders were created within the /assets directory. These
included /branding, /icons, /images and /illustrations, each used to store the relative media
files.

For authentication, a custom solution was implemented using AuthContext. A file named
AuthContext.tsx was created to manage the authentication state, along with both login and
logout functions, as shown in Figure 50. This allowed the login status and user data to be
shared across the app.

The AuthState holds the user’s information once they are logged in, which can be
accessed easily from another screen. The onLogin and onLogout functions can be called
from Ul elements such as buttons to trigger login and logout actions.

FlexiCare: A Digital Patient Management System for Physiotherapy 60

interface A

: string) => Promise<any>;

Figure 50: AuthProps Interface

The loadToken() function, shown in Figure 51, runs when the app starts. If the user has
already previously logged in, it retrieves their saved authentication tokens from Expo
Secure Storage and logs them in automatically if the tokens are still valid.

useEffect(() = {
const loa

const t
const re

Figure 51: LoadToken() Function

The login() function, shown in Figure 52, takes an email and password, sends them to the
API using Axios, and if the login is successful, saves the returned tokens, name, and email
to Expo Secure Storage. The user’s authentication state is then updated.

Since access tokens expire after sixty minutes, the refreshAccessToken() function, shown
in Figure 53, uses the Refresh token to request a new updated Access token from the API.
The new Access Token is also set as the Authentication Bearer token globally for all Axios

FlexiCare: A Digital Patient Management System for Physiotherapy 61

requests, ensuring that all HTTP requests to the APl are authenticated automatically
without additional configuration.

return {

} finally {

}

Figure 52: Login() Function

FlexiCare: A Digital Patient Management System for Physiotherapy 62

if {lrefreshToken) {
return

+

await SecureStore.setltemas

return accessToken;

return

Figure 53: refreshAcessToken() Function

The logout() function, shown in Figure 54, removes the stored tokens and user information
from Expo Secure Storage and resets the authentication state, logging the user out.

await
await

Figure 54: logout() Function

The login screen (login.tsx) was then implemented, shown in Figure 55. It includes state
variables for the email and password fields to allow their value to be synced with the login
form’s inputs. useAuth is pulled in from AuthContext, and a login() asynchronous function
is attempted. If login is successful, the user is redirected to the home screen.

FlexiCare: A Digital Patient Management System for Physiotherapy 63

const
const [
const [|
const { on

/nc ()
e = awalt onLog

return

I

return (

}

export default Login

Figure 55: Log-In Page Implementation

To avoid repeating code, a component file was created to show links to the Terms of
Service and Privacy Policy, as shown in Figure 56. These links are used on both the login
and onboarding screens, so this code snippet was abstracted to be reused across both
views.

Furthermore, the website URL was stored within the .env for future customisation. For
example, if this product were to be deployed in production for a new customer, the .env
data could easily be changed.

FlexiCare: A Digital Patient Management System for Physiotherapy 64

Figure 56: unAuthenticated Views Component Flle

The layout file, one directory down within the (protected) directory, shown in Figure 57,
checks if a user is authenticated by grabbing the authState from the AuthContext provider.
If not, and the user attempts to visit any page within the (protected) directory, they are
redirected back to the login page.

The parentheses on the directory name (protected) indicate that this is a grouping folder,
used only to organise related pages. Pages inside this directory are served at the top level.
For example, /app/(protected)/tasks has the URL of /tasks, whereas /app/account/login
has the URL of /account/login.

A root layout file was added directly inside the /app directory, at the top level above all
pages within the app, as shown in Figure 58. A <Stack> element was created to define
the app’s main navigation structure, including two subdirectories as <Stack.Screen>
entries: (protected) for pages that require authentication, and account for the pre-login
pages.

The global background colour was also set to white, affecting all screens throughout the
app.

import { h } from "co
import {

Stack

export default fu
const { aut

AT {!_.:5_ hState?,authenticated

conso

retur

} else {

retur

Figure 57: Protected Views Layout File

FlexiCare: A Digital Patient Management System for Physiotherapy 65

sync("#FFFFFF");

export default function Rc it() {
return der

~: "#FFFFFF"

Figure 58: Root Layout File
5.5.2. Pages

In the index (Home) page, several functions were written to calculate various metrics for
the user, as shown in Figure 59. These are displayed in the view.

A call is made to the API to fetch all exercise session data for a user. This data is stored as
sessionsData and is used across multiple functions.

For example, the averagePainLevel function filters all completed sessions, adds up their
pain levels, and divides by the number of sessions to get the average. This value is then
rounded to one decimal place and displayed as a score out of 10.

FlexiCare: A Digital Patient Management System for Physiotherapy 66

function : ’rogres i oolean }[]) {
cons : n.done).lengths
const

return { completed

const

if (con
return "0";

}

cons

return ave

Figure 59: Index (Home) Page Functions

For the appointments pages, several functions had to be written to handle the logic for
displaying and interacting with user appointments, as shown in Figure 60. A call is made
to the API to fetch all of the user’s appointments, both upcoming and previous. This data is
then used to populate the view.

Instead of a traditional calendar, a horizontal carousel of dates is shown at the top of the
screen, just below the heading. This shows the selected date in the centre, with up to three
days before and after on either side.

FlexiCare: A Digital Patient Management System for Physiotherapy 67

When a user taps on a date, the carousel slides to bring that date to the centre, and the
appointment list updates to show only those scheduled for that day. The default selected
date is today’s date.

Below the date carousel, appointments for the selected date (or today if none is selected)
are displayed first. Following this, a list of all upcoming appointments is shown in
chronological order, with the most recent appointments displayed first.

ointment[] = as Appointment[];

const tom

const s
const app new Date(appointment.whe
return appointmentDate »= selectedDat

})

rt({a, b > new Date(a.wher

const 1t : tment[] = appoi

)

Fime() - new Da

Map):

Figure 60: Appointments Page Functions

The layout file under the (tabs) directory, shown in Figure 61, initialises the TabBar, which
is located at the bottom of every authenticated page and contains buttons and icons to
navigate to the main Home, Tasks, Program, Appointments, and Settings pages.

