Secure Prescriptions
System

Liam Ronan (Student) N00212101
WORD COUNT: 25875

SUBMISSION DATE: 29/04/2025
CHARACTER COUNT: 190698

FILE NAME: LIAM-RONAN-THESIS

Secure Prescriptions System — A web application to allow doctors to send

prescriptions securely to pharmacists

Author: Liam Ronan
Student Number: N00212101
Supervisor: John Montayne
Second Reader: Cyril Connolly

Frontend code: https://github.com/LiamRonandev/MajorProjectFrontend

Backend code: https://github.com/LiamRonandev/MajorProjectBackend

Date: 30/04/2025

7z
adt ™’

Thesis submitted in partial fulfilment of the requirements for the BSc (Hons) in Creative
Computing at the Institute of Art, Design and Technology (IADT)

https://github.com/Liam-Ronan-dev/Major-Project-Frontend
https://github.com/Liam-Ronan-dev/Major-Project-Backend

Declaration of Authorship

| hereby certify that the material which | now submit for assessment is entirely my own work
and has not been taken from the work of others except to the extent of such work which has

been cited and acknowledged within the text of my own work.

Declaration
| am aware of the Institutes policy on plagiarism and certify that this thesis is my own work.

Signed: LWI/VV(/ wam

Date: 30/04/2025

Abstract

This project explores the development of a secure, cloud-based prescription management
system designed for doctors and pharmacists. It begins by looking into current solutions on the
market, identifying key pain points for users, and then planning a system that could solve those
issues in a practical and efficient way. The main focus throughout was ensuring robust security
measures while enabling a good user experience. In parallel, the project explores industry best
practices around cloud infrastructure, CI/CD pipelines and code quality. Some of the main
features include role-based access control, multifactor authentication, data encryption, and
real time notifications. The system allows doctors to manage digital prescriptions and patient
information, while pharmacists can update statuses and leave notes. Its deployed using various
AWS services such as EC2, S3, CloudFront, Route 53, and more. The end result is a modern,
reliable, and scalable solution that makes prescription management more efficient, secure, and

user friendly.

Acknowledgements

I would like to thank my project supervisor, John Montayne, for his excellent guidance and
encouragement during this project.

John's technical expertise, encouragement, and willingness to push me beyond my comfort
zone greatly enhanced the system. His constructive criticism and strategic thinking kept me
focused on realistic, user-centered solutions and inspired me to achieve my full potential

throughout the project.

| also thank Dan, a practicing pharmacist, for testing the PharmaLink app and providing real-

world feedback.

I'd like to thank my IADT lecturers over the past four years. Their teaching, guidance and support
gave me the technical and professional skills to finish this project and prepare for a software

development career.

Finally, | want to thank my family for their unwavering support, encouragement, and patience

during my time in college.

Table of Contents

Declaration of AUTNOISHID ... ittt ettt e e eeee e e ee e e e ennan 2
LY oL = [PP PP PP 3
ACKNOWLEAZEIMENTS .ouiiniiiiiiiiiie ettt et et s eteeasassansansansanstnssnssessessensensanssnsnnns 4
TADLE Of FIUIES canitniiiiiiiiiie et e ettt et st st e e easassansansansanstnsssnsnssnssessensensanennnes 9
L 118 feTe [8 e (o] o NPT PPPPUPPPPPPRY 13
2 RESEAICN. ettt et et et et et et e e e e e ans 14
b2 B [a1 doTo [8 o7 4 o] o TR PP PR PPPPPRTRt 14
2.1.1 Security in Software DevelopPMENT......cu it e easaeaneansanaanaas 14
2.1.2 Importance of Security in Software Developmentcccieiiiiiiiriiiiiriiiiree e 14
2.1.3 Challenges in Implementing Security in the SDLC.........coiiiiiiiiiiiiiicc e 15
2.2 Security Challenges related to Personal Datacoviuiiiiiiiiiiiiiiiis e 16
2.2.1 Unique Security Challenges in Handling Personal Data.......c..cccccviiiiiiiiiiniiniinieniinnnnnnn 16
2.2.2 GDPR and Compliance ConsSiderationS......ccevevirerieeieiieeieeierereieeeeneeeee et eenseneennas 17
2.3 Code Quality, Testing, and CI/CD for Secure Healthcare Systems........ccccceeeiieiiiireniiniennennes 18
2.3.1 Code Quality and Security in Healthcare SyStemscccuveuiiiiiiiiiiiiiiiie e eee e 18
2.3.2 Testing for Security and ComMPLANCEcuiiiiiiiiiiiiiieie e e e e e e e s e e e 20
2.3.3 CI/CD Pipelines for Secure Developmentceuieiiiiiiiiiie e e e 21
B O] o Ted LU E- T o PPN 23
B REQUITEMENTS ANALYSIS cuuitniiiiiiiiiiiiiiiiieie ettt et e ete et et st et st ssaeseesensrnsensensensensenernnes 24
Bl INTrOAUCTION . cceeiiii ittt et e e e s e taa e een s etaa s eranseanenes 24
3.2 EXISTING APPLICATIONS c.ueuiiiiiiii e ettt et et et e eeeen et sensensansansanesensensensensennan 24
3.2.1 PioneerBRX Pharmacy SOfIWAIEccuiuiiiiiiiiiiiee et et ree e e e eenseeeensensanens 24
3.2.2 WellSky Medication Management.......ccu i e e e e e e e e e e ees 26

Bi4A USEI PEISONAS ..iiniiiiiiiiiiiiiit ettt sttt st st e s eaas 28

B 5 USE CaSE DIaglamS. cu i eiuiiiiiiiiririie ettt ttereereerenetnetneenseesensensensenssnssssssssensensensensennes 30
BB REOUITEIMENTS ceuiiniiiiiiiieiieiie ittt et et e te et ettt reerenseneenetnsassassessensensensenssnsssssessnssensensennes 31
3.6. T USEr REQUITEMIENTS . ettt e et eeae e s e eae s eaa s sanansanensansnnnnns 31

3.6.2Technical REQUIFEIMENTSeuiiiiiiiiiiii ettt e e e e s e e e e eae e eaanaanas

