

Movie Recommendation Application

Ben Hackett-Delaney

N00211885

Supervisor: Cyril Connolly

Second Reader: Naoise Collins

Year 4 2024/25

DL836 BSc (Hons) in Creative Computing

Abstract

This project aims to develop a movie recommendation application that provides

personalized movie suggestions based on the preferences of the user. The objective is to

enhance the user’s experience by using machine learning to give the users
recommendations. This system will have a Flask backend, which will act as the API for

retrieving and ranking movies using TensorFlow models. React.js is used for the front-end

for user interaction.

The development for this project includes processing data, model training, API integration,

and front-end implementation.

Acknowledgements

The incorporation of material without formal and proper acknowledgement (even

 with no deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should

document this in your submitted work and if you have any doubt as to what level of

discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,

which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk

where they can be accessed by other. Be aware that removable media, used to transfer work, may

also be removed, and/or copied by others if left unattended.

Plagiarism is an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to

the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.

Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment. This

would include jointly developed solutions as well as one individual giving a solution to another

who then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own
work.

Student: Ben Hackett-Delaney

Signed: Ben Hackett-Delaney

Failure to complete and submit this form may lead to an investigation into your work.

Table of Contents
1 Introduction ... 1

2 Research... 2

3 Requirements... 2

3.1 Introduction ... 2

3.2 Requirements gathering .. 2

3.2.1 Similar applications .. 2

3.2.2 Interviews .. 2

3.2.3 Survey .. 2

3.3 Requirements modelling ... 2

3.3.1 Personas ... 2

3.3.2 Functional requirements ... 3

3.3.3 Non-functional requirements .. 3

3.3.4 Use Case Diagrams... 3

3.4 Feasibility ... 3

3.5 Conclusion .. 3

4 Design .. 4

4.1 Introduction ... 4

4.2 Program Design.. 4

4.2.1 Technologies .. 4

4.2.2 Structure of Laravel/Unity/Android (2 pages) ... 4

4.2.3 Design Patterns .. 4

4.2.4 Application architecture (1 page) .. 5

4.2.5 Database design ... 5

4.2.6 Process design.. 5

4.3 User interface design ... 5

4.3.1 Wireframe .. 5

4.3.2 User Flow Diagram ... 5

4.3.3 Style guide.. 5

4.3.4 Storyboard ... 6

4.3.5 Level Design ... 6

4.3.6 Environment .. 6

4.4 Conclusion .. 6

5 Implementation ... 7

5.1 Introduction ... 7

5.2 Scrum Methodology .. 7

5.3 Development environment ... 7

5.4 Sprint 1 ... 8

5.4.1 Goal .. 8

5.4.2 Item 1 ... 8

5.4.3 Item 2 ... 8

5.5 Sprint 2 ... 8

5.5.1 Goal .. 8

5.5.2 Item 1 ... 8

5.5.3 Item 2 ... 9

5.6 Sprint 3 ... 9

5.7 Sprint 4 ... 9

5.8 Sprint 5 ... 9

5.9 Sprint 6 ... 9

5.10 Sprint 7 ... 9

5.11 Sprint 8 ... 9

5.12 Sprint 9 ... 9

5.13 Conclusion .. 9

6 Testing ..10

6.1 Introduction ...10

6.2 Functional Testing ..10

6.2.1 Navigation ..10

6.2.2 Calculation ...11

6.2.3 CRUD ..11

6.2.4 Discussion of Functional Testing Results ...11

6.3 User Testing ...11

6.4 Conclusion ..11

7 Project Management ...13

7.1 Introduction ...13

7.2 Project Phases ..13

7.2.1 Proposal ...13

7.2.2 Requirements...13

7.2.3 Design ..13

7.2.4 Implementation ...13

7.2.5 Testing ..13

7.3 SCRUM Methodology ..13

7.4 Project Management Tools..14

7.4.1 Trello ..14

7.4.2 GitHub ..14

7.4.3 Journal..14

7.5 Reflection ...14

7.5.1 Your views on the project ..14

7.5.2 Completing a large software development project...14

7.5.3 Working with a supervisor ...15

7.5.4 Technical skills ...15

7.5.5 Further competencies and skills ..15

7.6 Conclusion ..15

8 Conclusion ..16

References ...17

1

Introduction
The aim of the project is to develop a movie recommendation application that will provide

the users with personalized suggestions based on their preferences. It uses machine

learning to rank and retrieve relevant movies.

Application area

The project focuses on recommender systems and machine learning, specifically on movie

recommendations. Such systems are widely used in streaming platforms to help users

discover content based on past interactions.

Technologies

• Flask, used to handle the backend, acting as an API process, and serving movie

recommendations.

• React JS, Provides interaction for the recommendations system.

• TensorFlow, used for the implementation of machine learning models for basic.

retrieval and ranking of movies.

• SQLite, For data storage.

Project management

Trello, for task management and process tracking.

GitHub, for version control and to maintain project repositories.

Figma, to design wireframes for the application.

Miro, for organization and to keep track of the sprints.

Requirements

Design

Implementation

Testing

2

1 Research

(Concept 1) -- Recommender Systems

Introduction

A Recommender System is a widely used technology that provides the users of these applications

with personalized suggestions of items they might be interested in. In this section the recommender

system will be discussed in all it is from depending on the system that uses the technologies, such as

for streaming web applications such as Netflix or Prime video using collaborative filtering, content-

based filtering or a hybrid model using both. Pretrained models have become more popular over the

years, models using deep learning can handle larger datasets and learn complex patterns for the

items features and user interactions which play a part in the predictions of recommender systems.

These methods for models provide an effect way to recommend user items.

What is a Recommender System (RS)?

A Recommender System (RS) is software application designed to give users personalized

recommendations on items, or services based on their interactions, and past interests. Analyzing

user data, the (RS) can identify trends that help the predictions for what the user might like (Shah et

al., 2017). The (RS) plays a curtail role in helping the users find items that are aligned with their

interests across numerous sectors, these systems are used in industries such as the movie industry

where users would be suggested movies based on their viewing habits. By looking and analyzing the

data more of the user's preferences are tailored to the recommender system that then offers the

personalized items (Shah et al., 2017).

The recommender makes predictions on how the user rates and or interacts with items they have

not seen before, this is based on the user's behavior history and the histories of similar users (Prasad

and Kumari, 2012). Effective (RS) provide personalized recommendations, tailoring suggestions to

each individual user’s tastes and preferences (Prasad and Kumari, 2012).

How Does it Work?

The (RS) functions by collecting the data and then analyzing the user’s personal suggestions.

Starting off it gathers the data to then be processed using various algorithms to identify patterns,

based on this the systems analysis it predicts what items would be interesting to that user, the

system continuously learns from new data being analyzed to refine its suggestions (Prasad and

Kumari, 2012).

(RS) leverages the user’s past interactions and interests to give them a personalized suggestion that
aligns with their own personal taste and wants. The systems go and analyze the user's behaviors, like

their search patterns, ratings, and more to recommend items to the users that are relevant and

appealing to them (Shah et al., 2017).

3

TensorFlow

1.1.1.1 Definition of TensorFlow

TensorFlow is a framework that is used in the development of machine learning and machine

learning models using deep learning techniques. Languages such as Python are commonly used and

are suited for housing models from TensorFlow, it allows for the use of libraries such as TensorFlow

and Keras, which allows for effective building, training, and deployment of the model with less

coding (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022).

1.1.1.2 TensorFlow Pretrained Models

TensorFlow has a wide range of pretrained models at its disposal for developers to use in

applications (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022). The deep learning models are

pretrained for large datasets for a specific task to complete, the models can be accessed through

repositories, in this case the repository would be TensorFlow which can be used to extract features

from data content to complete its task. Google colab is the dev environment that is used for the

model. The Python tools are necessary for the libraries TensorFlow and Keras for the training and

exporting of the model (Puja Singh, Dr Harsh Mathur, 2017).

1.1.1.3 Google Colab

Google Colab is a dev environment that allows for building machine learning models, using google

colab, it can support python which can gives it access to the pre trained model libraries, and if the

process takes more time the developer can use the accelerator for GPUs to fast track the process,

for example when doing the epochs it can take time depending on the model and the data it is

processing. When a model is pretrained it can be exported and converted to TensorFlow lite.

Problems can arise when the model is exported and put into a backend folder depending on if the

framework is compatible with the model and Python (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh

Abas, 2022), (Puja Singh, Dr Harsh Mathur, 2017).

1.1.1.4 Basic Ranking Model

A ranking model from TensorFlow usually worked using the score-and-sort method. The method

works using the neural network that assigns the scores using a function to all the items in a list using

the items features to predict the ranking. The model's training can involve training on one item, a

pair of items, or the whole list. It normally sorts the rankings in descending order after the

predictions have been made for the items (G. Adomavicius, A. Tizhilin, 2005, R. Burke, 2002), (Qian

Zhang, Jie Lu, Yaochu Jin, 2020).

Types of Recommender Systems

1.1.2 Collaborative Filtering

Collaborative Filtering (CF) is a recommender method that uses the predictions of other users to

predict what a user might like, by using the preferences and behaviors of other users. The system

works by analyzing the user-item interactions the user has made and seeing the patterns or

4

similarities between the

users(Shah et al., 2017).

1.1.3 Principle of Collaborative Filtering

The (CF) systems work on the basis that users that have shown similar preferences for items in the

past are likely to share similar preferences in the future; this works on the assumption that patterns

of user behaviors are consistent over time. (Goldberg et al. 1992).

1.1.4 Types of Collaborative Filtering

There are two main types of (CF) that can be categorized into memory-based and model-based.

Memory-based methods can also be called neighborhood-based or heuristic-based (Goldberg et al.

1992).

Memory-based (CF) uses the user’s stored ratings to predict or the preferences for new items, there
are two approaches to consider, the User-Based (CF) is used to predict the user’s interest in an item
by going through ratings from other users who have similar preferences (Kunal Shah, Akshaykumar

Salunke, Saurabh Dongare, Kisandas Antala. 2017)

Model-based (CF) uses machine learning and data mining to build models to analyze the users' rating

data. The models find patterns in the data and then make predictions based on the user’s
preferences to give them effective recommendations (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

1.1.5 Content-Based Filtering

Content-Based Filtering (CBF) is a recommendation approach that creates recommendations

for the users based on the content of the item and the user’s profile. Differing from the methods
that use the user’s opinion the (CBF) gives recommendations that are comparable items the user has
liked in the past (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007)

1.1.6 Characteristics of Content-Based Filtering

(CBF) is done by matching items to the user’s preference through a series of steps.

User Profile Creation is a system that builds on the data that the user provides. This data can be

implicit data, which is the items the user clicks or views, it can also be explicit data such as ratings or

reviews. The user profile reflects the users interests and the user's behaviors (Fahin Mansur, Vibha

Patel, Mihir Patel. 2017).

Item Representation is a system where the items are represented as a set of characteristics,

these can be categories, keywords that describe the content of an item (J. Ben Schafer, Dan

Frankowski, Jon Herlocker, Shalid Sen. 2007).

Recommendation Generation is when the users and items representation are made. It then

compares the content of the user's profile and the items; the system will them recommend items

5

that are like the items the user has shown an interest in. (Fahin Mansur, Vibha Patel, Mihir Patel.

2017).

1.1.7 Key aspects of Content-Based Filtering

Item-to-Item correlation focuses on generating recommendations by comparing items to other

items, the system looks for similarities between the content of items and the suggested items the

user is already shown interest in (Prasad and Kumari, 2012).

Feature Extraction is used to extract the relevant features from the item, like the keywords, or

categories, to build a detailed representation of the items, this makes the matching process to the

user easier (Prasad and Kumari, 2012).

Term Parsing involves selecting the individual words to represent the content, the system can

identify the key terms to understand the main idea of the content to then be compared to different

items (Kunal Shah, Akshaykumar Salunke, Saurabh Dongare, Kisandas Antala. 2017).

1.1.8 Hybrid Approach

The Hybrid Recommender System (HRS) combines the different recommendation methods to

improve the performance and to address the limitations of the individual model's methods. The

common hybridization strategy combines (CF) and (CBF) (Kunal Shah, Akshaykumar Salunke, Saurabh

Dongare, Kisandas Antala. 2017).

1.1.9 Hybridized Strategies

Weighted hybridization is a method that combines recommendations from different methods by

getting the averaging scores individually, each of the methods are given a weight based on their

reliability, the more reliable methods have a greater impact on the final recommendation. This helps

to get improved accuracy by balancing multiple approaches (Fahin Mansur, Vibha Patel, Mihir Patel.

2017).

Mixed Hybrid involves multiple recommender systems, those being the (CF), and the (CBF), creating

their own lists of recommendations, these lists are then combined into a single list of

recommendations. This offers a diverse and balanced list of suggestions (Kunal Shah, Akshaykumar

Salunke, Saurabh Dongare, Kisandas Antala. 2017).

Cascade Hybridization organizes the recommender methods in a specific order of priority, the higher

priority methods create an initial list of the recommendations, and the lower priority refine the

recommendations or fixes problems between them. As an example, the (CF) could make the initial

list and then the (CBF) would refine it (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

Switching Hybridization would switch between recommender methods based on the criteria, the

type of user or item. For a new user with limited data the (CF) would be used, while for users with

more data the (CBF) would be used. This allows the system to adapt to the availability of data Kunal

Shah, Akshaykumar Salunke, Saurabh Dongare, Kisandas Antala. 2017).

6

1.1.10 Collaborative Filtering Classifiers

Collaborative Filtering (CF) is a recommender system that predicts and recommends items by using

the users' preferences and their interactions (Meenu Gupta, Aditya Thakkar, 2021). Unlike Content-

Based Filtering (CBF), (CF) relies on the collaborative behaviors of users rather than the attributes of

the items (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007).

(CF) is good in scenarios where there is not enough user interaction data, this makes it suitable for

platforms that use larger user engagement, it identifies patterns in the user’s behaviors and then the
(CF) can recommend items to other users with similar preferences have liked, even if the content is

different (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007).

(CF) can uncover hidden relationships between the item and the user, this leads to a diverse and at

times an unexpected recommendation (Shah et al., 2017).

1.1.11 Classification

The system will predict whether a user will like the item by analyzing the patterns in the user's

interactions such as the ratings they give other items (Fahin Mansur, Vibha Patel, Mihir Patel. 2017),

(CF) uses this to recommend items based on the preferences of others with similar behaviors (J. Ben

Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007).

(CF) does not focus on the items' features, it identifies the relationships between the users and the

items by creating a matrix of user-item interactions (Shah et al., 2017). This allows the application to

recommend items by recognizing similarities between user preferences and suggesting items that

are liked by similar users (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

1.1.12 Overview of KNearest-Neighbors (k-NN)

KNearest-Neighbors (k-NN) is a classifier method that is used in recommender systems, the

algorithms are used in Content-based Filtering and Collaborative Filtering (Meenu Gupta, Aditya

Thakkar, 2021).

1.1.13 Classification

(k-NN) determines the class of an unlabeled data point by going through the classes of its nearest

neighbors (Nabil Belacel, Guangze Wei, Yassine Bouslimani, 2020). It is done through a majority

review, for example if most of the book's neighbors are tagged as action the algorithm will classify it

as part of the action genre (Nabil Belacel, Guangze Wei, Yassine Bouslimani, 2020).

1.1.14 Nearest Neighbors

The k in (k-NN) determines how many neighbors are considered for classification (Meenu Gupta,

Aditya Thakkar, 2021). The smaller the k value is the more specific the predictions get but it can

7

cause incorrect recommendations due to irrelevant or misleading data points (J. Ben Schafer, Dan

Frankowski, Jon Herlocker, Shalid Sen. 2007), With a larger k value it averages over a broader range

which in turn creates a better prediction but potentially loses the finer details (Meenu Gupta, Aditya

Thakkar, 2021).

1.1.15 Memory-Based

Using a memory-based approach the (k-NN) utilizes the user-item rating or have vectors

creating explicit models (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007). This

makes it flexible and quick to implement, however it also requires storing and accessing the whole

dataset, this can make the model need for resources intensive when working with a large-scale

application (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

KNearest-Neighbors (k-NN) in Collaborative Filtering (CF)

1.1.16 Item-Based Collaborative Filtering (CF)

Using item-based (CF) the (k-NN) recommends the items like the ones the user has liked or

interacted with in the past, the system computes the similarity between items based on the user's

ratings (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

User-Based Collaborative Filtering (CF)

Using User-based (CF) the (k-NN) finds the users with similar preferences and then recommends

them items that the users who are similar have liked (Meenu Gupta, Aditya Thakkar, 2021).

1.1.17 AI Evolution in Recommender Systems

Recommender systems (RS) have evolved due to an increased volume of online data and users'

expectations (Qian Zhang, Jie Lu, Yaochu Jin, 2020). Early recommender systems relied solely on

simple algorithms using (CF) and (CBF) to get basic recommendations (Qian Zhang, Jie Lu, Yaochu Jin,

2020). As the internet has expanded and the data gets more complex these systems can encounter

challenges.

1.1.17.1 AI Recommender Systems (RS)

AI-based techniques have risen over the past few years and as such it has transformed

recommendation systems into a dynamic and personalized model. The systems now use a more

advanced algorithm such as machine Learning to improve the recommendations accuracy and to

handle copious quantities of user data (Shah et al., 2017). Hybrid systems have become common as

they use the strengths of (CF) and (CBF) methods for more accurate suggestions (Qian Zhang, Jie Lu,

Yaochu Jin, 2020).

8

1.1.17.2 Advanced AI in Recommender Systems (RS)

(RS) using AI has continuously gotten better and used more complex methods such as deep learning,

to provide more accurate recommendations (Qian Zhang, Jie Lu, Yaochu Jin, 2020). The systems use

neural networks to get complex relationships between the users and the items. Recurrent Neural

Networks (RNNs) enable session-based recommendations that respond to the user's interactions in

real time.

1.1.17.3 Context Aware and Personalization

AI recommender systems are context-aware and personalized, the systems adapt to the user's

interactions and personal preferences and gives them real-time suggestions based on the user's

historical data (Meenu Gupta, Aditya Thakkar, 2021). Through continuous analysis of user

interactions and the context, the recommender system personalizes the recommendations based on

the areas where users interacted the most (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

1.1.17.4 Emerging Trends and the Future

New interactive systems and voice feedback systems have been developed as voice assistants such

as Siri, and Alexa. Systems that are based on Natural language processing (NPL), voice feedback is a

niche area for recommender systems (Qian Zhang, Jie Lu, Yaochu Jin, 2020).

1.1.18 AI and Collaborative Filtering

1.1.18.1 Improved Accuracy

AI uses machine learning and deep learning, this has improved (CF) recommendation accuracy (Qian

Zhang, Jie Lu, Yaochu Jin, 2020), (CF) can struggle to understand more complex patterns unlike the AI

that can identify intricate relationships between the users and the items, which will result in better

predictions

1.1.18.2 Improved Personalization

AI improves personalization by using the user's user-specific factors like the demographic, and

or historical data (Fahin Mansur, Vibha Patel, Mihir Patel. 2017). The deep learning models process

the datapoints and then identify the complex user preferences, doing this provides the users with

increased personalized recommendations (Qian Zhang, Jie Lu, Yaochu Jin, 2020). Neutral

Collaborative Filtering (NCF) refines the learning non-linear relationship between the users and the

items giving personalized recommendations to the users improving their quality on the application

(Qian Zhang, Jie Lu, Yaochu Jin, 2020).

1.1.19 Critical Analysis

(RS) personalize suggestions to users based on their preferences and behaviors, this helps the users

discover new items they may not have previously seen across many domains (Prasad and Kumari,

2012). Although they are effective in personalizing for the users, recommender systems still face

challenges, these challenges can include affecting the performance of the model, the data the model

looks at, and sparsity in data (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen. 2007). There

can be tradeoffs in the design of the recommender system as optimizing one aspect can lead to one

9

part of the model doing well while the other sections fail, this can affect the whole result (Shah et

al., 2017).

1.1.20 Limitations of Recommender Systems

1.1.20.1 Data Sparsity

(RS) and especially (CF) can often struggle with data sparsity, when a small subset of the items has

been rated there is a lack of data that is needed to make accurate predictions making it a challenge

to get the users preferences (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

1.1.20.2 Cold-Start Problem

Inexperienced users and items do not have historical data which makes it difficult for the (RS) to give

recommendations (Prasad and Kumari, 2012). This is called a Cold-Start and is particularly

challenging for a (CF).