Considerable effort was made to match the styling of the TabBar as closely as possible to
the Figma design.

FlexiCare: A Digital Patient Management System for Physiotherapy 68

canst _lLayout
return {
<laps
screenOptions={{

=d) { return {
iew className="flex ite
w className="z-18 items-cen

-ce={icons.|
className="s
tintColor={"4

<Text className="w-full text-black t
Home

1} l.-‘l‘[-‘[r

cl am ize-6 aspec
tintColor={"#0¢

t className="w-full text-black text-[l@px] font-semibold truncate"-
Home

w className="2z-0 absolute

Figure 61: Layout File under (Tabs) Directory

When users press the “Tasks” icon in the TabBar, they are redirected (using Expo Router)
to the tasks/index.tsx file, shown in Figure 62, lists all tasks (exercise sessions) assigned
for the current day.

All sessions are fetched from the API and filtered to include only those scheduled for
today. These are then sorted by category, allowing them to be listed under each category
header for ease of use.

FlexiCare: A Digital Patient Management System for Physiotherapy

A user can press on any exercise task (session) in the list to be brought to the relevant
exercise page, which provides detailed instructions from the user’s physiotherapist on how
to complete the exercise, what equipment (if any) is required, and how often it should be
performed.

Alternatively, they can click on the unmarked checkbox for any task to be directed straight
to the feedback/mark-as-complete form if they are already familiar with how to perform the
exercise.

useEffect(() =
const fe
const ¢

if {!se

&
const groups
return sessions.reduce({groups: Gro

const
const «

if (lgrouy

Figure 62: Task/Index.tsx File

A “Streaks” feature was added to this page, which tracks the number of consecutive days
a user has completed at least one assigned task, as shown in Figure 63.

This gamification feature motivates users to complete tasks to maintain their streak. If they
approach the end of a day without completing any tasks, they receive a notification
reminding them to complete a task to avoid losing their streak.

FlexiCare: A Digital Patient Management System for Physiotherapy 70

return streak;

Figure 63: Streak Feature

When a user clicks on a task from the Tasks list page, they get directed to the EachTask
([id].tsx) page, shown in Figure 64, which extracts an id from the dynamic route (e.g.
/tasks/1, where id=1).

A call is then made to the API to retrieve all exercise sessions. This data is filtered to find
the session matching the provided ID.

This page displays detailed information on how to perform the select exercise task
(session). Step-by-step instructions written by the physiotherapist are shown clearly on the
screen. In addition to written guidance, instructional videos, if available in the API, are also
displayed using the Expo Video package, which was explicitly configured for this purpose.

FlexiCare: A Digital Patient Management System for Physiotherapy 71

const ELC
const s

const

)

const {

Figure 64: EachTask ([id].tsx) Page

Users can mark an individual exercise task as completed on the task feedback form. They
can also provide optional feedback to their physiotherapist, select a pain level, and input
the number of repetitions and sets performed, as shown in Figure 65. This data contributes
to progress tracking and is later reflected in the metrics displayed on the Home page.

Session data is retrieved by id via an API call. After form submission, a PUT request is
sent using the updateSession function from the api.ts helper module, which updates the
session with the user's input.

FlexiCare: A Digital Patient Management System for Physiotherapy 72

const

= async () == 4

Figure 65: Feedback/{id} .tsx

A custom view component was built to help with pain level selection, as shown in Figure
66. This component displays ten pain levels as clickable buttons, styled on a colour
gradient from green (low pain) to red (high pain). The selected pain level is visually
highlighted in response to user input.

In addition to clicking, the component has swiping functionality, allowing users to slide
across the pain level scale to adjust their selection. The prop is then returned as state to
the task feedback form.

FlexiCare: A Digital Patient Management System for Physiotherapy 73

Figure 66: PainlevelSlider Component

When the “Settings” icon in the TabBar is selected, navigation is directed to the
settings/index.tsx page, as shown in Figure 66. This page displays an overview of the
user's profile, including name, email address, and an identicon generated based on user
data. Below the profile section, a list of available settings options is available to the user.

Figure 67 shows how two of those options are implemented: the social media sharing
functionality and the logout, which uses the onLogOut function defined in the AuthContext
file to handle logging the user out easily.

FlexiCare: A Digital Patient Management System for Physiotherapy 74

const h E = asyne () ==
if
it();
(1

b

const © async () == {
try {
const 1t = await S

Figure 67: Setting/index.tsx Page

For the form pages within the setting directory, which can be accessed by selecting an
option from the settings list on the index page, multiple code snippets were abstracted into
view components for easy reuse over each form. An example of this is shown in Figure 68
for the feedback form.

Elements like form containers, text inputs, text areas, email fields, and section headers
were converted into components.

const
turn (

Figure 68: Setting/feedback.tsx Page

Figure 69 shows the implementation of a header component used across multiple pages in
the app. It accepts a set of typed props, allowing it to be customised based on the specific
requirements of each page where it is used.

FlexiCare: A Digital Patient Management System for Physiotherapy 75

type FormP

+;

export const F

{

rm

return (

ledium"=Back to {

Figure 69: FormPageHeader Component

The simpler FormPageView component, shown in Figure 70, enforces consistent spacing
across all form pages. It allows child elements, such as form field components, to be
passed from the page.

type FormP
H

export const For

{ }

return (

w className="w-full

FlexiCare: A Digital Patient Management System for Physiotherapy 76

Figure 70: FormPageView Component

The FormButton component, shown in Figure 71, allows the onPress element parameter
to be passed from the View as a prop.