3.6.3 Functio

NAl REQUITEIMENTS .. ettt e e et ee e e e e e ennas

3.6.4 Nonfunctional REQUIrEMENTSiuiuiiiiiiiiiiiiiie ettt e e easaeanean s e ens

3.7 Technical FEasibility STUAY ..cu.iuiiiiiiiiie ettt st e e e e easaeaneansanaannan

3.7.1 Technology StaCk SELECTIONeeeiiiiiiieiiii ettt et et ete e eenes

3.7.2 System

PN e A 11 (=T (O | £ N

3.7.3 Technical Challenges and MitigatioNS.......ccuiiiiiiiiiiiiniii e ce e e e e e ees

3.7.4 CloUd INFrasStrUCTUIE vttt e ea et e e eneneaessenenenenes

3.7.5 Development Environment — Security, Code Quality, Testing........ccccceeucieeienienrnnnennen.

3.7.6 Continuous Integration & Continuous Deploymentccceeeveviiriiiiiiiiiieriieeiereeennens

3.8 Conclusion

4 Design

it I T o 4 o Yo 1 e 1 [0] o

4.2 SYStEM ArChITECIUIE .. ettt et et et st s e e eneeeesensensansannens

4.3 Application

DY 1= o PP

N T I [=Yod o | Vo] (o] ={ == I ORIt

4.3.2 DESIGN PatterNS ..ceniieiiiiiiiii ittt ete et et st st s e s eeeneaseeensasaneannanns

4.3.3 Database DESIZN c.ucuuieniiniiiiiiieii ettt et ettt et re st e e e e eaesere s e e e anaanns

4.3.4 ProCESS DBSIGN. ittt ettt e e e e e e e et et et e e e e aaaaas

4.4 USEr INTerfaCce DESIZNcu ittt e et et et et e e e ate et et sansansansanaenens

L VAV Y i =] o g 1= TN

A.4.2 DESIGN SYSTOIM . uiiiiiiiiiniiitririie et ettt et et reetueeneeererenransensensensensssssensensensensensenns

4.5 Conclusion

5 Implementation

LS I [} 4 oY [UTe] { o] o TSN

5.2 Development ENVIFONMENT c...v. it iiiiiieiie ettt et et et e et reeren et sensansenssnssensensensensennns

5.3 Database...

SR N o] Lo TU e B 151 = 11 (U o] (U] < TS

LT B IO 1YY oY 1=V TN 65

542 BACKENG . ..uieniiiiiieee ettt et et et et e e e e e e eens 65

L NG H o o (= o o [PP PPP PP 70
B SUMIMIATY cuittiiiiii ettt ettt et e te e ettt sensanetnetneaessassassessensenstnssnsssssessessensensrnseneees 74
5.5 Continuous Integration & Continuous Deployment.......ccccceiieiiiiiiiiiiciie e 75
D51 OVEBIVIBW ..ttt ettt ettt et e et s ettt et s e ta e e eene s etn s eteneseanesereneeeenesennnneeenes 75
B5.5.2 BACKENd...cuuiiiiiiiiiiiiiiiiii ettt et st s e e 75
B.B.B FIONTENG iiiiiiiiiiii ittt s e b et e e 82
SN B 1AV =T o] o] 1 ¢ =T o | SR TP PP TR PURPRRN 89
L S I = = 1] (] o Lo [T PP UPRP 89
BB.2 FIrONTENG ..cvniiiiiiiiiii ittt ettt et et e e s e e eee 122

ST LT 4o = S PRSPPI 140
(ST I o 4 e Yo [8Tex (o] o FA PSPPI 140
6.2 PharmacCiSt TESTING ... eue ittt ettt et et e e et et et et e e eeneeeneens 140
6.2.1 Pharmacist FEedbaCKccouuiiiiiiiiiiiiiiiii e 140
6.2.2 Analysis & FULUIE IMPrOVEMENTS ...iuuiiiiiiiiii ittt et e e e ee et eeesaneansaneanaanns 143
SIRCH ol o] 1 il =l oTo B [=TS] A1 T~ ST TP PRSPPI 144
6.3.1T ENA-T0-ENA TESTING .eeuieniiniiniiiiiieie ittt e et eneeee et senseeensenenesensensensensannanns 145
B.3. 2 VITEST UNITIESTING 1uuivniiniiiiiiii i et et et s e e e e eae et sasansansansanasnns 148
SR 2= To] (Gl g Lo B EoT 1 4o V= SRR 151
6.4. 1 UNitTeStiNG WIth JESt...ee ittt ettt s e eeeeesen s e saneanns 151
LS SN O] o Ted L E- T o PP 152
7 ProjeCt ManageImMENT ... ot e et e et e e et st ea et saetesaesnsansnsensnssnsnsrnsessnsensnees 153
728 I 118 £eTe 18 Tex 1 o] o HA PP PP PP 153
VYA (o] 1= To1 fl o o I 1= T J TP PP PPPPI 153
A B o o] o Jo £ 1= | PSP TP PP PP PRPRRt 153
A A 2 {=To [[T ¢=] 0 aT=1 1 L £ TSP 154
AR B B L= Y] 1= o DS RPN 154

VA N [2] o] (=T 1 =T a1 €= 14 (o] o FS NS

7. 2.5 TESHING «eeniiiiii ettt ettt st s e e s eaaae

7.3 Project ManagemeNnt TOOLS ..cu.iiiiiiiiiiii et e ce et e e s e s e eaesaneansansansannees

7.3 GIEHUD cocviic e

VRS IV \\[0] {[0] o IS

2 N 2 1=Y 1 (o) A (o] o N

7.4.1 PersONaAl OVEIVIEBW ..uuniiiii ittt ettt e e eneaeaesessenenesesesesesenencnns

7.4.2 ProjeCt DEVELOPMENT . vuiieiiiiiiiiiie ettt ee et eaeaneeneaneansenseassensansensanssnnsnns

7.4.3 Project Oversight and Supervisor Communicationcceeveviriririniieneeeeeneerennenns

7. 4.4 TECHNICALSKILIS ..veieininiii i ettt tea e e e n e eneeerenenenes

7.4.5 Further Competencies and Professional SKillSccciueiiiiiiiiiiiiiiiiiiniee s

RSN 070] s 1] (V1] o] o I PPN

LS O] g Lo LU T=] Lo o T

References

Table of Figures

Figure 1 PioneerRx Screen

Figure 2 PioneerRx Screen

Figure 3 WellSky Screen 1

Figure 4 WellSky Screen 2

Figure 5 User Persona 1

Figure 6 User Persona 2

Figure 7 Use Case Diagram 1

Figure 8 Use Case Diagram 2

Figure 9 MERN

Figure 10 Architecture

Figure 11 Basic Pipeline

Figure 12 System Architecture

Figure 13 Frontend Tech

Figure 14 MongoDB

Figure 15 REST API

Figure 16 ERD

Figure 17 Sequence Diagram 1

Figure 18 Sequence Diagram 2

Figure 19 Flow Chart 1

Figure 20 Flow chart 2

Figure 21 Authentication Designs

Figure 22 Dashboard designs

Figure 23 Design system

Figure 24 Insomnia

Figure 25 VS Code

Figure 26 MongoDB Atlas

Figure 27 Cloud Infrastructure

Figure 28 EC2 Security Groups

Figure 29 SSH PEM Key

Figure 30 NGINX Config.

