
DÚN LAOGHAIRE INSTITUTE OF ART, DESIGN AND TECHNOLOGY 

 

 

 

 

 

 

FlexiCare: A Digital Patient 
Management System for 

Physiotherapy 
 

 

 

 

 

 

 

Author: Alice Corry 

Student Number: N00211635 

 

Supervisor: John Montayne 

Second Reader: Cyril Connolly 

 

Dissertation submitted in partial fulfilment of the degree 

of BSc (Hons) in Creative Computing  

 



Declaration of Authorship 

Incorporating material without formal and proper acknowledgement (even with no 
deliberate intent to cheat) can constitute plagiarism. 

You should document this in your submitted work if you have received significant help with 
a solution from one or more colleagues. If you doubt what discussion/collaboration is 
acceptable, consult your lecturer or the Course Director. 

WARNING: Take care when discarding program listings lest they be copied by someone 
else, which may well bring you under suspicion. Do not leave copies of your files on a hard 
disk where others can access them. Remember that removable media used to transfer 
work may be removed and/or copied by others if left unattended. 

Plagiarism is an act of fraudulence and an offence against the Institute's discipline. 

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please 
refer to the Institute Handbook for further details of penalties. 

The following is an extract from the B.Sc. in Computing (Hons) course handbook. Please 
read carefully and sign the declaration below. 

Collusion may be defined as more than one person working on an individual assessment. 
This would include jointly developed solutions, with one individual giving a solution to 
another, who then makes some changes and hands it up as their work. 

DECLARATION 

I know the Institute’s policy on plagiarism and certify that this thesis is my work. 

Alice Corry  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               1 



Abstract 

This paper presents the development of FlexiCare, a digital solution aimed at modernising 
physiotherapy management for both clinicians and patients. It focused on improving the 
management of patient data, treatment plans, communication and patient 
self-management. The system was developed using an iterative SCRUM approach, which 
divides a large project into a series of smaller sections called sprints. Key methods 
employed included existing product evaluation, key user surveys and feasibility testing.  

The FlexiCare backend development utilised Microsoft’s ASP.NET Core MVC framework, 
which is capable of intuitively and securely managing user data such as personal 
information, exercise routines, and appointments. The backend uses C# code and Entity 
Framework Core, Microsoft’s Object-Relational Mapping (ORM) tool for mapping 
databases and SQLite as a lightweight but reliable data engine. Key components included 
the FlexicCare Manager for physiotherapists and administrators, role-based authentication 
using Microsoft Identity and a separately designed FlexiCare API, which used JSON Web 
Token (JWT) authentication and Swagger Support for the visual interface. Scaffolding was 
used for the rapid development of views and controllers, while data seeding was employed 
to populate the data with sample patient and exercise data for testing and development. 

The frontend FlexiCare mobile development utilised React Native and Expo. Key tools 
included Visual Studio Code for coding, Insomnia for API testing and Figma for UI design. 
Views like the login screen, task list and appointment page were developed to provide an 
intuitive, yet visually pleasing user interface.  Examples of features include secure 
authentication through the login view using AuthContext, and a task page displaying a list 
of assigned exercises with a daily streak feature for motivation. In addition, there was an 
appointment page developed to feature a data carousel to easily navigate through 
appointments and a feedback form that allows you to input data such as rep counts and 
pain levels, using metrics and sliders.  

Comprehensive testing was conducted on both the front and backend, using Jest and 
MSTest, respectively, to ensure functionality across all systems and devices, various 
conditions, and user inputs. FlexiCares development incorporated modern technology and 
best practices in backend and frontend design, with secure data management, intuitive UI 
and detailed automated testing, This project demonstrates how careful research and an 
iterative design process can come together to create a solution that addresses the 
complex needs of the healthcare professional while still prioritising an efficient and 
supportive user experience.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               2 



Acknowledgements 

I would like to express my sincere thanks to everyone who supported me throughout my 
thesis. 

First, I am deeply grateful to my Project Supervisor, John Montayne, for his guidance, 
helpful feedback, and encouragement. His expertise and patience made a massive 
difference in this process. 

I would also like to thank my lecturers at IADT for their valuable teachings and support 
throughout my studies. Their input has been essential in shaping my research and 
understanding. 

A special thank you also to my family for their constant love, support, and encouragement. 
Their belief in me kept me going, especially during challenging times. 

Finally, I acknowledge the Learning Support at IADT for providing valuable resources and 
assistance, helping me stay focused and on track with my work. 

Thank you all for your support. This work would not have been possible without you.

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               3 



Table of Contents 

Declaration of Authorship..................................................................................................2 

Abstract............................................................................................................................... 3 

Acknowledgements............................................................................................................ 4 

Table of Contents................................................................................................................5 

1. Introduction..................................................................................................................... 7 

1.1. Admin Web App........................................................................................................7 

1.2. Patient Engagement Mobile App.............................................................................. 7 

2. Research..........................................................................................................................9 

2.1. Introduction...............................................................................................................9 

2.2. Why Patient Engagement Matters.........................................................................................9 

2.3. Integrating Healthcare Systems............................................................................. 10 

2.4. Patient Self-Management and Outcomes...............................................................10 

2.5. Keeping Healthcare Apps Secure.......................................................................... 10 

2.6. Review of Similar Applications................................................................................11 

2.7. Conclusion..............................................................................................................13 

3. Requirements and Feasibility...................................................................................... 15 

3.1. User Requirements.................................................................................................15 

3.2. Functional Requirements........................................................................................24 

3.3. Non-functional requirements.................................................................................. 24 

3.4. System Model.........................................................................................................24 

3.5. Feasibility Study..................................................................................................... 25 

3.6. Limitations.............................................................................................................. 26 

4. Design............................................................................................................................ 28 

4.1. Program Design......................................................................................................28 

4.2. User Interface Design.............................................................................................33 

5. Implementation............................................................................................................. 41 

5.1. SCRUM Methodology.............................................................................................41 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               4 

https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.92r2ucmz0o5n
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.gy8pzlpq7uze
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.gbuz81d1qj5e
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.utpa2uic78fd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sscgm6qun9uj
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.1c1burili7rp
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.2b1exjhsrh57
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m0ca5zimumg3
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.y1fskar3ongb
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.j4yyzyaij8ia
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.mzo9kxk6t3n0
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.lvae5zpqg3xy
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.w2t6y1b5gr14
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m4nfjgqg3m43
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.4m3dcmeq1m2h
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.ogqgoqtte6it
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.n3wl9lq3h99d
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tw8g315bz2ij
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.s6eoop5g3z1n
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sfhw52mr53ji
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.wo9blezck1rp
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.4y8347jptojf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tmuevwlh6bt
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.fwtwp3owztc2
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.dwpiqym34apd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.m5zwb0jxzoxd
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.5n854vzcudxr


5.2. Development Environment..................................................................................... 41 

5.3. Sprint 1: Python Development................................................................................42 

5.4. Sprint 2: Backend Development............................................................................. 43 

5.5. Sprint 3: Frontend Development.............................................................................54 

6. Testing and Results...................................................................................................... 76 

6.1. Usability Testing......................................................................................................76 

6.2. Unit Testing.............................................................................................................76 

6.3. Evaluation...............................................................................................................80 

7. Project Management.....................................................................................................82 

7.1. Project Phases....................................................................................................... 82 

7.2. Project Management Tools..................................................................................... 83 

8. Reflection.......................................................................................................................88 

8.1 Your Views on the Project........................................................................................88 

8.2 Completing a Large Software Development Project................................................88 

8.3 Working with a Supervisor.......................................................................................88 

8.4 Technical Skills........................................................................................................ 88 

8.5 Further Competencies and Skills.............................................................................89 

8.6. Future Plans........................................................................................................... 89 

9. Conclusion.................................................................................................................... 91 

References.........................................................................................................................92 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               5 

https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.vsvachrccg3r
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.cpnqfskm034b
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.lzs0flzc8dym
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.z2jhcw8297qf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.dhyr53eljvmt
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.tuu3aummbcjx
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.2e3wr2undhd8
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.y59w6twehukf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.8109q3oo46d1
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.5f6s1me68kv4
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.wzs0r9msbec
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.346e0h3rxh2q
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.7kuvbnlk810g
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.873mtmulevdf
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.naeop9v4xnsu
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.6h5qpxdkzv1j
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.13vtmbeh7jq
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.euudlfnklt8v
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.sbo4ljdh58w2
https://docs.google.com/document/d/1WRztCbdDjWds600z4neiL7tJqPKqP6h6rxdIP1TJpgk/edit?pli=1&tab=t.0#heading=h.vjddrjprxfb1


1. Introduction 

FlexiCare is a multi-faceted digital platform designed to make physiotherapy more efficient 
and accessible for physiotherapists and patients. The project will be divided into two main 
components: 

1.1. Admin Web App 

This web application will help physiotherapists manage their work more effectively. The 
app will be built using ASP.NET Core, a C# framework designed for simplified web 
development. This app will allow physiotherapists to digitally: 

● Organise and access patient records 

● Schedule and manage appointments 

● Create, update, and monitor treatment plans. 

The user interface will be designed using HTML views, and data queries will be handled 
through REST to ensure fast and flexible access to information. With this system, 
physiotherapists can easily add, edit or delete patient information, helping them save time 
and reducing needless administrative tasks. 

1.2. Patient Engagement Mobile App 

This mobile app will help patients stay engaged and on track with their treatment plans. 
Developed using React Native, it can work seamlessly on both IOS and Android Devices. 
Patients will be able to: 

● Track their daily exercises 

● Receive reminders for upcoming appointments 

● Access valuable educational resources related to their care 

The app will feature a modern and simplistic design, using NativewindCSS, a tool for 
efficient styling. The app will be tested using Jest to ensure high performance across 
devices of various performance levels.  

Flexicare will use SQLITE, a reliable and secure database system for storing essential 
data such as patient information, treatment plans, exercise logs, and progress tracking. 
This will ensure that both the web and mobile applications can manage data efficiently, 
while maintaining a high standard of security and accessibility. Both Physiotherapists and 
patients alike will be able to access and upload their information quickly and safely. 

The primary goal of FlexiCare is to make physiotherapists' jobs easier by minimising time 
spent on administrative tasks, while helping patients stay actively engaged in their 
recovery. This project hopes to improve the efficiency of physiotherapy practices and the 
patient experience by building a web app dedicated to physiotherapists and a mobile app 
for patients. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               6 



FlexiCare is designed to grow with time. As more users join the platform, the system can 
handle increased data and traffic without compromising performance. Both applications 
will be intuitive and user-friendly, making them accessible to those with limited technical 
experience. While dealing with sensitive information, security is a top priority. Thus, the 
system will ensure that all patient data remains protected. 

Ultimately, FlexiCare seeks to become a simple, trusted, all-in-one solution for 
physiotherapy, allowing therapists to do efficient work while supporting patients every step 
in their recovery journey.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               7 



2. Research 

2.1. Introduction 

Healthcare is constantly evolving, and technology plays a bigger role than ever. Systems 
like the proposed FlexiCare, a digital patient management tool, aim to enhance patient 
care, especially in physiotherapy. This literature review explores essential themes in 
designing and implementing such systems, focusing on information systems, 
communication, patient involvement, and safety in healthcare. The aim is to present the 
current landscape, highlight opportunities and challenges, and support the development of 
FlexiCare. Understanding these topics is essential for creating a reliable, user-friendly 
system that promotes communication, supports self-management, and ensures patient 
safety. 

2.2. Why Patient Engagement Matters 

In physiotherapy, patient engagement is key to determining treatment success and overall 
patient satisfaction. Engaged patients are more likely to follow their prescribed exercise 
regimen, actively participate in their rehabilitation and communicate openly with health 
professionals. This is crucial as it is what patient-centred care is about and it improves 
clinical outcomes. Studies show that the more a patient is involved in their treatment plan, 
the better the results and the lower the costs [1]. 

Introducing a physiotherapy tracking app to improve patient engagement could be an 
effective first step. But how is that to be done? Well, in this study ,it is suggested that using 
user-centered functions that address the patient's needs and preferences [1]. At a 
minimum, the app should offer educational tools that could explain the details and 
importance of the medical condition, the prescribed therapy, and why commitment to such 
a therapy plan is of the essence. Secure messaging and video consultation can further 
enhance the experience by allowing patients to communicate directly with the medical 
professional, fostering real-time support. 

Technology can create interactive opportunities that strongly boost user motivation. 
Allowing for progress tracking and personalised feedback may let a patient visualise their 
progress over time. "Seeing is believing," whereby an individual will feel a greater sense of 
accomplishment and thereby may wish to continue trying. More importantly, they will feel 
confident that what they are doing helps them to improve their abilities. This development, 
when one comes to think about it, is not unlike that "aha" moment when patients 
sometimes suddenly realise that the therapy is working and that they are getting better. 