Figure 71: FormButton Component

Figure 72 shows an example of the simpler View in the settings/edit.tsx page is made
possible by the Form components.

FlexiCare: A Digital Patient Management System for Physiotherapy 77

Figure 72: Simple View within the Setting/edit.tsx Page

When the user presses the “Save” button to confirm changes to their profile on the edit
page, the saveProfile function, shown in Figure 73, is triggered. This function sends the
updated data to the API using the updatePatient helper function defined in the api.ts file.

FlexiCare: A Digital Patient Management System for Physiotherapy 78

r: boolean; msg: string } =
ePatient({

} catch {

alert("Error: Feedback not submitted");

Figure 73: saveProfile Function

5.5.3. Reflection of Sprint 3

React Native and TypeScript made development faster by using a single codebase for
both iOS and Android. This saved time and kept the app consistent across devices. The
component-based architecture of React Native made it easy to develop and update the
user interface. Plus, the extensive collection of libraries and tools available for JavaScript
and React Native helped speed up adding new features.

However, there were also some downsides. The app sometimes faced performance issues
with complex animations or native features, requiring extra coding. JavaScript’s dynamic
typing also led to errors that were harder to spot until later in development. JavaScript’s
dynamic typing also led to mistakes that were harder to spot until later in development.
Finally, features like hot reloading didn't always work perfectly, which made testing and
debugging slower. These issues made the development process a bit more challenging.

FlexiCare: A Digital Patient Management System for Physiotherapy 79

6. Testing and Results
6.1. Usability Testing

Usability testing would allow the physiotherapists and their patients to try the application
and provide feedback. Physiotherapists would use it to manage patient information, and
patients would use it to follow their treatment plans. While not included within the scope of
this current project, this testing would be a priority for further development of the
application. It would include testing of simple tasks like creating an account and navigating
the app, with user feedback collected on the ease and effectiveness of usage. This would
ensure that the application continues to meet the needs of all users.

6.2. Unit testing

Unit testing is performed to check small parts of a program and ensure they work correctly.
This helps identify issues early by testing individual functions or components. For this
project, unit testing was completed on both the frontend and backend. MSTest with C# was
used to test the backend, while Jest with JavaScript was used to test the frontend,
ensuring that both parts of the application worked as expected.

6.2.1. Backend Testing

Automated backend testing was again developed using VS Code. Dedicated test projects
were created within the code to ensure separation from the production code. MSTest
(MSUnit) was chosen for the testing framework, which is Microsoft’s recommended
approach for C# unit tests.

The first step involved adding a reference from the test project to the main project under
test, shown in Figure 74.

rence Include="..\FlexiCareAPI\FlexiCareAPI.csproj"”

Figure 74: Project Reference Snippet

VS code automatically searches the solution for test cases and generates a test explorer
window, indicating passing tests, those that have yet to be run and failed tests, as shown
in Figure 75. Tests can be run individually or collectively, with support for debugging
during test execution

FlexiCare: A Digital Patient Management System for Physiotherapy 80

TESTING

xiCareAPITest &.0ms

ProgrammeAPIExerciseTests
Exeraselnfo_lsCorrectlyMapped_ToTheAP!
rogrammeAPITests 8.0ms
ProgrammeApiProgramme_ProperlyOrganises_Exercisesinto...

aCareManagerTest (net9.0) 3.0ms

Figure 75: Test Explorer Window

Each test case was structured using the standard MSTest convention, which divides the
test logic into three key sections, as shown in Figure 76:

e Arrange - Set up the necessary data and variables.

e Act - Runs the test
e Assert - Verify that the results meet the expected outcomes.

ExerciseInfo IsCorrectlyMapped ToTheAPI()

exercisel =

Frequency

e(dayNumber: 1, exercise: exercisel);

result =

~t.IsNull({result.Name);
.AreEqual(”
.AreEqual(”
ert.AreEqual(”

Figure 76: Arrange, Act, Assert MSTest Convention.

VS Code highlights any failing tests directly, as shown in Figure xxx. It also visually marks
the related code, as shown in Figure 77, making it easier to navigate and address.

FlexiCare: A Digital Patient Management System for Physiotherapy 81

FlexiCareAPITest (net9.0) 24ms

FlexiCareAPITest 24ms

ProgrammeAPI|ExerciseTests 16ms

ProgrammeAP(Tests 8.0ms
ProgrammeApiProgramme_ProperlyOrganises_Exercisesinto...
FlexiCareManagerTest (net9.0) 3.0ms

Figure 77: Failed Test Flagging

ExerciseInfo_IsCorrectlyMapped ToTheAPI()

exercisel =

Id=1,
Name

Reps
Sets
Frequency

result = F eApiExercise(dayNumber: 1, exercise: exercisel

»

.IsNull(result.Name);
result.Reps);
sult.Sets);
» result.Frequency);

Figure 78: Failed Test Code Highlighting

6.2.2. Frontend Testing

Automated backend testing was again developed using VS Code. For the testing
framework, Jest was chosen, which is the most popular package for JavaScript unit
testing. Additionally, the jest-expo package was installed for closer integration with Expo
and the ability to use .tsx files for tests.

Jest's mocking capabilities were used to simulate APl responses and authentication
context in tests. Figure 79 is an example of how to mock an API call and the AuthContext
in a test file.

FlexiCare: A Digital Patient Management System for Physiotherapy 82

Figure 79: Mocking API and AuthContext with Jest

A test for the homepage is written using mocked API data and the authentication context
to check if the correct elements are displayed on the Ul. The test ensures that the
displayed content matches the expected result based on the authentication status and the
fetched data. Figure 80 shows an example of how to write a test for the homepage using
mocked data and AuthContext.