Figure 31 Application Load Balancer
Figure 32 API SSL Cert

Figure 33 Domain Names

Figure 34 S3 Buckets

Figure 35 S3 Latest Files

Figure 36 CloudFront Distribution

25
26
27
27
28
29
30
31

35
36
43
46
47
50
53
55
56
57
58
58
59
59
60
62
63
64
65
66
66
67
68
69
69
70
71

71

72

Figure 37 Cloud Invalidations.
Figure 38 CloudFront Web Application Firewall
Figure 39 Lambda@edge Security Function

72

73

Figure 40 Security Pipeline

76

77

Figure 41 Snyk Dashboard
Figure 42 SonarCloud Dashboard

78

Figure 43 Cl Pipeline

79

Figure 44 Deployment Pipeline

81

83

Figure 45 E2F Testing Pipeline
Figure 46 Cl Pipeline

86

Figure 47 Deployment Pipeline

87

Figure 48 Backend Folder Structure

90

Figure 49 Prescription Model

92

Figure 50 Item Model

93

Figure 51 Database Connection Function

94

Figure 52 Application Starting Point

95

Figure 53 Server.js

96

Figure 54 env Example

96

Figure 55 User Model

97

Figure 56 Patient Model

98

Figure 57 Prescription Model

99

Figure 58 Medication Model

Figure 59 Item Model

Figure 60 Appointment Model

Figure 61 Create Prescription Function

Figure 62 Get Prescriptions

Figure 63 Pharmacist Update Function

Figure 64 Pharmacist Update Item Note

Figure 65 Prescription Route

Figure 66 Ensure Authenticated Middleware

Figure 67 Access Control Middleware

Figure 68 Verify Ownership Middleware

Figure 69 Validation Middleware

Figure 70 Error Middleware

Figure 71 Create JWT Function

Figure 72 Hashing Functions

Figure 73 Login Function

Figure 74 MFA Variables

100
101
102
103
104
105
106
107
108
108
109
110
110
111

112
113

10

Figure 75 Session Cookie

Figure 76 Verify TOTP Function

Figure 77 Patient Model 2

Figure 78 Encryption Key

Figure 79 Encrypt function

Figure 80 Decrypt Function

Figure 81 Socket.io Connection

Figure 82 Doctor Notification

Figure 83 Send Email Function

Figure 84 Medication Seeding

Figure 85 Frontend Project Structure

Figure 86 Ul Components

Figure 87 Conditional Rendering

Figure 88 Inline Row Actions

Figure 89 Routes

Figure 90 __root Layout

Figure 91 Public Login Page

Figure 92 Dashboard Delete Mutation

Figure 93 React Hook Form Usage

Figure 94 Zod Validation Schema

Figure 95 Async Medication Select

Figure 96 usePrescriptions Hook

Figure 97 useMutation

Figure 98 OTP API Function

Figure 99 useQuery Auth

Figure 100 AuthContext

Figure 101 useAuth Hook

Figure 102 useAuth Usage

Figure 103 Quick Prescription Button

Figure 104 Socket Initialisation

Figure 105 Socket User Roles

Figure 106 Socket State

Figure 107 New Prescription Notification Function

Figure 108 useSocket Hook

Figure 109 Displaying Notification

Figure 110 Pharmacist Feedback

Figure 111 Pharmacist Issues Solved

Figure 112 E2E Tests Passing

114
114
116
116
117
118
119
119
120
122
123
125
126
127
127
128
129
130
130
131
132
133
134
134
135
135
136
136
136
137
138
138
138
138
139
142
144
145

11

Figure 113 Firefox & Chrome Tests

Figure 114 Navigation Test

Figure 115 Login Testing Setup

Figure 116 Prescription Unit Test.

Figure 117 React Hook Unit Test

Figure 118 Unit Tests Passing

Figure 119 Jest Unit Tests Passing

Figure 120 JWT & Hashing Tests

Figure 121 GitHub Repository
Figure 122 GitHub Actions Workflows
Figure 123 Notion Tasks

146
147
148
149
150
150
151
152
157
158
159

12

1 Introduction

The project aims to develop a secure, cloud-based web application for doctors and pharmacists
to track prescriptions. The project attempts to be user-friendly, emphasise secure data, and real
time notifications for doctors and pharmacists. The doctors may create prescriptions whilst the
pharmacist can update the status and notes of a prescription they were assigned to. The app
will require the user to setup multi factor authentication and certain resources are only visible

to specific roles. The system was developed using the MERN stack and AWS infrastructure.

13

2 Research

Investigating Security and the Software Development lifecycle of

healthcare systems.

2.1 Introduction

Adding security to the Software Development Lifecycle (SDLC) is necessary to make systems
that are strong and resilient. It is important to do this in areas like healthcare that deal with
private information and important tasks. In this study, problems that can happen and ways to
avoid them are looked at along with the reason why adding security to software development is
important. This part talks about how to make systems that are safe and useful by looking at best

practices for security, compliance, and new tools.

2.1.1 Security in Software Development

2.1.2 Importance of Security in Software Development

Security plays a huge role in software development it’s what protects systems from potential
threats, data breaches, and the kind of vulnerabilities that can lead to serious issues down the
line. If security is ignored during the Software Development Lifecycle (SDLC), it can result in
costly fixes, data loss, or even major system compromises. Assal and Chiasson (2018) highlight
how this is often the result of rushed deadlines or gaps in developer knowledge, and they

emphasise the importance of thinking about security from the very beginning of a project.

As systems become more complex, identifying risks early becomes even more important. Khan
et al. (2022) explain that dealing with security concerns early in the SDLC not only reduces the
number of vulnerabilities but also helps avoid the higher cost of fixing issues later. By
implementing security into the process from the start, teams can avoid problems before they

become serious.
Developers need the right training and tools to properly handle secure coding practices. Khair

(2018) argues that secure development should be part of every stage of the SDLC, helping

teams understand common vulnerabilities and how to prevent them. This approach improves

14

overall code quality, keeps systems compliant with regulations, and builds more reliable

software.