1.1.21 Trade Offs with Recommenders

1.1.21.1 -5.2.1 Accuracy vs. Diversity

Accuracy ensures that the (RS) is recommending similarly matched preferences from the user, this

can lead to overspecialization, meaning the system will only suggest items that are remarkably

similar, the users may have already interacted with the item (J. Ben Schafer, Dan Frankowski, Jon

Herlocker, Shalid Sen. 2007).

1.1.22 Conclusion

Recommender systems are important in the role of giving users items they previously may have not

looked at before. By using methods such as collaborative filtering, content-based filtering, or a

hybrid approach, or the use of a pretrained model can suggest relevant items to users based on the

users features, preferences, and interactions. Pretrained models based on deep learning have

become more popular making it easier to handle larger datasets while improving accuracy through

fine tuning. With these methods a strong recommendation system can be made.

1.1.23 (Concept 2) -- Data Used in Recommender Systems

1.1.24 Introduction

Data is extremely important regarding a (RS), it gives them the ability to provide personalized

recommendations (Meenu Gupta, Aditya Thakkar, 2021). The results depend on the quality, diversity

and how the data is structured (Oren Sar Shalom,Shlomo Berkovsky, Royi Ronen, Elad Ziklik,

Amihood Amir, 2015). Understanding what types of data is the best to use, and how processing and

optimizing them is important for making a good model.

10

1.1.25 Data in Recommender Systems

1.1.26 Data Sources

1.1.26.1 Public Datasets

Kaggle and TensorFlow are websites that host datasets which can include the users rating and

interaction data (Fahin Mansur, Vibha Patel, Mihir Patel. 2017). These datasets are useful for training

and testing the recommender system as it will show if the algorithm is working through evaluation

during development (Meenu Gupta, Aditya Thakkar, 2021).

1.1.27 Types of Data Used

This data type gets the user's data and the interaction history of the user, this helps the system

understand user preferences to then give better recommendations (J. Ben Schafer, Dan Frankowski,

Jon Herlocker, Shalid Sen. 2007). (RS) can use more than one of the data types with some relying of

the ratings, while other systems look at the content-based data (Qian Zhang, Jie Lu, Yaochu Jin,

2020).

1.1.27.1 User data

User data includes the demographic of the user being their age, and gender, it also uses the behavior

of the user to see their past preferences and what their needs are (Prasad and Kumari, 2012). The

way this data is collected is through explicit means using the user's inputs such as the ratings they

have given or what items they have liked or disliked, this then gives the preferences of the users. The

data can also be obtained through implicit means which go through the user's interaction history, for

example how many times a user visits the same page (J. Ben Schafer, Dan Frankowski, Jon Herlocker,

Shalid Sen. 2007).

Item data

Item data is the data about the items that could be recommended, this can include keywords like a

genre or a description or any of the item's attributes (Prasad and Kumari, 2012). The item data can

also include the user's ratings on the items, the reviews they have left on the items (Fahin Mansur,

Vibha Patel, Mihir Patel. 2017).

1.1.28 Data Storage

(RS) need data storage for the types of information, this data includes the user's data, the items-

rating data, and the item data. The type of storage that is used depends on the data and what the

systems configured for (Goran Antolic, Ljiljana Brkic, 2017).

1.1.29 Databases

(RS) use diverse types of databases to store and manage the data needed to create

recommendations to users. The choice of database types is relational databases and NoSQL

databases, The performance of these two databases depends on the type of data that is being used,

11

if the volume of the data is large or small, and the requirements for the system (Goran Antolic,

Ljiljana Brkic, 2017).

1.1.29.1 NoSQL

NoSQL databases are used to store the user's profiles and the recommendations, it does this

because it can handle substantial amounts of users and flexible schemas (Meenu Gupta, Aditya

Thakkar, 2021). NoSQL databases can store data about the users like their relationships (Goran

Antolic, Ljiljana Brkic, 2017).

1.1.29.2 SQLite

SQLite is an open-source, light, database, it runs within the application which makes it efficient, it

stores data in tables and organizes the database into a file, it is not the best database for larger

datasets or large-scale operations for that matter, but it is great for smaller applications (Grant Allen,

Mike Owens, 2010).

1.1.30 Preprocessing Data

Data Processing is a crucial step in creating a (RS), real world data can be incomplete and or

inconsistent (Oren Sar Shalom, Sholmo Berkovsky, Royi Ronen, Elad Zikik, Amihood Amir).

1.1.31 Data Cleaning

Cleaning the data will ensure the dataset is consistent, accurate, and does not cause any errors to

occur, is the foundations for building a reliable (RS) and missing data can affect the results if not

handled properly, this would involve filling the missing values replacing them with zero or removing

the empty value entirely (Bernard Magara Maake, Sunday O. Ojo, Tranos Zuva, 2019). Another issue

that can occur is noisy data which are the outliers and errors that need to be smoothed over to

remove any inconsistencies in the dataset. Outliers would then be removed to avoid a skew in the

analysis.

1.1.32 Data Transforming

Data transforming changes the raw data's format and makes it suitable for use in machine learning

models for analysis. Normalization and the aggregation of data are used in the analysis and the

building development of a model, it scales numerical data to a get the range, which can improve the

performance of the algorithm (Xavier Amatriain, Alejandro Jaimes, Nuria Oliver, Josep M. Pujol). Text

transformation converts the text into a consistent format so that it can be reviewed, this can be

changing the uppercase to lowercase or removing special characters, and keywords.

1.1.33 Conclusion

The data is an important part of the application in terms of the recommendation system being a

success, storing the data for it to be reused in the application. Going over the databases required to

12

store the data is important for managing it. This will provide the model with ample data for it to then

recommend items to users more accurately.

1.1.34 (Concept 3) -- Architecture of Model Integration

1.1.35 Introduction

The integration of machine learning models into front-end and back-end applications

can be challenging when considering between front-end and back-end deployment, both come with

advantages and disadvantages that can hinder the performance of the application (Hock-Ann Goh,

Chin-Kuan Ho, Fazly Salleh Abas, 2022). The Front-end allows for reduced latency and real-time

interaction, but this requires the model to be optimized for devices with limited resources

(Dimas,2024). In the back end it can access powerful server resources and security measures, the

problems with the back end are it can cause latency issues and can make the interaction with an API

complex. A hybrid model could help solve these issues.

How Back-End Integrates Models

The back-end integration requires hosting the model on a server or a cloud platform, these are

accessed through APIs (Dimas, 2024). TensorFlow would serve and another application like Google

cloud could deployment of the model (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022). The

models can use GPUs or TPUs for more strenuous tasks during development and training, this

happens on the server.

Alternatively, the model can be exported into a zip file from google colab, it can then be downloaded

and implemented into the backend to then be queried, from this the ranked model data can be

called through the use of an API (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022), (Sebastian

Proksch, Veronika Bauer, Gail C. Murphy, 2014).

1.1.36 Front-End Technologies for Integration

1.1.37 Frameworks and Libraries

Front-end web development is crucial in creating the user interface. This would focus on the layout,

design of the website, and the pages of the website, and a smooth interactive experience. JavaScript

can create an interactive and dynamic front-end allowing for many features for design like form

validation and asynchronous data loading (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid Sen.

2007). Other frameworks like React.JS can build scalable, interactive applications, using tools like

Bootstrap or Tailwind which offer pre-built components that can be used in the application can help

save time under constraints (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022). CSS processors

like SASS can help maintain the design over the whole application, then using GitHub to track the

changes and to collaborate the back end, the model can be exported to the backend and serves as

an API to be used in the front-end to get the data to be displayed.

13

1.1.38 API Integration

APIs are used in building the (RS) and the web app by getting data using user data and can use item

databases. This also provides access to pre-trained models which can make deployment easier

(Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022) APIs give access to the presentation of

recommendations in the existing user interface. This works through auto-complete which is a UI

element that suggests matches such as when a user uses the search bar and suggestions are ready to

pop up for them. The API can also make customized UI elements which can help the users

understand the recommendations improving the users experience (Sebastian Proksch, Veronika

Bauer, Gail C. Murphy, 2014).

A problem that can occur when using APIs is where the developer of a ready-made API is the

vocabulary, the API doesn’t know the terminology or the structure of the API which can cause time
loss when finding the information for the recommender (Sebastian Proksch, Veronika Bauer, Gail C.

Murphy, 2014). Another problem that could occur is outdated APIs or lack of necessary components

regarding attributes in the data.

Alternatively, the models can be extracted by querying the model in the backend. After this the

model can be used as an API allowing for the ranked data to be displayed for the user in the front

end (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022), (Sebastian Proksch, Veronika Bauer, Gail

C. Murphy, 2014).

1.1.39 Integration of a Data

Using TensorFlow, it is a JavaScript library that allows for machine learning models to be integrated

into the front-end directly, this allows for real-time predictions in the browser or on a server like

Node.JS. It can support pre-trained models, AI images, sentiment analysis, and importantly,

recommender systems (Qian Zhang, Jie Lu, Yaochu Jin, 2020). TensorFlow can use a library called

WebGL which can speed up machine learning tasks. It does this by offloading calculations to the

GPU, allowing the browser to render 2D and 3D graphics. This improves TensorFlow by making the

running of models more efficient across all platforms (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh

Abas, 2022).

Alternatively, the use of google colab allows you to export models from google colab directly making

it a zip file that can be downloaded. Once the model is downloaded it can be put into a folder. This

folder contains the zip file and the opened file where it is then loaded to be queried involving

changing vectors and converting numeric data to string form. From this the data can be extracted

from the model and displayed (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022), (Sebastian

Proksch, Veronika Bauer, Gail C. Murphy, 2014).

1.1.40 Back-End Technologies for Integration

Back-end integration is important when integrating models into a web app, which would enhance

the performance improving the processing speed, how the applications deploy, and the scalability of

the model (Hock-Ann Goh, Chin-Kuan Ho, Fazly Salleh Abas, 2022). It provides data management and

infrastructure for scalability.

14

Frameworks and Integration

Back-end technologies like Python, PHP, Flask, JavaScript, and C++ frameworks are essential for

machine learning model integration into web applications and (RS) these frameworks are used in the

model's development, processing the data, and creating the back-end logic for the application.

TensorFlow, Node.JS and Django would be used to deploy the models, using Docker it can deploy

and help with scaling the application, for a serverless option AWS Lamba can be used, it

automatically scales based on the number of requests. Using databases like MongoDB, MySQL with

external sources like XAMPP can store data for (Goran Antolic, Ljiljana Brkic, 2017). MySQL and

MongoDB are suitable for maintaining unstructured data such as user profiles, the user's

interactions and their preferences, MySQL is a relational database which can be used for

structured data also such as the user's ratings and the descriptions for the items in the (RS).

Additional technologies that can be used are Mahout, a JavaScript library for the

 recommender system. The strengths of this are the ability to handle larger datasets making

it useful for analyzing considerable amounts of data. It also scales and handles the increasing

number of users and the items (Goran Antolic, Ljiljana Brkic, 2017).

1.1.41 Conclusion

Integrating the front and backend is critical for the recommender system, getting the data from the

backend can involve different methods such as hosting the model, or downloading it and

implementing in a folder in the backend and then extracting the data from the model through

querying seems like the best option as the model and backend will be in one place improving

response times when getting the data for the front end. Having the model in the backend also

improves the scalability of the application as new data comes in and makes the system more

maintainable overtime.

2 Requirements

2.1 Introduction

This project is on creating a movie recommendation application that will suggest movies based on

the users' interactions to get their preferences. Streaming platforms commonly use these systems to

help their users find content they might enjoy. Using machine learning the aim for the system is to

provide personal recommendations to users. The application will be made using a Flask backend for

processing recommendations and use as an API, a React js front-end for the users to interaction, and

the use of a TensorFlow model, the basic ranking. SQLite is the database which will store all the data.

2.2 Requirements gathering

Front-end

15

• User interface

o The front-end will have a straightforward design to make it easy for users to interact

with the system. It will have options for users to enter their preferences through the

genres, and or ratings of the movies.

• Movies display

o The front-end will provide pages for the movie to be displayed, deleted, edited, created

but only by admin users.

• User input

o The front-end will allow the users to enter their preferences, through filtering, and

refining movie suggestions based on the user's selection

• Interactive components

o Interactive components such as buttons, will let the user rate the movie, which will

refine their preferences in the system.

Backend

• Movie recommendation system

o The backend will use TensorFlow to create a recommendation system that provides

personalized movie suggestions based on user preference. ranking models to offer the

relevant movies.

• API

o A Flask API will handle requests from the front-end, processing user input which would

return personalized movie recommendations.

• Database

o The application will use SQLite as the database to store user data, movie data.

• User authentication

o User authentication provides preference and rating saving to improve the

recommendations over time.

• Role based authentication

o Allows for authenticated DELETE, EDIT, and CREATE in the application.

2.2.1 Similar applications

16

Fig (2.0) Netflix

Netflix

Netflix is a huge streaming platform, it has movies, TV shows, and documentaries. It uses an AI

algorithm to recommend movies, shows, documentaries based on the user’s preference,
interactions, and view history.

Advantages

o Netflix has a massive library of content.

o It uses a powerful recommendation system.

o Netflix is supported on multiple devices.

Disadvantages

o The content in Netflix depends on what region you live in.

o The price of the subscription is remarkably high.

17

Fig (2.1) MovieLens

MovieLens

MovieLens is a movie recommendation website that allows users to rate movies and receive

suggestions based on the ratings the users have given. It recommends movies based on collaborative

filtering.

Advantages

o Provides accurate recommendations.

o No subscription needed to use this service.

Disadvantages

o The application is limited to the website.

o MovieLens provides a smaller selection of movies.

Fig (2.2) Amazon Prime

18

Amazon Prime

Amazon Prime is a streaming service that offers movies, and TV shows. It provides recommendations

based on the user's viewing history and their preferences.

Advantages

o Prime has a large variety of content to view including movies, and TV shows.

o There are no ads when using Prime.

o It is convenient for users who already have a subscription to Amazon.

Disadvantages

o The interface is slow and cluttered.

o Some of the content is free but some require further purchases.

o Prime is region blocked.

o Prime is supported on multiple devices.

19

2.2.2 Interviews

Fig (2.3) Interview questions

The interviews were conducted with three users that were chosen at random, this was done to

remove bias in the users' answers. In each of the interviews the focus was to find key features, the

problems they face and what solutions may help, suggestions on improvement from other similar

applications. The insights that were gathered from the interviews helped to Invision the features

that would be necessary to build the application.

2.2.3 Survey

Fig (2.4) Survey

20

The survey was conducted to a group of potential users to collect the feedback on their habits when

watching movies, what kind of preferences would they want to have, what they expect from the

recommendations for the movies, and key features that will be needed for the application. With the

responses it gave a clear picture of features that would be needed and the type of data that would

need to be gathered for the recommendation system to give accurate suggestions for movies.

2.3 Requirements modelling

2.3.1 Personas

Fig (2.5) Persona 1 & 2

Samantha and James are two personas that represent typical users of the movie recommendation

application.

Samantha is a twenty-nine-year-old who works in marketing. She watches three movies a week but

often feels frustrated with generic recommendations that do not match her interests or repeats

movies she has already seen. She wants a personalized, time saving solution for finding new movies.

21

James is a twenty-one-year-old student who watches movies with his friends and family. With a

limited budget he struggles with managing multiple streaming services and spends a considerable

amount of time trying to find a movie that he is interested in.

2.3.2 Functional requirements

1. The application needs to provide personalized movie recommendations using machine

learning models to give movies suggestions.

2. Implementation of the basic ranking methods from TensorFlow to sort and present movie

recommendations based on the user’s input.
3. Allow users to filter through genres to get movies based on that genre.

4. Allow users to search for specific movies in the search bar.

5. It needs to display a list of movies and give the admin the ability to delete, create, and edit.

6. Admin can interact with actors giving them the ability to assign actors to movies and remove

them from movies. The admins can use CRUD functionality on the actors.

7. Users can leave a review on a movie, they can delete and edit their own reviews

8. Needs to allow users the ability to rate movies to improve recommendations. They can also

edit and remove their ratings

9. Users need to be able to create, edit, and delete, and add their own watchlist.

10. Users can add their watchlists to public making it display in the public watchlists. Users can

also remove their watchlists from public and make it private.

2.3.3 Non-functional requirements

1. The applications usability should be user-friendly, intuitive, and allows users to navigate

through the pages, movie recommendations, input preferences, and interactions with the

system without problems.

2. The system should be able to load the recommendations quickly.

3. User data should be stored securely, using encryption for the password and other sensitive

data that might need to be hidden.

4. The code should be well-organized, and easy to maintain allowing for updates

2.3.4 Use Case Diagrams

• A User:

• Can filter movies by genre.

• Can rate a movie.

• Can save a movie to their watchlist

• Can make their watchlist public or private.

• Can review movies.

• Can view actor data.

• Interactions

22

• Can filter movies based on a selected genre, and the system returns movies with just that

genre.

• Can select a movie and save it to one of their watchlists.

• Can remove a movie from their watchlist.

• Can make their watchlist public or private.

• Can edit and delete their own reviews.

• Can view other users reviews on movies.

• Can edit and delete their own ratings.

• An Admin:

• Can manage movie CRUD.

• Can manage actor CRUD.

• Can assign and remove actors from movies.

• Can create, edit, and delete movies and actors

Fig (2.6) Use Case Diagram

2.4 Feasibility

The project will use these technologies.

23

• React.js: This is used for the front-end, which will allow for a dynamic and responsive user

interface where users can input ratings or view movie recommendations.

• Flask: Flask will act as the backend and API, handling requests from the frontend, executing

machine learning logic, and interfacing with the database.

• SQLite: SQLite is used for data storage, managing movie datasets and user information.

• TensorFlow: TensorFlow has pretrained models which can power the machine learning

recommendations system to predict users ranking of a movie

These technologies were chosen for their compatibility, widespread use, and they were suitable for

a machine learning web application. React.js and Flask integrate well through RESTful APIs; SQLite

provides a simple for an application. And TensorFlow offers tools for deploying the basic ranking

model.

The challenges that need to be considered.

• The Flask API may have delays when rendering in the data from the UI component.

• Database performance as the data scales in the database can be a problem when the

numbers of movies or ratings, or even watchlists increase.

2.5 Conclusion

In the requirement phase, it goes over the requirements needed for the application. This section

focuses on the technologies that were used, goes over the TensorFlow model for the front and

backend, and goes over user feedback with interviews and questionnaires. This chapter highlights

the functional and non-functional requirements for the application.

24

3 Design

3.1 Introduction

The design of an application is usually divided into:

1. Program Design:

Technologies

• Flask:

• React:

• Python Libraries:

2. User Interface Design.

The application for this project is a movie recommendation web application, it uses machine

learning to provide personalized movie recommendations to users, it does this by predicting the

ranking a user might give a movie through their interactions on the application, it gives that movie a

rating that's assigned to the user for that movie. It is built with a React.js front-end, in this user can

filter movies by genre, search for specific movies, rate movies, review movies, view actors, and save

selected movies to their own watchlists. There are administrative abilities admins can utilized such

as the CRUD functionality for movies and actor assignment to movies and the CRUD functionalities

with actors. The Flask backend acts as the API and manages the machine learning logic, processing

user inputs, user authentication, and coordinating with the recommender model. Both the

components interact together through RESTful APIs. For data storage, SQLite is used to store the

data.

The recommendations are from a TensorFlow model, the basic ranking model, which analyses users'

behaviour, such as when they rate a movie it saves the movies attributes such as the genre and

predicts what the user might rate a movie that is like.

Additionally, the application will allow certain users to use CRUD functionality on movies and

watchlists so that users and admins can keep up to date.

3.2 Program Design

The program design is the structure and the components that are needed to make coding the

application more straightforward. It goes over the sections of the applications and outlines the

responsibilities those areas are undertaking such as detailing the front-end, backend, database, and

machine learning model and how they interact with each other.

Flask (Backend application)

Flask will be used as the web framework for the backend of the application. It is ideal for creating

APIs. In this project, Flask handles the HTTP requests, routes them to the controller functions, and

serves the machine learning model to the front-end.

25

Responsiblities

• Handles authentication and authorization.

• Interacts with the SQLite database to store and retrieve movie and user data.

• Provides the API endpoints for the user's inputs.