Emphasising patient engagement in physiotherapy apps heightens their commitment to 
treatment and health overall. Patients who feel like active participants in their care are 
more likely to stay committed and achieve better outcomes. At the core of the FlexiCare 
approach, is the belief that a successful digital therapy application should educate, 
communicate, and motivate , three components of a successful user experience for any 
patient [2]. Moreover, while it is the app that is facilitating this, it is ultimately the thinking 
behind it, coming up with such innovative features that allows patient engagement to 
become possible in the first place [2]. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               8 



 

 

2.3. Integrating Healthcare Systems 

Integrating different healthcare systems is important but complex. The goal is to create a 
seamless system that improves care for patients and simplifies work for professionals. 
This means connecting health information systems (HIS) with everyday clinical practices in 
for example, nursing and physiotherapy [3]. There are a list of challenges that include 
interoperability issues, poor communication between systems, and restrictive regulations. 
Still, integration is vital for improving healthcare delivery.  

2.4. Patient Self-Management and Outcomes 

Supporting patients in managing their own health is a cornerstone of modern healthcare, 
especially those with chronic conditions [4; 5]. Physiotherapists are well-positioned to 
provide structured, evidence-based self-management supports for their patients [4] 

These supports might include one-on-one sessions, follow-ups, and tailored information. It 
helps patients understand their condition, recognise warning signs, develop coping skills, 
and take control of their lifestyle and medications. Regular feedback and encouragement 
to make informed decisions are also important. Programs that use multiple strategies tend 
to lead to better outcomes and higher quality of life [4]. 

To evaluate treatment success, healthcare systems often use patient-reported outcome 
measures (PROMs). These tools gather data directly from patients about their health 
status. Despite their value, PROMs are not always used consistently in physiotherapy due 
to various barriers [6]. Mobile Health apps can incorporate PROMs and support 
self-management, but user perceptions and experiences play a key role in their 
effectiveness [7]. 

2.5. Keeping Healthcare Apps Secure 

The prevention of cyber attacks on health information systems in healthcare services  is 
fundamental, mainly because these systems handle highly sensitive patient data. 
Healthcare data, including electronic health records and personal health information, 
needs strong security measures [3]. Protecting sensitive patient information, preventing 
unwanted use, and stopping theft are all vital aspects of healthcare data security [3].  

The increasing use of digital systems in healthcare, including connected medical devices 
and electronic health records, has unfortunately also introduced significant cybersecurity 
concerns [6]. Cybersecurity incidents are becoming more frequent and can seriously affect 
healthcare organisations [7]. These effects range from the accidental release of protected 
health information to disruptions in patient care [7].  

In today's environment with advanced cyber threats, it is almost certain that successful 
attacks will occur [7]. Therefore, healthcare organisations must have effective strategies to 
respond to these incidents [7]. Recent events, such as ransomware attacks that have 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               9 



taken parts of healthcare organisations offline, show the significant impact of these 
incidents [7]. Understanding how organisations respond and how to improve these 
responses is vital for maintaining safe and effective healthcare delivery globally [7]. 
Developers must implement a comprehensive set of multi-layered security measures, 
including encryption, secure access mechanisms, and regular software updates [8]. 

Encryption is one of the most effective and straightforward tools for safeguarding data. It 
ensures that information, whether it is being transferred or stored, is converted into 
unreadable code unless accessed without a key. This means that if the data is intercepted 
or accessed without permission, it remains unusable without the necessary keys to decrypt 
it [9]. Even basic encryption methods can offer strong protection. 

Keeping the app regularly updated is another critical step. As cyber threats evolve, older 
versions of software may become more vulnerable. Developers must respond quickly 
patching security flaws and releasing updates. A strong developer will also regularly audit 
their own work to make sure no new bugs have introduced a problem into the app.[10] 

Trust is the foundation of any healthcare relationship. If patients feel their data is not 
secure, the credibility of the physiotherapy app is compromised. Protecting user data is not 
optional, it is a fundamental responsibility. Developers must therefore incorporate strong 
encryption, secure authentication methods, and regular updates to build and maintain trust 
between patients and providers.[11] 

2.6. Review of Similar Applications 

Before beginning the development of FlexiCare, it is essential to analyse existing 
applications that offer similar features. Studying comparable systems is an efficient way to 
identify established best practices, common issues and gaps in the current functionality 
that offer opportunities for innovation. It ensures FlexiCare can build upon proven 
technologies and offer improvements where current solutions fall short. Table 1 compares 
two such applications: Helix and PhysiApp, focusing on their key functionality, algorithms, 
advantages and weaknesses. 

Helix is a web-based application designed for physiotherapists. It helps manage patient 
records, track progress and create personalised treatment plans. Helix uses integrated 
algorithms to assist physiotherapists in monitoring patient outcomes and adjusting their 
treatment plans accordingly. As shown in Table 1, Helix offers several advantages, such as 
streamlining the physiotherapy workflow, providing customisable treatment plans and 
using data-driven insights to support physiotherapists in making informed decisions. 
However, two notable limitations were observed.  It is a web application, not a permanently 
downloadable app, requiring a stable internet connection to function correctly. Its relatively 
complex design may also create a harsh learning curve for new users. 

PhysiApp is a mobile application designed to support patients by tracking their exercises, 
sending reminders, and offering feedback on their progress. It helps patients stay engaged 
with their treatment plans by sending regular notifications and personalised exercise 
suggestions. PhysiApp uses algorithms to track exercise completion, deliver personalised 
reminders and feedback, and assist with goal setting and tracking. Its advantages include 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               10 



keeping patients on track with their exercises through easy-to-follow progress tracking and 
reminders/feedback. While PhysiApp accessibility is an improvement over Helix, as a 
mobile app, it is limited to mobile devices. It is still noticeably complex and may not be 
suitable to less tech-savvy users.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               11 



Table 1: Review of Applications with Similar Functionality 

Application Helix PhysiApp 

Category Physiotherapy 
management 

Patient exercise tracking 

Technology Web App Mobile App 

Description and 
functionality 

Helix helps physiotherapists 
manage patient records, 
track progress, and create 
personalised treatment 
plans. It uses data-driven 
tools to optimise treatment 
based on patient needs. 

PhysiApp supports patients 
by tracking their exercises, 
sending reminders, and 
offering feedback on 
progress. It engages 
patients with their treatment 
plans through notifications 
and personalised exercise 
suggestions. 

Algorithms ● Patient data analysis 
● Treatment plan 

optimisation 
● Progress monitoring 

● Exercise completion 
tracking 

● Personalised 
reminders and 
feedback 

● Goal setting and 
tracking 

Advantages ● Streamlines 
physiotherapy 
workflow 

● Customisable 
treatment plans 

● Data-driven insights 
for physiotherapists 

● Keeps patients 
engaged and on 
track with exercises 

● Easy-to-follow 
progress tracking 

● Offers feedback and 
reminders 

Disadvantages ● Requires internet 
access 

● It may be complex 
for new users 

● Limited to mobile 
devices 

● It may not be 
suitable for all 
patients, especially 
those less 
tech-savvy 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               12 



 

The images below display the user interfaces of Helix (Figure 1) and PhysiApp (Figure 2). 
These examples provide valuable insight into how these existing applications support 
physiotherapists and patients through their design choices. FlexiCare hopes to build on 
these insights, by analysing the strengths and weaknesses of these designs. FliexCare’s 
interface will deliver a more intuitive, accessible and user-friendly experience. 

 
Figure 1: Helix Interface [12] 

 
Figure 2: PhysiApp interface. [13]. 

2.7. Conclusion 

This research has explored important themes involved in designing and developing a 
digital patient self-management system like FlexiCare within physiotherapy. As healthcare 
becomes increasingly more digital, patient engagement, integrated systems,  data security 
and supporting self-management are highlighted as key areas of importance. Patient 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               13 



engagement in particular is vital to improving treatment motivation and outcomes, and this 
should be supported through user-friendly, interactive technology. Integrating healthcare 
systems is a significant challenge, but it is necessary to streamline digital care. 
Encouraging patient self-management through feedback, educational content and other 
tools can lead to self-supportive patients and better recovery outcomes. 

However, no digital solution is possible without strong cybersecurity. Within the world of 
healthcare, patient confidentiality is paramount above all else, and as cyber threats rise, 
safeguarding patient information through encryption, secure authentication and regular 
updates is crucial. The trust in any healthcare system depends directly on the strength of 
these protections. 

The review of Helix and PhysiApp highlights important lessons for FlexiCare, highlights 
aspects that are successful and can be built upon, and areas of weakness such as intuitive 
design, that can be learned from. 

In conclusion, the development of FlexiCare is not as simple as creating an app, it is about 
enhancing care, empowering patients to be self-supportive and self-managing, and 
supporting professionals through an efficient design. By learning from current challenges 
and addressing existing best practices, FlexiCare has the potential to set the standard for 
digital physiotherapy tools.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               14 



3. Requirements and Feasibility 

A clear understanding of the system requirements and feasibility is essential for building a 
complicated, yet effective and user-intuitive application such as FlexiCare. This section will 
outline the key features required to meet the goals of the project, and will explore potential 
technical and practical challenges that may arise during development. It will also introduce 
the initial system model and outline the project’s early roadmap. This will ensure that the 
development is structured and informed from the outset. 

The requirements are divided into three primary categories: 

● User requirements 

● Functional requirements 

● Non-functional requirements 

3.1. User Requirements 

User requirements specify what the end-user aims to achieve with the software. These are 
generally not technical requirements, but rather are focused on the wants and needs of the 
user,  and serve as the foundation for designing a user-friendly and effective application. In 
the case of FlexiCare, gathering accurate user input prior to development was essential to 
ensure that the final product directly aligns with the needs and expectations of both 
physiotherapists and their patients. 

A targeted user survey was conducted to obtain these insights. 

3.1.1. Survey 

A survey was conducted with practising physiotherapists to collect meaningful input on 
what they consider essential in a physiotherapy tracking and management application. 
This survey served as a critical tool, offering valuable insights into both common current 
issues and desired potential features. By capturing real-world experiences and 
expectations, it was possible to gather the understanding required for an application that 
can truly support and enhance physiotherapy care. 

The survey was distributed anonymously via Google Forms, ensuring that participants 
could provide honest and uninfluenced feedback. Ten professionals from a range of age 
groups, practice settings and levels of experience participated. The hope of this mix was to 
provide a balanced perspective and have a general overview of a larger proportion of the 
potential user base 

The questionnaire was designed to gather both quantitative data, in the form of multiple 
choice rankings, and qualitative feedback, such as questions with open-ended comment 
responses. Physiotherapists were asked to evaluate the usefulness of various proposed 
features, and their responses highlighted a value for simplified record-keeping and 
appointment management. The survey results will be used as the basis for the FlexiCare 
design, ensuring it meets the needs of physiotherapists and enhances patient care. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               15 



3.1.2. Why the Survey Matters 

Conducting user-research is not just a formality but rather a vital step in the development 
of any application, particularly within healthcare. Direct input from users is indispensable 
for a variety of reasons: 

1. Real-World Relevance 

By consulting physiotherapists early in the process, it ensures that FlexiCare addresses 
actual needs rather than simple assumptions. This reduces the risk of developing features 
that could be unused or considered unhelpful.  

2. User Validation 

A survey can act as a validation tool for potential features or tools. If a concept ranks 
highly among the participating user-base, it signals that it is in high demand. This can help 
prioritise development resources and time. 

3. Design Focus 

It can help define the personas and use cases that guide UX design. Knowing who the 
user is and what they value means every interaction in the app can be shaped around their 
expectations. 

The survey results offer valuable insights into the challenges physiotherapists face when 
supporting patients with exercise issues. As seen in Figure 3, a significant 85.7% of 
respondents identified low patient motivation as a major barrier, with 57.1% reporting that 
patients frequently forget to perform their prescribed exercises. Additionally, 42.9% 
highlighted physical discomfort, pain, or uncertainty about proper technique as common 
factors that hinder adherence. These insights point to a consistent need for tools that can 
provide both guidance and encouragement throughout the rehabilitation process. 

 
Figure 3: Survey Results - What are the biggest problems your patients have with doing their exercises? 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               16 



As shown in Figure 4 when asked about desired features in a physiotherapy app, the vast 
majority (85.7%) of physiotherapists rated explicit exercise videos and timely reminders as 
the most valuable tools to assist patients. These were closely followed by 
progress-tracking features and adjustable exercise plans, with 57.1% of participants 
expressing strong interest in tools that allow for flexibility and individualisation of therapy 
routines. 

 
Figure 4: Survey Results - What are the biggest problems your patients have with doing their exercises? 

On the clinical side, Figure 5 shows 71.4% of respondents indicated that chronic pain and 
arthritis are among the most prevalent conditions affecting their patients, while 57.1% 
noted that post-surgical recovery was a primary concern. These findings underscore the 
importance of tailoring exercise content to support long-term conditions and 
recovery-focused rehabilitation. 