Altogether, the research points to a clear conclusion: security shouldn’t be treated as an
afterthought. By making it a core part of the development process from requirements all the way
through to deployment teams can build software that’s both safe and effective. This not only

protects users but also supports the growing need for transparency and trust in digital systems.

2.1.3 Challenges in Implementing Security in the SDLC

Theurich et al. (2023) say that implementing measures like threat modeling can be hard
because team members aren't always experienced, there are tight deadlines, and it can be hard
to find the right mix between being flexible and following strict security procedures. Because
agile works in small steps, it might be hard to keep up the level of security research needed to

find and fix problems as they arise.

People who are unwilling to change make these problems worse. ValdésRodrigues et al. (2023)
say that the biggest problems with adding security to agile routines are limited organizational
and procedural freedom, separate processes, and a lack of teamwork. Teams sometimes see
security measures as getting in the way of production, putting more value on usefulness and

speed of delivery than on long-term security and stability.

To get around these problems, you need an individualized approach. Theurich et al. (2023) say
that security measures should be built into agile processes as essential parts of the work, not as
extra chores. To create a mindset of shared security duty, departments can work together and
developers can get focused training to fill in any gaps in their knowledge. ValdésRodrigues et al.
(2023) say that adopting this way of thinking is important for dealing with security problemsin a

way that doesn't compromise the flexibility and efficiency that agile methods need.

To get around these problems, organizations need to come up with unique solutions that
combine rapid ideas with security measures. For example, lightweight threat modeling methods
like STRIDE or PASTA can be used during sprint planning meetings to make sure that security

risks are identified and reduced without getting in the way of the development process. Theurich

15

et al. (2023) say that security jobs should be added to agile practices like standups and

retrospectives so that security issues are always visible.

We also need better training and tools. You can help developers find and fix security holes by
giving them tools like OWASP's Secure Coding Practices Guide or by making security learning

sites like Secure Code Warrior a normal part of their work.

Companies can make software that is both flexible and reliable by making their security goals

match the concepts of rapid development and continuous security integration.

2.2 Security Challenges related to Personal Data

2.2.1 Unique Security Challenges in Handling Personal Data

Specifically in the context of the big data lifecycle, managing personal data poses
serious security issues. Data collection, storage, processing, and sharing

are some of the stages that make up this lifecycle, and each one presents unique
vulnerabilities. Inadequate protections or poorly secured systems can lead to breaches
and illegal access at any point, presenting significant risks to both individuals and
companies (Koo et al., 2020). These difficulties are only made worse by the growth
dependence on data driven decision making, since vast amounts of personal data are

now easy targets for criminals.

It is especially difficult to protect privacy while preserving data usability. Businesses

need to find a balance between protecting private data and facilitating insights based on
large databases. According to Kantarcioglu and Ferrari (2019), achieving this happy
medium often means sacrificing security for scalability. For example, scalable

Encryption techniques are necessary to safely protect data in large systems, but

They may also slow down the efficiency and speed of data analytics. Strong access control
measures must also be put in place to stop illegal use, but badly designed systems may
unintentionally restrict the use of data that is approved or make processes more

difficult.

Some of these issues may be resolved by emerging technology like privacy preserving

16

data analytics. Organisations can examine data without putting individual records at risk thanks
to strategies like homomorphic encryption and differential privacy. According to Kantarcioglu
and Ferrari (2019), incorporating these strategies into the data lifecycle is crucial for protecting
privacy and guaranteeing adherence to changing legal requirements. However, large
investments in infrastructure, knowledge, and development is necessary for the largescale

adoption of such technologies.

Organisations must deal with more general systemic problems in addition to
technological ones, like developing a security aware culture and coordinating
procedures with legal requirements. For example, regular policy updates and security
audits may help minimise the risks brought on by quickly evolving threats and
technologies. A single approach to protecting personal data requires cooperation from

All parties involved, including developers, data scientists, and legal teams.

Protecting personal data requires more than reactive measures as its use continues to
grow. Organisations may manage the challenges of protecting personal data and create
systems that inspire confidence by implementing innovative technologies, encouraging

teamwork, and strictly adhering to legal requirements.

2.2.2 GDPR and Compliance Considerations

Software development processes face a difficult task when trying to comply with the General
Data Protection Regulation (GDPR), especially when managing personal data. Principles like
data minimisation, privacy by design, and the defence of individual rights are highlighted by the
GDPR. It takes a good understanding of both technical implementation and legal requirements
to incorporate these ideas into software development. NegriRibalta et al. (2024) emphasise the
importance of requirements engineering in this procedure, contending that early in the SDLC,
specific legal requirements must be translated into workable development tasks. However,
knowledge gaps and the challenge of converting recommendations into practical engineering
practices often make this difficult.

Putting in place efficient consent procedures is one common issue. According to Franke

et al. (2024), several open source projects have inconsistent or inadequate

17

permission procedures that do not adhere to GDPR regulations. For example, non
compliance may occur from unclear and difficult to use interfaces for gaining user
consent, which could expose companies to penalties and harm the company.

These problems are made worse by a lack of resources and experience, which makes it

challenging for smaller teams to guarantee compliance in every area of their program.

Organisations must take a deliberate and methodical approach to GDPR compliance in
order to overcome these challenges. NegriRibalta et al. (2024) advise that the SDLC
incorporate GDPR principles immediately, starting with requirements gathering that is
privacy focused. To make sure developers are aware of their compliance
responsibilities, this involves working with legal and regulatory professionals.
Development teams can also be less burdened by tools and frameworks that automate
GDPR compliance tests, like confirming consent channels or evaluating data reduction

techniques.

According to Franke et al. (2024), incorporating these procedures into team processes can

lower the possibility of expensive oversights while also greatly improving compliance results.

2.3 Code Quality, Testing, and CI/CD for Secure

Healthcare Systems

2.3.1 Code Quality and Security in Healthcare Systems

The safety and reliability of healthcare systems, which handle sensitive patient data and

vital functions, depend on maintaining excellent code quality. In addition to making
vulnerabilities more likely, poorly written or unmaintainable code makes debugging and
Updating is more difficult and may compromise system functionality. Effective techniques like
automated testing, secure coding standards, and static code analysis can greatly improve code

quality and security, according to Java Tech Blog (2024).