• Processes the incoming data and it interacts with the machine learning model

Extensions

• Flask-RESTful, uses for creating the RESTful APIs.

• Flask-SQLAlchemy for database interactions.

React.js (front-end application)

React.js will be used for the front-end for the application, this will allow for an interactive interface

for the users to use with the system. React provides component-based structures which allows users

to reuse the same components making the process of coding easier

 Responsibilities

• Renders the UI components.

• Allows users to rate movies and add them to watchlists.

• Displays the recommended movies for the users.

• Allows users to search and filter through movies.

• Makes the asynchronous requests to the Flask backend to retrieve data.

State management

• Using React context for managing global state.

• Using Axios for making the actual API call to the backend.

Python libraries for Machine Learning (Backend)

This backend application will include a machine learning model that is prebuilt from TensorFlow. The

model will generate movie recommendations based on the how the user interacts with the

application.

TensorFlow

• TensorFlow is used to create and run the basic ranking model that predicts what a user

might rate a movie based on past interactions.

Pandas and NumPy

SQLite (Database)

SQLite will be used for the database to store the movie data, user data, ratings, and watchlists. It

also holds the relationships between these tables.

Responsibilities

26

• The SQLite database stores movie data such as the title, genres, description, and other

attributes.

• The SQLite database will keep track of users, their ratings, and their watchlists, their reviews.

TensorFlow's model for Recommendations

• The movie recommendation system will work using the pretrained basic ranking model built

using TensorFlow. This model will analyse the user’s inputs, and it will generate

recommendations based on the movie's attributes and user ratings.

Responsibilities

• The model will process the users' inputs and predict the ranking the user would give a

movie.

• In the route for the ranking model there will be queries to extract the titles from the models'

predictions and then the top five highest predicted rankings will be displayed for each user.

• This will be displayed in the home page in the front-end

3.2.1 Technologies

The technologies being used to create this application are:

• Flask

• React.js

• TensorFlow

• SQLite

These technologies were chosen because they offer an efficient and scalable way to build the movie

recommender system. Flask is flexible and make it easy to develop and integrate machine learning

models.

React.js provides a fast, has a responsive user interface, and makes the coding process more

convenient with components.

TensorFlow is ideal for getting models to use in applications, using the basic ranking model the

application will be able to predict ranks the users might have on movies.

And SQLite is simple and provides an effective way to store data for this application.

Other technologies which could have been used were Django for the backend and PostgreSQL for

the database. but Flask was preferred for its simplicity. PostgreSQL is a more powerful database but

was not needed for this application, which is why SQLite will be used.

3.2.2 Structure of Flask/React (2 pages)

The Flask and React application are structured to keep the front-end and back end separate. Which

will make it easier to develop, maintain, and scale. The Flask backend will manage the API routes,

business logic, and the database. The React front end will communicate with the backend through

HTTP requests, with React sending messages to the Flask backend and then Flask returning the data.

27

This allows the front-end to focus on the interaction while the backend manages the data and the

machine learning process.

The config folder holds the configurations files for the application

• Config.py stores configuration settings like the database URI and other environment

configurations.

The env folder contains the environment-related files like the environmental variables or virtual

environments.

The instance folder holds instance-specific files such as the database

• SQLite database file to store application data.

The migrations folder holds the script for the database schema. It also helps manage changes to the

databases structure if it changes over time.

The ml_models folder contains the machine learning model that is used in the application.

• Ranking_model is the directory for the movie ranking model to use the recommendations.

• Ranking_model_tar_gz is the zipped that can be loaded for making predictions.

The models contain the python classes that are representing the applications data model.

• The movie.py file defines the movies model.

• The user.py file defines the user model.

• The rating.py file defines the rating model; this will link the user and movie tables.

• The watchlist.py defines the watchlist model, where the users can save movies.

• The actor.py defines the actor model, this table is a many-to-many with movies.

The routes folder stores all the routes for the application; this is where the logic for processing

requests and returning the responses.

• The movie_route.py handles the movie related API endpoints.

• The auth.py handles the authentication routes.

• The ranking_route.py manages the routes for the ranking model and the movie

recommendations.

• The rating_route.py handles the routes for rating movies.

• The watchlist route handles the routes for the watchlist functionality.

• The actor route handles the routes for the actor functionality.

The seeders folder contains the scripts that are used to seed the database with user and movie data.

• The movie_seeder.py seeds the database with movie data and assigns actors to movies.

• The actor_seeder.py seeds the database with the actor data.

• The user_seeder.py seeds the database with user, watchlist, rating, and review data.

• The seed_all.py file that sends the data to the database and can drop the tables to reset the

database.

The gitignore file is used to ignore large download files, these files should not be sent to GitHub.

28

The app.py file is the main point of the application; it initializes and runs the Flask application.

The extensions.py file will initialize third-party extensions such as Flask-SQLAlcemy and Flask-

Mirgate.

Requirements.txt is a list of python dependencies needed for the project to work; this can be

installed using pip.

The application is in the folder my-react-app.

The node_modules contain all the dependencies for the application and can be installed using npm

install.

The public folder contains the public files that will serve, this includes static files.

The src folder holds all the source code for the application, this includes the pages, components, and

the styles.

• The components folder in in the src folder, this folder holds components that can be reused

depending on how it works.

o The Login.js component is used for user login functions.

o The Register.js component is used for registration functions.

o The Navbar component allows users to navigate through the application.

o The MovieCard displays the movie information.

o The WatchlistCard displays the watchlist.

o The rating card will display the movies users have rated.

o The publicWatchlistCard displays the PuclicWatchlist data.

o SignOut.js is the component uses for signing out users.

The pages folder will also be in the src folder. This folder contains different pages in the application.

• The movies folder contains pages related to movies.

o The movie create allows admins to create movies.

o The movie edit allows admins to edit movies.

o The movie single page allows admins to delete movie, allows users to rate and add

movie to watchlist.

o The movie all page allows users to see all the movies.

• The watchlists folder contains pages that are related to the watchlists.

o The watchlist create allows users to make a new watchlist.

o The watchlist edit allows users to edit existing watchlists.

o The watchlist single allows users to view all the movies in that watchlist.

o The watchlist all page shows all watchlists for that specific user.

o The publicWatchlist all page shows all the public watchlists in the application.

o The singlePublicWatchlist displays the information of the public watchlists.

• The actor folder contains pages that are related to actors.

o The actor create allows admins to create actors.

o The actor edit allows admins to edit actors.

o The actor single page is accessible for all users displaying actor data.

o The actor all page is only visible for admins and allows them to assign users to movies.

29

The App.js is the root file for the application. It handles routing, and renders different components

or pages based on the URL.

Index.css adds dasiyUI to style the application.

The gitignore file is used to ignore sending large files to GitHub such as the node_modules.

Tailwind.config.js is the configuration file for tailwind.

3.2.3 Design Patterns

The Model View Controller (MVC) design pattern applies to the structure of the back and front-end

of the application. It split the application into three different components, each of the components

have their own responsibilities, making the application maintainable.

Model

In the Model View Controller, the Model refers to the data and the logic to manipulate that data.

The Model component is implemented in the backend.

• The Movie Model defines the data structure of movies, this includes their attributes such as

the movie title, movie genre, and other related attributes.

• The User Model defines the data structure of the users; it contains specific data such as the

users email and password.

• The Rating manages the user ratings for the movies. It defines a relationship between the

user and movie.

• The watchlist model represents the watchlist where a user can add movies.

• Actors model defines the actor model and its attributes such as name, description, and other

attributes.

• Review model defines the review model and its attributes.

The models interact with the database to store data and retrieve data.

View

The view displays the data to the user. It represents the user interface and how the data will be

presented.

• The MovieCard component will display the movie data.

• The WatchlistCard component displays the watchlist where a user can choose which

watchlist they want to see.

• The PublicWatchlistCard will display the public watchlists to users where they can see other

users watchlists and view their contents.

• The Navbar displays on all pages excluding the login and registration pages, in the movie all

page it will display a search bar and filter, on other pages these components will not be

visible.

• The RankingCard component displays the predicted ratings a user might give a movie and

lists the top five

• The RatingCard component displays the movies the users have rated.

The user can interact with the application, viewing and editing the data if allowed.

30

Controller

The controller acts the middle of the process handling user inputs, processing the data through the

model, and updating the view. In Flask, the internal logic is made in the routes.

• The Movie Routes handle the requests to get, create, edit, and delete for the movies data.

• The Watchlist Routes handle the requests to get, create, edit, and delete for watchlist data,

it also allows users to add movie to the watchlist and remove.

• The Actor Routes handle the requests to get, create, edit, and delete for actor data, it also

allows the admins to assign actors to movies through a PUT request.

• The Review Routes handle the requests to get, create, edit, and delete for the review data,

in the users can view all the reviews but can only edit and delete their own reviews through

their user id.

• The Rating Routes defines the routes that manage the user’s ratings for movies.

• The Ranking Routes manage the ranking_model and handles the machine learning model

used to generate movie recommendations based on the users' inputs.

• The Authentication Routes handle the routes used to login and register.

These routes make sure that the correct data is sent from the backend to be used in the front-end.

3.2.4 Application architecture (1 page)

Fig (3.0) Application architecture

Front-end (React.js)

31

The React frontend interacts with the Flask backend through HTTP requests to fetch data and display

it on the front-end.

Backend (Flask)

The Flask backend acts as an API that manages data flow between the front-end and the database. It

also integrates the ranking model to generate recommendations.

Database (SQLite)

The SQL database stores the data for the movies, ratings, rankings, users, reviews, actors, and

watchlists. The backed queries the database to get or modify the data.

Machine Learning (TensorFlow)

The ranking model processes the user's data and the movie attributes to give a suggested movie

recommendation based on how the model prediction on how a user will rate a movie.

3.2.5 Database design

Fig (3.1) Entity Relationship Diagram

User

32

• A user can have many ratings; a user can rate any movie.

• A user can have many watchlists.

• A user has a many-to-many relationship with movies through the watchlist table.

Movie

• A movie can appear in multiple watchlist, all users can add all movies to watchlist.

• A movie can have many ratings from users

• The rating table links the movie and user tables through storing the movie_id and user_id in

ratings.

• Movie has a many-to-many relationship with actors.

Ratings

• A rating is associated with a user and a movie.

Rating table holds both the user and movie ids.

Watchlist

• A watchlist stores a movie or multiple that a user has selected to be in their watchlist.

• Watchlist has a many-to-many relationship between user and movie.

Actor

• Actors can appear in multiple movies

• Has a many-to-many relationship with movies.

Review

• Reviews are associated with one user and one movie.

3.2.6 Process design

Class diagrams

A class diagram is used to visually represent the structure of the system by showing its classes,

attributes, methods, and their relationships. A class diagram helps to understand the main entities,

for this project it would be the User, Movie, Rating, and Watchlist.

User

• Attributes

o Id

o username

o Email

o Password

o User_Gender

33

o User_Occupation_Label

o User_ratings

o Role

• Methods

o Is an admin, is a user.

• Relationships

o Can have many ratings and many watchlists.

Movie

• Attributes

o Id

o Movie_title

o Description

o Movie_genres

• Methods

• Relationships

o Can be in many watchlists and can have many ratings.

Rating

• Attributes

o Id

o User_id

o Movie_id

o Rating

• Methods

• Relationships

o Is associated with a user and movie through a one-to-many.

Watchlist

• Attributes

o Id

o User_id

o Movie_id

o Title

• Methods

• Relationships

o Is associated with user and movie through many-to-many.

Actor

• Attributes

o Id

o Name

o Description

o Previous_work

o Birthday

o Nationality

o Movie_id

34

• Methods

• Relationship

o Has a many-to-many relationship with movies.

Review

• Attributes

o Id

o User_id

o Movie_id

o Content

• Methods

• Relationship

o Is associated with user and movie in a one-to-many

Relationship Types

Movies and users

• One-to-Many:

o Can have many ratings.

• Many-to-Many:

o Can be in many watchlists, and a user can have many movies in their watchlists.

o Can have many actors, and an actor can be in multiple movies.

o Can rate multiple movies, and a movie can be rated by many users. (<Er Diagram for

Movie Recommendation System | Restackio=)

3.3 User interface design

The user interface design for this application was done in Figma, the design focuses on a simple

layout works smoothly, the design needed to be consistent throughout the pages and navigation

was in mind as the pages were developed.

The designs process started with wireframes to outline the structure of the pages; they acted as a

blueprint for the app displaying where I need to add in components such as where the movie card

would display in the application.

Features in UI design

Home page

The home page will display the recommended movies from the model as well as showing rated

movies that the users has rated. In this page you can navigate to the watchlist and public watchlists

link where a user can view all watchlists and their own. This page will also allow users to navigate to

the movie section where users can rate movies. In the home page users can view their

recommended movies from the machine learning model where the user can click on them to add

35

them to their watchlist and rate it. The rated movies also appear in the home page and as a user rate

more movies, more ratings will display in home, from this user can edit or delete their review on the

movie.

Movie page

The movie pages will involve the movie all page where the users can view all the movies on the

website. From this page an admin can create a new movie, users can search and filter through

movies to find the specific movie they want to view. From this page the user and admin can click on

a movie and then be taken to that specific movies details where an admin can edit the movie and

delete it. A user from this single movie page can then add a movie to one of their watchlists and they

can rate the movie they’re viewing, and they can leave a review on the movie that other users can

see, users can also see the actors in the movies where they can view their descriptions if they click

into them.

Using the create and edit buttons takes the admin to a different form page where they can input the

data to either create or edit a movie.

Watchlist page

Watchlist page will display all the watchlists a user has. The user can delete the watchlist they have,

and they can edit the name of their watchlist. A user can click into one of their watchlists to see all

the movies in their watchlist. From here they can remove movies from the list.

The users can also navigate to the public watchlist pages where all the public watchlists are

displayed, from here the user can click into the public watchlist to view it and see what movies are in

the watchlist that a different user has made.

Actor page

The actor pages the regular users can view is the actor single page where they will be able to view

the data for the specific actor, for the actor all, edit, and delete pages they are locked by

authentication and can only be accessed by the admin. In the actor all page the admin can delete,

edit, and assign actors to movies, from this page the admin can click to view the actor single page.

PageNotFound page

This page is for if a user goes to a page that does not exist.

Profile page

In this page the user can view their data and sign-out.

Login and Register pages

The login and register pages feature a form the users will fill in to gain authentication, the design will

be simple for ease of use.

Figma is great to base your design off, it allows for direction when designing the front-end and it can

help visualize what component will work in certain pages and where they will not make sense to be

in the application.

36

3.3.1 Wireframe

Figma: https://www.figma.com/design/PNu4ugz8GTH2mdozz9pOy6/Figma-for-Major-Project?node-

id=0-1&t=3HBlWdz0rlnqBXOd-1

Fig (3.2) Wireframe

Register page

In this page the new user needs to register an account, the users will input their email field,

password, gender, occupational_label, and age. This will register a new user to the database and

give them authentication to use the applications features.

Login Page

The Login page works similarly to the register apart from the fields that need to be inputted, the

login will only require a user or admin to enter their email and passwords, this works because that

specific user is already registered in the database and does not need to input extra fields.

Home Page

The home page will display the recommended movies from the ranking model as well as the rated

movies the users have rated. From this page a user can navigate to the movies all page or the

watchlists all page or their user profile.

User profile

This page is where a user can sign out of their account bringing them back to the login page.

37

Movie pages

The movie consist of a movie all page where users and admins can view all the movies. From this

page an admin can create a new movie. From this page the user and admin can click and view a

single movie. In the single movie page, the user and admin and view the movie data and add the

movie to one of their watchlists, they can also rate the movie from this page. As an admin in the

single movie page, you can edit or delete the movie. Users can add ratings and reviews in this page

along with adding the movie to their watchlist. Users can also view the actor single page by click on

an actor in this movie single page.

Watchlist pages

The watchlist pages consist of the watchlist all which displays all the watchlists a user has. A user can

delete or create a new watchlist from this page. If a user selects one of the watchlists they can view

all the movies that are in the watchlists, they can remove movies from the watch list from this page.

The public watchlist pages will display as a link in the navbar that the user can navigate to, in this

page the user can view watchlists from other users.

Actor pages

The actor all page displays all the actors; admins can only view this page and here they can create

actors, edit actors, and assign the actors to movies they are not already in. From this page you can

click into the actor and see the description for the actor.

In the create and edit pages for actors the admin will have to fill out a form and them the actor will

be created or edited.

3.3.2 User Flow Diagram

Fig (3.3) Use Case Diagram

This use case diagram provides the visual representation of how different users interact with the

system. (<How to Create a Use Case Diagram for a Chat ... - Diagram Central=) It shows the core

functionalities that are available to the user and the admin.

The diagram helps to understand the relationship between the user actions whether that is logging

in, registering, viewing the movies, or managing their watchlists and the systems processes involving

authentication, and managing the data.

38

3.3.3 Style guide

This shows the colours, and the font that was used in the project, the same style is implemented in

all the pages. A colour pallet was made to show the colours used for the backgrounds, cards,

buttons, and other components.

Fig (3.4) Style guide – Colours – Fonts

Colour Scheme

The colour scheme consists of cooler toned colours, primarily those being blues and greys to create a

modern look for the application. The palette includes a range of colours:

Blue shades:

#ADBED3

#7181AF

#859CB2

#2A3047

39

Grey Shades:

#1B1D24

#686B73

#444347

#515F6C

#464F60

#333D45

Typography

Layouts, Grids

The application follows the grid system using 12 columns, this was done to ensure the alignment of

the components where correct and that the wireframe would have consistent spacing, the margins

and padding were added to avoid clutter and improve usability.

3.4 Conclusion

The design phase goes over the structure for the front and backend while also going into the designs

of the elements for both. It goes over key elements such as the movie recommendations, admin

capabilities. The designs for the front-end are developed showing a wireframe, style guide, and the

structure the folder would have. It ensures that the designs are user-friendly with no over

complication. This is the foundation of the application.

40

4 Implementation

4.1 Introduction

The application is a movie recommendation application; the system will give the users a

recommendation suggestion based on what the model predicts the user rating will be. Users can

register, log in, rate movies, add them to their watchlists, reviews the movies, and give the users

recommendations. The recommendation is done through the basic ranking model from TensorFlow.

The application consists of the following technologies.

• Flask

• React.js

• TensorFlow

• SQLite

Flask is used for the backend development. Flask allows for easy integration of TensorFlow models

and will act as the API for the application handling requests and using queries to interact with the

model extracting data from it to display in the front end for the user. The relationships between the

tables are defined in the backend along with the logic of those attributes such as how movies are

only able to be deleted by an admin user, if a movie is deleted it is deleted from any watchlist that

movie appears in, and more.

React.js was used for the front-end of the application, this side is where the user will be able to

interact with the components such as rating movies, reviewing movies, adding movies to their

watchlist, and more. Through the API calls the data will come in through the backend and will display

on the specific pages they are needed in. The application will allow users to use CRUD functionalities

depending on the data and whether that user has admin privileges to access certain abilities not

obtainable by normal users.

TensorFlow was used to get the pretrained model, basic ranking model predicts a user's ranking of a

movie based on their interacts with the application and gives the user a recommendation based on

those interacts and movie details.

SQLite is the database used in this application to store all the data for the application.

Here we outline the technologies that were used to develop this application, in the backend using

Flask and in the front-end using React with a machine learning model that is queried to get the

results for the users. This data is then stored in the SQLite database so it can then be displayed for

the users when they are interacting with the application.

4.2 Scrum Methodology

41

In this project's development, the implementation phase involved seven sprints that lasted two

weeks for each, the requirements for the project were gotten and documented in the projects

backlog, this is a list of tasks that needed to be completed before moving on to the next sprint, these

tasks were broken down to the simplest form to make the process of completing the tasks easier

and organized which formed into the full sprint.

Managing the sprints involved meeting with the assigned mentor to discuss what tasks would need

to be completed for the two-week window during development. This was done to keep the project

organized and kept my mentor in the loop of what was being completed on the two-week basis.

Miro was used to keep track of the sprints and to display the work that was completed to achieve

the end results of the application.

At the end of each sprint tests were done to ensure that the projects requirements were met and

worked as expected. For each sprint, the task was written for those two weeks and then the next so

that when the time came to move on to the next sprints the tasks would already be known.