 
Figure 5: Survey Results - What types of physical problems do your patients have when they struggle to keep up with 

their exercises? 

In terms of features and functionality, Figure 6 shows 85.7% of participants expressed a 
strong preference for the ability to customise exercise plans within the app, reinforcing the 
importance of adaptable treatment options. Moreover, as seen in Figure 7, the same 
percentage agreed that including clear exercise demonstrations and reminder features 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               17 



would be particularly beneficial in helping patients stay on track. An additional 71.4% 
supported the inclusion of relevant patient health information within the app to provide 
context and improve care coordination. 

 
Figure 6: Survey Results - Would you want to be able to customise exercise plans for your patients in the app? 

Figure 
7: Survey Results -  What features do you think would help your patients most in an app? 

 

These findings highlight a clear direction for the FlexiCare app: it must prioritise intuitive, 
user-friendly features that promote motivation, enable personalisation, and reduce 
uncertainty around exercise routines. By addressing core issues such as motivation, 
memory, pain, and confidence in technique, the app can significantly improve patient 
engagement and hopefully support better outcomes in physiotherapy care. 

3.1.3. Personas 

Personas are fictional, but data-driven profiles are designed to represent the key user 
types who are likely to use a software application. The idea is to help developers better 
understand real users' motivations, behaviours, needs and potential frustrations. They are 
developed using user surveys, like that conducted above, with qualitative and quantitative 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               18 



data, focused on user goals, behaviours, environment, pain points and needs. Personas 
serve as a powerful tool to guide design decisions and ensure that the final product 
remains focused on real-world usability and relevance. 

The following is an illustration of the first persona, Sarah Thompson. Her profile reflects 
the needs and preferences of a key user group identified during the user research phase. 

 
Figure 8: Physiotherapist Sarah Thompson's Fictional Persona 

While it's important to support physiotherapists like Sarah with tools to track progress and 
customise exercise plans, it's equally vital to meet the needs of patients like John, the 
second persona. Physiotherapists need efficient systems for monitoring, while patients 
require a simple, engaging platform that encourages regular participation and proper 
technique. Balancing both perspectives ensures the app supports effective care and 
sustained patient engagement. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               19 



 
Figure 9: Patient John Miller's Fictional Persona 

These personas help highlight the distinct needs, behaviours, and goals of both the 
physiotherapist and the patient. They will serve as a guide for designing the FlexiCare app 
to properly address their specific requirements. 

3.1.3. Use Case Diagram 

The use case diagram shown in Figure 10, based on the personas, represents the 
interaction between users and the system. This diagram outlines the system's key 
functions and how the physiotherapist and the patient interact with it. It highlights each 
user's various tasks, such as the physiotherapist managing patient records and 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               20 



customising exercise plans. In contrast, the patient tracks progress, follows exercise 
instructions, and receives reminders. The diagram serves as a visual representation of 
how both users engage with the app to achieve their goals. 

 
Figure 10: Use Case Diagram 

3.1.4. Use Cases 

The use cases represent possible scenarios or ways in which users interact with the 
software based on the use case diagram. These scenarios are based on the personas and 
are placed in typical situations where they would utilise the application. For example, a 
physiotherapist like Sarah might use the app to assign and adjust exercise plans for a 
patient, track their progress, and send reminders. On the other hand, a patient like John 
might use the app to receive exercise instructions, set personal goals, track his progress, 
and receive reminders to stay motivated. These use cases help illustrate how the 
application meets the needs of physiotherapists and patients in their daily interactions. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               21 



 

Physiotherapist Use Cases (Sarah Thompson) 

Use Case 1: Assign and Customise Exercise Plan 

Scenario:  

Sarah must assign a personalised exercise plan to a new patient. She logs into the app 
and selects the patient’s profile. Based on the patient's condition and progress, she 
customises the exercise plan, adding specific exercises and setting goals. 

Steps: 

1. Sarah logs into the app. 

2. Sarah selects the patient from the list. 

3. Sarah creates or adjusts an exercise plan based on the patient’s needs. 

4. Sarah assigns the exercise plan to the patient and sets progress goals. 

5. Sarah can adapt the plan as needed based on patient feedback or progress. 

Outcome:  

The patient receives their customised exercise plan, and Sarah can track their progress 
remotely. 

Use Case 2: Monitor and Track Patient Progress 

Scenario:  

Sarah wants to track how well her patients are doing with their exercise plans. She checks 
the app to review the progress reports, noting how often exercises are completed and 
whether the patient is meeting their goals. 

Steps: 

1. Sarah logs into the app and goes to the patient’s profile. 

2. She views the progress tracker, which includes completed exercises, time spent, and 
any adjustments made. 

3. Sarah provides feedback or adjusts based on the patient’s progress and performance. 

4. Sarah can also send reminders or additional resources if necessary. 

Outcome: 

Sarah can track the patient's progress effectively and make necessary adjustments to the 
exercise plan.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               22 



Patient Use Cases (John Miller) 

Use Case 3: Follow Exercise Instructions and Track Progress 

Scenario:  

John logs into the app to view his daily exercises. He watches the exercise videos and 
follows the instructions to ensure he performs the exercises correctly. After completing the 
exercises, he tracks his progress in the app. 

Steps: 

1. John logs into the app. 

2. John views his assigned exercises for the day. 

3. John watches the explicit exercise videos and follows the instructions. 

4. After completing the exercises, John logs the results (e.g., number of reps, duration). 

5. John checks his progress in the app to see how well he's sticking to his plan. 

Outcome: 

 John stays on track with his exercises and can monitor his improvements. 

Use Case 4: Receive Reminders and Set Goals 

Scenario: 

John often forgets to do his exercises. The app sends him daily reminders, encouraging 
him to complete his exercises. John also sets personal goals within the app to stay 
motivated and track his progress. 

Steps: 

1. John receives daily push notifications reminding him to complete his exercises. 

2. John opens the app to check his exercises for the day. 

3. He sets personal goals within the app (e.g., increase repetitions and reduce pain). 

4. John works on his exercises, marking them as complete once done. 

5. The app tracks his progress towards meeting his goals and provides motivational 
feedback. 

Outcome: 

Through reminders and goal tracking, John stays motivated and consistent with his 
exercises. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               23 



3.2. Functional Requirements 

The functional requirements describe the core features and functions of the FlexiCare 
system. Derived from the survey results, personas, and case scenarios, these 
requirements ensure that the app meets the needs and expectations of both the 
physiotherapists and the patients. Functional requirements outline the elements of the user 
interface (UI), detailing the actions users can take and the system’s responses to these 
interactions. For example, the UI may include features like customisable exercise plans for 
physiotherapists, detailed exercise videos, and reminders to ensure patients stay on track 
with their routines. Each feature is designed to enhance the user experience, providing 
efficient interaction with the app and helping users achieve their goals, whether managing 
patient progress or staying engaged with prescribed exercises. 

This application has the following functional requirements: 

● Web and Mobile App: FlexiCare will have both a web app for physiotherapists and a 
mobile app for patients. 

● Manage Patient Profiles: Physiotherapists can create and update patient profiles, 
assign exercises, and track progress. 

● Assign Exercises: Physiotherapists can set up and adjust exercise plans for 
patients. 

● Track Exercises: Patients can log their completed exercises and note any 
pain-related issues. 

● Exercise Videos: Clear exercise videos and instructions will guide patients in 
performing exercises correctly. 

● Feedback: Physiotherapists can give feedback to patients on their performance. 

● Customisable Plans: Physiotherapists can personalise exercise plans for each 
patient. 

3.3. Non-functional requirements 

The non-functional requirements focus on how the system should perform to meet user 
expectations. To meet the scope of this project, FlexiCare must be a responsive web 
application, ensuring smooth functionality across different screen sizes, devices and 
browsers. The database must be highly reliable, ensuring that data is stored safely and 
can be quickly accessed. Additionally, the login functionality must be secure, protecting 
user information through encryption and using previously discussed features like 
two-factor authentication to ensure only authorised users can log in. These requirements 
aim to ensure that FlexiCare remains dependable, accessible and secure for all users. 

3.4. System Model 

The system model for the FlexiCare application, shown in Figure 11, is divided into three 
layers: the client side, the server side, and the data layer.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               24 



The client-side layer manages the user interface for physiotherapists and patients, 
allowing interactions like viewing treatment plans, tracking exercises, and receiving 
feedback. For this application, this was built using React Native, which provides a 
seamless and responsive experience across mobile devices. NativewindCSS was utilised 
for styling, ensuring a clean, modern design, while Jest was used for testing, ensuring the 
app performs correctly on various platforms. 

The server-side layer hosts the application, handles user management, processes data, 
and computes personalised exercise plans and progress tracking. This was developed 
using ASP. .NET Core, a C#-based micro-framework that simplifies web application 
development. ASP. .NET Core was paired with HTML views to render the physio web app 
interface and REST to handle data queries efficiently, allowing flexible database 
interaction. 

The data layer consists of a database for storing patient information, exercise data, 
treatment history, and the recommendation model used to tailor treatment plans. For the 
data layer, SQLite was chosen as the relational database system. It stores all critical 
information, such as patient data, treatment plans, exercises, and progress tracking, 
offering a reliable and scalable solution for data management 

 
Figure 11: FlexiCare System model Diagram 

During development, Git and GitHub were used for version control, enabling efficient 
tracking of code changes and ensuring secure backup management throughout the 
development process. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               25 



3.5. Feasibility Study 

Developing the FlexiCare application involves addressing several potential challenges that 
could impact the project’s success. Table 2 outlines the major challenges anticipated 
during development, along with descriptions and proposed solutions. Identifying these 
challenges early helps ensure that appropriate strategies are put in place to manage risks, 
maintain progress, and deliver a functional and user-friendly application.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               26 



Table 2: Assessment of Major challenges 

Challenge Description Solution 

Inexperience with C# Limited experience in C# 
programming may slow 
development. 

Use available tutorials and 
community support to learn 
and improve C# skills. 

Understanding of System 
Design 

Building a system with 
multiple layers (client, 
server, and data layers) can 
be complex. 

Study similar systems and 
break the tasks into smaller, 
manageable parts for 
easier development. 

Time Constraints Limited time to complete 
the project may affect some 
features. 

Plan the project well, set 
clear priorities, and focus 
on completing the most 
critical features first. 

Data Accuracy Ensuring the system gives 
accurate and reliable 
recommendations. 

Carefully design the 
database and test the 
system regularly to improve 
the accuracy of 
recommendations. 

Cold Start Problem New users or 
physiotherapists may not 
have enough data for 
personalised 
recommendations. 

Use demographic data and 
initial user input to create 
basic recommendations 
until more data is gathered. 

User Engagement Keeping patients engaged 
with their treatment plans is 
challenging. 

Add reminders, progress 
tracking, and motivational 
feedback to keep patients 
motivated and involved. 

 

3.6. Limitations 

The development of the Physio web application faces some limitations. The project is 
being developed on consumer-grade hardware (desktop/laptop), which might limit the 
system's performance, particularly when handling large datasets or an expanding user 
base. The absence of specialised server infrastructure also poses scalability challenges, 
potentially affecting the system’s ability to manage increased traffic as the application 
grows. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               27 



Regarding the user interface (UI), the focus has been on building a basic but functional 
design. Both the Physio web app (developed using ASP.NET Core with HTML views) and 
the accompanying patient mobile app will be designed to meet essential usability 
requirements. More advanced features, aesthetic enhancements, or complex UI 
interactions will only be implemented if time allows within the project schedule.  

Time constraints also represent a significant limitation for the project. Careful prioritisation 
of core features is necessary. Specific enhancements and additional features may be 
deferred to deliver a stable and fully functional product by the project deadline. 

Additionally, API development will be essential for interacting with the patient's mobile app 
and the web-based physiotherapy management system. This may introduce some 
complexities in synchronising data across platforms and ensuring that the API functions 
correctly across different environments (web and mobile).  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               28 



4. Design 

This section outlines the design of the application. The objective of the design phase is to 
provide developers with a clear blueprint to build an application that meets the 
requirements outlined in the requirements section. 

The design process divided into two key areas: 

1. Program Design 

2. User Interface Design 

4.1. Program Design 

4.1.1. Technologies 

The FlexiCare application is built using the following two technologies, as outlined in 
Figure 12: 

1. React Native (Mobile Application): 

● Enables cross-platform compatibility for both IOS and Android with a single 
codebase. 

● Support rapid development with a strong ecosystem and community support. 

● Styled using NativewindCSS, providing a utility-first approach to responsive and 
customisable UI components. 

● Previously used in related projects, allowing faster development through existing 
expertise. 