Early in the development process, static code analysis tools such as SonarQube,
Checkmarx and Fortify are vital for identifying coding discrepancies and security flaws.

These tools check the source code for problems such as poor cryptographic

18

implementations, buffer overflows, and hardcoded credentials. By integrating these
technologies throughout the development process, developers can reduce technical debt by
identifying and correcting issues before they become more serious. Such proactive detection is

essential for healthcare institutions, because hacks may reveal private medical information.

Writing robust, secure code is based on secure coding recommendations, like those offered by
OWASP or CERT. Developers can steer clear of common dangers like SQL injection, inadequate
input validation, and unsafe error handling by following these standards. According to Java Tech
Blog (2024), implementing these standards into regular development procedures promotes a

security culture and guarantees that teams give equal weight to functionality and resilience.

Other ways to improve code security and quality include pair programming and peer code
reviews. By allowing several developers to review the same code, these procedures increase the
possibility of finding mistakes or vulnerabilities that automated tools would miss. Peer
evaluations are essential for upholding coding standards and encouraging team members to

share information, according to Aptori.dev (2024).

In healthcare systems, technical debt results from hurried or inadequate coding

Technique is another area that requires careful management. Unmanageable, bloated
codebases that are more vulnerable to security flaws can be the outcome of unpaid technical
debt. Teams may measure and address technical debt with the aid of tools like SonarQube or
Code Climate, which offer useful insights into areas that need refactoring. Reducing technical
debtis a long term investment in system security and maintainability, according to Aptori.dev

(2024).

Code quality is maintained in large part by automated testing, especially in the form of

security, integration, and unit tests. For instance, unit tests that confirm that each system
component works as intended can be made using tools like JUnit or TestNG. While security
focused testing tools like OWASP SAP may imitate assaults on the application, integration
testing tools like Selenium or Cypress can evaluate how components interact. According to Java
Tech Blog (2024), adding these tests to the CI/CD pipeline guarantees that healthcare systems

are resilient to security and functional failures.

19

In conclusion, healthcare systems need a comprehensive strategy for secure development that
blends superior technical skills with a consistent dedication to security. Code quality must be
given top priority by organisations through thorough testing, teamwork techniques like code
reviews, and ongoing developer education. By implementing these precautions, healthcare
software can satisfy the needs of both security and functionality, safeguarding patient

information and preserving confidence in the systems that support vital healthcare services.

2.3.2 Testing for Security and Compliance

Software development must include security and compliance testing, especially in

industries like healthcare where strict regulations and sensitive data are combined.
Comprehensive testing guarantees that software systems continue to be safe from attacks and
comply with applicable legal requirements. To proactively detect vulnerabilities, Potter and
McGraw (2004) suggest that security testing should be beyond traditional functional testing. To
identify vulnerabilities that attackers could exploit and enable teams to fix them prior to

deployment, techniques like fault injection and penetration testing are essential.

Identifying vulnerabilities is only one aspect of security testing; another is foreseeing

possible attack routes that may evolve over time. Understanding the attackers point of view is
essential to doing effective security testing, say Potter and McGraw (2004). They highlight how
crucialitis to replicate actual attack instances to find system vulnerabilities that can go
undetected during regular functional testing. Techniques like fault injections, which
intentionally introduce problems into the system, can expose hidden vulnerabilities and show

how software responds under pressure.

Additionally, Potter and McGraw stress how important it is to use security testing to guide and
improve the software architecture. For example, businesses might

Proactively modify design concepts and coding techniques to prevent similar concerns in future
iterations by recognising recurrent patterns of vulnerabilities. This architectural

feedback loop improves the software’s longterm resilience against changing threats in

addition to its immediate security posture.

Selecting the highest risk areas for testing as a top priority is another important insight.
Potter and McGraw support focused security testing that concentrates on components with the

greatest possible impact in the case of a breach because not all system components need the

20

same level of attention. This could require making the testing of modules managing patient data
encryption, authentication systems, and external APl integrations, the highest priority for

healthcare systems.

Finally, they note that security testing needs to cover the operational environment in which the
product will operate in addition to code level testing. For instance, even while a system passes
all internal security checks, it may not be able to fend against assaults that take advantage of
third party dependencies or network configurations. A more comprehensive approach is
ensured by integrating environmental aspects into security testing, which aligns the softwares

security posture with actual circumstances.

On the other hand, compliance testing makes sure that software systems adhere to legal
regulations, as those set down by the General Data Protection Regulation (GDPR) or the Health
Insurance Portability and Accountability Act (HIPAA). The significance of continuous
compliance testing, which incorporates automated compliance checks into the development
process, is pointed out by Moscher (2017). This ensures that, despite updates and alterations,
systems maintain compliance over the course of their lifetime. Without depending entirely on
manual audits, teams can find gaps in adherence to regulatory standards by automating

compliance validation.

In both security and compliance testing, automation is critical. Automated testing tools can

assess vulnerabilities, replicate real world attack scenarios, and confirm compliance with legal
requirements. For instance, compliance tools can make sure that systems comply with privacy
and data protection regulations, while penetration testing tools may imitate malicious assaults
to find any vulnerabilities. Automation improves the dependability of the results by speeding up

the testing process and lowering human error.

2.3.3 CI/CD Pipelines for Secure Development

For vulnerabilities to be found and fixed early in the software development lifecycle, security
must be included in CI/CD pipelines. This requires a blend of complex setups, specialist tools,
and careful pipeline architecture. Sydneyacademics.com (2024) underlines the importance itis
to incorporate security technologies straight into CI/CD processes to enforce strict security

guidelines without slowing down development.

21

Automated security testing tools are an essential part of secure CI/CD pipelines. During the
building phase, code can be examined by Static Application Security Testing (SAST) tools to find
vulnerabilities like SQL injection, cross site scripting (XSS), or unsafe function calls. Similarly, to
find runtime vulnerabilities that static analysis could overlook, Dynamic Application Security
Testing (DAST) technologies simulate assaults on the active application. For complete coverage,
CI/CD pipelines usually incorporate tools like SonarQube, OWASP SAP, and Snyk. Mangla
(2024) suggests the importance it is to automate these tools to impose uniform security

standards and guarantee that each build is put through the same rigorous inspection.

Ansible and Terraform are two examples of configuration management tools that are

essential to securing the deployment process. By defining infrastructure as code, these
technologies enable teams to create secure and consistent setups across environments.
Developers may avoid common configuration errors, including open ports or unsafe default
settings, that could leave systems vulnerable to assaults by incorporating these tools into CI/CD

pipelines.