FlexiCare: A Digital Patient Management System for Physiotherapy 83

=3 i
jest.Mock).mockReturnValue(
: {

Jane Doe',

correctly', async () => {

Figure 80: Testing the homepage with mocked data and AuthContext

HomeScreen—test.tsx
HomeScreen (Index)

Figure 81: Running the HomeScreen test using Jest

This runs the HomeScreen test and shows the results in Figure 81. If the test passes, it
confirms the component is working correctly with the mock data and authentication
context. Figure 82 shows how to run the test and the result when it passes.

6.3. Evaluation

For the backend, tests were completed using MSTest in VS Code. These tests checked if
everything worked as expected, using a simple setup: Arrange (set up), Act (run), and
Assert (check results). The Test Explorer in VS Code helped track and fix any issues.

For the frontend, Jest was used to test the app’s interface. It made sure the app displayed
the right information based on user login and data. Mocking was used to simulate real-life
data, like API responses and login states.

FlexiCare: A Digital Patient Management System for Physiotherapy 84

In summary, the technical testing worked well in confirming that both the frontend and
backend were performing as expected. The inclusion of usability testing, while out of
scope for this project, has been identified as a priority step in the further development of
the application. This will provide insight into how easy the app is to use by both the
physiotherapist and the patients and how well it meets their needs .This knowledge will be
used to further improve the app’s design and overall user experience.

FlexiCare: A Digital Patient Management System for Physiotherapy 85

7. Project Management

This chapter explains how the project was managed and how well the student followed the
project guidelines. It covers the different phases, starting from the project idea and moving
through to gathering requirements and creating the project specification, design,
implementation, and testing. It also discusses how tools like Notion, GitHub, and Miro
helped manage the project.

7.1. Project Phases

The project life cycle is typically divided into distinct phases that help organise and
manage the process from start to finish. Below is an explanation of each phase and the
common issues that arose during each.

7.1.1. Requirements

In the Requirements phase, sufficient reliable data was difficult to find, and the constantly
changing nature of the project made the requirements quickly outdated or irrelevant. As a
result, constant adjustments and reassessments were required. These adaptations
ensured that the project aligned with evolving goals and user needs.

7.1.2. Research

During the research phase, the abundance of available information was initially
overwhelming, making it difficult to focus on the key topics and narrow them down. Sorting
through various sources took considerable time, and isolating key insights was a
challenge. However, it laid a solid foundation for more informed decision-making and
development.

7.1.3. Design

In the design phase, iteration played a key role. Early uncertainty around the design, along
with difficulties in finalising a clear plan for the project, led to significant experimentation.
Revisions ultimately focused on ensuring that the basic concept of a user-centred design,
with a strong emphasis on intuitivity, was achieved before handling more complex ideas in
later iterations.

7.1.4. Implementation

In the Implementation phase, issues with changing tech stacks caused delays and
required adjustments. Technical challenges, such as compatibility problems, arose from
switching to new tools and technologies, requiring parts of the project to be rethought. This
made the development process slower and more complicated than initially planned.

7.1.5. Testing

In the Implementation phase, issues with changing tech stacks caused delays and
required adjustments. Technical challenges, such as compatibility problems, arose from
switching to new tools and technologies, requiring parts of the project to be rethought. This
made the development process slower and more complicated than initially planned.

FlexiCare: A Digital Patient Management System for Physiotherapy 86

7.2. Project Management Tools

To stay organised and keep track of progress throughout the project, a few different tools
were used at different stages.

7.2.1. Notion

Notion became the main tool for organising notes and saving useful code snippets, like
those shown in Figure 82, especially in the later stages of the project. It helped quickly find
and reuse information, saving time and keeping things clear.

C# Notes

Installing Packages

troller -name

Figure 82: Notion Page

7.2.2. GitHub

GitHub was used only at the end of the project to upload and store the final version of the
code. During development, only local work was done, and GitHub was not used for version
control regularly.

7.2.3. Miro

In the early planning stages, Miro was used to brainstorm ideas and lay out the basic
requirements for the project. The visual layout helped organise thoughts. As the project
progressed, Notion was used for planning and note-taking.

FlexiCare: A Digital Patient Management System for Physiotherapy 87

Injury Risk Vides
Calculator

Safe, Targeted
Exercises

Demonstrations

Recovery Flan

Gamification
Find Nearby St
Professionals Integration with Wearables
Wearables & J. Compatibility
Other Health
Devices Symptom

il i Check-|
Hyper Mability Main Ideas eck-ins
Resources
Educational)
Interactive " content Expert Advice & 3
Taes QaA Posture and
Joint and Community Movement
ili ¥
Range of o Mability St Merts
Motion (ROM) Tracking
Tracker .
Adarjlt.we Social Features
Pain & Nutrition
Discomfart Log Guidance —
MNutrition Ti
Personalised .. utrition Tips
Tips & Insights Progress LA
WVisualisation Guidance

Maybe if they have
a specific dief too,
8. vegan

‘Mobile/Web

&0 s | B8

React/Native Javascript Typescript

SQLite

Figure 83: Miro Board - Brainstorming Frame

In the Brainstorming Frame, shown in Figure 83, different ideas are shared and looked at,
helping to explore various possibilities for the project. This frame is used to ensure that
many options are considered before deciding on a direction for the project.