2. ASP.NET Core (For web app, web server, and API): 

● A new, modern framework, providing opportunities for growth and learning 

● Supports both MVC (Model-View-Controller) and API architectures. 

● Offers high scalability, flexibility and robust performance for web and backend 
systems. 

● Utilises SQLite as the default database, simplifying setup and focusing efforts on 
application logic 

● HTML files are used as part of the MVC views within ASP.NET Core to render 
content and display the web app interface. 

This combination of technologies ensures efficient development and seamless integration 
across both mobile and web platforms, with a clean and maintainable codebase. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               29 



 
Figure 12:  FlexiCare System architecture and technologies 

4.1.2. Structure of Technologies 

1. React Native (Mobile Application) 

React Native is organized into a modular structure: 

● /node_modules: Project dependencies. 

● /assets: Static files (e.g., images, illustrations & icons). 

● /components: Reusable UI components. 

● /constants: Reusable constant values for icons 

● /app: Contains the pages/views of the app. 

○ /(protected): The pages of the app that require Authentication 

■ /(tabs): Contains pages which can be navigated to using the TabBar 

○ /account: Login & onboarding pages can be viewed without Auth 

○ /_layout: Root layout file where AuthContext is in 

● /services: Helper functions & API functions 

● /interfaces: Typescript type interfaces for API models 

● context: Contains the Auth context used to maintain Auth state 

● tailwind.config.js: Configuration for NativewindCSS - based on TailwindCSS. 

 

2. ASP.NET Core Structure (For Web App, Web Server, and API) 

The ASP.NET Core solution is divided into two main area (MVC and API) within a single 
folder. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               30 



● Controllers: Handles HTTP requests (MVC returns views, and API returns data) 

● Models: Shared data structures across MVC and API. 

● Services: Business logic used by both projects. 

● Data: Contains the database context. 

● Views: Only in the MVC project, contains Razor views for UI. 

● wwwroot: Only in the API project, status assets (JavaScript, CSS, images). 

 

4.1.3. Design Patterns 

1. Model-View-Controller (MVC) 

Within the ASP.NET Core web application the MVC pattern is implemented: 

● Model: Handles the data and business logic. 

● View: Displays the user interface (UI) using Razor views (HTML + C#). 

● Controller: Manages user input, updates the model, and returns the view. 

This structure keeps the app organised and easy to maintain. 

 

2. Client-Server (API) 

The API project follows the Client-Server approach: 

● Client: The React Native mobile app makes requests to the server. 

● Server: The API processes these requests and responds, typically with JSON. 

This allows the mobile app to interact with the backend. 

 

3. Object-Oriented Programming (OOP) 

Both the MVC and API parts of the application use Object-Oriented Programming (OOP) 
principles: 

● Classes and Objects: Core parts of the system such as the Patient, Exercise, and 
Appointment are represented as classes. 

● Encapsulation: Data and methods are bundled together inside classes, hiding 
complexity and making the code more manageable.  

● Inheritance: Code reuse is achieved by allowing one class to inherit properties and 
methods from another. For example, the BaseController class sets standard 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               31 



navigation behaviour, and all other controllers inherit from it, automatically applying 
consistent behaviour across the application. 

● Polymorphism: Each controller inherits functionality from the ASP.NET controller 
class, while also implementing specific actions on top of this as required by each 
individual controller class. 

OOP helps in building a modular, reusable, and easy-to-manage codebase. 

4.1.4 Application Architecture 

The application has a layered architecture, as shown in Figure 13, dividing the mobile and 
web apps into clear sections for better organisation and scalability. 

1. ASP.NET Core Architecture (Web App) 

● MVC (Model-View-Controller): Separates concerns into Models (data), Views (UI), 
and Controllers (logic). 

● API Layer: Handles RESTful API requests for data exchange with the mobile app. 

● Database Layer: Uses SQLite, the default database in ASP.NET Core, for local 
storage and database interaction. Entity Framework Core is used to interact with 
database. 

2. React Native Architecture (Mobile App) 

● UI Layer: Built with reusable components and screens (e.g., Home, Profile). 

● Navigation Layer: Managed with React Navigation for screen transitions (e.g., 
stack, tab navigation). 

● State Management: Manages app state with Context API. 

● API Layer: Communicates with the backend using Axios or Fetch for API requests. 

● Styling: Uses NativewindCSS or custom styles for responsive UI design. 

This architecture ensures the application is modular, easy to maintain, and scalable for 
future development. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               32 



 
Figure 13 : Application Architecture Diagram 

4.1.5 Database Design 

The database schema is designed to handle the relationships between physiotherapists, 
patients, treatments, exercises, and appointments. 

 
Figure 14 : Entity Relationship diagram 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               33 



The Entity Relationship Diagram (ERD), shown in Figure 14. for the FlexiCare system 
highlights how key tables such as Physios, Users, Treatments, Programs, Exercises and 
Appointments are interconnected. Each table is connected using foreign keys, helping to 
keep the system organised and allowing the application to efficiently manage patient 
records, treatment plans, exercise schedules, and appointments. 

● The Physios table stores information about physiotherapists. The physio_id acts as 
a primary key and is used in both the Users table (to link each patient to their 
physiotherapist) and the Programs table (to assign physiotherapists to patient 
programs). 

● The Users table stores patient details. Each patient is linked to a physiotherapist 
through the physio_id foreign key. 

● The Treatments table lists available treatment options. Each treatment can have 
one or more related exercises, which are stored in the Exercises table. 

● The Programs table records the rehabilitation programs assigned to patients, and 
connects patients, physiotherapists, and exercises together. 

● The Appointments table manages scheduling between patients and 
physiotherapists, storing information about upcoming and past sessions. 
 

4.2. User Interface Design 

This section outlines the planned user interface (UI) design for the FlexiCare mobile 
application. This initial version will use this design as a basic frame, and the mobile 
application UI will be subsequently developed based on this concept. These designs will 
follow a user-centered approach, aiming to deliver a clear, intuitive experience that 
supports patient engagement and effective treatment tracking. 

4.2.1. UI Inspiration 

 
                    Figure 15: Metrics Bar Charts [14]                                         Figure 16: Modern Onboarding Design [17] 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               34 



 
                         Figure 17: Home Page Statistics [15]                                           Figure 18: Account Settings [16] 

Figures 15-18 show app designs from Dribbble that were used for inspiration. These 
designs helped shape the look and feel of the project, giving ideas for layout, color 
schemes, and user interface elements. 

4..2.2. Wireframes 

                           
Figure 19: Homepage design                                            Figure 20: Today’s Tasks design 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               35 



Homepage 

The homepage, shown in Figure 15, provides a snapshot of the user’s treatment progress, 
displaying key statistics in a visually engaging format. It includes graphs showing pain 
levels and the number of reps completed over time. The page also provides stats on the 
total number of exercises completed and calculates the average pain level. This overview 
gives patients insight into their progress. 

Today’s Tasks 

The “Today’s Tasks” page, shown in Figure 16,  lists the exercises that the user needs to 
complete for the day. The exercises are categorised by the specific treatment program, 
allowing users to quickly identify which exercises are part of each treatment. The page is 
designed to provide users with a clear, organised view of what is expected of them, with a 
simple layout that highlights the exercises they need to focus on today. 

                          
Figure 21: My Program design                                        Figure 22: Treatment Exercise design 

My Program 

The “My Program” page, shown in Figure 17, provides detailed information about the 
user’s current program, including an overview of the treatment plan, start and end dates, 
and specific goals. The page also includes a list of treatments being followed and a history 
of previous programs, offering users a clear view of their ongoing and past treatments. 
This helps patients track their progress and stay on top of their recovery journey. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               36 



 

Treatment Exercises 

When the user selects a treatment from the “My Program” page, they are directed to the 
“Treatment Exercises” page, shown in Figure 18. This page lists all the exercises included 
in that specific treatment. Each exercise is presented with basic details such as the name, 
number of reps and sets, and any relevant notes or instructions. The layout ensures users 
can easily navigate through the exercises to find what they need to complete. 

 

                         
                    Figure 23: Individual Exercise design                                                    Figure 24: Feedback design 

Individual Exercise 

The “Individual Exercise” page, shown in Figure 19, provides in-depth information about a 
specific exercise, including a detailed description, equipment required, and step-by-step 
instructions. A button to mark the exercise as complete allows users to track their 
progress. This page is designed to provide users with all the information they need to 
perform the exercise correctly and stay on track with their treatment program. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               37 



 

 

Feedback 

The “Feedback” page, shown in Figure 20, allows users to provide details on the exercise 
they just completed. Users can enter the number of reps and sets done, along with their 
pain level and any additional notes they might have. This feedback is essential for 
physiotherapists to assess the user’s progress and make any necessary adjustments to 
the treatment plan. It also helps users reflect on their experience with the exercises. 

                          
                           Figure 25: Appointments designs                                              Figure 26: Settings design 

Appointments 

The “Appointments” page presents a calendar view, where users can see their upcoming 
appointments and sessions. By clicking on a specific day, the user can view a detailed list 
of appointments scheduled for that day. This feature helps users stay organised by 
providing a clear, easy-to-read schedule of all their physiotherapy sessions and ensuring 
they never miss an appointment. 

Utilities 

The "Utilities" section of the application includes critical features such as the Login, 
Register, and Settings pages, which are vital for user account management. The Login 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               38 



page provides users with secure access to their personal profiles, while the Register page 
allows new users to create an account, entering the necessary information to get started. 
The Settings page enables users to update their personal information, adjust notification 
preferences, and modify other aspects of their account, ensuring they have full control 
over their experience. These utilities provide essential functionalities for managing user 
accounts and ensuring smooth interaction with the app. 

4.2.3. Refined Design Language 

The wireframes have been updated to make the design easier to use and navigate. The 
layout is cleaner, with fewer distractions, so users can find what they need more quickly. 
Buttons and menus are more transparent and straightforward, making it easier for users to 
complete tasks with less effort. These changes help make the design more intuitive and 
user-friendly. 

The colour scheme has also been slightly changed to improve the look and make things 
easier to read. The new colours help text stand out and make buttons more noticeable. 
These changes were made to improve accessibility for all users, including those with 
different vision levels. The spacing and arrangement of elements have been enhanced to 
make the design feel more balanced and pleasant. These updates focus on creating a 
better user experience while keeping the design consistent with the brand. 

 

                       
                                  Figure 27: Settings designs                                        Figure 28: Edit profile design 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               39 



                                               
                                  Figure 29: Feedback designs                                            Figure 30: Sign in design 

                                                                   
                                      Figure 31: Dashboard designs                                      Figure 32: Sign in design 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               40 



                                    

 
           Figure 33: Tasks designs                       Figure 34: Exercise design                            Figure 34: Session feedback 
design 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               41 



5. Implementation 

This chapter discusses the implementation of the individual components of the application. 
While the previous chapter described the system’s design, this section focuses on the 
development of the Web Server, API Server and Mobile Application. 

5.1. SCRUM Methodology 

A simplified version of the SCRUM methodology was used to manage the development 
process. The project was broken down into smaller, manageable tasks and completed 
over short development cycles, known as sprints. 

Each sprint was focused on a specific area of the system: 

● Sprint 1: Initial development attempt using Python. 

● Sprint 2: Development of the backend infrastructure using C#, including the 
FlexiCare manager and API. 

● Sprint 3: Development of the mobile frontend using Javascript, focusing on user 
interface design and client-side functionality. 

The benefit of the SCRUM principles was that at the end of each sprint, it was possible to 
review the progress of and adjust the project priorities, such as timeline, to any challenges 
identified. . 

5.2. Development Environment 

Development was primarily carried out for this project using Visual Studio Code (VS Code) 
as the integrated development environment (IDE).  This was selected for its flexible, 
extensive extension possibilities, and pre-configured tools for debugging, linting and 
version control. 

During Sprint 1, for the Python-specific development, PyCharm was utilised to take 
advantage of its Python-specific features. Similarly, when starting working with C#, 
JetBrains Rider was used for a short time, as it provided helpful tools for .NET 
development. However, VS Code was eventually returned to, as it offered a more unified 
and comfortable environment for working across different parts of the project. 

For any database-related development and testing, TablePlus was used, which provided a 
user-friendly interface for managing databases and running SQL queries efficiently. 

Overall, the combination of these tools supported a smooth and productive development 
workflow throughout the project.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               42 



5.3. Sprint 1: Python Development 

5.3.1. Early Attempt 

Development was first started using C#, but there was also interest in trying out Python’s 
Flask and GraphQL. JetBrains PyCharm was chosen as the development environment. 
Work during this spring was focused on building the API, and no effort was put into 
creating user interfaces or using MVC patterns yet. The goal was to understand how Flask 
and GraphQL could be used to handle backend tasks like routing, data handling, and 
queries. 