Software composition analysis (SCA) tools such as Dependabot and WhiteSource come in
handy for finding vulnerabilities in third party libraries and dependencies, in addition to
vulnerability and configuration scanning. When opensource elements are used, these tools
make sure that vulnerable or out of date packages are identified and fixed before deployment.
This layer of automated dependency management lowers the risk of supply chain attacks,

which are becoming more common, according to Sydneyacademics.com (2024).

Another crucial component of secure CI/CD pipelines is ongoing monitoring. To monitor
pipeline activity and spot suspicious patterns, like unauthorised code or configuration
changes, tools like Prometheus, Datadog, and Splunk can be integrated. Realtime warnings

from these systems allow for quick reactions to threats.

Mangla (2024) recommends using cloud native security solutions to guarantee that
Protection is effective in a variety of environments. Built in security services like Google
Cloud Builds automated vulnerability scanning, Asure DevOps advanced compliance
checks, and AWS Code Pipeline integrated security testing are all provided by cloud

providers including AWS, Asure, and Google Cloud. Organisations can customise their

22

pipelines to meet the unique needs of their infrastructure by utilising these platform native

solutions.

In conclusion, creating secure CI/CD pipelines requires the purposeful integration of
modern tools, proper configurations, and strong monitoring systems in addition to a general
dedication to security. Organisations may make sure that their pipelines not only produce
secure software but also withstand changing threats by utilising automated testing,

infrastructure as code, and dependency analysis.

2.4 Conclusion

This research emphasises the importance of security in the Software Development Lifecycle

(SDLC) to create reliable systems, minimise risks, and protect sensitive data. Techniques

include integrating automated tools, incorporating security into agile practices, and cultivating a

collaborative culture. Prioritising safe coding, proactive threat modelling, and ongoing

compliance testing ensures the security of sensitive data and critical infrastructure, promoting

dependability and confidence in the digital environment.

23

3 Requirements Analysis

3.1 Introduction

The requirements analysis phase is an essential phase in ensuring that the system being
created satisfies the expectations of its users. This phase involves a thorough examination of
user expectations, system operation, and technical viability to provide a clear development
path. By considering the needs of doctors and pharmacists, the system can be designed to

provide a user friendly and efficient experience.

3.2 Existing Applications

Below are two examples of prescription management applications outlining a list of their

features along with benefits and drawbacks.

3.2.1 PioneerRX Pharmacy Software

A complete pharmacy management system called PioneerRx was created to improve several
pharmacy activities.
Key features:
e Medication therapy management (MTM): Medication synchronisation and adherence
monitoring.
o Patient Risk Scores: Evaluate and track health risks for patients to deliver
individualised treatment.
o Medication Synchronisation (Med Sync): Aligns patient prescriptions to increase

adherence and expedite refills.

Benefits:
e Rich Feature Set: Provides a variety of tools for efficient pharmacy operations
management.
e Customisable Interface: Customisable interface enables pharmacies to adapt it to
their unique workflows.
o Emphasis on Patient Care: Highlights resources that improve medication compliance

and patient outcomes.

24

Drawbacks:

e Learning Curve: Staff members may need some time and training to properly use the

numerous capabilities.

o Cost considerations: Smaller pharmacies may find comprehensive systems

prohibitively expensive.

V(Zt @ s Py Pome o e -
N Saaie Mt Teifeny Aased e Bem beemer Oweng Mpes MW L e Ml £ AN B E
el d 26 & R
e el PR Qe Smagt Onwtng Onee G
P e e Bee Rk fashes Ceslen
— it o o St
.Emu&ium Change Due Last Sale: $0.00 = i
e 1
= o | [o
Ty [Tan tinte 3
; L Cancm ’
| Food & Bev
| Cmge Owwrgecn Oy N £t g Tan T o P
- 1S P Core ™ »x TR
Tond & Tty e &] "R T JEET oy o
-
O

i Powvn Curm
|
1

[Comt 30M) Setmas ne Te KO e WX ko e
Tous - F12 Cancl Solw

L I Lowemy

Figure 1 PioneerRx Screen

@-ug-¢::.¢ : Pioneerf =B B
Rx Workflow Patent ThirdPaty Accourt Sole Mem loventory Oredenng Acalyss Comgony System |mm]ma-
oo G N I~ T 10} w - wy @8 = & = %
U3 = n L\ & = i = S o) g
R EdtRx Batich Wock Batch Post Check Wil Fudix Fost Sig wou Exteendd & PNP Part O
Profie Process Flow Scan R Ca Ext Prarmacy Scharussion Fegar
Dats Ertry Ry Post ES1 Sig 10U Transfers Corvglisnce Tex Regair
‘rkzlnnsx!bnSelth Actions ~ Reports ~ Search ~ | ToDo 2
| —— =
R Pt)| Presobe B), | Precroediiemil, | Dspensediem 5] Rewits 6)- 26 records | - [Tooumm 2| 2
‘ . : . - 7| | [FillRessests | | >
Rx Transactions. - 26 records found ¥ Fiter 3 Totals g New [Edit | View: |Basic 2+ &2 N §
| Dve
‘ El Nomber ~ 72 Prescriber V& Prescribed em ‘Y& DatabrtryOn V& Patent V4 Dispensed hem Ve wa Post E&
’ | Foat E6t
o | 1073% Ginger Soacp Amantadine 100 mg Cap Clear Filter Amantadee 100 Mg Caps. 120 !Rma
w | w2z Roland Stene Alpearclam 0.5 mg Tab | Text Filters » |Alprazciam 0.5 Mg Tablet 020 Rejected
» [111453 Major Payne aitusecol sulfote 25 mpdm) i | Albuterct 0.023% Inhai So_ 042 | S
o B |1 Phi Good atuterol sulfute 25 my3ml Y| | ~ EIAN Albuterct 0083% Inhad So. 050 | P
V] (Blanks) Scriphs
) aloutero! sulfate 25 mg | uifPrices
] Alprazolam 0.5 mg Tab Need
7] Amantadine 100 mg Ca Printing
[¥] Ambien 10 mg Tab
] Ambien CR 12.5 mg Tab
@] Amitriptyline 25 mg Teb
‘ N EE Ay
@\ Cancel
£
«| = ™| »

Figure 2 PioneerRx Screen

3.2.2 WellSky Medication Management

WellSky provides a drug management solution that automates and streamlines clinical

operations.