Through the sprint method it allowed for the application to be improved such as when challenges

appeared when creating the application, such as the problem concerning the basic ranking model,

improper relationship correlation in the models, version of Numpy used in the application, Cors

errors, and more that have been documented. Adjustments to the project were made and tasks that

were previously needed to be completed had to be changed to fit the new way the system would

work for the users.

4.3 Development environment

Visual Studio Code

For both the front and backend of the application in this project, visual studio code was used to as

the primary development environment. This was used for its easy GitHub integration, and it was the

development environment that was most familiar. Visual studio code comes with benefits such as

auto-completion for code, integrated terminal, and it manages extensions for Python, React, and

Prettier making the process of coding the applications easier and improving the quality of the code

and its format.

GitHub

GitHub was used for the version control and to store and manage the code for the application. Both

the front and backend were initialized with GitHub to track the changes in the code; the code was

then committed with messages describing what was changed and what was added with each

commit.

GitHub was useful for keeping versions of the code that could be reverted to at any time, this was

great when trying to implement more strenuous components when issue arose, and the problem

was too difficult to solve at that time the project was reverted to a previous state so that other work

could be completed, it was mostly utilized for the backend with logic routes not working as

42

intending. This helped the process of building up the application slowly with correct relationships

and routes.

4.4 Sprint 1

4.4.1 Goal

For sprint 1 we needed to gather the items to then get the requirements that were going to be

needed for this application. This began with a questionnaire to see how interested people would be

in the application so we could gauge the type of user who would use an app like this and then the

feedback was gathered to see the final opinions of the users.

With the feedback that was gathered by the questionnaire, interviews were conducted by a random

assortment of people from many age ranges. The individuals were asked what pains they had to

endure when using similar applications, they were also asked what type of implementation they

would want to see in the application. The questionnaire and interviews helped to gather

requirements that the application would need to have.

Similar web applications were then examined to see what functionality they used and what options

the users had while interacting with the web applications. From this more requirements for the

project were gathered.

The personas were then created to simulate a typical user. This was done to show the individuals

that were likely to use the recommender application, the personas go into the users' personal goals,

interests, behaviours, pains and gains, and their experiences using other applications. This help

narrow down an age range for the app and allows others to visually see what kind of users the app is

developed for.

A use case diagram was then constructed to show the system and how it depicts how a user would

use the application and goes through the sections and what users can do these tasks. In the diagram

made for this project it goes over how the user and admin can navigate through the application from

when they login or register. It shows how each user can interact with different elements in the app

and how to get to those areas.

After finishing the use case diagram, the functional requirements were completed which outlined

the feature of the project and the tasks the user must complete to achieve their goals while using

the app.

To get the non-functional requirements a prototype was made along with doing competitor analysis

on similar applications such as Netflix, Prime, and MovieLens. These applications were examined to

identify the how they handled load times, performance, and what components they had that users

could interact with. Through the finding we can see that Prime performed the worst of the three

websites, MovieLens is not the same application, but it has feature that can advance the

functionality of the project, and Netflix performed the best. Through this the non-functional

requirements were gathered to ensure the application runs smoothly.

The prototype for the application was made to visually show a representation of the users

experience when using the app, it is a low fidelity wireframe with mapped out the layout of

important pages that would be needed for the application, this would include the home page, movie

43

all and movie single pages, login and register, and more. Making this prototype, users could give

feedback allowing for refinement in the design moving forward.

4.4.2 Item 1

• Questionnaire

Fig (4.0) Questionnaire

o The questionnaire involved creating a list of questions that a potential user would

complete, from this we could see the users' opinions on the initial idea for the project.

The users could express their interests and from this review the feedback to conclude

that people were interested in the application.

o This survey helped compile the necessary requirements that would be needed in the

application.

4.4.3 Item 2

• Interview

Fig (4.1) Interview

44

o Conducting the interviews allowed for a face-to-face conversation with many people

from diverse backgrounds and at various stages of their life. In the interview the

questions that were asked outlined any pains they felt while using streaming services.

From this we were able to make more requirements the application needed for the

application.

o The interviews were conducted one-on-one, and their answers were recorded to then

be analysed, from the interviews gathered the feedback and compared them to the

feedback from the questionnaire to determine what people thought about the project

overall.

4.4.4 Item 3

• Existing applications & Competitor analysis

45

Fig (4.2) Existing applications & Competitor analysis

o The existing applications were gathered to be compared and from this a list of

requirements produced itself from the analysis of these three websites, this involved

looking at the components they had implemented, the performance of the application,

and what they have not done in their apps. From the analysis the consensus was that

Netflix was the superior streaming service compared to Prime, and reviewing MovieLens

as a movie review website gave inspiration for the project and multiple components

would stem from the examination of that app.

4.4.5 Item 4

• Persona

Fig (4.3) Personas

46

o A persona was created that would act as a normal user for the application, this was done

to determine the age range of the users and their habits to see what the target audience

would be. Using the interview and the questionnaire we could see what people were

interested in the application and who were not. From that feedback the two personas

were made which represent a typical user showing their pains, gains, and personality

characteristics and what reason they would have for using the app.

4.4.6 Item 4

• Use Case Diagram

Fig (4.4) Use Case Diagram

o The use case diagram represents the user’s interactions with the system of the
application that will be implemented later through the projects duration. It shows

how the application will work in relation to the navigation and how the website will

be accessed.

4.4.7 Item 5

• Functional Requirements

Fig (4.5) Functional Requirements

47

o The functional requirements outline what requirements would be needed for the

users to achieve their goals when using the application. From conducting the

interview, questionnaires, and showing the use case to potential users, the list of

functional requirements was made. From this the prototype for the application

could be made.

4.4.8 Item 6

• Non-Functional Requirements

Fig (4.6) Non-Functional Requirements

o Gathering the non-functional requirements the feedback from the users was

examined to determine what expectations they have on what functions are needed

for the overall application to be successful in terms of the performance security, and

how usable the app would be.

48

o These requirements helped set a goal to achieve when developing the app making

sure of the usability and how components render times might affect the users over

experience when it comes to the performance, speed, and fidelity of the app.

4.4.9 Item 7

• Prototype

Fig (4.7) Prototype

o A prototype was made to display how the application would look and function at its

simplest form. This was done on Figma where the wireframe showed the login and

register pages, the home page, the navigation, and other sections that were necessary

for the application to have. The prototype was made and shown to potential users to get

their feedback and thoughts on the design to see if any improvements needed to be

made or feature that needed to be added.

4.5 Sprint 2

4.5.1 Goal

In sprint 2 the development on the design portion of the application was underway with designing

the front end and the backend implementations that would be crucial for the application.

49

This sprint was split into four tasks to complete to achieve the vision for the application, these tasks

included creating the ERD for the database schema, making the tables and columns, and identifying

the relationships between these tables.

With the database the design was first drawn up to see what table would be needed initially starting

with movie, user, and watchlist. Later more tables were implemented such as rating, reviews, and

actors for more functionality. These tables all represent the data for the system to use to display in

the front end to then be interacting with by the user as the change remove and add data to the

database.

A wireframe was constructed to show a visual representation of what the application might look like

outlining the pages and components on each of the pages. This involved adding features suggested

by the users in the interview and questionnaire and implementing the components for the users to

achieve their goals.

A user flow diagram was then constructed to show how the user would navigate throw the various

pages and what abilities would they have on each of those pages for the user to complete their tasks

whilst using the application.

And finally, a style guide was created to show the colour scheme that was used in the application,

the font style used. And why these colours and fonts were chosen.

4.5.2 Item 1

• Database

Fig (4.8) Erd Schema

o The database designs the tables were defined with their accompanying attributes, the

tables were designed with the requirements of the application in mind meaning some

tables were crucial to the project's success such as having a watchlist for users to store

movies they would want to watch in the future, the movies in which the users could

50

have those movies to view, rate, and add to their watchlist. These implementations

were necessary to create the Erd for the database, from this defining the relationships

between the tables were complete and the scheme was created.

4.5.3 Item 2

• Wireframe

Fig (4.9) Wireframe

o The wireframe was created on Figma and structured it to look like a few websites that

were previously examined in a competitor analysis to make the designs for the

application. Elements of Netflix were used for the base pages such as the movie all page

and the movie single page. Some of the inspiration for the components shown in the

wireframe came from the MovieLens website which involved letting users' rate, review,

and add movies to their watchlist where the user can choose to make their watchlist

public or private. Other websites were looked at for their similarity to Netflix and movie

Lens such as Disney plus and Prime for the pages on movies, and MyAnimeList for its

similar functionality to MovieLens. From all these websites the basis for the wireframe

was formed.

4.5.4 Item 3

• User Flow Diagram

Fig (4.10) User Flow Diagram

51

o The user flow diagram was made to illustrate the steps that are involved for the user to

navigate through the application and to identify the ley actions the users can take in the

app. The goal was to show the structure of the app and its navigation.

4.5.5 Item 4

• Style Guide

Fig (4.11) Style Guide

o The style guide was made to show the colour scheme and font used for the application

that was used in the wireframe.

52

4.6 Sprint 3

In sprint 3 the tasks that were needed to complete this goal was to finally integrate the basic ranking

model into the Flask backend, this involved setting up the Flask application and downloading the

TensorFlow packages such as downloading the TensorFlow libraries and dataset libraries. From this it

downloads NumPy for the data from the model to be processed.

Flask was set up as the backend framework because of its ease of use regarding integrating models.

It was also chosen for its flexibility and simplicity when creating the logic for the routes that would

be used to query the model and load it and define and give logic to the other routes used in the

application. Initializing the backend involved setting up app.py to and then setting up the integration

of GitHub, SQLite, and downloading the necessary libraries such as SQLAlchemy for the database for

migrations and libraries.

Integrating the model from tensorflow involved using Google Colab to train and test the model and

once it was functional it was then exported into a zip file with all necessary components and then it

was transferred into the ml_model folder in the Flask backend. Alongside the model's zip file, the

folder contained the unzipped version of the model as well housing its variables and asset which was

needed to load and run the model more efficiently. This structure allowed the model to be properly

accessed and used when processing.

The next step after getting the model into the application was then to load the model to extract the

data from it to be used in the front end to display recommended movies to users.

Once the model was in place the create of the models was underway, this included defining the

models for the movies, users, watchlists, and ratings in the backend. The models store essential data

for the user interactions and share attributes with the model for integration without any concerns

for incompatibility. With the models in place the next step was to create the endpoints for the APIs

to implements CRUD functionality and to define how that would work in the application.

The routes were then made to make the endpoints for the APIs, the routes in Flask act as the

controllers as well so defining the logic of the endpoints also resides in these files and will serve the

data to the database.

The next task was to create the seeders to serve data to the database. This populates the database

with initial data, the data populated for the movies and users contain the data the model also uses

for its predictions, making it use the same data for each.

4.6.1 Item 1

• Initializing Flask Application

Fig (4.12) App.py in Flask

53

o Flask was chosen as the backend, app.py was setup alongside downloading libraries like

SQLAlchemy for database management and migrations. GitHub and SQLite were also

initialized.

4.6.2 Item 2

• Integrating the basic ranking model into Flask backend

Fig (4.13) imports

o Importing os, this allows interaction with the operating system, which also includes

setting the environment variables. The os.environ sets the TF_USE_LEGACY_KERAS

environment variable to 1.

The reason for this is to tell TensorFlow to use an older version of Keras API and then

setting the environment variables makes it compatible with the older TensorFlow Keras

models.

o Initially this code was not in the pretrained model and cause it to fail when run because

the Keras version was more updated so to get the model to run the version had to be

put to an older one.

54

Fig (4.14) imports

o These two commands were installed and upgraded the essential libraries for building the

recommendation system using the TensorFlow libraries.

o The tensorflow-recommenders helps to build the ranking model, and the tensorflow-

datasets provide datasets, which make it easier to load the data for the training of the

model.

Fig (4.15) imports

o Pprint provides a better more readable way to print the structured data, which is useful

for debugging the model.

o Tempfile create a file directory that is used to store the results of the model.

o The google.colab.files import give utilities for uploading and downloading files in Google

Colab which is use when exporting the model.

o Numpy uses for numerical computing, it is useful for handling array data.

o TensorFlow was downloaded as it is the core library for using machine learning and

doing tasks involving machine learning.

o This sets up the environment with the ranking model.

Fig (4.16) imports

}

o This code is loading the MovieLens 100K dataset using the TensorFlow dataset. This

selects only the training split as well as mapping the dataset to extract the key features

being the movie_title, user_id, and user_rating to prepare the data for training the

ranking model.

Fig (4.17) imports

55

o This code is setting a random seed, so it is suitable for reproducibility, it shuffles the

dataset and splits it into testing and training sets.

o The tf.random.set_seed sets the random seed, initially it is 42 to make sure that it is

consistent for different runs.

o shuffled = ratings.shuffle(100_000, seed=42 shuffles the dataset with a buffer size of one

hundred thousand using the same 42 seed.

o The reshuffle_each_iteration=False) makes sure it is only shuffled once to keep

consistency across epochs.

o Train = shuffled.take(80_000) takes the first eighty thousand samples from the dataset

to be trained in the training set.

o Test = shuffled.skip(80_000).take(20_000) skips the first eighty thousand and takes the

next twenty thousand into the testing set.

Fig (4.18) imports

o

o This code is processing the MovieLens dataset to extract and identify the unique

movie_titles and user_ids.

o movie_titles = ratings.batch(1_000_000).map(lambda x: x["movie_title"]) batches the

dataset with one million elements at one time to process the movie titles in the dataset,

it uses map() to extract the data from each element in the dataset.

o user_ids = ratings.batch(1_000_000).map(lambda x: x["user_id"]) does the same,

extracting the user ids from the dataset one million elements at one time.

o unique_movie_titles = np.unique(np.concatenate(list(movie_titles))) puts all the movie

titles into an array

o unique_user_ids = np.unique(np.concatenate(list(user_ids))) puts all the user ids into an

array.

56

Fig (4.19) imports

o This code defines the RankingModel, is defines it as a neural network-based ranking

model that will predict the movie ratings using the TensorFlow Keras API. The code

initializes the user and movie embedding with the StringLookUp layer and the

embedding layer.

o A neural network with dense layers is used then to process the embedding and then

predicts the rating. The call method retrieves the movie and user embedding, it passes

through the network to then generate the ratings.

Fig (4.20) imports

o This code is testing the RankingModel by predicting a rating for the user and the movie.

Fig (4.21) imports

o This is defining a task for training the model using the TensorFlow recommenders.

o The loss = tf.keras.losses.MeanSquaredError() uses Mean Squared Error loss function, it

measures how far the predictions are from the rating.

o metrics=[tf.keras.metrics.RootMeanSquaredError()] is tracking the Root Mean Square

Error to assess the model's performance.

Fig (4.22) imports

57

o This is how the model defines the MovieLensModel, it initializes the RankingModel and

the task previously stated, it calculates the loss and tracks it as a metric. the call method

the user and movie title feature and passes them through the RankingModel to generate

the predictions. The compute_loss method extracts the user rating label then makes the

prediction then computes the loss using the task.

Fig (4.23) imports

o This is initializing and compiling the MovieLens model for training.

o model = MovielensModel() is creating an instance of the MovieLensModel and

configures it for training.

o model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.1)) uses the

Adagrad Optimizer with a learning rate of 0.1 which is done to improve the convergence

and adapts the learning rate for each parameter.

Fig (4.24) imports

o This is preparing the training and testing datasets for processing, the training data is

then shuffled with a buffer of one hundred thousand and then batched into groups of

eight thousand one hundred and ninety-two. It then cached to speed by training keeping

redundant data out. The test data is batched into a group of four thousand and ninety-

six and then it is cached to optimize the evaluation performance.

Fig (4.25) training the model with three epochs

o This code is training the model on the cached training dataset for three epoch.

Fig (4.26) Evaluating the model

58

o This code evaluates the performance of the trained machine learning model on the test

dataset and then it returns the evaluation.

Fig (4.27) Predicting the rating of one user

o This uses the trained model to predict the movie ratings for one user and does this

across a set of movies, it then displays the movie and the predicting rating and ranks

them from highest to lowest.

o Test_ratings is an empty directory stores the predicted ratings for each of the movies.

o Test movie titles is a list of movie titles where the ratings will be predicted.

o The code then iterates through each of the movie titles in the test movie titles list, it

then goes through each movie calling the model with a directory containing the users id,

from this the model performs the prediction and returns the rating. It is then stored in

the test_rating array.

Fig (4.28) Saving the model

o

o This saves the model which can later be loaded and used.

Fig (4.29) Loading the model

o This code is loading the previous saved model and then uses it to make a prediction for a

single specific movie and user; it then is converting the results to a numerical form.

Fig (4.30) Converting the model to TFLite

o This is converting the saved model into a smaller TFLite model, it then saves it to a file

name. This file can then be deployed.

Fig (4.31) How to execute the TFlite model in python

59

o This code is loading a converted TFLite model, it prepares the model for inference, then

sets the inputs tensors with the user and movie data. It then runs the inference and

prints the predicted ratings. This is a demonstration on how to execute the TFLite model

in python.

Fig (4.32) Compressing content into a zip

o This is the ranking_model that was previously saved and compressing its contents into a

zip file where it was then downloaded and put into the ml_models folder.

o Difficulties arose when trying to export the model into a zip file, the difficulty stemmed

from not having the correct code or miss typing the name on the model, all issue were

solved, and the model was able to be put into the Flask backend.

5.6.2 item 3

• Quering the Model

o The Flask API endpoints load the ranking model, it then retrieves the movie data from

the database, predicts the ranking for a specific user, and then returns the top five

recommended movies as a JSON response.

Fig (4.33) Imports

60

o Importing the necessary libraries such as the Flask components, TensorFlow, NumPy,

and the database models. It then creates a Flask Blueprint named ranking_bp which will

be called in the app.py where the route can be loaded.

Fig (4.34) Loading the model

o It then loads the TensorFlow model printing a success message when loaded properly

and an error message if not. It initializes the movie_titles as an empty list.

Fig (4.35) Load Movie function

o The load movie titles function fetches all the movie titles from the database using the

Movie.query.all function, it then stores the move_titles in a list and sets the

num_movies to be the number of movie titles fetched.

61

Fig (4.36) Get Top Ranked Movies function

o The get_top_ranked_movies function handles the GET request to the ranking route

Blueprint. It then calls the load_movie_titles function to make sure the movie titles are

loaded; it then retrieves the users' ids from the request from the JSON body and

performs an input validation to ensure the user id comes in as a number. Error messages

occur if ranking model or the movie titles are not loading properly.

Fig (4.37) Extracting data

o It creates TensorFlow tensors for the user ids and the movie titles which replicates the

user's id and checks them against all the movies. The ranking model is then called with

the input data to get the predictions; it then extracts all the ratings from the prediction

and combines the ratings with the movie object that was retrieved from the database.

62

Fig (4.38) Top 5 ranking

o It then sorts the movie and rating pairs in descending order to then list the top five

highest rated movies; it then makes a JSON response with the top five movies. This can

then be shown to existing users to show them their recommended movies.

o It returns a 200 response if all successful which includes error handling if problems

occurred.

o The difficulties getting this model to extract data and get predictions was a difficult

venture as trying to get all the querying right posed a challenge when having to convert

values from integers to strings and vice vera when the model is trying to read the data in

a certain way. Other major problems occurred referring to the second model that also

resides in the ml_model folder, the two models were successfully extracting, those being

the basic ranking model, and the basic retrieval model. Both models together form to

make the full recommendation model retrieve both ranked data predictions and basic

correlated recommendations based on the user's profile and other interactions. The

problem with the basic retrieval model was that the version of numpy used in the

application was not compatible with the model. Efforts were made to lower the version

of numpy with little success, even when switched to the specific version of numpy it

needed.

o The second problem with the models, specifically the ranking model was that when it is

trained it only uses the dataset that is in the model and not my data from the database.

The model cannot take in new data and make a prediction based on that it already has

all the predictions previously made and cannot add more to it. So, the problem is the

recommendations can display and is linked to the users in the actual SQLite database,

but it is not accurate predictions for their account choices, preferences, or interactions.