First, the Flask project was set up and connected to GraphQL. A PostgreSQL database 
was also configured for use with the project. The database tables were created, and a 
connection between the app and the database was established. Models were created to 
represent the data needed by the application, such as users and authentication 
information. Seeders were written to fill the database with sample data 

 
Figure 23: Flask Database in TablePlus 

Next, GraphQL schemas were created to define the types of data that the API would use. 
These schemas were connected to the database models so that the data could be 
queried. Queries were added to fetch data, such as retrieving a user profile or getting a list 
of all users. Three key mutations were then created: register, login, and logout. The 
register mutation allowed new users to be created by accepting their emails, hashing their 
passwords, and saving the information in the database. The login mutation was used to 
authenticate users, while the logout mutation was created to log users out and invalidate 
their sessions. 

5.3.2. Reflection of Sprint 1 

After some development, it was decided that Flask and GraphQL were not the best fit for a 
large, long-term project. Because of this, the backend development was switched back to 
C#. Even though these tools were not continued, the experience was useful. A better 
understanding of how they work was gained, and it is likely that they will be used again in 
future, smaller projects.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               43 



5.4. Sprint 2: Backend Development 

The backend is the part of an application that users do not directly see but is essential for 
making everything function properly. It manages the logic, database interaction and the 
communication between the database and the client interfaces (such as mobile or web 
apps).  For FlexiCare, the backend is responsible for securely handling user data and 
storing important information such as fitness activities and exercise routines. Ensuring that 
both the physiotherapists and patients have a smooth and reliable experience when using 
the FlexiCare system.  

Sprint 2 will outline the development of FlexiCares backend, outlining the key technology 
used and the structure of the system. 

As previously mentioned, ASP.NET Core MVC, a powerful framework developed by 
Microsoft, will be utilised in this project. As seen in Figure 24, this framework is broken 
down into four projects: FlexiCareManger, FlexiCareManagerTest, FlexiCareAPITest and 
FlexiCareAPI. In addition, to make backend development more efficient and to extend the 
capability of C#, several essential extensions, shown in Figure 25,  were added to the 
project. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               44 



 
         Figure 24: FlexiCare ASP.NET Core MVC Projects                               Figure 25: FlexiCare C# Extensions 

In the C# Language package management is handled by NuGet, which works similarly to 
npm (Node Package Manager) in the JavaScript world. Using simple terminal commands, 
packages can be added directly to the project. When the project is built, these packages 
are automatically downloaded and available for the application. These include:  

● dotnet add package Microsoft.EntityFrameworkCore.Design 

● dotnet add package Microsoft.EntityFrameworkCore.SQLite 

● dotnet add package Microsoft.VisualStudio.Web.CodeGeneration.Design 

● dotnet add package Microsoft.EntityFrameworkCore.SqlServer 

● dotnet add package Microsoft.EntityFrameworkCore.Tools 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               45 



5.4.1 FlexiCare Manager 

The FlexiCare Manager project forms the core of the backend system. It is responsible for: 

● Setting up the data model and database structure. 

● Providing physiotherapists with the ability to manage patients, design personalised 
programmes, and schedule appointments. 

● Allowing practice managers to control the system, including adding new exercises, 
registering new physiotherapists, and managing users. 

This backend ensures that the physiotherapy workflows are streamlined and all 
administrative tasks are handled efficiently. 

To begin, Dotnet provides a command that can create a shell project containing a blank 
folder for Models, Views, Controllers, etc. For example:  “dotnet new mvc -o 
FlexCareManager” would create a structure similar to that seen in Figure 26. 

 
Figure 26: Example of FlexiCareManager Shell Folder 

Data Model 

The first step in developing the FlexiCare manager was to create the data model. This 
involved designing C# classes that represent the main entities of the system (e.g., Patient, 
Physio, Appointment, Exercise), as seen in Figure 27. These classes were later used to 
build the database. Relationships between entities were also established. For example, 
the Appointment entity has relationships with both Patient and Physio entities. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               46 



 
Figure 27:  Examples of C# Classes 

Object-Relational Mapping 

To map these classes to database tables, Entity Framework Core, Microsoft’s 
Object-Relational Mapping (ORM) tool, was used. The mapping process was managed 
using a DbContext class, which specifies which class should be linked to which database 
table. This approach allows normal C# statements to easily access the database. For 
example, the statement shown in Figure 28 does the following: 

o Accesses the Exercise database table 

o Where the ID column matches my local ID field 

o Links to the ExerciseCategory table for the ExerciseCategory linked to this Exercise 

o Populates the result into a local variable exercise 

 
Figure 28: Example C# Statement for Accessing the Database 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               47 



Migration Building 

Once the base data model was sufficiently developed (it is not necessary for it to be one 
hundred percent final initially), the entity framework was used to create a migration. A 
migration generates code to create or update the database based on the current model, 
such as in Figure 29. This process was relatively straightforward as the generated 
migration code could be reviewed if needed. However, in practice it tended to be accurate 
and did not require manual editing. This does not mean that the original model was 
correct. It was necessary to adjust the initial model, create another migration and update 
the model database again. For example, when the appointment model was added, the 
following commands were ran: 

● dotnet ef migrations add Appointment 

● dotnet ef database update 

 
Figure 29:  Example of Migration Builder 

Seeding 

To make development and testing easier, seed data was added to the database. Seeding 
involved writing code that: 

● Checked if specific tables (e.g. Patient) were empty. 

● Inserted sample test data if no records were found. 

An example of the patient seed can be seen in Figure 31. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               48 



 
Figure 31: Example of Patient Seed Code 

Seeding also allowed for creating relationships between tables (such as linking patients 
with appointments) and inserting random values to simulate real ones. An example of this 
can be seen in Figure 32. This approach made it easy to reset the database and quickly 
repopulate it without manually entering test data each time. 

 
Figure 32: Example of Appointment Class Seed Using Link to Physio Class 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               49 



SQLite 

Following the setup of the models and basic database seeding, SQLite was chosen as the 
data engine for the development of FlexiCare. It was the logical choice for a range of 
practical reasons: 

● VS Code is bundled with SQLite by default, offering built-in support. 

● It is lightweight and gentle on the limited computing resources available during the 
project. 

● All the data is stored in a single file (flexicare.db), which makes it easy to reset the 
database if necessary. Simply by deleting the flexicare.db file, re-running the 
migrations and re-seeding the database with test data. 

● This was not a decision on the deployment platform. Entity Framework works with 
the most popular database platforms and insulates the application from the specific 
choice. Migrating to another platform would only involve changing a small 
configuration before re-running the migrations and seeding. 

Views, Controllers and Scaffolding 

Once the models and database were established correctly, the next step was to create 
Views and Controllers to allow users to interact with the system. To streamline 
development, Microsoft provides a tool that can automatically generate Controllers and 
Views based on a model using a single command, called scaffolding. For example, the 
following scaffolding command was used to create a controller and views for the 
ExerciseCategory model: 

dotnet aspnet-codegenerator controller -name ExerciseCategoriesController -m 
ExerciseCategory -dc FlexiCareManager.Data.FlexiCareManagerContext 
--relativeFolderPath Controllers --useDefaultLayout --referenceScriptLibraries 
--databaseProvider sqlite 

This lone command creates a controller and five views (Index, Details Create, Edit, Delete) 
automatically linked to the controller. 

While in some cases the scaffolded code required slight modification, it offered a strong 
starting point and saved a lot of manual effort. These minor adjustments included styling 
tweaks, to ensure the layout and visuals better aligned to FlexiCare’s desired design, and 
navigation updates. For example, Figure 32 shows the Programme page. On this page it 
was necessary to modify the New button to route to the ProgrammeExcercisesController 
to add exercises, rather than back to the main Programme controller. This was similarly 
done for the Edit, Delete and Back Buttons. After creating or editing, it had to be ensured 
that the controller was redirecting the user to the correct plate. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               50 



 
Figure 32: FlexiCare Web Application Programme Page 

Layout and Design 

Given that FlexiCare’s web app was primarily intended for office use (physiotherapists and 
administrators), the visual design was kept simple and functional. The application was 
largely maintained with the original default Bootstrap appearance however, minor 
enhancements were necessary, and these included branding elements such as the logo 
and Favicon, and improved navigation. An example of the web app is shown in Figure 33, 
where the focus is firmly placed on functionality and inactivity rather than complex 
aesthetics. 

 
Figure 33: Example of FlexiCare Web Application Layout 

User Roles and Navigation 

From early in FlexiCare's development, three key user roles were identified: 
Administrators, Physiotherapists and Patients. However, at this point the web application is 
primarily focused on Administrators and Physiotherapists, since Patients are expected to 
interact mainly through the mobile app. Navigation was customised depending on the user 
role by setting a Navbar variable, such as that in Figure 34, with the potential to load 
different views depending on the currently logged-in user. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               51 



 
Figure 34: Example of Navibar Variables 

Authentication and Authorization 

To manage users and secure the system, Microsoft Identity was integrated into the 
backend. It added users and roles and allowed them to be easily integrated with 
controllers, while automatically providing functionality for secure user login/logout. The 
package only required some modifications, such as adjustments to the visuals to match 
FlexCare’s style and the removal of some features that require a functional email service 
(like Forgot Password). 

 
Figure 35: Updated Controller User Role Requirement 

Role-based access control was also implemented. Controllers had to be changed to 
account for the role restrictions to ensure that only users with the appropriate role could 
access certain parts of the application as shown in Figure 35. The database seeding was 
also updated to create user roles (Administrator, Physio, Patient) and sample users for 
each role, shown in Figure 36. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               52 



Figure 36: Updated Database Seeding for User Roles 

5.4.2  FlexiCare API 

The FlexiCare API was designed separately to the FlexiManager, due to its different 
functionality. By maintaining separate projects, it allowed for simpler configuration of 
identities and ensured the systems could operate and be modified, independently. 

The integration between the FlexiCare API and Manger was managed by sharing the 
same database. As this stores all essential data such as user accounts, roles, patient data 
and progress tracking, it has everything necessary for the API to function. This shared 
data structure allows the two components to be fully synchronised, ensuring that both have 
access to the latest patient details. 

 
Figure 37: Swagger Support Configuration Command 

Swagger support came as part of the default Microsoft solution, it just needed to be 
configured as shown In Figure 37. It provides a visual interface for interacting with the API, 
such as in Figure 38. Swagger makes development much more efficient, allowing easy 
experimentation without requiring the full front-end interface, streamlining the testing and 
debugging process. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               53 



Figure 38: FlexiCare API Swagger Interface 

Authentication and Authorisation 

Once again, Microsoft Identity was used for authentication, but it was configured to use 
JWT (JSON Web Token) in this instance., shown in Figure 39. When a user logs in 
through the app, they receive a JWT access token.  This token serves as proof of identity 
and authorises the user to perform actions on the system. Microsoft Identity uses this 
token to check if the user exists and then creates a user object.  By using JWT, the API 
ensures that user credentials are verified in a secure manner. 

 
Figure 39: JWT Configuration 

Once that was completed, the controllers within the API were modified to require 
authentication via the access token, ensuring that each request was valid before allowing 
any access to sensitive data or operations. For example, a Patient would only be able to 
access and manage their own personal data, ensuring that no user could view or modify 
another patient's information. 

Requests Exposed 

In addition to the default requests provided by Microsoft Identity for user management, 
several custom API endpoints were developed for specific functions. For example: 

PUT Patient, shown in Figure 40, allows the app to enable patients to update their details, 
such as contact information. 

 
Figure 40: PUT Patient Request Code 

GET Patient, shown in Figure 41, returns all the information allocated to a specific patient, 
such as their personal details, appointment data and scheduled exercise sessions. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               54 



 
Figure 41: GET Patient Request Code 

PUT Session, shown in Figure 42, is used by the patient app to mark an exercise session 
as completed. After a patient finishes their exercise routine, they can provide feedback on 
their session. This feedback helps physiotherapists monitor progress and adjust treatment 
if necessary. 

 
Figure 42: Put Session Request Code 

5.4.3 Reflection of Sprint 2 

The Development of FlexiCare’s backend had several advantages and challenges. 

On the positive side, using VS Code streamlined the process by offering an all-in-one 
solution, with the addition of Microsoft’s extensive tutorials and resources, free and open 
source tools, and cross-platform support (Windows, Linux & Apple). With the addition of 
helpful features like scaffolding, migrations are on well-supported frameworks. In addition, 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               55 



C# being a compiled language helped catch errors early and autocomplete suggestions 
improved efficiency. 

However, on a negative standpoint, C#’s syntax was a bit overly complex and off-putting, 
making the code difficult to read and review. Additionally, the compiled language aspect 
brought problems. For example, saving a changed source typically refreshed the 
application, but on occasion, the server itself required restarting, and it was not overly 
explicit when this was necessary.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               56 



5.5. Sprint 3: Frontend Development 

The frontend is the part of an application that users interact with directly, visually 
representing the data and functionality managed by the backend. Sprint 3 outlines the 
development of the FlexiCare mobile application using modern frontend technologies, 
including the tools, libraries, and frameworks employed to create an efficient, visually 
pleasing and intuitive user experience. 