1. Motion Tracking in Mobile Apps Stanney, K, M, (2002). Handbach of Virtu!

1. Overview of Mation Tracking Technology S trvironments: Design, Implementation, oned Lecation Tracking
a, Definition and Importance Applications. sing hiealth A Y Eical concemms
b, Types of Mation Tracking wmm;. mardical Cancerns around using heakih
2. Matian Tracking in Exercice and Rehabilitation A ping. Sy checkersl, Tooks st e i "mnumf:’" o
a. Rale in Rehabilitation T —_ ,g._m'-,:g;l.r |-t ﬂb::‘wm;:m 'm" m"‘ ity
T o g5 ot iy s ——
’ N Adikeri, M, Birkle, W., & Jonas, 5. (2021), Mobile i Tk ey priucy and data
3. Machine Learning and Al muotion tracking for disease orevention and T Y reass Kacigty In eslh
b, Accuracy and Calibration rehabilitation using Apple ARKIT, Stucies in Health et
4. User Interaction and Feedback Mealth Technolegy and Informatics. ulwm
a, Visual and Audlo Feedback he Manitoing

b, Real-time vs. Post-session Feedback Tha Role of Al Tools in Supporting

T Individuats with Physical Health Challenges

2. Usability and Accessibility in Mobile Apps
1. impartance of Usability
a. User-Centered Design
b. Feedback Loops

e 3. The Technologies Involved
2. Accessibility Features 1. Platform Choice: Mative vs, Cross-Platfo
a. Wisual Accessibility a. Natlve Development
b. '““uk_’ Feedback b. Crass-Platform Development
¢ Haptic Feedback 2, Core Techrologies for Motion Tracking

3. Addressing User-Specific Needs a. Sensor APIs
a. Customnised Exercise b. Camputer Yision Libraries
Recommendations 3. Backend and Cloud Services
b, Personalisation of the Feedback 2. Cloud Integration
¢. Psychological Aspects b. Data Security
4. Simplifying User Experlence

4, Integration of Mation Tracking with Ul
a. User Interface Libraries
b. Real-time Feedback Mechanism

S, Al and Machine Learning for Persanalisation
a. Machine Learning Models

B, Perfarmance Optimisation
a. Battery and Performance Efficiency
b. Real-Time Processing

a, Simple Interfaces
b. Multi-step instructions

Figure 84: Miro Board - Researching Frame

FlexiCare: A Digital Patient Management System for Physiotherapy 88

The Research Frame, shown in Figure 84, organises and shows important information that
has been collected during the research process. This information is put together in a way
that makes it easy to understand, helping to ensure the project is based on solid facts and

insights.

Programs Screen

Stay on track and motivated

Purpose: Displays a list of
personalized exercise programs.
Features:

1. Overview of all programs.

3. Progress bar of recent
program,

2. Notification of what to do next.

Individual Exercise Screen

Exercize with professionally
narrated videos

% Lowsr expeminly strengihening uxin_

Pandnd side mps wih bued irsite

Purpose: Guides the user through
each exercise,
Features:
1. Video and written instructions
for exercises.
2. Timers or counters for reps and
sets.
3. Equipment needed.

Feedback Screen
Know what you did and how it
went

4 Track ndhesence

Handed nide stepa with band oo the
mitt foal

Purpose: Allows users to share their
experience with exercises.
Features:

1. Number of set & reps done.

2, Pain/discomfort rating scale
(e.g., 0-10).

3. Session feedback.

4. Automatically sends data ta the
physiotherapist.

Results Screen

Track your progress and results in
real time

Purpose: Tracks and displays user
progress.
Features:
1. Graphs showing exercisa
completion and pain trends.
2. Average adherence and pain.
3. Weekly summaries.

Figure 85 Miro Board - PhysiApp Frame

The PhysiApp Frame, shown in Figure 85, focuses on the features and design elements of
the PhysiApp, which has been reviewed for its approach to fithess and rehabilitation. This
frame looks at how the app’s functionality and user experience are designed to support
users in achieving their health and fitness goals.

Lesson/Exercise Screen Social/Community Screen Frofile/Settings Screen Achievements/Rewards Screen

o wn wan

rreE aam

Wlzomed

Uimgnin gt e amee
gty st syt

H Dadly Ouest
- Earn 10 19
=
E Upcoming
[=}
| S
g C) “ o,
® T 0 [T E a8 * E 0 * @ ® (= W)

Purpose: Acls as a hub showing Purpose: Frovides
progress and the user's dally Interactive learming madules,

Purpose: Facilitates
community engagemeant,

Purpose: Allows users to manage thelr
accounts and preferences,

Purpose: Encourages habit-
bulidirg through

geals,
Features:
1. A "path” or roadmap
showing progress in lessons,
2. Daily streak trackers fo
mativate consistency.
3. Motifications for unfinished
tasks or goals,
4, Start button for the next
pending activity.

Features:

Features:

1. Leaderboards to
compare progress with
friends.

2. Options to add or
campete with others,

3. Shared tips or
challenges.

1. Bite-sized activities e.g.,
axercises with
instructions).

2 Visual aids, animations,
and audio prompts,

3. Progress indicators for
the current session,

4, Instant feedback (e.g.,
“correct” or *try again®).

Features:

1. User info and personalization settings.
2. Goals (e.g., daily commitment levels)
3. Motifications and language settings.

gamification,
Features:
1. Traphies ar badges for
completing milestones.
2. Progress streaks (e.g, "5
days of conslstency”),
3. XP or rewards for
completing tasks

Figure 86: Miro Board - Duolingo

FlexiCare: A Digital Patient Management System for Physiotherapy

89

The Duolingo Frame, shown in Figure 86, examines the features of the Duolingo app,
analysing how it keeps users engaged through fun, game-like elements. It highlights the

app's effective use of gamification to motivate users while they enjoyably learn a new
language.

Similar Apps Style Guides
PhysiApp (https://www.physiapp.com/) HSE (https://www.hse.ie/)

https:/fwew.physiapp.com/ Stylify Me hse.le Stylify Me

wease The quick brown fox jumps

=eme - The quick brown fox jumg
esser 2 i s sert st . The quick brown fox jumps over the lazy Waesar 214ret Sera ot et o T quick brown fox jumps over the i

Weader 3 racr, Sans Serit, Nomval, 2955, The quick brown fox jumps over the lazy dog and = s4ps The quick brown fox jumps over the lazy dog and
Wpw, WI3II33

The guick brown fin jumgs over the lazy dag and feels as if he wen

Bedys inlar, Sans-Sar#, Normal, Higs, 20w, Lorem ipsum dolor st amet, consectetur adipiscing eiit, Fusce id te Woty: Anal, Sans Serit Nermal, 1ox. 2pe. Lovem gsam delor it arel, consectetur sdiplicing el Fusce o tempus tel
#3353 #1232

Figure 87: Miro Board - Designing Frame

The Design Frame, shown in Figure 87, reviews style guides from existing apps and
websites, focusing on design elements like colour schemes, typography, and layout. This

frame provides insight into design trends and best practices that influence the overall look
and feel of the final product.