5.6.3 item 4

• Models

Fig (4.39) Movie Model

63

o This is the movie model; it represents the movies in the database.

o The id is a unique identifier for all the movies, it is the primary key and is set as a

string so that the model can read the movie ids and so that they can be put into an

array for watchlists

o Movie title field for all the movie titles, it is set as a string.

o The movie genres are also set as a string and stores the genres.

o The description stores the description data for the movies. Set as a string.

o Movie has a one-to-many relationship with ratings

Fig (4.40) User model

o This is the user model; it represents the users in the database.

o The id is auto incremented and is the primary key, it is set as an integer.

o The username stores the username data in the database. Set as a string.

o The email is set as unique so other users can use the same emails. Set as a string and

is used to login and register accounts.

o The password stores the password data in the database; it is hashed for security and

set as a string.

o The user gender allocates whether the user is a man or women. It is set as an integer

and would have been a contributing factor in the model's predictions if it worked as

intended.

64

o The user_occupation_label was also a factor for the retrieval model; this is set as an

integer.

o The raw_user_age was a factor for the retrieval model; it is set as an integer and

represents the ages of the users.

o User_rating would have been used with the ranking model to predict rankings on

the movies; we can simulate how it was supposed to work. This field is set as a float.

o And finally, role is used to set the user as either an admin or a user, admin have

certain privileges they can perform that the normal user cannot.

o Is admin and is user are helper methods in the user model which returns the user

true of they are either an admin or user.

o User has a one-to-many relationship with watchlists

o User has a one-to-many relationship with ratings

5.6.4 item 5

• Routes

Fig (4.41) Auth Route

o The admin required function was made to ensure that only admins have access

to certain routes in the application it wraps around a function and first requires

a JWT token authentication. When the user logs in the id are then extracted

from the JWT and if the id corresponds to with the id in the database and if that

user is an admin the route will work, if not an error response will appear for the

user.

65

Fig (4.42) Register

o The register route handles the registration for a user, the request body check to

see if the data is JSON and if the required field have been filled in correctly and

are valid. If the fields are not valid the system responds with an error message.

The email is unique and give an error if the user tries to have the same email as

another user, the password is hashed and must be at least eight characters long

if the POST request was successful the user will be given a token set in the

cookie response and the user will be registered in the database, if this operation

fails an error message will occur.

66

Fig (4.43) Login

o The login route handles the user's authentication with a POST request, similarly

to the register route it checked the validation of the email and password fields,

this looks up the user in the database and if they are there it signs in the user. It

generates the logged in user a token for authentication.

Fig (4.44) Logout

o The user logout route gives the user the ability to sign out of their accounts

removing the token they had and returning them to the login.

67

Fig (4.45) Current User

o The current user route fetches the information about the currently

authenticated user. It extracts the user's id from the JWT and gets the

corresponding user from the database. It displays the user's details outlined in

the model. If no users were found it responses with an error message stating no

users were found.

Movie Route

 Fig (4.46) Admin required

o The function from auth admin_required is loaded into this file to be used on

specific routes those being the create, edit, and delete routes to ensure that

only admin can use these functions and not normal users.

Fig (4.47) CREATE Movie

68

o The create movie route allows the admin users to use this function, the request

must contain JSON data with the details for the movies such as the id, movie

title and description. If the movie provides id matches another movies id the

operation will fail and return an error message, when successful the newly

created movie will be added to the database and will send a success message.

69

Fig (4.48) GET Movie

o The GET route gets all the movies from the database, the response includes the

movies attributes and the number of ratings the specific movie has received. It

allows the users to see all the movies in the database.

Fig (4.49) GET movie by id

o The GET by id for the movies allows the users to view the data on one specific

movie by its id, it returns the details and if it does not exist an error message will

occur.

70

Fig (4.50) PUT Movie

o The movie update function allows the admin to edit the movie attribute details

in the fields, only the movie title and movie genre can be changed as the id of

the movie stays fixed. If the operation is successful, the system will respond with

a 200 ok and if it fails an error message will occur.

Fig (4.51) DELETE movie

o The delete method for the movies removes the movie entry from the database

entirely. The movie id is provided in the URL, and if that movie exists it will be

deleted alongside the ratings the movie had, and the entries will be deleted

from all watchlists if it exists in it. If the operation was successful a 200 message

will appear, if it does not work an error message appears.

Fig (4.52) Movie Stats

71

o The movie stats route provides the movies with the number of ratings it has

from users.

o The other routes those being the ratings and watchlists having similar structures

to the movie and auth routes.

5.6.5 item 5

o Seeders

Fig (4.53) Loading the data from a TensorFlow library

o The tensorflow movielens 100k movies to seed the movie data with the same data

the model uses. Faker is used to generate certain attributes such as the movie's

description.

Fig (4.54) Genre map

o We then map the genres by creating a dictionary of genres man mapping the ids to

readable genre names such as action.

72

Fig (4.55) App context and movie extraction

o The seed_movies function establishes the app context and loads the dataset. It then

deletes any existing movies to prevent duplication in the database, it then processes

the movies by extracting the movies id, movie_title, and the genre ids converting

them into a string. It then generates fake data for the descriptions of the movies and

checked they do not already exist before adding the movies.

Fig (4.56) Batching data

73

o The seeder then commits the movies in batches of one hundred to improve the

performance of the seeding process.

Fig (4.57) Seeding

o It then saves the movies and prints out the total movies that have been seeded.

Fig (4.58) User Seeder

o The seed user function seeds and admin user if not created already, this user

has a fixed email and password. This user will have privileges the other user

does not. It then generates normal users of a maximum of 10 are seeded

with unique emails and username, if the user already exists it skips that user

in the database. The passwords are hashed with Bcrypt and the users are

also given their attributes such as their gender, age, and occupation. The

users are then added to the database.

74

Fig (4.59) Ratings seeding

75

o Each movie is then assigned a random rating from a user who has not rated

it yet, these ratings are set to be between one and five and are stored in the

ratings tables in the database. It is then set in batch of one thousand.

Fig (4.60) Watchlist seeding

o The seeding of the watchlists is then underway seeding each user with a

watchlist with a random selection of three movies to populate the watchlist.

Fig (4.61) Seeding users

o It is them all committed to the database and respond with the successful

seeding of users, watchlists, and rating.

Fig (4.62) Dropping tables and Creating tables

76

o The seed_all function resets the database by dropping all the tables to

give the database a fresh start. It then remakes all the tables.

Fig (4.63) Running the movie and user seeder

o Seeding the data runs the movie_seeder and the user_seeder, each

function populates the table corresponding to the data in the database.

o For error handling if any process of the seeding fails an error message

will appear informing the user.

Fig (4.64) Seeding database

77

o It then runs the scripts performing seed_all to call the other seeding

functions to being the seeding process.

4.6.3 Item 6

• App.py

o Setting up this file by importing Flask, being the main framework. CORS to allow the

front end to communicate with the backend without error with the requests.

o The JWT are imported to manage the authentication and authorization of users.

o The extension file is important contains database operations along with importing the

config file for configurations.

o The blueprints from the routes are imported to handle the various routes.

o The apps configuration involves setting the app secret and JWT secret for setting the

apps general key and the setting up the key for the JWT for the tokens.

Fig (4.65)

o The tokens are sent in cookies and headers, and the token expires in one hour.

o The CORS configuration allows the requests from the front-end being localhost:3000 and

enables cookies for the authentication of the users.

Fig (4.66) Database and migration

78

o The app then connects to the database and enables the migrations.

Fig (4.67) Blueprints

o The routes are then registered in this file registering the movie, watchlist, auth, and

rating routes.

 Fig (4.68) Server

o The server can then be served on port 5000.

4.6.4 Item 7

• Extensions.py

Fig (4.69) Extensions

79

o In this file extensions.py, FLask-SQLAlechemy is initialized which handles the

database operations and the migrations, this handles the schema for the

migrations. SQLAlchemy allows for the defining of models, querying the

database, and performing the CRUD functionalities on the application.

o Separating the files from app.py to extensions prevents importing issues and

makes managing the database organised.

4.6.5 Item 8

• Config.py

Fig (4.70) Config

o The config file defines the configuration settings for the application. It is setting

SQLAlchemy_DATABASE_URL to use the SQLite database which specifies the storing

location of the database. SQLAlchemy_TRACK_MODIFICATIONS is set as false to disable

the tracking modification of objects which is done to improve performance.

4.7 Sprint 4

In sprint 4 some redesigns were made in the projects wireframe and style guide to update the look

of the application. This including adding the pages for the actors, public watchlists, and

implementing the review component in the movie single page so users could see how the reviews

would look in the page. The style guide shows the colour scheme change to darker colours. This gave

the cards more contrast and made the components look better on the application.

80

The database Erd was also updated to match the new tables that were adding to give more

functionality to the web app. The introduction of the actor and review tables were made; the actor

table established a many-to-many relationship with the movie table. The review table has a many-

to-one relationship with both the movie table and the user table.

From the additions to the Erd the actor and review model were made. A linking table named actor

movie was also made to define the many-to-many relationship with movies. Both models are used to

store the users reviews and the actors that would be seen in the movie details in the single page.

The routes were then made for the actors and reviews so that CRUD functionality so that the data

could be interacted with by the user and admin. The review routes also allowed for CRUD

functionality. In the movie route the delete was altered to delete the actor from the movie if the

movie was deleted itself, the same was done with the reviews except when the movie is deleted the

reviews for that movie are also removed from the database unlike the actors which stay unless

deleted using a different method only the admins can do. The last route that was altered was the

watchlist route to add in the public watchlist functions.

Lastly the seeders were updated, the movie seeder was altered to seed the movies with random

actors. The user seeder seeds the latest reviews to each of the movies while also make public

watchlists for each of the users that were seeded into the database initially. Before the movie and

user seeders have been seeded, a new seeder was made to seed the database first so then the

movies could seed and use the actors to populate the actor ids in the movies.

4.7.1 Item 1

• Database Erd design update

Fig (4.71) Updated Erd

81

o The database Erd was updated to include the new tables, actors and reviews which displays

a visual representation of the new relationships and tables in the application. The actor has

a many-to-many relationship with the movies table allowing for multiple actors to be

associated with a single movie, and multiple movies to be associated with a single actor. The

reviews have a one-to-many relationship with the movie and user table, which allows for the

user to make multiple reviews on multiple different movies while keeping a link to the user.

4.7.2 Item 2

• Wireframe design update

Fig (4.72) Updated Wireframe

o The wireframe was redesigned to include new pages for the actors and public watchlists,

the actor pages including all, edit, and create are all lock only being accessible to the

admin user. The actor single page can be views by all users viewing the actor's details.

The review component was also implemented to show how the review component

would be seen in the application.

4.7.3 Item 3

• Style Guide Update

Fig (4.73) Updated style guide

o The style guide was updated to include a darker colour scheme to enhance the design of

the application. The darker colour scheme adding contrast to the cards and other

components making the application visually pleasing.

82

4.7.4 Item 4

• Addition to models

Fig (4.74) Actor, Review, Actor_movies models

o the linking table for the actors is the movie_actors which links actors and movies for the

definition of the many-to-many relationship.

o The actor model consists of the id which is used as a unique identifier for each actor and

is set as an integer.

o The name field is used to store the name of the actors and is set as a string.

o The actor's description stores more details about the user and is set as a string.

o The actors previous work is used to give depth to the actors giving them previous work

they have done. This field is set as a string.

o The actor's birthday stores their date of birth and is set as a string.

o The actor's nationality stores the country the actor is from and is set as a string.

o The relationship with movie is established as a many-to-many and accesses the linking

table, this allows the movies to access the actor data.

o The review model has a similar structure with different attributes such as content and

the movie_id.

Fig (4.75) movie_actors

o The extensions are imported to use the database object.

83

o This table create a junction; this table does not have its own model class and is used to

establish the many-to-many relationship between actors and movies.

o In the columns the movie_id is stored and makes sure the movie and actor ids are unique

o The same is done with the actors, storing the id, and making sure the id are unique.

4.7.5 Item 5

• Addition to routes

Fig (4.76) GET Actor

o The GET for the actors retrieves all the actors in the database, this route requires jwt

authentication. It returns a response of the actor's data including the movie count of the

actors. If successful a 200 message will be the response, if the operation fails an error

message will appear and the actors will not be loaded.

Fig (4.77) CREATE Actor

84

o The create for the actors lets admins create new actors for the website. The inputs are

validated ensure a name is used, the other fields are optional and have a required

character limit. When successful the system responds with a 200 message and the new

actor is created and inputted into the database. If this fails an error message will appear,

if it fails due to the user not being an admin the appropriate message is sent to the user

explaining the need to be an admin for this function.

Fig (4.78) GET ID Actor

o The GET by id for actors allows users to see a specific actor, requiring JWT

authentication. It returns the data about the actor along with the number of movies

they appear in. If the operation is successful a 200 message will appear along with the

actor and movie data. If this fails an error message will appear and the actor and movie

data will not appear.

85

Fig (4.79) PUT Actor

o The update actors allow admins to edit details about the actors, also long as the details

provided match the correct inputs, when committed the actor's details should update

and then be changed in the database. If this fails an error message will appear.

86

Fig (4.80) DELETE Actor

o The delete actors function allows the admins to delete actors from the database. The

remove actor from movie allows the admin to disassociate an actor from a movie. It

verifies that the actor exists and if they do removes them from the database. If the

operation fails an error message appears.

o The review route has a similar structure having a GET, PUT, POST, and DELETE method

minus the GET by id as it was not required for that route.

Fig (4.81) All public watchlists

o The GET for the public watchlists gets all the watchlists that are made public. The route

queries the watchlists table to get all the watchlists where the is_public field is true,

then for the public watchlists its response with the watchlists data that it corresponds

with, then the watchlists id, the users id, the associated movies, and the status of the

watchlist is displayed and the users can then view other users watchlists.

Fig () Public watchlists added to watchlist route

87

o The GET id gets a specific public watchlist using its id and makes sure the watchlist exist

and is set to public, if the watchlist does exist the data for the watchlist, user, and

movies, will display. Additional data is sent showing the movie details. If this operation

fails, no data will be displayed, and an error message will appear.

 Fig (4.82) GET movie with actors

o The GET method gets all the movies with the corresponding actors and reviews counted.

In the response for the GET request, the list of the actors associated with the movies is

gotten and their id and name are returned. For the reviews in each movie, using the

.count() gets all the reviews that are associated with the movies and displays how many

reviews the movie has.

88

Fig (4.83) GET ID movie with actor

o The GET by id for the movies, the actors are retrieved if they are associated with the

specific movie.

Fig (4.84) CREATE movie with actor

o For the movie create, the actor data is also sent with the movie data, the actors id is

used and then in the database it checks to see if that actor exists, if the actor does exist

it will be added to the newly created movie using the .append(actor) method. If this fails

an error message will appear.

Fig (4.85) PUT movie with actor data

89

o The update movie route, the actor associated with the movie is visible in the response

showing the id and name of the actors.

4.7.6 Item 6

• Addition to Seeders

Fig (4.86) Seed Actors function

o The seed_actors is the function that generates fake data that is populated in the

database. Using app context is set up while the seeding process is underway, it then

gives a message displaying that the actors are being seeded.

Fig (4.87) Cleaning database

o The database is cleared using the .delete() method which deletes all the data from the

actor table before the seeding process is done to prevent duplicates. After the deletions

are made the .commit() method runs to make sure the changes made by the deletion

are saved. If a problem occurs while deleting an error message will appear and the

function returns early.

90

Fig (4.88) Seed Actors function

o The function sets the number of actors to be set to thirty actors; it defines the batch size

of one hundred for committing the changes to the database in parts which help with

performance.

Fig (4.89) Seed Actors function

o A loop is made to go through the thirty actors and in each iteration the fake data is

made for each of the actors' attributes using the faker libraries, it fakes the data for the

actor's name, description, previous_work, birthday, and nationality. It checks if the

actors name is already used in the database and if it does not exist the process continues

and creates the actors. Adding the new actors to the session creates a new instance of

Actor with the fake generated data and adds them to the session, if the counter reaches

the one hundred batch size the changes are then committed to the database. And gives

a message saying the number of actors that are being committed to the database.

91

Fig (4.90) Seeding data

o When the loop is complete any uncommitted actor data is sent to the database. It then

shows the total number of actors that were seeded to the database.

Fig (4.91) Seed Actors function

o Thirty actors are then seeded to the database.

Fig (4.92) Loading existing actors

o The first thing was loading the existing actors from the database using the query.all()

method, this is possible because the actors are seeded before the movies. It then checks

to see there is at least four actors that have been seeded to the database, this is done

because the seeding process need for at least four actors to be seeded per movie. If

fewer actors were found an error message will appear.

Fig (4.93) Seed Actors function

92

o Using the select_actors = random.sample(all_actors, 4) it sets for each movie to be

seeded with four actors at random from the list of actors. This make it so that the

movies are seeded with a distinct set of actors each time.

Fig (4.94) Seed Actors function

o When the four actors are chosen, they are then added to the movie with the

new_movie.actor.extends(selected_group) method which links the actors to the movie

by extending the actors relationship in the Movie model.

o The movie data is then committed in batches of one hundred and the commit is then

underway.

Fig (4.95) Seed Actors function

o It then prints how many movies and actors were seeded displaying a message, if the

operation fails an error message will appear.

 Fig (4.96) User seeder reviews

o This is the user_seeder, in this file the reviews for the application are seeded. Initial it

starts with iterating through all the movie ids that were gotten from the database. A

random user id is then selected from the list of existing users for the reviews. It then

93

checks for existing reviews already in the database. It then makes sure that the user has

not written a review for the same movie which prevents duplication in the database, it

then generates random content for the reviews using the faker library.

o When the review content is generated, the new review is then added to the database

session.

Fig (4.97) Seeding the seeders

o The seed_all was then updated to include the actor seeder, it seeds the actors first so

that when the movie seeder is activated, it can use the actors that were previously

seeded to seed the actors for the movies.

4.8 Sprint 5

In sprint 5 the development of the front end was underway beginning with initializing the React

application. Tailwind and DaisyUI were then implemented for the styling of the application. The

app.js file was then modified to manage the routes and render components, app.js also house

authentication alongside the search function and the genre selection function.

Once the application was initialized the process of creating the pages began, the movie pages

including the index, single, create, and edit were made to show off all the movies in the database,

show the details of specific movies, and give the admin the ability to create, edit, and delete movies.

The movie single page allows users to add movies to their watchlist, rate movies, and review them

in. Similarly to the movie pages the watchlist pages include an index, single, edit, and create page

but also houses the public watchlist index and single pages so the watchlists are displayed as well as

the public watchlists. Any user can use the CRUD functionality for the watchlists and can make their

watchlist public at any time and revert it in needed. The next pages that were made were the actor

pages which gave the admin more functionality. The actors have an index, single, create and edit

page where the admin can create and edit users, in the index the admin can delete, create, and edit

the actors while also being able to assign the actors to any of the movies. In the movie single page,

the actors can be viewed by users and removed by admins.

The next pages that were made was the home and profile pages, in the home page the user can view

their recommended movies, the data from which is taking from the model in the backend, this

recommendation data is displayed in home alongside the ratings the user has made when exploring

94

the movie section. The users can edit and delete their own ratings in the home page. The profile

page displays the current user data of whoever has logged in. From this page the user can sign-out of

their accounts which makes them navigate back to the login page.

The components in this application involved developing the login and register pages, the navbar, and

the cards that would be used in the pages.

The API calls were separated into a different folder from the files called APIs, the APIs were stored

here to limit the amount of code in the pages file.

PageNotFound was implemented so if the users type in the wrong URL this page will appear.

4.8.1 Item 1

• App.js

Fig (4.98) Import & States

o The state management is then initialized for the App function and manages the state

variables authenticated, search, and selectGenre. The authentication state is used on all

pages and components while the search and selectGenre are used in the navbar where

they search for movies and the genre in the movie index page.

Fig (4.99) useEffect

95

o The handling of the authentication state uses a useEffect hook which runs when the

component mounts to check if the user already has authentication, it then retrieves the

token, the users id, and the role they have been assigned and if all of the values exists a

call is made to validate the token that was given, when the authentication is successful

the users state is set to true and the user id and role are updated in the local storage. If

this fails the token, user id, and role are removed from the local storage.

Fig (4.100) OnAuthenticate

o Handling the authentication updates involved using the onAuthenicated(auth, authData)

defines the function that updates the authentication state of the user when they login

and logout, when true it stores the users token, id, and role, when a user signs out it

removes the token, id, and role from local storage.

Fig (4.101) Search & Genres

96

o The search and genre functions work similarly, the search updates when the user types

into the search bar the title of a movie and it appears along with similarly named

movies, this worked similarly with the genre selector which updates the list of movies to

include the selected genre a user has chosen. The search uses the onHandleChange

function to handle the search and the genre selector uses the handleGenreSelect

function to change the state when the genre is chosen.