5.5.1. Fundamental Desgin 

To initiate the frontend development process, the project employed the create-expo-stack 
initialiser, a standard tool for creating React Native applications using the Expo framework. 
During setup, configuration flags were used to include Expo, Expo Router with tab 
navigation, and NativeWindCSS, TailwindCSS adapted for React Native, as shown in 
Figure 43. 

 
Figure 43: Expo Framework Setup 

The development of the web application consisted of Visual Studio Code (VSC) as the 
primary code editor, Insomnia for testing against the backend API, and Figma for creating 
and iterating UI designs. 

In addition to this, several additional packages were integrated to support the required app 
functionality, as shown in Figure 44: 

 
Figure 44: Additional Expo Packages Required 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               57 



● Jest was installed to enable unit testing. 

● Expo Splash Screen was used to provide a customised loading/splash screen, 
incorporating the FlexiCare logo and brand colours. 

● Expo Status Bar allowed customisation of the phone’s status bar (where battery 
and network carrier symbols are located) to align with the application's theme. 

● Expo Video provided built-in support for a video player. 

● Expo System UI enabled the configuration of global layout styling parameters. 

● Expo Secure Store facilitated secure key-value storage on the device, which is 
used to manage sensitive data such as authentication tokens. 

These packages were configured as plugins in the app.json file, establishing a splash 
screen with the FlexiCare logo and brand colours, as shown in Figure 45. 

 
Figure 45: Code Snippet Showing Plugin Integration and Splash Screen Design 

To enhance performance and usability: 

● Reanimated was used to implement smooth, customisable animations. 

● Safe Area Context replaced the default React Native SafeAreaView component to 
ensure compatibility with various screen dimensions, camera notches, cutouts, etc. 

● React Native Select Dropdown was integrated to support dropdown menu inputs. 

For handling HTTP requests, Axios was selected over JavaScript's built-in Fetch API due 
to its more intuitive configuration. Axios allowed authentication headers (e.g. bearer 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               58 



tokens), as shown in Figure 46, to be declared once globally within the AuthContext, 
enabling both secure and consistent API requests across the entire application without the 
need for repetitive code re-declaring them each time.. 

  

 
Figure 46: Global Axios Authentication Token 

TypeScript interfaces were created to mirror the backend API models, for improved 
efficiency; three of these are shown in Figure 47. 

 
Figure 47: TypeScript Interfaces for API Models 

Additionally, an .env file was created to store variables that would be used throughout the 
entire application, as shown in Figure 48. 

 
Figure 48: .env File Set-Up 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               59 



TailwindCSS's configuration file was customised, as shown in Figure 49, to include the 
FlexiCare brand's colour palette, as defined in earlier Figma designs, to input the required 
visuals for the application. 

 
Figure 49: TailWind Configuration for FlexiCare Colour Pallete 

To keep images organised, subfolders were created within the /assets directory. These 
included /branding, /icons, /images and /illustrations, each used to store the relative media 
files. 

For authentication, a custom solution was implemented using AuthContext. A file named 
AuthContext.tsx was created to manage the authentication state, along with both login and 
logout functions, as shown in Figure 50. This allowed the login status and user data to be 
shared across the app. 

The AuthState holds the user’s information once they are logged in, which can be 
accessed easily from another screen. The onLogin and onLogout functions can be called 
from UI elements such as buttons to trigger login and logout actions. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               60 



 
Figure 50: AuthProps Interface 

 
The loadToken() function, shown in Figure 51, runs when the app starts. If the user has 
already previously logged in, it retrieves their saved authentication tokens from Expo 
Secure Storage and logs them in automatically if the tokens are still valid. 

 
Figure 51: LoadToken() Function 

 
The login() function, shown in Figure 52, takes an email and password, sends them to the 
API using Axios, and if the login is successful, saves the returned tokens, name, and email 
to Expo Secure Storage. The user’s authentication state is then updated. 

Since access tokens expire after sixty minutes, the refreshAccessToken() function, shown 
in Figure 53, uses the Refresh token to request a new updated Access token from the API. 
The new Access Token is also set as the Authentication Bearer token globally for all Axios 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               61 



requests, ensuring that all HTTP requests to the API are authenticated automatically 
without additional configuration. 

 

 
Figure 52: Login() Function 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               62 



 
Figure 53: refreshAcessToken() Function 

 

The logout() function, shown in Figure 54, removes the stored tokens and user information 
from Expo Secure Storage and resets the authentication state, logging the user out. 

 
Figure 54: logout() Function 

 
The login screen (login.tsx) was then implemented, shown in Figure 55. It includes state 
variables for the email and password fields to allow their value to be synced with the login 
form’s inputs. useAuth is pulled in from AuthContext, and a login() asynchronous function 
is attempted. If login is successful, the user is redirected to the home screen. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               63 



 
Figure 55: Log-In Page Implementation 

 
To avoid repeating code, a component file was created to show links to the Terms of 
Service and Privacy Policy, as shown in Figure 56. These links are used on both the login 
and onboarding screens, so this code snippet was abstracted to be reused across both 
views.  

Furthermore, the website URL was stored within the .env for future customisation. For 
example, if this product were to be deployed in production for a new customer, the .env 
data could easily be changed. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               64 



Figure 56: unAuthenticated Views Component FIle 
 

The layout file, one directory down within the (protected) directory, shown in Figure 57, 
checks if a user is authenticated by grabbing the authState from the AuthContext provider. 
If not, and the user attempts to visit any page within the (protected) directory, they are 
redirected back to the login page. 

The parentheses on the directory name (protected) indicate that this is a grouping folder, 
used only to organise related pages. Pages inside this directory are served at the top level. 
For example, /app/(protected)/tasks has the URL of /tasks, whereas /app/account/login 
has the URL of /account/login. 

A root layout file was added directly inside the /app directory, at the top level above all 
pages within the app, as shown in Figure 58.  A <Stack> element was created to define 
the app’s main navigation structure, including two subdirectories as <Stack.Screen> 
entries: (protected) for pages that require authentication, and account for the pre-login 
pages. 

The global background colour was also set to white, affecting all screens throughout the 
app. 

 
Figure 57: Protected Views Layout File   

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               65 



 
Figure 58: Root Layout File 

 
5.5.2. Pages 

In the index (Home) page, several functions were written to calculate various metrics for 
the user, as shown in Figure 59. These are displayed in the view. 

A call is made to the API to fetch all exercise session data for a user. This data is stored as 
sessionsData and is used across multiple functions. 

For example, the averagePainLevel function filters all completed sessions, adds up their 
pain levels, and divides by the number of sessions to get the average. This value is then 
rounded to one decimal place and displayed as a score out of 10. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               66 



 
Figure 59: Index (Home) Page Functions 

 

For the appointments pages, several functions had to be written to handle the logic for 
displaying and interacting with user appointments, as shown in  Figure 60. A call is made 
to the API to fetch all of the user’s appointments, both upcoming and previous. This data is 
then used to populate the view. 

Instead of a traditional calendar, a horizontal carousel of dates is shown at the top of the 
screen, just below the heading. This shows the selected date in the centre, with up to three 
days before and after on either side. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               67 



When a user taps on a date, the carousel slides to bring that date to the centre, and the 
appointment list updates to show only those scheduled for that day. The default selected 
date is today’s date. 

Below the date carousel, appointments for the selected date (or today if none is selected) 
are displayed first. Following this, a list of all upcoming appointments is shown in 
chronological order, with the most recent appointments displayed first. 

 
Figure 60: Appointments Page Functions 

 
The layout file under the (tabs) directory, shown in Figure 61, initialises the TabBar, which 
is located at the bottom of every authenticated page and contains buttons and icons to 
navigate to the main Home, Tasks, Program, Appointments, and Settings pages. 

Considerable effort was made to match the styling of the TabBar as closely as possible to 
the Figma design. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               68 



 
Figure 61: Layout File under (Tabs) Directory 

 
When users press the “Tasks” icon in the TabBar, they are redirected (using Expo Router) 
to the tasks/index.tsx file, shown in Figure 62, lists all tasks (exercise sessions) assigned 
for the current day. 

All sessions are fetched from the API and filtered to include only those scheduled for 
today. These are then sorted by category, allowing them to be listed under each category 
header for ease of use. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               69 



A user can press on any exercise task (session) in the list to be brought to the relevant 
exercise page, which provides detailed instructions from the user’s physiotherapist on how 
to complete the exercise, what equipment (if any) is required, and how often it should be 
performed. 

Alternatively, they can click on the unmarked checkbox for any task to be directed straight 
to the feedback/mark-as-complete form if they are already familiar with how to perform the 
exercise. 

 
Figure 62: Task/Index.tsx File 

 
A “Streaks” feature was added to this page, which tracks the number of consecutive days 
a user has completed at least one assigned task, as shown in Figure 63. 

This gamification feature motivates users to complete tasks to maintain their streak. If they 
approach the end of a day without completing any tasks, they receive a notification 
reminding them to complete a task to avoid losing their streak. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               70 



 
Figure 63: Streak Feature 

 
When a user clicks on a task from the Tasks list page, they get directed to the EachTask 
([id].tsx) page, shown in Figure 64, which extracts an id from the dynamic route (e.g. 
/tasks/1, where id=1). 

A call is then made to the API to retrieve all exercise sessions. This data is filtered to find 
the session matching the provided ID. 

This page displays detailed information on how to perform the select exercise task 
(session). Step-by-step instructions written by the physiotherapist are shown clearly on the 
screen. In addition to written guidance, instructional videos, if available in the API, are also 
displayed using the Expo Video package, which was explicitly configured for this purpose. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               71 



 
Figure 64:  EachTask ([id].tsx) Page 

Users can mark an individual exercise task as completed on the task feedback form. They 
can also provide optional feedback to their physiotherapist, select a pain level, and input 
the number of repetitions and sets performed, as shown in Figure 65. This data contributes 
to progress tracking and is later reflected in the metrics displayed on the Home page. 

Session data is retrieved by id via an API call. After form submission, a PUT request is 
sent using the updateSession function from the api.ts helper module, which updates the 
session with the user's input. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               72 



 
Figure 65: Feedback/{id} .tsx 

A custom view component was built to help with pain level selection, as shown in Figure 
66. This component displays ten pain levels as clickable buttons, styled on a colour 
gradient from green (low pain) to red (high pain). The selected pain level is visually 
highlighted in response to user input. 

In addition to clicking, the component has swiping functionality, allowing users to slide 
across the pain level scale to adjust their selection. The prop is then returned as state to 
the task feedback form. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               73 



 
Figure 66: PainlevelSlider Component 

 
When the “Settings” icon in the TabBar is selected, navigation is directed to the 
settings/index.tsx page, as shown in Figure 66. This page displays an overview of the 
user's profile, including name, email address, and an identicon generated based on user 
data. Below the profile section, a list of available settings options is available to the user.  

Figure 67 shows how two of those options are implemented: the social media sharing 
functionality and the logout, which uses the onLogOut function defined in the AuthContext 
file to handle logging the user out easily. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               74 



 
Figure 67: Setting/index.tsx Page 

 

For the form pages within the setting directory, which can be accessed by selecting an 
option from the settings list on the index page, multiple code snippets were abstracted into 
view components for easy reuse over each form. An example of this is shown in Figure 68 
for the feedback form. 

Elements like form containers, text inputs, text areas, email fields, and section headers 
were converted into components. 

 
Figure 68: Setting/feedback.tsx Page 

 
Figure 69 shows the implementation of a header component used across multiple pages in 
the app. It accepts a set of typed props, allowing it to be customised based on the specific 
requirements of each page where it is used.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               75 



 
Figure 69: FormPageHeader Component 

 
The simpler FormPageView component, shown in Figure 70, enforces consistent spacing 
across all form pages. It allows child elements, such as form field components, to be 
passed from the page. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               76 



Figure 70: FormPageView Component 
 

The FormButton component, shown in Figure 71, allows the onPress element parameter 
to be passed from the View as a prop. 

 
Figure 71: FormButton Component 

 
Figure 72 shows an example of the simpler View in the settings/edit.tsx page is made 
possible by the Form components. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               77 



 
Figure 72: Simple View within the Setting/edit.tsx Page 

 
When the user presses the “Save” button to confirm changes to their profile on the edit 
page, the saveProfile function, shown in Figure 73, is triggered. This function sends the 
updated data to the API using the updatePatient helper function defined in the api.ts file. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               78 



 
Figure 73: saveProfile Function 

 
 
5.5.3. Reflection of Sprint 3 

React Native and TypeScript made development faster by using a single codebase for 
both iOS and Android. This saved time and kept the app consistent across devices. The 
component-based architecture of React Native made it easy to develop and update the 
user interface. Plus, the extensive collection of libraries and tools available for JavaScript 
and React Native helped speed up adding new features. 