Key Features:

o Clinical Workflow Automation: Reduces manual labour and increases efficiency by

streamlining procedures.

e Error Reduction Tools: Reduces drug distribution errors by implementing checks and

balances.

¢ Improvements to Patient Safety: Offers resources to guarantee that patients receive

their medications precisely.

Benefits:

o Emphasis on Safety: Puts patient safety first by minimising mistakes and managing

medications precisely.

o Efficiency Gains: Workflow automation can result in more productivity and time

savings.

e Innovative Tools: Uses modern features.

26

Drawbacks:
¢ Integration Challenges: During implementation, compatibility checks with current
systems could be necessary.

o Requirements for Training: Employees may require training to become accustomed to

new automated procedures and equipment.

'-1 L) 4 Home Resident Prospect Reports Financial Suite Settings 2 What's New @ Help Customer Support = = . We”Sky
ADT~ Charting&~ Accounts~ Biling AR~ Funds~ Qualty Assurance ~ Connections A ~ FCO4-WellSkySNF~ Q
ADT SNAPSHOT MISSION 06/04/2021 e~ v 5
ABREU, HANORA JEREMY Male 61yrs 02007/1963 i 947 193 { CMK2-2068 Q Residents Browse All Residents
QuickLinks: (/ ADT Snapshot Transfer Swap-Classic Care Plan
Page Actions: © Registration information eDocs ~ Resident Annotations ~ New visit View visitinformation ~ ClinReadmit View Basic Information - Classic B Facesheets & History -
A NoTicES & PROVIDERS . CONTACT INFORMATION View guarantor information
Advance Directives Neme Category Phone# Category Rank Name Phone 1 Phone2 Emergency
DNR; Living Willin Place
AGUGLIAWINIFRED Attending (006)5552800 (Work/office) Guarantor LABAR, VOILET (007)555.0815 (Cell) ono
R NOLAN, ROSINE Poychiatrist 555555555 (Home) Next of Kin 1 PARENTJANE (800)555-4614 (Cell) v YES
Next of Kin 2 BENNETTDOMENICO (424)5552621 (Cel) Vv YE
Nextof Kin 3 LABARVOILET (007)555.0815 (Cell) v ¥ES
S INFORMATION & REIMBURSEMENT INFORMATION
From Date Thru Date Location BedType Payor Staus Levelof Care Hold Reason BUPL Plan Type StartDate EndDate Rate DaysAvall DaysUsed AsOf
09/25/2024 cMK22068 B v 700 (VA1) HINT/SKILLED VETERANS ~ Commercial 6/4/2021 17365 9/30/2024
08/01/2024 09/24/2024 CMK11038 B v 700 (VA1) HINT/SKILLED PRIVATEPAY Guarantor 8/11/2020 000 9/30/2024
09/02/2023 07/31/2024 CMKI1038 B 700 (VAD) HINT/SKILLED
08/31/2023 09/01/2023 CMK11038 B P 700 (VA1) Personal HINT/SKILLED
B ICD-10 DIAGNOSES + Show More
Diagnosis I€D-10 Onset Resolved DX Type Bill Seq On Bill Clinical Primary Clinical Category
Bronchilis, not specified as acute or chronic J40. 6/4/2021 1 v Ye 5 ONe Medical Management
Pain in unspecified joint M25.50 6/4/2021 2 v 4 ONe Retum to Provider *
Major depressive disorder,single episode, unspeci Fa29 6/4/2021 3 v Ye 6 ©No Medical Management
Disease of thymus, unspecified E329 6/4/2021 5 v Ye 7 ©ONe Medical Management
Pneumonia due to Methicillin resistant Staphylococ 5212 6/4/2021 6 v Ye 8 ONo Pulmonary
Type 2 diabetes mellitus without complications E11.9 6/4/2021 7 v Ye 9 ONo Medical Management
Other idiopathic peripheral autonomic neuropathy 69009 6/4/2021 10 vy 0 ON Acute Neurolocic
Figure 3 WellSky Screen 1
g 4 Home Resident Prospect Reports Financial Suite Settings £2 Whats New @ Help Customer Support - = A WellSky
gx

ADT~ ChartingA v Accounts~ Bilingv A/Rv Fundsv Quality Assurance v Connections A v FCO4 - WellSky SNF Q

KARDEX M . 06/04/2021 - P
ABREU, HANORA JEREMY Male 61yrs 02/07/1963 947 4193 N CMK-2-206-B Q Residents Browse All Residents
Quick Links: ADT Snapshot Transfer Swap - Classic Care Plan
Kardex Bt Kardes it
Summary Form Legend: A Highly Important @ important 3
B Code Status: a & Diet: u W Liquids: u (© Fluid Restrictions: u 11) Meal Preferences: o] Adaptive Devices: a
|
ode | Mech Soft NAS; Allergic to PEANUTS thin liquids Fluid Resriction DCd Breakfast: 07:30 AM, Lunch: 12:00 PM, Wheelchair or cane
J Dinner: 05:00 PM, Dining Room: Yes,
& . Snacks: No 2o
lish Yes, Amount: 2 lpm
% Functional Abilitie: Q 1€ Misc Information: ' Fall Interventions: o}
Bed Mobilty: Partial/moderate assistance Allergic: peanuts, hazel nuts phone on charger on bedside table while in bed; empty bedside commode after each use;
prompt 1o lock WC brakes before transfers
Transfer: Partial/moderate assistance
Ambulation: Supervision or touching assistance (
X What Makes Life Meaningful to Alarms/Restraints:
Locomotion: Suj fision or touching assistance
ipervi ing Resident: Restraints: No

Dressing Supervision or touching assistance Prefers to be called Johnny

Eating: Setup or clean-up assistance L

Tolleting: Supervision o touching assistance ‘@ What Resident Likes To Do: a & Skin Interventions: a

Hygiene: Supervision or touching assistance Activities that involve children, pets, music, | | 1. Donot position on right side hip. New stage 1 wound. 11/7 Blister to right heel - wear only

and winning prizes. Pet therapy. soft, non-skid house shoes until healed.
Bathing: |

Figure 4 WellSky Screen 2

27

3.4 User Personas

User Personas are a fictional, yet realistic depiction of a character that represent the traits of
the target audience. Developers can have a grasp of the requirements, habits, and preferences
of the audience by creating user personas. (NN Group, 2015)

Personas also serve as a basis for making well informed judgments at every stage of the
development process, from Ul/UX design choices to feature priority. Teams can effectively
reduce any risks and difficulties during the development process by using personas. (M. Chu,
2023).