Fig (4.102) Routes

97

o Using react router, the router component wraps around the entire app with the routes

defining the different pages that are on the application. These routes include the

movies, watchlists, actor, home, and profile pages, navbar.

4.8.2 Item 2

o Components

Login

Fig (4.104) Imports and states

98

o The state is initialized with two states being the form which contains the data for the

email and password for the users and admin and errMessage which stores as a string,

when login fails the error message will appear informing the user of the error.

Fig (4.106) Handle Click function

o The handleClick function sends a POST request to the backend with the email and

password that was inputted, if the credentials match the ones in the database the login

will be successful and a response that contains the users id, token, and role and they will

be redirected to the home page. If not, an error message will appear.

Fig (4.107) Handle Form Function

99

o The handleForm function changes the form state to the updated version when the user

types in the email and password.

Fig (4.108)

o In the return it displays the login form with the title of login, the two fields email and

password, the button the user clicks to submit the form, an error message of the

operation fails, and finally a link to the registration page in case a new user wants to

register an account.

Navbar

100

o The Navbar component is the navigation for the application, it provides the user with

links to the various pages and other functionalities in the application, some of these

functionalities are blocked off depending on the user's role when they have logged in.

Fig (4.110) States

o The navbar component takes in many props such as authenticated which shows if the

user is logged in or not, the onAuthenticate function which updates the authentication

of the user, the search function which houses the queries on the search. The

onHandleChange to update the search, the genreSelector for the genre selection and

the function that handles the genre selection change onGenreSelect.

Fig (4.111) Not displaying Nav in login or register

o In the useEffect, it logs the path every time the location.pathname changes which was

used for debugging the navigation. if the pathname is login or register the navbar will

not display.

Fig (4.112) Profile picture and sign out component

101

o The user avatar was used from the DaisyUI library it displays a user profile picture along

with the option to sign out. The Sign Out is a different component that give the user the

ability to log out of their accounts which removes the user id, token, and role removing

the authentication. It works as a dropdown and sets the authentication from true to

false.

Fig (4.113) Links

o The links render the movie all, watchlist all, public watchlist all, profile, and for admins

only the actor link.

102

Fig (4.115) Movie card

103

o The movie card is a component that displays the data of the movies in the card, it takes

in multiple props which include the movie, containing the movie data, to which is a link

path for the navigation, and the showActions which displays the button for delete when

deleting a movie.

o This component renders an image taken from daisyUI as a placeholder for when the

pictures are taken from the backend from the static folder with the public file that

contains images. It then renders the data for the movie as the card with all the data for

the movie and ratings, if the movie has a ratings and review count, they are displayed in

the card.

o If the showAction is set to true the component shows buttons for editing and deleting

for the movie, if the isEdit is set to false, it then shows the edit and delete buttons, if set

to true it then renders the edit and delete button for the rating with save and cancel

buttons.

o Other components exist being the register, movie single card, watchlist cards, and other

functions.

4.8.3 Item 3

o APIs

o This file holds all the API calls for the movies, it uses axios to perform the operations

which include other API calls from the auth route in the backend, the watchlist, and

104

ratings and reviews, for this file well discuss only the movie calls and discuss the others

in a separate file excluding the user calls which will be discussed.

Fig (4.116) Fetch Current User

o The fetchCurrentUser call sends a GET request that gets the current user that is

authenticated.

Fig (4.117) Fetch Movie

o The fetchMovies is a GET request that gets the data of the specific movie also using the

token for authentication.

Fig (4.118) Fetch All Movies API

o The fetchAllMovie call is a GET request that gets all the movie data from the backend, it

also includes the token for authentication.

Fig (4.119) Create Movies API

105

o The createMovie call sends a POST request to the backend, it sends the request data

from the formData and the token for authentication.

Fig (4.120) Update Movie API

o The updateMovie call is a PUT request to edit the details of the movie data, it uses the

movie id and the formData and sends them to the backend. It also sends the token for

the authentication of the user.

Fig (4.121) Delete Movie API

o The delete Movie call sends a DELETE request which removes the movie from the

database entirely. It sends the request with the movie id and the token to authenticate

the call.

o The watchlist, ranking, rating, and actors also have an API file that stores the API calls so

that it can be reused in multiple pages if needed.

106

4.8.4 Item 3

o Pages

Fig (4.122) Home

o The Home function takes in two props, authenticated for the user login and

onAuthenticated. Many states are initialized including the top movies that store the

ranked recommended movies, the userRatings which is the list of movies that were

rated by the user, hasEverHadRatings to track of the user has made a rating before,

error for storing the error messages that will display if operations fail. editingRating and

newRatingValue are used if the user decided to change their rating, and ratingDelete

which tracks the ratings that have been removed. It also goes through the users id,

token, and role from local storage which initializes the useRef for the model when

removing a rating.

Fig (4.123) Navigational useEffect

o Getting the user ratings is a useEffect and runs when components are loaded or if the

user’s id, authenticated, or the token changes checking if the user is authenticated, if

they are it redirects to home and an error occurs, if the authentication is true the API call

is run and it gets the ratings, if the ratings made by the user do exist it stores them in the

hasEverHadRating and it is set to true, if the user is unauthenticated a message will

appear stating the unauthorized access.

107

o Getting the top ranked movies is also a useEffect that runs when the userRating, user id,

token, or hasEverHadRating is changed. If the user has rated a movie in the past or rated

one when they have registered it will then get the top ranked movies that are the

recommendation of the application using an API call to the ranked movies, it stores

ranked movies in topMovies. If the user does not have any ratings the ranked movies

will not appear until the user goes and rates a movie.

108

Fig (4.124) Handle Edit Rating & Handle Saved Rating

o The handleEditRating is a function that sets the id of the rating that is being updated and

stores the new value in the state. When the updated rating is submitted the function

handleSavedRating then validates the changed input and updates the rating through the

API and the state. If the operation is successful the rating will be updated, if not an error

message will appear.

Fig (4.125) Handle Delete Rating & Confirm Delete Rating

109

o The delete function handleDeleteRating is used in the ratingDelete that shows the modal

making sure that the user wants to delete their rating, if they do it then runs the

confirmDeleteRating making the DELETE API call removing the rating.

Fig (4.126) Render Ranked Movies

o It renders the ranked movies using renderRankedMovies function which loads the

movieCards with the ranked data doing this by mapping through the topMovies array.

Fig (4.127) Return Statement

o In the return it shows a welcome message to the user or admin that logs in, if the user

has not made a rating yet a message appears telling the user to explore the movie

110

section, if they do have ratings, it displays them along with the ranked movies

recommended to the user with the rated movies and the edit and delete buttons.

Fig (4.128) Modal

o The delete modal for the ratings renders showing dialog with two buttons, the delete

confirms the removal of the rating and cancel closes the modal.

Movie all

Fig (4.129) State initalization

o The All initializes the states used for this file, the movie stores the movie data, the

filtered movie state are filters used for the search and selectGenre functions, the visible

movies state stores the movies that can be displayed at one time, and the error handles

any errors involving the authentication of a user or the GET request failing.

111

Fig (4.130) useEffect for movie data

o The first useEffect gets the movie data from the server, being the Flask backend.

Fig (4.131) Search useEffect

o The second useEffect is used when the movie, search data, or the selectGenre data is

changed. When a user types in the search bar it filters through the movie list to display

the movies correlating with what the user typed, similarly the selectGenre changes what

movies are displaying based on what the user has selected. It edits the list, and the

visible count of movies is counted to thirty-two.

112

Fig (4.132) Fetch Movies

o The function fetchMovies gets the user’s token from local storage, it exists the operation
proceeds, if not an error will occur. When successful it calls the API function set in the

movie file in the apis folder, it updates the movies and filteredMovies states.

Fig (4.133) Handle Show More & Less

o The handleShowMore and handleShowLess functions are used to load movies to be

displayed. It loads an additional thirty-two movies or takes away thirty-two movies from

being displayed and updates the visibleMovies state when used, it cannot go below

thirty-two.

113

Fig (4.134) Return Statement

o In the return it renders the create button the admins can use to create movies which is

linked to the movie create page, if an error occur it will display, the filteredMovies are

the rendered which shows a count of thirty-two and it also renders the movie card with

the movie data. Below is the show more and show less buttons to either gain an

additional list of movies or take away the movies from the view.

o The movie all pages displays all the movie data, similar pages exist in the application

such as the public watchlist all page, the watchlist all page, and the actor all page. These

pages follow a similar structure but contain contrasting functions that operate similarly

to the other all pages.

Movie Single

114

 Fig (4.135) Imports, State variables, and useRef

o In the single page for the movies hooks are imported including useState, useEffect, and

useRef, the API calls from the apis folder to manage the movie, watchlist, actor, ratings, and

review data, useParams is used so that the movies id can be used from the URL, useNavigate

is also imported for navigation.

o In this file there are many state variables, the movie stores the movie data, watchlists store

watchlist data, the review stores the review data, selectWatchlistId tracks the watchlist the

user or admin has selected, this then gives the user the option to add the movie to the

watchlist. The review content state stores the review content the user has written. The

editReviewId state stores the review id that the user is editing, the actorToRemove state

stores the id of the actor being removed from the movie, the error state houses the error

messages, and the reviewDelete stores the reviews id that is being deleted.

o The useRef is hooking the deleteMovieRef, the deleteReviewRef, and the deleteActorRef,

this is used for the modal when the user and admin want to delete a review, and the delete

actor and movie is for when the admin wants to remove the movie or the actors in the

movie.

115

 Fig (4.136) useEffect

o The useEffect runs when mounted or when the user id, movie id, or token is changed. It

checks the user to see if they are authenticated if they are directing them to the home page

if not an error will appear. the fetchMovieData, fetchWatchlistData, and fetchReviewData

are then defined to get the movie data, watchlist data, and review data. Each have error

handling of the operations fails.

 Fig (4.137) Handle Adding to Watchlist

o The handleAddingToWatchlist function allows the users and admin to add the movie they

are currently viewing into one of their watchlists, the function checks if the user is

116

authenticated and if the watchlists selected exist and if it does make the API call to POST the

movie to the watchlist. If the operation was successful the movie will be added, if not or if

the movie is already in the watchlist an error will occur.

 Fig (4.138) Handle Rate

o The handleRate function allows for the current movie to be rated by the user and admin. It

checks the validation of the user before allowing for the rating to be posted. The rating if the

process was a success will be sent to the database, if not an error will appear.

 Fig (4.139) Handle Delete

o The handleDelete is the function for the modal that displays before the movie is deleted

giving, he admin an option to cancel the delete. The confirmDelete function delete the

movie and removes it from the database, it then redirects the user back to the movie All

page.

117

 Fig (4.140) Handle Review

o The handleAddReview function which give the user and admin the ability to add a review to

the movie they are currently on if the user if authenticated, it is a POST request and is the

API call from the review file in the apis folder. The next function is the handleEditReview

which allows the user and admin to edit the review they made. In it defined in the backend

that only the user that has the corresponding user id with the review can only edit that

review removing the option of a different user being able to edit another user's reviews. The

handleDeleteReview function gives the user and admin the ability to delete their reviews

which removes them from the database and the movie.

 Fig (4.141) Handle Actor

118

o The handleActorDelete is the function that lets the admin remove actors from the current

movie. Before they can remove the actor, it checks the user's role to confirm they are the

admin, then the confirmActorDelete deletes the actors instance in this movie and updates

the state when the actor is removed, this delete is a soft delete keeping the actor in the

database but removing its id from the movie.

 Fig (4.142) Return Statement

119

o In the return it renders the movie data, the rating option, the add to watchlist option in the

movie single Card that was added, and the ability to write a review, which after being posted

displays and if the review belongs to the same user the edit and delete buttons display.

Admin users can delete movies and if any errors happen an error message will display.

120

o The watchlists, public watchlists, and actors have their own single page where the id is

extracted to get the correct data for the id. These pages are all like the movie single page

apart from using different APIs and some divergent functions.

Movies create

 Fig (4.143) Movie Create Function & States

o The states are then initialized including formData that stores the input values for the movie

to be created which have the movie_title, description, movie_genres, and the id, actors is an

array that stores the actors from the API. The error state stores error messages when

operation fail, isAdmin is a Boolean and it tracks to see if the current user is set as an admin,

the loading state is used to display a loading message if the data is still loading. Navigate is

defined for the navigation and the token is gotten from local storage.

Fig (4.144) useEffect for user authentication

o The useEffect gets the data, it is checking to see if the user is authenticated and if they are

not an error occurs, and they are redirected to home. If the user does have a token, it gets

121

the user’s role to see if they are an admin and then gets all the actors from the API call in

movie and actor. if the operation fails an error occurs and isAdmin is set to false.

Fig (4.145) Handle Change

o The handleChange function handles the changes in the form inputs, when an admin is

inputting the fields for the movies it updates the value in the formData updating the state.

Fig (4.146) Handle Submit

o The handleSubmit function is run when the admin tries to submit the create form, it checks

to see if the user is an admin, if not an error will occur, if successful the movie can be made,

it calls the API call form the apis folder using the movie file which stores the POST request

for the movies, when the movie has been made the form is reset and the admin is navigated

to the movies all page. If the create fails an error will appear.

122

Fig (4.147) Return Statement

123

o In the return it checks if the user is an admin, if they are not an error message displays state

the user is unauthorized, if they are an admin, it then renders the form for the movie

creation displaying the input fields, movie_id, movie_title, description, actor_id as a

dropdown. If there are no actors, the dropdown appears empty. The submit button is

rendered and links back to the movie all page when submitted calling the handleSubmit

function to create the movie.

o The watchlist and actors also have these pages to create a new watchlist or actor. Similarly,

the ratings and review also have a POST but that works alongside the single page for the

movies, and the logic lies in that file similarly to the edit in the home page for the ratings.

Movie edit

o The edit movie page allows the admin to edit movies, the hooks, useParam and useNaviagte,

movie and actor APIs are imported for use in this page.

Fig (4.148) Imports, State Variables, and the MovieEdit function

o The MovieEdit function is then declared which takes in the authenticated as a prop, and the

state variables are defined, these state variables include the useParam extracting the

movie_id from the URL to get the specific movie that needs to be edited, the formData is

used to store the movie data that the admin wants to update, those input fields being the

movie_title, movie_genres, description, and actor_id. The actor state stores the actor data,

the error stores all the error messages, the isAdmin tracks if the current user is an admin or

not. Loading is set to true when the data is still rendering, is set to false when data comes in,

navigate is initialized for navigation and the token from the current user is gotten from local

storage.

124

Fig (4.149) useEffect for authenticated admins

o The useEffect checks if the admin is authenticated, if not an error will occur, if they are it see

if the movie id exists for the movie that needs to be updated if it does not the user is

redirected to movie all. If successful it gets the admins data and checks if they are an admin,

if they are it gets the movie data for the form and displays it, if this fails an error occurs and

loading is set to false.

125

Fig (4.150) Handle Change

o The function handleChange which updates the formData state when one of the fields have

been modified, it edits the value based on the field that was changed.

Fig (4.151) Handle Submit

o The function handleSubmit checks to see if the user is an admin if they are it updates the

movie using the function updateMovie, when the operation succeeds it updates the movie,

if it fails an error will occur.

126

Fig (4.152) Return Statement

o In the render it checks if any errors are present, if so it displays an error message, if not and

everything is loaded, it checks to see if the admin is set as an admin and if so it renders the

form with the fields movie_title, movie_genres, description, and actor_id display.

o The watchlists, reviews, and ratings all have a POST method, the watchlists itself has its own

create page while the reviews and ratings POST are performed in other files such as home

and movie single page.

127

Fig (4.153) PageNotFound

o The page not found page is for if the user types in a URL that does not exist.

o The PageNotFound takes in no props.

o It renders a message in the return telling the user this page is not found with a 404 error.

o It is then exported to be rendered in App.js.

4.9 Sprint 6

Testing the CRUD functionalities of the application involved downloading a library called Pytest,

Pytest is a framework for Python that allows for tests to be run on the different modules in the

application.

Functional and user testing were done to ensure that the CRUD functions involving GET, PUT, POST,

and DELETE worked as expected. The user testing involved setting tasks that a user would have to

complete without assistance from the developer to see how the experience went while using the

application. The user’s feedback was then collected which outlined the pains the user experienced,

this helped to find and fix issues from a user’s perspective.

During this phase improvements to the project were made such as adding images from the backend

to the movies so that they could be displayed in the front-end. The MovieSingleCard was created

and moved the watchlist, rating, edit, and delete to this file. The same process was done with the

actor all page and the new ActorCard.

4.9.1 Item 1

o Functional Testing

128

Fig (4.154) Test Config

The TestConfig class is the configuration file that allows for tests to be run, with in-memory

database it can run these tests without the resulting data going into the actual database.

Here it sets up the JWT settings for authentication.

The TestConfig over all is creating an app and opens the app context so the temporary

database can be initialized. It then creates all the tables for the data and then the app yields

so the tests can be conducted. After the tests, the tables are dropped making it so that when

future tests are run there will not be any persisting data.

Fig (4.155) User & Admin

129

This is the setup for the two users being created for the tests, the @pytest.fixture def

init_database(app) is setting up the testing database with hardcoded data before a test can

be conducted. Inside there are two users the normal user and the admin with their roles

assigned, this is important for authentication-based routes. The users are then added to the

session.

This now give the temporary database with user data that will be used in other tests. The

other setups for the movies, actors, ratings, rankings, reviews, and watchlists follow the

same structure for their set ups.

Fig (4.156)

130

The DB yield runs after the data for all the modules has been added, the yield then allows

test to be done on the temporary database and when this is completed it can then drop the

tables after this.

The @pytest.fixture def user_token(app) makes a token for the user with the id of 1. this

was done to test authentication.

@pytest.fixture def admin_token(app) is like the user_token except this authentication is for

admin users as they have different abilities on the application.

@pytest.fixture def mock_ranking_model(app) this creates a mock model. It does this using

the library from Python, MagicMock, this was done to simulate the models process of giving

the rankings.

Fig (4.157) GET all movies

131

o Testing for all movies involved two tests, test_get_movies_success

checks if the authentication and then gets the list of movies with the

testing data. The test_get_movie_unauthorized tests if the user can still

get movies with a token that is not authorized.

Fig (4.158) GET ID Movie Test

132

o The tests for getting a single movie with a specific id. The test_get_single_movies_success

gets the specific movie with an authenticated id. The test_get_single_movie_unauthorized

tests if the user can get the movie if not authenticated.

Fig (4.159) CREATE Movie Test

o This is the test for the movie create and tests if the user is an admin and this user can

successfully create a movie.

Fig (4.160) PUT Movie Test

133

o This is the test for the movie edit and tests if the user is an admin and this user can

successfully edit the movie with the specific id.

Fig (4.161) DELETE Movie Test

o This test is for the movie DELETE that checks if the user is an admin, if they are the movie is

successfully delete using the movies id to get the specific movie.

Fig (4.162) Add Actor

134

o This test is testing the to see if an actor can be added to a movie, it checks to see if the user

is an admin and the actor is then successfully added to the movie.

Fig (4.163) Remove actor

o This test is testing the removal of the actor for the movies. It checks the user to see if they

are an admin and then it successfully removes the actor from the movie.

Fig (4.164)

Tests were done on all the modules in the application including for Actors, Watchlists, Ratings,

Reviews, and Rankings. The results show all functions passing.

135

4.9.2 Item 2

o User Testing

Fig (4.165) Tasks

o The tasks were done by the users to tests the navigation and the usability of the application;

The users would have to complete all the tasks and give feedback while interacting with the

app.

o The tasks that the users had to do included the following, the tasks for users were:

o Registering an account then going to the watchlist page to make a watchlist.

o The user would then navigate to the movie page where the user will select a movie and add

it to their watchlist. They will also leave a rating and review on the movie.

o The user will then make their way back to the watchlist page where they will edit the

watchlists title and make the watchlist public. They will then navigate to the home page to

view their recommended movies. They will edit a rating they have given and then delete

that rating. The user will then log out of the account and log into the admin user.

o From the log in the admin will go and create a movie, they will then use the search to find

the movie, edit it, and then delete it.

o The admin then navigates to the actor page where the admin will edit an actor, delete an

actor, and assign one to a movie.

o The admin will then go to that movie and remove the actor.

o The user will then log out of the account.