However, there were also some downsides. The app sometimes faced performance issues 
with complex animations or native features, requiring extra coding. JavaScript’s dynamic 
typing also led to errors that were harder to spot until later in development. JavaScript’s 
dynamic typing also led to mistakes that were harder to spot until later in development. 
Finally, features like hot reloading didn't always work perfectly, which made testing and 
debugging slower. These issues made the development process a bit more challenging.

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               79 



6. Testing and Results 

6.1. Usability Testing 

Usability testing would allow the physiotherapists and their patients to try the application 
and provide feedback. Physiotherapists would use it to manage patient information, and 
patients would use it to follow their treatment plans. While not included within the scope of 
this current project, this testing would be a priority for further development of the 
application. It would include testing of simple tasks like creating an account and navigating 
the app, with user feedback collected on the ease and effectiveness of usage. This would 
ensure that the application continues to meet the needs of all users.  

6.2. Unit testing 

Unit testing is performed to check small parts of a program and ensure they work correctly. 
This helps identify issues early by testing individual functions or components. For this 
project, unit testing was completed on both the frontend and backend. MSTest with C# was 
used to test the backend, while Jest with JavaScript was used to test the frontend, 
ensuring that both parts of the application worked as expected. 

6.2.1. Backend Testing 

Automated backend testing was again developed using VS Code. Dedicated test projects 
were created within the code to ensure separation from the production code. MSTest 
(MSUnit) was chosen for the testing framework, which is Microsoft’s recommended 
approach for C# unit tests. 

The first step involved adding a reference from the test project to the main project under 
test, shown in Figure 74. 

 
Figure 74: Project Reference Snippet 

VS code automatically searches the solution for test cases and generates a test explorer 
window, indicating passing tests, those that have yet to be run and failed tests, as shown 
in Figure 75.  Tests can be run individually or collectively, with support for debugging 
during test execution 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               80 



 
Figure 75: Test Explorer Window 

Each test case was structured using the standard MSTest convention, which divides the 
test logic into three key sections, as shown in Figure 76: 

● Arrange - Set up the necessary data and variables. 
● Act - Runs the test 
● Assert - Verify that the results meet the expected outcomes. 

 
Figure 76: Arrange, Act, Assert MSTest Convention. 

VS Code highlights any failing tests directly, as shown in Figure xxx. It also visually marks 
the related code, as shown in Figure 77, making it easier to navigate and address. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               81 



 

 
Figure 77: Failed Test Flagging 

 
Figure 78: Failed Test Code Highlighting 

6.2.2. Frontend Testing 

Automated backend testing was again developed using VS Code. For the testing 
framework, Jest was chosen, which is the most popular package for JavaScript unit 
testing. Additionally, the jest-expo package was installed for closer integration with Expo 
and the ability to use .tsx files for tests. 

Jest's mocking capabilities were used to simulate API responses and authentication 
context in tests. Figure 79 is an example of how to mock an API call and the AuthContext 
in a test file. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               82 



 
Figure 79: Mocking API and AuthContext with Jest 

A test for the homepage is written using mocked API data and the authentication context 
to check if the correct elements are displayed on the UI. The test ensures that the 
displayed content matches the expected result based on the authentication status and the 
fetched data. Figure 80 shows an example of how to write a test for the homepage using 
mocked data and AuthContext. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               83 



 
Figure 80: Testing the homepage with mocked data and AuthContext 

 
Figure 81: Running the HomeScreen test using Jest 

This runs the HomeScreen test and shows the results in Figure 81. If the test passes, it 
confirms the component is working correctly with the mock data and authentication 
context. Figure 82 shows how to run the test and the result when it passes. 

6.3. Evaluation 

For the backend, tests were completed using MSTest in VS Code. These tests checked if 
everything worked as expected, using a simple setup: Arrange (set up), Act (run), and 
Assert (check results). The Test Explorer in VS Code helped track and fix any issues. 

For the frontend, Jest was used to test the app’s interface. It made sure the app displayed 
the right information based on user login and data. Mocking was used to simulate real-life 
data, like API responses and login states. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               84 



In summary, the technical testing worked well in confirming that both the frontend and 
backend were performing as expected. The inclusion of usability testing, while out of 
scope for this project, has been identified as a priority step in the further development of 
the application. This will provide insight into how easy the app is to use by both the 
physiotherapist and the patients and how well it meets their needs .This knowledge will be 
used to further improve the app’s design and overall user experience. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               85 



7. Project Management 

This chapter explains how the project was managed and how well the student followed the 
project guidelines. It covers the different phases, starting from the project idea and moving 
through to gathering requirements and creating the project specification, design, 
implementation, and testing. It also discusses how tools like Notion, GitHub, and Miro 
helped manage the project. 

7.1. Project Phases 

The project life cycle is typically divided into distinct phases that help organise and 
manage the process from start to finish. Below is an explanation of each phase and the 
common issues that arose during each. 

7.1.1. Requirements 

In the Requirements phase, sufficient reliable data was difficult to find, and the constantly 
changing nature of the project made the requirements quickly outdated or irrelevant. As a 
result, constant adjustments and reassessments were required. These adaptations 
ensured that the project aligned with evolving goals and user needs. 

7.1.2. Research 

During the research phase, the abundance of available information was initially 
overwhelming, making it difficult to focus on the key topics and narrow them down. Sorting 
through various sources took considerable time, and isolating key insights was a 
challenge. However, it laid a solid foundation for more informed decision-making and 
development. 

7.1.3. Design 

In the design phase, iteration played a key role. Early uncertainty around the design, along 
with difficulties in finalising a clear plan for the project, led to significant experimentation. 
Revisions ultimately focused on ensuring that the basic concept of a user-centred design, 
with a strong emphasis on intuitivity, was achieved before handling more complex ideas in 
later iterations.  

7.1.4. Implementation 

In the Implementation phase, issues with changing tech stacks caused delays and 
required adjustments. Technical challenges, such as compatibility problems, arose from 
switching to new tools and technologies, requiring parts of the project to be rethought. This 
made the development process slower and more complicated than initially planned. 

7.1.5. Testing 

In the Implementation phase, issues with changing tech stacks caused delays and 
required adjustments. Technical challenges, such as compatibility problems, arose from 
switching to new tools and technologies, requiring parts of the project to be rethought. This 
made the development process slower and more complicated than initially planned. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               86 



7.2. Project Management Tools 

To stay organised and keep track of progress throughout the project, a few different tools 
were used at different stages. 

7.2.1. Notion 

Notion became the main tool for organising notes and saving useful code snippets, like 
those shown in Figure 82, especially in the later stages of the project. It helped quickly find 
and reuse information, saving time and keeping things clear. 

 
Figure 82:  Notion Page 

7.2.2. GitHub 

GitHub was used only at the end of the project to upload and store the final version of the 
code. During development, only local work was done, and GitHub was not used for version 
control regularly. 

7.2.3. Miro 

In the early planning stages, Miro was used to brainstorm ideas and lay out the basic 
requirements for the project. The visual layout helped organise thoughts. As the project 
progressed, Notion was used for planning and note-taking. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               87 



 
Figure 83: Miro Board - Brainstorming Frame 

In the Brainstorming Frame, shown in Figure 83, different ideas are shared and looked at, 
helping to explore various possibilities for the project. This frame is used to ensure that 
many options are considered before deciding on a direction for the project. 

 
Figure 84: Miro Board - Researching Frame 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               88 



The Research Frame, shown in Figure 84, organises and shows important information that 
has been collected during the research process. This information is put together in a way 
that makes it easy to understand, helping to ensure the project is based on solid facts and 
insights. 

 
Figure 85 Miro Board - PhysiApp Frame 

The PhysiApp Frame, shown in Figure 85, focuses on the features and design elements of 
the PhysiApp, which has been reviewed for its approach to fitness and rehabilitation. This 
frame looks at how the app’s functionality and user experience are designed to support 
users in achieving their health and fitness goals. 

 
Figure 86: Miro Board - Duolingo 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               89 



The Duolingo Frame, shown in Figure 86, examines the features of the Duolingo app, 
analysing how it keeps users engaged through fun, game-like elements. It highlights the 
app's effective use of gamification to motivate users while they enjoyably learn a new 
language. 

 
Figure 87: Miro Board - Designing Frame 

The Design Frame, shown in Figure 87, reviews style guides from existing apps and 
websites, focusing on design elements like colour schemes, typography, and layout. This 
frame provides insight into design trends and best practices that influence the overall look 
and feel of the final product.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               90 



8. Reflection 

8.1 Your Views on the Project 

Working on this project was both challenging and rewarding. Given the chance to 
experience the whole software development process, from gathering requirements to 
deploying the final product. What stood out most was how much personal growth was 
experienced, not just in technical skills, but also in confidence, adaptability, and 
problem-solving. The comfort zone was pushed, mainly when new technologies were 
used, and pride was taken in the achievements. 

8.2 Completing a Large Software Development Project 

This project demonstrated the largest scope and complexity of anything attempted before. 
It showed how important it is for a clear plan to be in place, for organisation to be 
maintained, and for flexibility to be exercised when changes occur. Working on a 
long-term, multi-phase project taught me how big tasks can be broken down into smaller, 
manageable ones. This approach helped keep things on track, despite unexpected 
problems. 

Many challenges were faced along the way, including significant changes in the 
technologies used. C# and ASP.NET Core were initially chosen for the backend, then 
Python and Flask were tried for a simpler framework. JavaScript and Express were also 
tested to see how they might work for full-stack development. Ultimately, the decision was 
made to return to C# and ASP.NET Core, as it offered the best support for both MVC and 
API structures, which worked best for the project. PostgreSQL was also switched to 
SQLite, as it was easier to set up with ASP.NET Core and allowed more focus to be placed 
on coding rather than configuration. 

These changes helped realise the importance of flexibility and made decisions based on 
what was best for the project. 

8.3 Working with a Supervisor 

Working with a supervisor was very helpful, particularly at the start of the project. Advice 
on how to make the system user-friendly was given by their specialisation in user 
experience (UX) design. Although they did not focus on the development side, the 
guidance provided by the early stages helped create a strong foundation for the project. As 
the project became more technical, more freedom was given to take on responsibility, 
which was considered a great learning experience. 

8.4 Technical Skills 

One of the biggest challenges during the project was learning a new backend language 
and framework, C# and ASP.NET Core. At first, it was difficult, but now, a much better 
understanding of server-side development has been gained. Both MVC patterns and 
RESTful APIs were learned to be used effectively, and experience was gained with 
integrating databases, user authentication, and deployment. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               91 



Switching technologies during the project was not easy, but it offered experience on 
evaluating different tools and deciding what would work best for the project. This helped 
encourage strategic thinking about the technical choices that were made. 

8.5 Further Competencies and Skills 

This project also helped to improve other vital areas. Better research skills in new 
technologies were developed, and more informed choices were made. Time management, 
self-motivation, and writing clear documentation were all improved skills. The ability to 
explain complex ideas, whether in code comments or written reports, also became 
stronger. 

In addition to technical skills, problem-solving abilities were improved, especially when 
unexpected bugs were encountered or new features were designed under pressure. 
These technical and non-technical skills are expected to be valuable in future projects and 
roles. 

8.6. Future Plans 

Due to the nature of this project and limitations such as time constraints, limited resources, 
and the focus on building basic features first, some advanced features couldn’t be added 
at this stage. However, with more time, resources, and future development phases, 
FlexiCare has the potential to grow significantly. The following sections outline key areas 
that are planned for improvement to make the app more engaging for patients, improve 
treatment results, and provide a better overall experience. 

8.6.1. Improving Exercise Tracking and Patient Engagement 

In future versions of FlexiCare, improvements are planned for tracking exercises. Better 
and more engaging exercise tracking is crucial for keeping patients motivated and helping 
them achieve the best results from their rehabilitation. 

One idea is to add a system that provides real-time feedback during exercises. For 
example, the app could give feedback through sound, images, or vibrations to help 
patients correct their technique in the moment. This would help patients stay motivated 
and ensure they are performing exercises correctly. 

Additionally, plans include connecting the app with fitness trackers or smartwatches. 
These devices can track metrics like heart rate, steps, and calories burned, providing more 
data to personalise rehabilitation plans for each user. This data can create more specific 
and individualised plans, helping patients feel more accountable for their progress. 
Goal-setting features (such as SMART goals) are also planned to help patients track 
progress and stay engaged. For example, the app could track how many push-ups a 
patient does, and as they complete more, they could earn rewards. 