FlexiCare: A Digital Patient Management System for Physiotherapy 90

8. Reflection

8.1 Your Views on the Project

Working on this project was both challenging and rewarding. Given the chance to
experience the whole software development process, from gathering requirements to
deploying the final product. What stood out most was how much personal growth was
experienced, not just in technical skills, but also in confidence, adaptability, and
problem-solving. The comfort zone was pushed, mainly when new technologies were
used, and pride was taken in the achievements.

8.2 Completing a Large Software Development Project

This project demonstrated the largest scope and complexity of anything attempted before.
It showed how important it is for a clear plan to be in place, for organisation to be
maintained, and for flexibility to be exercised when changes occur. Working on a
long-term, multi-phase project taught me how big tasks can be broken down into smaller,
manageable ones. This approach helped keep things on track, despite unexpected
problems.

Many challenges were faced along the way, including significant changes in the
technologies used. C# and ASP.NET Core were initially chosen for the backend, then
Python and Flask were tried for a simpler framework. JavaScript and Express were also
tested to see how they might work for full-stack development. Ultimately, the decision was
made to return to C# and ASP.NET Core, as it offered the best support for both MVC and
API structures, which worked best for the project. PostgreSQL was also switched to
SQLite, as it was easier to set up with ASP.NET Core and allowed more focus to be placed
on coding rather than configuration.

These changes helped realise the importance of flexibility and made decisions based on
what was best for the project.

8.3 Working with a Supervisor

Working with a supervisor was very helpful, particularly at the start of the project. Advice
on how to make the system user-friendly was given by their specialisation in user
experience (UX) design. Although they did not focus on the development side, the
guidance provided by the early stages helped create a strong foundation for the project. As
the project became more technical, more freedom was given to take on responsibility,
which was considered a great learning experience.

8.4 Technical Skills

One of the biggest challenges during the project was learning a new backend language
and framework, C# and ASP.NET Core. At first, it was difficult, but now, a much better
understanding of server-side development has been gained. Both MVC patterns and
RESTful APIs were learned to be used effectively, and experience was gained with
integrating databases, user authentication, and deployment.

FlexiCare: A Digital Patient Management System for Physiotherapy 91

Switching technologies during the project was not easy, but it offered experience on
evaluating different tools and deciding what would work best for the project. This helped
encourage strategic thinking about the technical choices that were made.

8.5 Further Competencies and Skills

This project also helped to improve other vital areas. Better research skills in new
technologies were developed, and more informed choices were made. Time management,
self-motivation, and writing clear documentation were all improved skills. The ability to
explain complex ideas, whether in code comments or written reports, also became
stronger.

In addition to technical skills, problem-solving abilities were improved, especially when
unexpected bugs were encountered or new features were designed under pressure.
These technical and non-technical skills are expected to be valuable in future projects and
roles.

8.6. Future Plans

Due to the nature of this project and limitations such as time constraints, limited resources,
and the focus on building basic features first, some advanced features couldn’t be added
at this stage. However, with more time, resources, and future development phases,
FlexiCare has the potential to grow significantly. The following sections outline key areas
that are planned for improvement to make the app more engaging for patients, improve
treatment results, and provide a better overall experience.

8.6.1. Improving Exercise Tracking and Patient Engagement

In future versions of FlexiCare, improvements are planned for tracking exercises. Better
and more engaging exercise tracking is crucial for keeping patients motivated and helping
them achieve the best results from their rehabilitation.

One idea is to add a system that provides real-time feedback during exercises. For
example, the app could give feedback through sound, images, or vibrations to help
patients correct their technique in the moment. This would help patients stay motivated
and ensure they are performing exercises correctly.

Additionally, plans include connecting the app with fitness trackers or smartwatches.
These devices can track metrics like heart rate, steps, and calories burned, providing more
data to personalise rehabilitation plans for each user. This data can create more specific
and individualised plans, helping patients feel more accountable for their progress.
Goal-setting features (such as SMART goals) are also planned to help patients track
progress and stay engaged. For example, the app could track how many push-ups a
patient does, and as they complete more, they could earn rewards.

Another planned feature is the integration of social elements, such as forums or group
challenges. These would allow patients to connect with others experiencing similar
journeys, fostering a sense of support and motivation. [18]

FlexiCare: A Digital Patient Management System for Physiotherapy 92

8.6.2. Using Gamification to Increase Motivation

FlexiCare will incorporate gamification in future versions to make rehabilitation more
enjoyable and rewarding. Gamification involves adding game-like elements to non-game
situations to engage users and enhance their experience. At the same time, FlexiCare has
some aspects of this, such as the streak system, with a longer timeline, and further
developments could be made. [19]

One idea is to introduce a reward system where users can earn points, badges, or other
rewards for reaching specific milestones. In addition, features like leaderboards and
community challenges are planned, allowing patients to compete or collaborate with
others, which could boost motivation. These elements would foster a sense of teamwork
and friendly competition, helping patients feel more connected to others on the same
recovery journey. [20]

Finally, personalising the app will be a key focus. Real-time feedback will be provided,
progress will be shown through visual indicators, and goals will be adjusted based on
individual patient performance. This will ensure that patients are consistently challenged
but not overwhelmed, helping them stay on track with their rehabilitation. [21]

8.6.3. Making the App Accessible for Everyone

FlexiCare must be accessible to all users, regardless of their physical abilities or familiarity
with technology. The app was designed with ease of use in mind for everyone, including
people with disabilities.