4.9.3 Item 3

o Code Additions

136

Fig (4.166) Images in movie model

o The images involved making a new attribute in the model to hold the images for the

movies.

Fig (4.167) Image_url in movie route

137

o The image was then put into the create and edit for the movie route to create it. In the

GET the image is also defined for the movies.

Fig (4.168) Images being seeded

138

o In the movie_seeder, it defines the folder the image is stored in, that being the

static/movies folder and creates it if it does not exist. The code looks for the

bloodborne1.png image and assigns it to the movies that are being seeded and storing

them in the image_url attribute.

MoveSingleCard

Fig (4.169) Imports and states

139

o In the MovieSingleCard the function takes in many props, this includes the movie details and

functions for the adding of ratings, adding watchlists, and deleting and editing movies.

Fig (4.170) Hooks

o Using useNavigate and useLocation for navigation and to give access to the local state.

Fig (4.171) Images

o This displays the movie image and has a fallback to a default image if the movie image_url

cannot be accessed.

Fig (4.172) Return Statement

140

o In the return it defines the select for the watchlist button, the rate movies button, and if the

user is authenticated as an admin the edit and delete buttons will be visible. The functions

defined in the movie single page such as handleRate, handleDelete, and

handleAddToWatchlist are called using the imported functions.

ActorCard

Fig (4.173) Imports and states

141

o The ActorCard function has props that includes the actor data, the role of the user for

authentication, movie id so that the actors can be assigned to a movie, the function to add

an actor to a movie, and the delete function to delete an actor.

Fig (4.174) Return statement

142

o In the return the actors name is linked to the actor single page to view the description of the

actors, normal users have access to this page. The admin users will be able to add actors to

movies using the button, they also can edit and delete the actors. These are functions

imported from the actor index page those being the onAddMovie and onDelete.

4.10 Sprint 7

4.10.1 Item 1

o Pages

Fig (4.175) Requirements

143

o The requirements chapter includes the talks that were done to get the functional and

non-functional requirements for the application and to judge of this would be a feasible

idea. This chapter includes a persona to represent a user, use case diagram to show how

the app would be used, discussing the functional and non-functional requirements

gained from all the completed tasks, and more.

Fig (4.176) Design

o The design chapter goes over the designs of the application, from the structure of the

application to database designs. More specifically it shows an ERD, application

architecture diagram, wireframe, style guide, and more aspects bout the designs of the

front and backends. It discusses how the model would be exported from google coalbed

to be inserted into the Flask backed via zipped file.

Fig (4.177) Implementation

144

o The implementation chapter were completed in two-week sprints with there being

seven in total, these sprints included:

requirements, designs, implementations, designs 2, implementation 2, testing, Thesis.

o It went over the steps and the processes of creating the application from the initial

requirements gathering, designing the initial designs for the app, implementing those

designs, redesigning of necessary, further implementations, testing the application, and

finally briefing giving an overview of the chapters.

Fig (4.178) Testing

o The testing chapter was completed before this section of the implementation chapter could

be written, it goes over the functional and user testing that was conducted for the

145

application. It goes over the Unit testing for the CRUD functionality and used real users to

test the navigation and usability. Results were mostly positive with improvements suggested

by the test users.

4.11 Conclusion

The implementation chapter goes over the initial beginning of creating the project to the definitive

version. It shows the process of gathering requirements, outlining the designs, implementing the

features from the designs, overhauling the designs and adding to the implantation, and then testing.

It goes over the features that were and designs that were implemented. Unfortunately, due to the

model not working as intended the application cannot reach it has intended potential but overall,

the projects implementations went smoothly.

146

5 Testing

5.1 Introduction

This chapter outlines the process of doing the functional and user testing for the application. The

functional tests were implemented to make sure that the functions in the application all worked as

intended, those functions being the CRUD functionality with GET, CREATE, PUT, and DELETE

methods.

The user testing was done to see how the usability and user experience while using the application.

This was done by getting the users to complete tasks on the applications using the functionality that

they would interact with, once the users completed the tasks or got stuck during the process their

feedback was gathered to help identify possible issue with design, usability and to solve other issue

if they arose.

With both user and functional testing, the application was thoroughly examined to improve its

features.

5.2 Functional Testing

The functional testing was done focusing on the CRUD functionalities of the modules that are in the

application. The tests were conducted to see if the functions worked as expected. The inputs were

tested against the outputs and the results would confirm if the functions were working correctly or

not.

5.2.1 CRUD

Test

No

Description of test case Input Expected

Output

Actual Output Comment

1 Create a movie. POSTing

movie

with

validation

and data.

Movie

created

message

should

appear and

the movie

should be

added to

the

database.

Movie was

created and

added to the

database.

The movie

Create

passed

creating the

movie and

adding it to

the database.

2 Getting all the movies Using the

GET

method

to fetch

Movies

were found

displaying

the list of

All the movies

were fetched

along with the

movies

The movies

were

displayed in a

147

all the

movie

data in

the

database

with

validation.

movies in

the

database.

corresponding

data.

list passing

the test.

3 Getting a single movie. Using the

GET

method

to get

data for a

single

movie

with

validation

and data

from the

database.

The specific

movie was

found

displaying

that movies

data.

The single

movies data

was found

getting the

data for that

movie.

The single

movie route

passed and

received the

data for the

specific

movie.

4 Editing a movie. Using PUT

method

with

token and

altered

data with

admin

validation.

The specific

movie being

updated

successfully

updates the

data for the

movie and

changes the

data in the

database if

they are an

admin user.

The movie

was edited

and updated

as expected

changing the

data for the

movie and

updating the

movie in the

database.

The movie

was

successfully

updated

altering the

data for the

specific

movie. This

was done by

the admin

user as the

normal users

do not have

authorization.

5 Deleting movie. Using the

DELETE

method

to remove

a movie

from the

database

with

admin

validation.

The movie is

deleted and

removed

from the

database by

the admin.

The movie

was removed

from the

database by

the admin

user.

The movie

deleted

successfully,

removing the

data from the

database, the

operation

was done by

the admin

user as the

normal users

do not have

access.

148

6 Adding an Actor to a

movie

This is a

POST that

add an

actor to a

movie

using

actor data

and being

an admin

user for

validation.

The actor

was

successfully

added to

the movie

by the

admin user.

The actor was

successfully

added to the

movie.

Adding the

actors to

movies was

successful,

validation

was correct

as the normal

user cannot

perform

these

operations.

7 Removing an actor

from a movie.

Using the

Delete

method

the actor

is

removed

from the

movie by

an admin

user.

The actor is

removed

from the

movie but

not the

database,

this is run

by an admin

user.

The actor was

successfully

removed from

the movie.

The actor

being

removed

from the

movie

without

deleting the

actor from

the database

entirely. This

was done by

the admin

user.

Test

No

Description of test case Input Expected

Output

Actual

Output

Comment

8 Getting all actor data. Using the

GET

method

to get all

the actors

from the

database

with

validation.

The actor

data is

fetched

gathering all

the movies

in the

database.

All the

movies

were gotten

from the

database

and

displayed as

a list of

actors.

The GET

passed

giving back

all the

actors in the

database.

9 Creating an actor. Using the

POST

method

to make a

new actor

with

admin

validation.

The actor

should be

created and

added to

the

database;

the admin

user should

be allowed

to create

the actors

The actor

was created

and added

to the

database

successfully.

The POST

was

successful

adding a

new actor to

the

database

with the

correct user

validation.

149

while

normal user

will not.

10 Editing an actor. This uses

the PUT

method

to alter

existing

actor

data, this

operation

can only

be done

with

admin

validation.

The actor

data is

changed and

is then

updated in

the

database;

this

operation

being done

by an admin

user.

The actor's

data was

successfully

altered and

changed in

the

database.

The

operation

was

successful

updating the

actor in the

database.

This being

done by the

admin user.

11 Getting a single actor. Using the

GET

method

and

specifying

the id of

the actor

to find its

data.

The specific

actor should

display the

data that

corresponds

with it.

The specific

actor was

found and

the data

displayed.

The GET

method

passed

giving the

actor data

with the id

that was

specified.

Test

No

Description of test case Input Expected

Output

Actual

Output

Comment

12 Creating a watchlist. Using a POST

method and

sending data

to create the

watchlist,

validation is

also sent to

authentication

The

watchlist

should be

created

with the

data

inputted.

The

watchlist

was

successfully

created.

The

operation

was

successful

creating the

new

watchlist

and adding

the data to

the

database.

13 Getting all watchlists. Using the GET

method to get

all the data for

the watchlists

that

correspond

with the users

id.

The user

should see

all the

watchlists

that are

associated

with their

id.

The

watchlists

display and

the user

can view

their own

watchlists.

The GET

was

successful

displaying

all relevant

watchlists

to the user.

150

14 Getting a single

watchlist.

Using the GET

method and

specifying the

id to get the

correct

watchlist data.

The

watchlist

should

display the

data for the

watchlists

including

the

movie_ids,

public being

true or

false, etc.

The

watchlist

data was

returned

successfully

displaying

its data

showing

the movie

ids and

status of

the

watchlist.

The method

was a

success

displaying

the correct

data for the

watchlist.

15 Editing a watchlist. Using the PUT

method to

alter the data

for the

watchlist.

The data in

the

watchlists

should be

altered to

match the

new

updated

data.

The

watchlists

update as

expected

editing the

data

present in

the

database to

match the

altered

data.

The PUT

was

successful

in updating

the data for

the

watchlists.

16 Deleting a watchlist. Using the

DELETE

method to

remove the

watchlist from

the database.

The

watchlists

data should

be removed

entirely

from the

database.

The

watchlist

was

removed

from the

database.

The DELETE

method

worked as

expected

removing

the data for

the

watchlist.

17 Getting all the public

watchlists.

Using the GET

method to get

all the

watchlists that

have the

is_public

attribute set

to public.

It should

give a list of

watchlists

that other

users have

set to

public.

These

watchlists

are then

put into a

separate list

which then

allows all

The public

watchlists

were

displayed

as

expected.

Getting the

public

watchlists

was a

success

displaying

only those

watchlists

that are set

to public.

151

the users to

view the

public

watchlists

18 Getting a single public

watchlist.

Using the GET

method with

the specified

id and if it is

set to public

to get the

data for a

specific

watchlist.

The data for

a single

public

watchlist

should

display its

data.

The data

for the

single

public

watchlist

displayed

data for the

correct

watchlist.

The output

was a

success

displaying

the public

watchlist

data.

Test

No

Description of test case Input Expected

Output

Actual

Output

Comment

19 Creating a review. Using a

POST

method

to send

the

review

data with

validation.

The review

should be

created with

the inputted

data.

The review

was created

successfully

and added

to the

database.

The

operation

was

successful

posting the

review data

to the

database.

20 Getting a review Using the

GET

method

to get all

the

reviews in

the

database

with its

data with

validation.

All the

reviews

should be

displaying

as a list of

reviews.

All the

reviews

display and

can be

viewed by

any user.

The GET was

successful in

getting all

the data for

the reviews.

21 Editing a review Using the

PUT

method

to alter

the data

in the

review

with

validation.

The review

should be

updated

with the

new inputs

the user has

chosen.

The reviews

were

updated

and the

data

altered.

The update

for the

reviews was

successful

altering the

data for the

review and

sending it to

the

database.

152

22 Deleting a review Using the

DELETE

method

to remove

the

review

from the

database.

The review

should be

deleted

which

should

remove the

review data

from the

database.

The review

data was

removed

successfully.

The DELETE

method

worked as

expected

removing

the review

from the

database.

Test

No

Description of test case Input Expected

Output

Actual

Output

Comment

23 Creating a rating. Using the

POST method

to send the

rating data

with

validation.

The rating

will be

created and

added to

the

database.

The rating

was

created.

The rating

data was

added to

the

database

signifying

the

operation

was a

success.

24 Getting a rating. Using the GET

method to

fetch all the

ratings and

the

corresponding

data with

validation.

All the

ratings

were

displayed if

the user id

matches

the ratings.

The ratings

were

successful

gotten from

the

database.

It is

important

that the

user cannot

interact with

other user's

ratings, this

was a

problem

now it is

solved.

25 Editing a rating. Using the PUT

method to

alter the data

in the rating

with

validation.

The data

being the

content of

the rating is

changed to

a different

number

from 1-5.

The rating

was

successfully

updated to

include the

new rating

value.

The rating

was

successfully

updated and

sent to the

database.

26 Deleting a rating. Using the

Delete

method to

remove the

rating data

The rating

with the

specific id is

deleted and

removed

The rating

was

successfully

removed

from the

database.

The DELETE

method for

the rating

was

successful.

153

from the

database.

from the

database.

Test

No

Description of test case Input Expected

Output

Actual

Output

Comment

27 Creating a ranking for

the user.

Using a

POST to

make

the

ranking

with the

data.

The

rankings

are made

and posted

to the

database.

The

rankings

were

added to

the

database.

This data is being

extracted from the

basic ranking

model to be used

for the user

recommendations.

28 Getting all rankings for

the user.

Using

the GET

method

to get all

the top

5

highest

ranked

movies

for the

users.

5 movies

will display

in a list

showing

the highest

rated movie

down to

the lowest.

The

rankings

were

gotten and

display as

expected.

These

recommendations

are not accurate

for the users in

the database and

works more to

show the concept

of how the

recommendation

system was

supposed to work.

5.2.2 Discussion of Functional Testing Results

Fig (5.0) Results from Unit Tests

154

The CRUD functionality was tested, testing the movies, actors, watchlists, ratings, reviews, and

rankings in the application. The twenty-eight test that were conducted go over the core functions,

the authorization and validation of a user to be able to do the operations, and how the data

interacts with the database.

Movies

The movies core functions all operate as expected including, GET, CREATE, PUT, and DELETE. These

functions can only work if the validation requirements are met, these requirements are for the PUT

and DELETE methods only allowing admin users to use these functions.

Actors

The actors core functions were all successfully tested going over the GET, CREATE, PUT, and DELETE

methods. The admin user validation is required to do the PUT, DELETE, and CREATE methods while

the normal users can view the single actor data. Allowing admins to remove and assign actors to

movies is also a function in which only the admin user can do.

Watchlists

The watchlists operate differently from the movie and actors as the CRUD functions are open to the

normal users as they do not need admin validation for the operations those being the CREATE, PUT,

DELETE, and GET methods, the user can receive all their watchlists, can edit them, and create new

watchlists, and can delete them. The public watchlists are fetched using a GET request and display

the watchlists that have been set to public, the users can get all the watchlists from all the users if

155

set to put like using this method. The public watchlists also allow the user to view the specific

watchlists data if for the public watchlists to view other users watchlists.

Ratings

The ratings allow the users to use the CRUD functionality but only on ratings that they are assigned

to as they cannot see other ratings from other users. Through the tests it shows that the ratings use

the user's id and prevent other ids from altering the data if unauthorized. This was bugged and was

solved.

Reviews

The reviews work similarly to the ratings allowing users to use the CRUD functionality being GET,

PUT, POST, and DELETE if the review belongs to the user’s id. The user cannot alter or remove

another user review as the user is not authorized.

Rankings

The ranking, which extracts data from the basic ranking model was tested to see if the ranking data

could POST and GET the data.

The tests were a success resulting in the CRUD functionality, validation, and user logic passing the

tests. These tests were done to verify the that these functions were correct and ran properly.

5.3 User Testing

Fig (5.1) User Testing Tasks

156

User testing was done to get feedback from a real user about how their experience using the

application was. This was done to see the usability of the application from their perspective, this

included testing the navigation and interactable components without previous knowledge of the

application.

The users were given tasks to complete, these tasks include using the functionality in the front end

to either send data, receive data, or delete data.

Throughout the process of the user testing the users were able to speak and give their thoughts

while engaged in the process of completing the tasks. From this their feedback was gathered to get a

sense of how feasible the layout of the features is.

Once the testing was finished the feedback received from the user indicated that some placements

of buttons, clearer messages for when adding a rating, review, and watchlist so the users know they

were added and other issues that arose.

The tests overall were successful in that the users gave great feedback on improvements that need

to be corrected for the application to be more usability giving the users a better experience.

157

5.4 Conclusion

The testing chapter went over the functional tests and the user testing that was conducted. It went

over the CRUD functionality of the modules in the backend, and the users were giving the

application to use and navigate through to test navigation, components, and the design of the app.

The tests addressed unseen issues that when fixed, elevated the project.

158

6 Project Management

6.1 Introduction

This chapter goes over the process of management for the project; it goes over the details of the

project through several phases beginning with the initial phase to the final implementations and the

testing. It goes through the stages which include the requirement gathering for the development of

the designs and the implementation features, the design phase laid down the foundations of the

implementation, and testing. Tools such as Trello was used to track the goals that needed to be

completed for the sprints, and GitHub was used to track and manage the code for the front and back

end of the application.

6.2 Project Phases

The project consisted of five phases. The proposal was the initial step outlining the goal of the

project, the requirements phase was done to gather the requirements for the application, the design

phase was done to gain a base for the project, the implementation phase consists of the

implementations that were added to the project during development, and the testing phase went

over the tests that were done for the application.

6.2.1 Proposal

The proposal was the initial phase that outlined the goals and the purpose of the project. This phase

was about outlining the scope of the project, what technologies would be used to build the

application, and what problem does this application so solve.

6.2.2 Requirements

The requirements phase focused on the gathering of the features and functionality of the

application. The goal was to add the functionality while also keeping the project feasible so it could

be made within the timeline of the project.

6.2.3 Design

The design phase included creating the backend and front-end designs so that when production on

the application began there would be an outlined path to follow. This came with its own challenges

such as changing technologies and trying to fit the new one into the designs. In this phase the focus

was designing the backend going over the projects routes models and other necessary files. The

front end involved the same designs for the file structure along with designs for the look of the

application.

159

6.2.4 Implementation

In the implementation phase it involved transferring the designs of the application into a real

working application. Many challenges arose from this phase such as the model not working as

intended, or certain features on the application not working as intended. Overall, the implemented

designs were successful.

6.2.5 Testing

The testing was conducted on the functionalities and usability of the application. This was done

through functional tests focusing on the API endpoints for the application and user testing was done

to identify issues with navigation, function placement, and finding any bugs or areas of confusion the

user had whilst using the app.

6.3 SCRUM Methodology

Sprints

Overall, the sprints were helpful to stay organized. The sprints provided a structure to the project

making it more manageable as there were outlined steps to take for every sprint. It shows the

progress the application went through before the last version was created.

How well did the 7 sprints work?

The sprints worked well with some items being backlogged for more time that was needed. The

objectives every two weeks were defined, and this was critical for the project development. It

allowed for constant improvement and getting feedback from the supervisor.

Requirements

The first sprint goes over the requirements that would be needed to for the app, laying down its

foundation.

Design

The design phase shows the process of designing elements of the backend and front-end such as the

ERD for the database, and the wireframe for the Front-end. This gave the project structure and an

end goal to reach.

Implementation

This sprint was more difficult to complete than the previous two as setting up a new technology was

strenuous along with trying to integrate the model from TensorFlow into that backend. This cause a

backlog in the project until the model was correctly implemented. More problems arose with model

and authentication, and it took time for this sprint to be completed.

160

Design 2

In design two this sprint involved altering the designs of the code to add more features and

overhauling the designs of the previous design chapter. In this phase the newly added designs were

implemented into the backend.

Implementation 2

The second implementation chapter involved creating the front-end of the application which

included making the app.js file, pages, components, and adding in their own functions within these

pages with data from the backend.

Testing

The testing phase went over the functional and user testing to make sure the applications designs,

and functionality all worked and was usable by the user.

Report

This sprint went over the previous phases in the application.

Project Backlog

The backlog of the project was updated while doing the sprints, some tasks were prioritized more

than others for their importance in building up the application such as a backlog on the routes

because of the model having issues. This allowed for the project to stay organized.

6.4 Project Management Tools

6.4.1 Trello

Description

Trello was used to create boards and tasks for the project to follow. It broke up the tasks into

smaller tasks which made it more manageable when going to implement these tasks into the actual

project. Each task could be put into a section those being the backlog, completed, and the next set

of tasks for the following two weeks.

Fig (6.0) Trello diagram

161

How it worked in practice

The Trello boards worked well in practice, it helped to keep up with the work and stay organized,

even if some sections had backlogged worked for a long time it was easy to go back and make the

task as incomplete so it could do later. Overall, the Trello boards kept the project organized

throughout the project's creation.