Another planned feature is the integration of social elements, such as forums or group 
challenges. These would allow patients to connect with others experiencing similar 
journeys, fostering a sense of support and motivation. [18] 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               92 



8.6.2. Using Gamification to Increase Motivation 

FlexiCare will incorporate gamification in future versions to make rehabilitation more 
enjoyable and rewarding. Gamification involves adding game-like elements to non-game 
situations to engage users and enhance their experience. At the same time, FlexiCare has 
some aspects of this, such as the streak system, with a longer timeline, and further 
developments could be made. [19] 

One idea is to introduce a reward system where users can earn points, badges, or other 
rewards for reaching specific milestones. In addition, features like leaderboards and 
community challenges are planned, allowing patients to compete or collaborate with 
others, which could boost motivation. These elements would foster a sense of teamwork 
and friendly competition, helping patients feel more connected to others on the same 
recovery journey. [20] 

Finally, personalising the app will be a key focus. Real-time feedback will be provided, 
progress will be shown through visual indicators, and goals will be adjusted based on 
individual patient performance. This will ensure that patients are consistently challenged 
but not overwhelmed, helping them stay on track with their rehabilitation. [21] 

8.6.3. Making the App Accessible for Everyone 

FlexiCare must be accessible to all users, regardless of their physical abilities or familiarity 
with technology. The app was designed with ease of use in mind for everyone, including 
people with disabilities. 

However, in the future, to improve accessibility, features like voice commands, switch 
controls, and options for high-contrast or monochrome displays will be included. These 
features will support users with visual impairments. Additionally, the app will be compatible 
with adaptive devices, allowing users to interact with it in ways that best suit their needs. 
[22] 

The app will also be designed to be intuitive, ensuring users can easily navigate it without 
confusion. By gathering feedback from a diverse group of users during development, any 
potential accessibility issues can be identified and addressed. 

Furthermore, educational resources will be offered in multiple languages to help users 
understand how to perform their prescribed exercises correctly. These resources will be 
available in various formats to accommodate the needs of a broad range of users. [23]

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               93 



9. Conclusion 

The Flexicare application was developed as an electronic management system for 
physiotherapy. It incorporates an intuitive web application for physiotherapists and a 
mobile app for patients, transforming more traditional examples of physiotherapy practice.  

The application was developed using an iterative SCRUM approach, which divides a large 
project into smaller sections called sprints. Key methods employed included existing 
product evaluation, key user surveys and feasibility testing. 

The FlexiCare backend development utilised Microsoft’s ASP.NET Core MVC framework, 
C# code and Entity Framework Core, Microsoft’s Object-Relational Mapping (ORM) tool 
for mapping databases and SQLite. Key components included the FlexicCare Manager for 
physiotherapists and administrators, role-based authentication using Microsoft Identity and 
a separately designed FlexiCare API, which used JSON Web Token (JWT) authentication 
and Swagger Support for the visual interface. 

The frontend FlexiCare mobile development utilised React Native and Expo. Key tools 
included Visual Studio Code for coding, Insomnia for API testing and Figma for UI design. 

The benefits of FlexiCare to the physiotherapist include the simplification of administrative 
tasks, the provision of secure and convenient data management, and enhancing patient 
engagement. The research and development process for Fleixcare has incorporated user 
input from the physiotherapist, with questionnaires utilised to provide recommendations 
that both directed the design and functionality of the application. 

For the patient, Flexicare delivers improved coordination and communication with the 
physiotherapist. It also allows patients to become active participants in their rehabilitation 
process. Incorporation of features such as exercise tracking, progress monitoring, and 
instant feedback highlights the focus on improving patient outcomes and satisfaction. 

Further enhancements of Flexicare will include an increased level of gamification features 
and improved accessibility for patients. Future ongoing engagement with the 
physiotherapists will be required to ensure that the application is adjusted on a continuous 
basis to meet their changing needs, as well as incorporating the latest technologies and 
methodologies to continue refining their administrative and clinical services.  

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               94 



 

References 

1. Anwar, N., Maratis, J., Adhy, D. R., Hermawan, R., & Hadi, M. A. (2022). Mobile 
Application Design for Online Physiotherapy Services. Atlantis Press. 

2. Richardson, J., Letts, L., Sinclair, S., Chan, D., Miller, J., Donnelly, C., 
Smith-Turchyn, J., Wojkowski, S., Gravesande, J., & Loyola Sánchez, A. (2021). 
Using a Web-Based App to Deliver Rehabilitation Strategies to Persons With 
Chronic Conditions: Development and Usability Study. JMIR Rehabilitation and 
Assistive Technologies, 8(1). 

3. AL Anazi Fayez Khalaf, Bin Thari Razan Rashed, AL Aloula Ali Suliman, AL Azmiy 
Barakat Shumilan and AL Jarallah Majed Khalid. OPTIMIZING CARE THROUGH 
UNIFIED SYSTEMS: A CRITICAL REVIEW OF INTEGRATED MANAGEMENT 
ENHANCEMENTS BETWEEN HEALTH INFORMATION SYSTEMS AND 
NURSING PRACTICE. International Journal of Development Research. 2023. 

4. Dineen-Griffin, S., Garcia-Cardenas, V., Williams, K., & Benrimoj, S. I. (2019). 
Helping patients help themselves: a systematic review of self-management support 
strategies in primary health care practice. PloS one, 14(8), e0220116. 

5. Martínez, N., Connelly, C. D., Pérez, A., & Calero, P. (2021). Self-care: A concept 
analysis. International journal of nursing sciences, 8(4), 418-425. 

6. Santos, R., & Pires, D. (2024). Current use of patient-reported outcome measures 
by musculoskeletal physiotherapists in Portugal. Journal of Back and 
Musculoskeletal Rehabilitation, 37(6), 1479-1488. 

7. Jalali, M. S., Russell, B., Razak, S., & Gordon, W. J. (2019). EARS to cyber 
incidents in health care. Journal of the American Medical Informatics Association, 
26(1), 81-90. 

8. Hiller, A., & Delany, C. (2018). Communication in physiotherapy: challenging 
established theoretical approaches. Manipulating Practices: A Critical 
Physiotherapy Reader. Oslo: Cappelen Damm Akademisk. 

9. Fenyuk, A. (2024). How to Develop a Physical Therapy App: Key Steps for 
Success. Stormotion. 

10. Jane Patterson (2023, June 5). The Importance of Regular Software Updates in 
Cybersecurity 

11. Dawson-Rose, C., Cuca, Y. P., Webel, A. R., Báez, S. S. S., Holzemer, W. L., 
Rivero-Méndez, M., et al. (2016). Building trust and relationships between patients 
and providers: an essential complement to health literacy in HIV care. J Assoc 
Nurses AIDS Care, 27(5), 574–584. 

12. App Store. (2015, December 1). PhyiApp. 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               95 



https://apps.apple.com/us/app/physiapp/id1047722007 

13. MedicalDirector Helix - Software features. (n.d.). MedicalDirector. 
https://www.medicaldirector.com/products/helix/features 

14. Strangehelix. (n.d.). freud v2: AI Mental Health App - Mindfulness Metrics UIUX. 
Dribbble. 
https://dribbble.com/shots/25513079-freud-v2-AI-Mental-Health-App-Mindfulness-M
etrics 

15. Paperpillar. (n.d.). Task Management App. Dribbble. 
https://dribbble.com/shots/24600588-Task-Management-App 

16. Kubalczyk, M. (n.d.). Inventory app: Profile. Dribbble. 
https://dribbble.com/shots/24566846-Inventory-app-Profile 

17. Asal Design. (n.d.). AdaKita Onboarding Screen. Dribbble. 
https://dribbble.com/shots/19942973-AdaKita-Onboarding-Screen 

18. Chen, J., & Wang, Y. (2021). Social media use for health purposes: Systematic 
review. Journal of Medical Internet Research, 23(5), e17917. 

19. Al-Rayes, S., Al Yaqoub, F. A., Alfayez, A., et al. (2022). Gaming elements, 
applications, and challenges of gamification in healthcare. Journal Name, 
Volume(Issue). 

20. Polskii, M. (2024, May 24). Building a reward system in mobile apps: Best practices 
for gamification. InAppStory. 

21. EPR Staff. (2025, March 27). The future of app digital marketing: Personalization is 
the key to success. EPR. 

22. Skynet Technologies. (2024, November 5). Mobile accessibility trends: Best 
practices for inclusive app design. Skynet Technologies. 

23. Council of Europe. (n.d.). Platform of resources and references for plurilingual and 
intercultural education. Council of Europe. 

 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               96 

https://apps.apple.com/us/app/physiapp/id1047722007
https://www.medicaldirector.com/products/helix/features
https://dribbble.com/shots/25513079-freud-v2-AI-Mental-Health-App-Mindfulness-Metrics
https://dribbble.com/shots/25513079-freud-v2-AI-Mental-Health-App-Mindfulness-Metrics
https://dribbble.com/shots/24600588-Task-Management-App
https://dribbble.com/shots/24566846-Inventory-app-Profile
https://dribbble.com/shots/19942973-AdaKita-Onboarding-Screen


Appendices 

Appendix A – App Code Repository 

A GitHub repository containing the frontend of the application. 

https://github.com/ac-png/physioApp 

 

Appendix B – Backend Code Repository 

A GitHub repository containing the backend of the application 

https://github.com/ac-png/physioServer 

 

Appendix C – Miro Board 

Miro board project management link 

https://miro.com/app/board/uXjVI85Ij98=/?share_link_id=509385298488 

FlexiCare: A Digital Patient Management System for Physiotherapy                                                                               97 

https://github.com/ac-png/physioApp
https://github.com/ac-png/physioServer
https://miro.com/app/board/uXjVI85Ij98=/?share_link_id=509385298488

	Declaration of Authorship 
	Abstract 
	Acknowledgements 
	Table of Contents 
	1. Introduction 
	1.1. Admin Web App 
	1.2. Patient Engagement Mobile App 

	2. Research 
	2.1. Introduction 
	2.2. Why Patient Engagement Matters 
	 
	 
	2.3. Integrating Healthcare Systems 
	2.4. Patient Self-Management and Outcomes 
	2.5. Keeping Healthcare Apps Secure 
	2.6. Review of Similar Applications 
	2.7. Conclusion 

	3. Requirements and Feasibility 
	3.1. User Requirements 
	3.1.1. Survey 
	3.1.2. Why the Survey Matters 

	 
	3.2. Functional Requirements 
	3.3. Non-functional requirements 
	3.4. System Model 
	3.5. Feasibility Study 
	 
	3.6. Limitations 

	4. Design 
	4.1. Program Design 
	4.1.1. Technologies 
	4.1.2. Structure of Technologies 
	1. React Native (Mobile Application) 
	2. ASP.NET Core Structure (For Web App, Web Server, and API) 

	4.1.3. Design Patterns 
	1. Model-View-Controller (MVC) 
	2. Client-Server (API) 
	3. Object-Oriented Programming (OOP) 

	4.1.4 Application Architecture 
	1. ASP.NET Core Architecture (Web App) 
	2. React Native Architecture (Mobile App) 

	4.1.5 Database Design 

	4.2. User Interface Design 

	 
	5. Implementation 
	5.1. SCRUM Methodology 
	5.2. Development Environment 
	5.3. Sprint 1: Python Development 
	5.3.1. Early Attempt 
	5.3.2. Reflection of Sprint 1 

	5.4. Sprint 2: Backend Development 
	5.4.1 FlexiCare Manager 
	Data Model 
	Object-Relational Mapping 
	Migration Building 
	Seeding 
	SQLite 
	Views, Controllers and Scaffolding 
	Layout and Design 
	User Roles and Navigation 
	Authentication and Authorization 
	5.4.2  FlexiCare API 
	Authentication and Authorisation 
	Requests Exposed 
	5.4.3 Reflection of Sprint 2 

	5.5. Sprint 3: Frontend Development 
	5.5.1. Fundamental Desgin 
	5.5.2. Pages 


	 
	5.5.3. Reflection of Sprint 3 

	6. Testing and Results 
	6.1. Usability Testing 
	6.2. Unit testing 
	6.2.1. Backend Testing 
	6.2.2. Frontend Testing 

	6.3. Evaluation 

	7. Project Management 
	7.1. Project Phases 
	7.1.1. Requirements 
	7.1.2. Research 
	7.1.3. Design 
	7.1.4. Implementation 
	7.1.5. Testing 

	7.2. Project Management Tools 
	7.2.1. Notion 
	7.2.2. GitHub 
	7.2.3. Miro 


	8. Reflection 
	8.1 Your Views on the Project 
	8.2 Completing a Large Software Development Project 
	8.3 Working with a Supervisor 
	8.4 Technical Skills 
	8.5 Further Competencies and Skills 
	8.6. Future Plans 
	8.6.1. Improving Exercise Tracking and Patient Engagement 
	8.6.2. Using Gamification to Increase Motivation 
	8.6.3. Making the App Accessible for Everyone 


	9. Conclusion 
	 
	References 
	Appendices 