However, in the future, to improve accessibility, features like voice commands, switch
controls, and options for high-contrast or monochrome displays will be included. These
features will support users with visual impairments. Additionally, the app will be compatible
with adaptive devices, allowing users to interact with it in ways that best suit their needs.
[22]

The app will also be designed to be intuitive, ensuring users can easily navigate it without
confusion. By gathering feedback from a diverse group of users during development, any
potential accessibility issues can be identified and addressed.

Furthermore, educational resources will be offered in multiple languages to help users
understand how to perform their prescribed exercises correctly. These resources will be
available in various formats to accommodate the needs of a broad range of users. [23]

FlexiCare: A Digital Patient Management System for Physiotherapy 93

9. Conclusion

The Flexicare application was developed as an electronic management system for
physiotherapy. It incorporates an intuitive web application for physiotherapists and a
mobile app for patients, transforming more traditional examples of physiotherapy practice.

The application was developed using an iterative SCRUM approach, which divides a large
project into smaller sections called sprints. Key methods employed included existing
product evaluation, key user surveys and feasibility testing.

The FlexiCare backend development utilised Microsoft's ASP.NET Core MVC framework,
C# code and Entity Framework Core, Microsoft’'s Object-Relational Mapping (ORM) tool
for mapping databases and SQLite. Key components included the FlexicCare Manager for
physiotherapists and administrators, role-based authentication using Microsoft Identity and
a separately designed FlexiCare API, which used JSON Web Token (JWT) authentication
and Swagger Support for the visual interface.

The frontend FlexiCare mobile development utilised React Native and Expo. Key tools
included Visual Studio Code for coding, Insomnia for API testing and Figma for Ul design.

The benefits of FlexiCare to the physiotherapist include the simplification of administrative
tasks, the provision of secure and convenient data management, and enhancing patient
engagement. The research and development process for Fleixcare has incorporated user
input from the physiotherapist, with questionnaires utilised to provide recommendations
that both directed the design and functionality of the application.

For the patient, Flexicare delivers improved coordination and communication with the
physiotherapist. It also allows patients to become active participants in their rehabilitation
process. Incorporation of features such as exercise tracking, progress monitoring, and
instant feedback highlights the focus on improving patient outcomes and satisfaction.

Further enhancements of Flexicare will include an increased level of gamification features
and improved accessibility for patients. Future ongoing engagement with the
physiotherapists will be required to ensure that the application is adjusted on a continuous
basis to meet their changing needs, as well as incorporating the latest technologies and
methodologies to continue refining their administrative and clinical services.

FlexiCare: A Digital Patient Management System for Physiotherapy 94

References

1. Anwar, N., Maratis, J., Adhy, D. R., Hermawan, R., & Hadi, M. A. (2022). Mobile
Application Design for Online Physiotherapy Services. Atlantis Press.

2. Richardson, J., Letts, L., Sinclair, S., Chan, D., Miller, J., Donnelly, C.,
Smith-Turchyn, J., Wojkowski, S., Gravesande, J., & Loyola Sanchez, A. (2021).
Using a Web-Based App to Deliver Rehabilitation Strategies to Persons With
Chronic Conditions: Development and Usability Study. JMIR Rehabilitation and
Assistive Technologies, 8(1).

3. AL Anazi Fayez Khalaf, Bin Thari Razan Rashed, AL Aloula Ali Suliman, AL Azmiy
Barakat Shumilan and AL Jarallah Majed Khalid. OPTIMIZING CARE THROUGH
UNIFIED SYSTEMS: A CRITICAL REVIEW OF INTEGRATED MANAGEMENT
ENHANCEMENTS BETWEEN HEALTH INFORMATION SYSTEMS AND
NURSING PRACTICE. International Journal of Development Research. 2023.

4. Dineen-Griffin, S., Garcia-Cardenas, V., Williams, K., & Benrimoj, S. |. (2019).
Helping patients help themselves: a systematic review of self-management support
strategies in primary health care practice. PloS one, 14(8), €0220116.

5. Martinez, N., Connelly, C. D., Pérez, A., & Calero, P. (2021). Self-care: A concept
analysis. International journal of nursing sciences, 8(4), 418-425.

6. Santos, R., & Pires, D. (2024). Current use of patient-reported outcome measures
by musculoskeletal physiotherapists in Portugal. Journal of Back and
Musculoskeletal Rehabilitation, 37(6), 1479-1488.

7. Jalali, M. S., Russell, B., Razak, S., & Gordon, W. J. (2019). EARS to cyber
incidents in health care. Journal of the American Medical Informatics Association,
26(1), 81-90.

8. Hiller, A., & Delany, C. (2018). Communication in physiotherapy: challenging
established theoretical approaches. Manipulating Practices: A Critical
Physiotherapy Reader. Oslo: Cappelen Damm Akademisk.

9. Fenyuk, A. (2024). How to Develop a Physical Therapy App: Key Steps for
Success. Stormotion.

10.Jane Patterson (2023, June 5). The Importance of Regular Software Updates in
Cybersecurity

11. Dawson-Rose, C., Cuca, Y. P., Webel, A. R., Baez, S. S. S., Holzemer, W. L.,
Rivero-Méndez, M., et al. (2016). Building trust and relationships between patients
and providers: an essential complement to health literacy in HIV care. J Assoc
Nurses AIDS Care, 27(5), 574-584.

12.App Store. (2015, December 1). PhyiApp.

FlexiCare: A Digital Patient Management System for Physiotherapy 95

https://apps.apple.com/us/app/physiapp/id1047722007

13.MedicalDirector Helix - Software features. (n.d.). MedicalDirector.
https://www.medicaldirector.com/products/helix/features

14.Strangehelix. (n.d.). freud v2: Al Mental Health App - Mindfulness Metrics UIUX.