6.4.2 GitHub

Fig (6.1) GitHub for Front & Backend

162

Description

GitHub was used to manage the code for the backend and the front-end. It allowed for the tracking

of the code, and helped manage the code in case problems arose.

How it is used

GitHub was initialized in the back and front-end and the code was sent in batches describing what

the code was for and why it was implemented.

How it worked in practice

GitHub worked well and kept the code organized.

6.4.3 Figma

Fig (6.2) GitHub for Front & Backend

Description

Figma is a design tool for creating UI interfaces. It allows the user to create wireframes, prototypes,

and components.

How it is used

Figma was used to create the prototype and wireframe for the applications front-end.

How it worked in practice

Figma was a useful tool, it allowed for the designs to be altered, the colour scheme changed, with

minimal difficulty.

163

6.4.4 Miro

Fig (6.3) GitHub for Front & Backend

Description

Miro is a digital whiteboard platform that give the user a workspace where they can display their

projects.

How it is used

Miro was used to keep track of sprints and tasks; it allowed for a more organized approach with

every task laid out.

How it worked in practice

Miro worked well for managing the project making sure it was kept organized.

6.5 Reflection

6.5.1 Your views on the project

The project was a great learning experience as the scale of the project grew more as the

development went on and the necessary changes were made to create the project. Some area of the

application need improvement such as the design but overall, the project is solid and works as

intended.

6.5.2 Completing a large software development project

This project showed the importance of keeping the scale down as it can come back to be an issue

later if not dealt with properly. The planning of the project is critical for the success of the

application as time management was an area where the organization fell off. The skill that would be

improved from this would be the scale that was set and the time management.

164

6.5.3 Working with a supervisor

The supervisor in the beginning with all the problems the application was facing due to the model

having problems cause some conflict but when that was solved and the rest of the project fell into

place. The supervisor gave confidence in the build and gave useful tips to improve the app. It was

good to work with a supervisor to keep on top of the project.

6.5.4 Technical skills

The knowledge gained from the project would be the modern technologies that were use. Flask was

a new using Python to create the backend that would be used for the application. Learning how the

machine learning model was getting the prediction was a good skill to gain as this sector of coding is

relevant today.

6.5.5 Further competencies and skills

The skills that would gain from this application involved improving time management,

communication skills, and my own technical skills while coding. Thes skills that were gained will

further expand my knowledge of the area.

6.5.6 Problems during implementation

The implementation of the model was a problem from the beginning of the application. From trying

to export it with failing results to the model not working as it was supposed to. Initially the issue was

the model could not be exported from Google Colab, once this was solved the model was

implemented into the backend. When querying the model, the realization began that the model was

trained on a dataset and goes through all the prediction as intended on google colab, the problem

was that the model does not take in new data and only predicts with the data it used for the

training. This means that new data made from user on the application would not be used by the

model. This causes the application to not recommend movies properly. The query for the route was

made for the model to query the model on the id, movie_title, and movie_genres. Then the movies

from the model are then ranked by the top five highest. The movie and user data are seeded with

the same data as the model so the ids of the match the one in the model, it is still an inaccurate

recommendation as the model does not interact with the database. This was done to simulate what

it was supposed to be, how it would work, and how it would be displayed in the front-end.

6.6 Conclusion

The Project Management goes over the phases of the project and how they were managed. It gives

an overview of the sprints that were done and the tasks that were involved with each, the tools that

were used to keep the project organized, and a short reflection. Despite the challenges that were

posed by this application, specifically problems with the model, the project was created.

165

166

7 Conclusion

The goal was to create a movie recommendation application that would use a machine

learning model to recommend movies. The model was not able to be fully functional in this

project however the model still give data and is used. Although this aspect of the application

was not fully realised the other functionality such as the adding actors to movies or creating

watchlists and many other were fully functional and showed how the application was

supposed to work in relation to the model.

The application used Flask as the backend as an API. The front-end was created in React.js,

and TensorFlow was used for the machine learning basic ranking model. The database was

SQLite. These technologies were used in the development of the application. Using Flask for

the first time was challenging but once the structure was learned it was manageable. React

was more familiar as it was used in previous applications. TensorFlow was a big challenge to

integrate, the model had a lot of problems not mentioning its inability to take in new data.

Overall, working with these technologies was a great learning experience and improved

skills in Python and Machine Learning.

Research

The research section involved researching about machine learning recommender systems.

There were many avenues the look at as different recommender systems were applicable to

different needs. The research also goes over the data and how it would be stored. The last

section was on how to integrate the model from TensorFlow to the application, and it

discusses methods for this.

Requirements

The requirements chapter goes over the process of retrieving the functional and non-

functional requirements for the application. It gave a road map for the features that the

application would need to implement.

Design

The design chapter give a foundation for the requirements that were gathered. It gives a

visual process of how the application was going to be built, what it would look like, and the

components that would be integrated.

Implementation

The implementation chapter goes over the implementations that were made using the

designs as a base. It goes over the sections of code that were made, the integration of the

model, the process of designing and gathering requirements, and it goes over the testing of

the application including functional and user testing.

Testing

The testing chapter goes over the tests that were conducted in the application. It began

with functional testing that tests the CRUD functionality using authenticated credentials. It

also goes over the user testing and the tasks they were asked to complete, when completed

167

or during the process the test users would give feedback on improvements that can be

made.

Overall result

The results for the functional tests were good with all tests for all the modules passing, this

included more tests such as if the user had invalid credentials. The user testing was also

positive with minor issues appearing. These issues included button placement, confusing

error messages, and designs of certain pages.

Project management

The project manage chapter gave an overview of the phases of the chapter, and a reflection

of the overall experience building the application. It goes over tools that were used, what

sprints were done, and challenges that were faced during development.

What was learnt

Throughout the project it was a learning process for all the steps involving Flask and

TensorFlow with Google Colab, i have gained skilled in both technologies that can be used

for future projects.

How the project could be further developed

To improve the project the model would have to be improved. This could be done by either

creating the model itself from scratch, which would be difficult and time consuming, or

finding a better model and modifying it to take in data directly, this would also be difficult.

The use of a bigger database to store more data would be implemented to handle more

data coming in from the model.

168

References

Questionnaire

https://forms.office.com/Pages/ResponsePage.aspx?id=e5V92hEVQkqy9Xj4R_jIekGRf67e9PRDniQ86

DzeckhUMUcwTkpCV1EwQzE2MVdESTI1Ulk5MTAwMi4u

Figma

https://www.figma.com/design/PNu4ugz8GTH2mdozz9pOy6/Figma-for-Major-Project?node-id=0-

1&t=1UBK2AROEaFkdOUB-1

Google Colab

https://colab.google/

TensorFlow Model

https://colab.research.google.com/drive/1bvG-gLGub9_2dbIMcMiQuUe6G-H0JoJT?usp=sharing

Miro

https://miro.com/app/board/uXjVLFumj0E=/

A Categorical Review of Recommender Systems (Prasad and Kumari, 2012).

https://d1wqtxts1xzle7.cloudfront.net/37823853/7-libre.pdf?1433412601=&response-content-

disposition=inline%3B+filename%3DA_CATEGORICAL_REVIEW_OF_RECOMMENDER_SYST.pdf&Expir

es=1735501206&Signature=eN5BOYn06QbC~FdmWbstmezYH~niYJc6mCo-L-

XnzSxAC0o790cR32Wy5SJcX6KvEiK8YqokrZ8RoBCar5-

KqvW8LLmcCuGrtJoxGU6ezFC0OpI3bWE5EfgbL7k5yFBYQTlyYnI7an8Fg~5TvuFDq33Ja47QbfJPF~d2EZ

CixaA4MRCtHa9iQexGhuUASLpyUIntHGXFv15uRh-

hBiDok1Ur1c5OMxmzLinJVpxfWm5vRHbifVN2U9LPDr20zr4UilKn1JsDSJPFghLeqVn9fNtOU70ZdXsfN8

tWbcIpEyNW7xF7fzoB5OAa8I~cxNIgDDx4eLvqy6629ciGi20aMg__&Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA

 A Review on Recommender System (Fahin Mansur, Vibha Patel, Mihir Patel. 2017).

https://ieeexplore.ieee.org/abstract/document/8276182

https://www.researchgate.net/profile/Vibha-Patel-

3/publication/322994553_A_review_on_recommender_systems/links/5c4eb80e299bf12be3e8e9c6

/A-review-on-recommender-systems.pdf

169

Artificial Intelligence in Recommender Systems (Qian Zhang, Jie Lu, Yaochu Jin, 2020). (<Figure 1
from Personalized Recommendation Algorithm for Electronic ...=)

https://link.springer.com/article/10.1007/s40747-020-00212-w

https://link.springer.com/content/pdf/10.1007/s40747-020-00212-w.pdf

Built Machine Learning powered apps using Node.JS (Dimas, 2024)

https://dimasmds.medium.com/built-machine-learning-powered-apps-using-node-js-318ca0413818

A Survey on Data Mining Techniques in Research Paper Recommender System (Bernard Magara

Maake, Sunday O. Ojo, Tranos Zuva, 2019).

https://www.igi-global.com/chapter/a-survey-on-data-mining-techniques-in-research-paper-

recommender-systems/232427

Collaborative Filtering Recommender System (J. Ben Schafer, Dan Frankowski, Jon Herlocker, Shalid

Sen. 2007).

https://link.springer.com/content/pdf/10.1007/978-3-540-72079-9_9?pdf=chapter%20toc

Data Mining Methods for Recommender Systems (Xavier Amatriain, Alejandro Jaimes, Nuria Oliver,

Josep M. Pujol).

https://link.springer.com/chapter/10.1007/978-0-387-85820-3_2

https://amatria.in/pubs/RecsysHandbookChapter.pdf

Quality Matters in Recommender Systems (Oren Sar Shalom, Shlomo Berkovsky, Royi Ronen, Elad

Ziklik, Amihood Amir, 2015).

https://dl.acm.org/doi/abs/10.1145/2792838.2799670

https://www.researchgate.net/profile/Oren-Sar-

Shalom/publication/301432329_Data_Quality_Matters_in_Recommender_Systems/links/60c580df4

585157774d23daa/Data-Quality-Matters-in-Recommender-Systems.pdf

170

Front-end deep learning web apps development and deployment: a review (Hock-Ann Goh, Chin-

Kuan Ho, Fazly Salleh Abas, 2022).

https://link.springer.com/article/10.1007/s10489-022-04278-6

https://link.springer.com/content/pdf/10.1007/s10489-022-04278-6.pdf

Recommender Systems: An overview of different approaches to recommendations (Goldberg et al.

1992) (Kunal Shah, Akshaykumar Salunke, Saurabh Dongare, Kisandas Antala. (<Product
Recommendation System=) (<Product Recommendation System=) 2017).

https://ieeexplore.ieee.org/abstract/document/8276172

https://www.researchgate.net/profile/Saurabh-

Dongare/publication/323000727_Recommender_systems_An_overview_of_different_approaches_t

o_recommendations/links/60cec798458515dc17951d54/Recommender-systems-An-overview-of-

different-approaches-to-recommendations.pdf

How to Build a Recommender System for Software Engineering (Sebastian Proksch, Veronika Bauer,

Gail C. Murphy, 2015).

https://link.springer.com/chapter/10.1007/978-3-319-28406-4_1

https://www.researchgate.net/profile/Veronika-

Bauer/publication/299398536_How_to_Build_a_Recommendation_System_for_Software_Engineeri

ng/links/56f40c7308ae81582bf09dd9/How-to-Build-a-Recommendation-System-for-Software-

Engineering.pdf

Recommender System Based on the Analysis of Publicly Available Data (Goran Antolic, Ljiljana Brkic,

2017).

https://ieeexplore.ieee.org/abstract/document/7973637

https://www.researchgate.net/profile/Ljiljana-

Brkic/publication/318690813_Recommender_system_based_on_the_analysis_of_publicly_available

_data/links/5aff2d1d4585154aeb041351/Recommender-system-based-on-the-analysis-of-publicly-

available-data.pdf

The k Closest Resemblance Classifiers for Amazon Products Recommender Systems (Nabil Belacel,

Guanze Wei, Yassine Bouslimani, 2020).

https://www.scitepress.org/Papers/2020/91551/91551.pdf

171

Movie Recommender System Using Collaborative Filtering (Meenu Gupta, Aditya Thakkar, Aashish,

Vishal Gupta, 2020). (<Movies Recommendation System Using Cosine Similarity - Academia.edu=)
(<Movie Recommender System Using Collaborative Filtering - Semantic Scholar=)

https://www.researchgate.net/profile/Meenu-Gupta-

8/publication/348239082_Movie_Recommender_System_Using_Collaborative_Filtering/links/5ff4a

dbd299bf1408874ca98/Movie-Recommender-System-Using-Collaborative-Filtering.pdf

A Categorical Review of Recommender Systems (Prasad, Kumari, 2012).

https://d1wqtxts1xzle7.cloudfront.net/37823853/7-libre.pdf?1433412601=&response-content-

disposition=inline%3B+filename%3DA_CATEGORICAL_REVIEW_OF_RECOMMENDER_SYST.pdf&Expir

es=1735505584&Signature=fgeWImxq1CTXC8Jw~mmiD15C3d3crHaHGkYzSus7dhqvVNSZqRHIPfQaw

abl4H9QlXBEJjgTKO0RZHvumRyanS6QAqMF45zutMcV~5y3X9BX-

SFOtmb57vKNkequyBvqRZXDnhrcYUggX8V-

RpEm6JrqIYrnkPI8qDzidNJ0Z36pVxuPkxpQUTY8E90~VFRvo8jY2RS7OkxY4y0uoYbRggwHAyzmENGtyu

VVqYS79lZgF3Z0ftguYVlKTHtbpkeucTKcQHnDmMmvI-eDn15mOrBBDAuV574FMbbb9YG-

Inr0WjOcNYIxbLap8qO7yJ~SIN6wzWK7lIVetmz40AMaCg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

TF-Ranking: Scalable tensorflow library for leaning-to-rank (Heng-Tze Cheng, Zakaria Haque, Lichen

Hong, Mustafa Ispir, Clemens Mewald, Illia Polosukhin, Geogios Roumpos, D Sculley, Jamie Smith,

David Soergel, 2017)

https://dl.acm.org/doi/abs/10.1145/3292500.3330677

SecureTF: A Secure TensorFlow Framework. (Grant Allen, Mike Owens, 2010).

https://dl.acm.org/doi/abs/10.1145/3423211.3425687

The Definitive Guide to SQLite. (Grant Allen, Mike Owens, 2010).

https://www.programmershouse.ir/Library/Files/SQLite.pdf

	Introduction
	1 Research
	(Concept 1) -- Recommender Systems
	Introduction
	What is a Recommender System (RS)?
	How Does it Work?
	TensorFlow
	1.1.1.1 Definition of TensorFlow
	1.1.1.2 TensorFlow Pretrained Models
	1.1.1.3 Google Colab
	1.1.1.4 Basic Ranking Model

	Types of Recommender Systems
	1.1.2 Collaborative Filtering
	1.1.3 Principle of Collaborative Filtering
	1.1.4 Types of Collaborative Filtering
	1.1.5 Content-Based Filtering
	1.1.6 Characteristics of Content-Based Filtering
	1.1.7 Key aspects of Content-Based Filtering
	1.1.8 Hybrid Approach
	1.1.9 Hybridized Strategies
	1.1.10 Collaborative Filtering Classifiers
	1.1.11 Classification
	1.1.12 Overview of KNearest-Neighbors (k-NN)
	1.1.13 Classification
	1.1.14 Nearest Neighbors
	1.1.15 Memory-Based
	KNearest-Neighbors (k-NN) in Collaborative Filtering (CF)
	1.1.16 Item-Based Collaborative Filtering (CF)
	1.1.17 AI Evolution in Recommender Systems
	1.1.17.1 AI Recommender Systems (RS)
	1.1.17.2 Advanced AI in Recommender Systems (RS)
	1.1.17.3 Context Aware and Personalization
	1.1.17.4 Emerging Trends and the Future

	1.1.18 AI and Collaborative Filtering
	1.1.18.1 Improved Accuracy
	1.1.18.2 Improved Personalization

	1.1.19 Critical Analysis
	1.1.20 Limitations of Recommender Systems
	1.1.20.1 Data Sparsity
	1.1.20.2 Cold-Start Problem

	1.1.21 Trade Offs with Recommenders
	1.1.21.1 -5.2.1 Accuracy vs. Diversity

	1.1.22 Conclusion
	1.1.23 (Concept 2) -- Data Used in Recommender Systems
	1.1.24 Introduction
	1.1.25 Data in Recommender Systems
	1.1.26 Data Sources
	1.1.26.1 Public Datasets

	1.1.27 Types of Data Used
	1.1.27.1 User data

	1.1.28 Data Storage
	1.1.29 Databases
	1.1.29.1 NoSQL
	1.1.29.2 SQLite

	1.1.30 Preprocessing Data
	1.1.31 Data Cleaning
	1.1.32 Data Transforming
	1.1.33 Conclusion
	1.1.34 (Concept 3) -- Architecture of Model Integration
	1.1.35 Introduction
	1.1.36 Front-End Technologies for Integration
	1.1.37 Frameworks and Libraries
	1.1.38 API Integration
	1.1.39 Integration of a Data
	1.1.40 Back-End Technologies for Integration
	1.1.41 Conclusion

	2 Requirements
	2.1 Introduction
	2.2 Requirements gathering
	2.2.1 Similar applications
	2.2.2 Interviews
	2.2.3 Survey

	2.3 Requirements modelling
	2.3.1 Personas
	2.3.2 Functional requirements
	2.3.3 Non-functional requirements
	2.3.4 Use Case Diagrams

	2.4 Feasibility
	2.5 Conclusion

	3 Design
	3.1 Introduction
	3.2 Program Design
	3.2.1 Technologies
	3.2.2 Structure of Flask/React (2 pages)
	3.2.3 Design Patterns
	3.2.4 Application architecture (1 page)
	3.2.5 Database design
	3.2.6 Process design

	3.3 User interface design
	3.3.1 Wireframe
	3.3.2 User Flow Diagram
	3.3.3 Style guide

	3.4 Conclusion

	4 Implementation
	4.1 Introduction
	4.2 Scrum Methodology
	4.3 Development environment
	4.4 Sprint 1
	4.4.1 Goal
	4.4.2 Item 1
	4.4.3 Item 2
	4.4.4 Item 3
	4.4.5 Item 4
	4.4.6 Item 4
	4.4.7 Item 5
	4.4.8 Item 6
	4.4.9 Item 7

	4.5 Sprint 2
	4.5.1 Goal
	4.5.2 Item 1
	4.5.3 Item 2
	4.5.4 Item 3
	4.5.5 Item 4

	4.6 Sprint 3
	4.6.1 Item 1
	4.6.2 Item 2
	4.6.3 Item 6
	4.6.4 Item 7
	4.6.5 Item 8

	4.7 Sprint 4
	4.7.1 Item 1
	4.7.2 Item 2
	4.7.3 Item 3
	4.7.4 Item 4
	4.7.5 Item 5
	4.7.6 Item 6

	4.8 Sprint 5
	4.8.1 Item 1
	4.8.2 Item 2
	4.8.3 Item 3
	4.8.4 Item 3

	4.9 Sprint 6
	4.9.1 Item 1
	4.9.2 Item 2
	4.9.3 Item 3

	4.10 Sprint 7
	4.10.1 Item 1

	4.11 Conclusion

	5 Testing
	5.1 Introduction
	5.2 Functional Testing
	5.2.1 CRUD
	5.2.2 Discussion of Functional Testing Results

	5.3 User Testing
	5.4 Conclusion

	6 Project Management
	6.1 Introduction
	6.2 Project Phases
	6.2.1 Proposal
	6.2.2 Requirements
	6.2.3 Design
	6.2.4 Implementation
	6.2.5 Testing

	6.3 SCRUM Methodology
	6.4 Project Management Tools
	6.4.1 Trello
	6.4.2 GitHub
	6.4.3 Figma
	6.4.4 Miro

	6.5 Reflection
	6.5.1 Your views on the project
	6.5.2 Completing a large software development project
	6.5.3 Working with a supervisor
	6.5.4 Technical skills
	6.5.5 Further competencies and skills
	6.5.6 Problems during implementation

	6.6 Conclusion

	7 Conclusion
	References