Dribbble.
https://dribbble.com/shots/25513079-freud-v2-Al-Mental-Health-App-Mindfulness-M
etrics

15. Paperpillar. (n.d.). Task Management App. Dribbble.
https://dribbble.com/shots/24600588-Task-Management-App

16.Kubalczyk, M. (n.d.). Inventory app: Profile. Dribbble.
https://dribbble.com/shots/24 46-Inventory-app-Profil

17.Asal Design. (n.d.). AdaKita Onboarding Screen. Dribbble.
https://dribbble.com/shots/19942973-AdaKita-Onboarding-Screen

18.Chen, J., & Wang, Y. (2021). Social media use for health purposes: Systematic
review. Journal of Medical Internet Research, 23(5), e17917.

19.Al-Rayes, S., Al Yaqoub, F. A., Alfayez, A., et al. (2022). Gaming elements,
applications, and challenges of gamification in healthcare. Journal Name,
Volume(lssue).

20.Polskii, M. (2024, May 24). Building a reward system in mobile apps: Best practices
for gamification. InAppStory.

21.EPR Staff. (2025, March 27). The future of app digital marketing: Personalization is
the key to success. EPR.

22.Skynet Technologies. (2024, November 5). Mobile accessibility trends: Best
practices for inclusive app design. Skynet Technologies.

23.Council of Europe. (n.d.). Platform of resources and references for plurilingual and
intercultural education. Council of Europe.

FlexiCare: A Digital Patient Management System for Physiotherapy 96

https://apps.apple.com/us/app/physiapp/id1047722007
https://www.medicaldirector.com/products/helix/features
https://dribbble.com/shots/25513079-freud-v2-AI-Mental-Health-App-Mindfulness-Metrics
https://dribbble.com/shots/25513079-freud-v2-AI-Mental-Health-App-Mindfulness-Metrics
https://dribbble.com/shots/24600588-Task-Management-App
https://dribbble.com/shots/24566846-Inventory-app-Profile
https://dribbble.com/shots/19942973-AdaKita-Onboarding-Screen

Appendices
Appendix A — App Code Repository
A GitHub repository containing the frontend of the application.

https://qgithub.com/ac-png/physioApp

Appendix B — Backend Code Repository
A GitHub repository containing the backend of the application

https://qithub.com/ac-png/physioServer

Appendix C — Miro Board

Miro board project management link

https://miro.com/app/board/uXjVI851j98=/?share_link_id=509385298488

FlexiCare: A Digital Patient Management System for Physiotherapy

97

https://github.com/ac-png/physioApp
https://github.com/ac-png/physioServer
https://miro.com/app/board/uXjVI85Ij98=/?share_link_id=509385298488

	Declaration of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	1.1. Admin Web App
	1.2. Patient Engagement Mobile App

	2. Research
	2.1. Introduction
	2.2. Why Patient Engagement Matters
	
	
	2.3. Integrating Healthcare Systems
	2.4. Patient Self-Management and Outcomes
	2.5. Keeping Healthcare Apps Secure
	2.6. Review of Similar Applications
	2.7. Conclusion

	3. Requirements and Feasibility
	3.1. User Requirements
	3.1.1. Survey
	3.1.2. Why the Survey Matters

	
	3.2. Functional Requirements
	3.3. Non-functional requirements
	3.4. System Model
	3.5. Feasibility Study
	
	3.6. Limitations

	4. Design
	4.1. Program Design
	4.1.1. Technologies
	4.1.2. Structure of Technologies
	1. React Native (Mobile Application)
	2. ASP.NET Core Structure (For Web App, Web Server, and API)

	4.1.3. Design Patterns
	1. Model-View-Controller (MVC)
	2. Client-Server (API)
	3. Object-Oriented Programming (OOP)

	4.1.4 Application Architecture
	1. ASP.NET Core Architecture (Web App)
	2. React Native Architecture (Mobile App)

	4.1.5 Database Design

	4.2. User Interface Design

	
	5. Implementation
	5.1. SCRUM Methodology
	5.2. Development Environment
	5.3. Sprint 1: Python Development
	5.3.1. Early Attempt
	5.3.2. Reflection of Sprint 1

	5.4. Sprint 2: Backend Development
	5.4.1 FlexiCare Manager
	Data Model
	Object-Relational Mapping
	Migration Building
	Seeding
	SQLite
	Views, Controllers and Scaffolding
	Layout and Design
	User Roles and Navigation
	Authentication and Authorization
	5.4.2 FlexiCare API
	Authentication and Authorisation
	Requests Exposed
	5.4.3 Reflection of Sprint 2

	5.5. Sprint 3: Frontend Development
	5.5.1. Fundamental Desgin
	5.5.2. Pages

	
	5.5.3. Reflection of Sprint 3

	6. Testing and Results
	6.1. Usability Testing
	6.2. Unit testing
	6.2.1. Backend Testing
	6.2.2. Frontend Testing

	6.3. Evaluation

	7. Project Management
	7.1. Project Phases
	7.1.1. Requirements
	7.1.2. Research
	7.1.3. Design
	7.1.4. Implementation
	7.1.5. Testing

	7.2. Project Management Tools
	7.2.1. Notion
	7.2.2. GitHub
	7.2.3. Miro

	8. Reflection
	8.1 Your Views on the Project
	8.2 Completing a Large Software Development Project
	8.3 Working with a Supervisor
	8.4 Technical Skills
	8.5 Further Competencies and Skills
	8.6. Future Plans
	8.6.1. Improving Exercise Tracking and Patient Engagement
	8.6.2. Using Gamification to Increase Motivation
	8.6.3. Making the App Accessible for Everyone

	9. Conclusion
	
	References
	Appendices