Below in figures 5 and 6, developed user personas for doctor and pharmacist users by outlining

their work preferences, needs & goals, and pain points.

Sarah Anderson

scribing doctors

Personality

Trustworthy A Responsible Workflow Preference
Detail-Oriented X Organized . Ne L[fiETEA L T EE

avoid d ing

« Requ § 3 ng pending,
completed, and f

Platform

Figure 5 User Persona 1

28

Jacob Dunne
Dublin. He fin
t. Wincent's Un

Sl
Doctar
Wicklow

= High

&k |needaseam!

Personality

Detail-Oriented

Highly Ethical Workflow Prefe

t patient

r mobile for detailed

Figure 6 User Persona 2

29

3.5 Use Case Diagrams

Use case diagrams were created to visualise a high-level representation of the system to
illustrate the interactions between the users (actors) and a system. They capture the functional
requirements of the system, showcasing how the different users engage with various use cases,
or specific functionalities within the system. (GeeksForGeeks, 2025)

The first diagram illustrates how a user will create an account or login to the system, enabling

multi-factor authentication with an authenticator app of their choice

Login/Register

Figure 7 Use Case Diagram 1

30

The diagram in figure 8 below outlines how a doctor or a pharmacist may navigate through the
application. The ovals in blue contain core functionality and features whereas the ovals in white

are extended checks.

Figure 8 Use Case Diagram 2

3.6 Requirements

For it to make sure that the finished product satisfies business objectives, and technical
feasibility, requirements gathering is a key process in the software development lifecycle
(SDLC). Functional and nonfunctional needs must be gathered, examined, verified, and
documented. Project failures, rework, cost overruns, and misplaced expectations can result
from poor requirements engineering. Clear requirements allow development teams to produce
solutions that satisfy customer expectations, enhance user experience, and guarantee
regulatory compliance in industries including cybersecurity, finance, and healthcare.

After the completion of the user personas and use case diagrams, created a list of the various

types of requirements below. Below will go into more detail for each of the categories.

3.6.1 User Requirements

The User requirements ensure that the software system meets its intended users’ specific
needs, expectations, and goals. Understanding and effectively managing these user
requirements is essential.

e Users should be able to register with email and password and select a role such as

doctor or pharmacist.

31

MFA Will be enabled by default and will generate a QR code that they can scan with their
authenticator app such as Microsoft Authenticator to create a TOTP.

Upon logging in as a Doctor, they can add new patients to the system, create new
prescriptions and assign a pharmacist and patient to the prescription.

A doctor may be allowed to update a patient with new emergency contact details,
address, DOB etc.

A doctor may remove a patient from the system which will also remove all their
prescriptions.

Upon logging in as a pharmacist, they may view all the prescriptions that they were
assigned to from a doctor.

A pharmacist should be notified when a new prescription is assigned to them -
notification alert.

A doctor should be notified when there is status change on a prescription.

A pharmacist may update the status of a prescription such as pending, processed,
completed, cancelled etc and they may leave a note on the prescription such as
“Ordering medication”.

A pharmacist can view patients through the prescription they were assigned to from the
doctor.

The server generates a JSON web token and stores it in secure, HTTPonly cookie.
Doctors should be able to select medication for prescriptions from a real list of verified
and marketed medications in Ireland

Logout of their account.

3.6.2 Technical Requirements

Below will be a blueprint that outlines the functionalities, features, and technical aspects of this

software system. These requirements will outline how the technical aspects will function and

interact with one another.

Will it be technically feasible to develop the full stack application.

The system should be highly secure as it engages with sensitive patient and prescription
data.

Upon registering, the administrator should receive an email with the users credentials.
The system should be developed with software development best practices in mind

such as CI/CD, security, testing.

32

e The system should be fast and a smooth user experience.

e The system should be deployed safely and securely using AWS Cloud infrastructure.

e The system should encrypt passwords and GP/pharmacist license numbers.

e The system will follow Authentication best practices such as JWTs, encryption, MFA,
HTTP only cookies.

e The system should be end to end tested and have sufficient component unit tests on the
frontend and sufficient unit tests on the backend

e The system should be constantly scanned for security and code quality issues using
Snyk and SonarQube.

e The system should use real medication data.

3.6.3 Functional Requirements

Functional requirements are services or components the system must deliver. The functional
components are the features and functions that the developers must implement to enable the
users to accomplish their tasks (Altexsoft, 2023). Below is a list of features to develop with the
first feature the most important and critical to implement

1. The users should be able to successfully log in and create accounts securely

2. Allow doctors to create a prescription and assign a pharmacist and a patient

3. Allow doctors to modify, or edit a prescription for the pharmacist

4. Encryptthe sensitive patient and prescription data

5. Allow doctors to add patients to the system and view all their medical history,

prescriptions, personal details

6. Allow pharmacist to update a prescription with a new status

3.6.4 Nonfunctional Requirements

A set of specifications that describe the systems operation capabilities and constraints. These
requirements are to outline how well the system operates, including speed, security, reliability,
and data integrity. If these specs were not mot, it could result in the system not performing as
well as it should.

e The frontend application should be a smooth and accessible user interface.

e Should have fast load times navigating through pages and should not take too long to

modify or create a resource.
e Patient and prescription data should be securely encrypted.

e Should be able to scale with large volumes of traffic.

33

e Should be available to users of various regions.

e The design should follow a design system with consistency.

3.7 Technical Feasibility Study

There are various technologies and languages that could be used to develop this system;
however, the secure prescriptions system is being developed using the MERN (MongoDB,
Express, React, Node) stack. Below will delve into more detail around the specifics of the

technologies used

3.7.1 Technology Stack Selection

o Frontend: React with TypeScript for a type safe and scalable user interface
o Backend: NodelS with express.js for developing the REST API

o Database: MongoDB atlas for flexible and scalable NoSQL data storage

e Authentication & Security: JWT for auth, multifactor authentication using time based

onetime passwords for enhanced security, Node native crypto module for encrypting
and decrypting sensitive patient and prescription data

Testing: Vitest Unit tests and Playwright end to end test for the frontend and Jest unit
tests for the backend

Realtime notifications: Socket.io for pharmacist notifications

Continuous Integration: GitHub Actions for running tests, linting, security and code
quality scanning, formatting

Continuous Deployment: AWS S3 Bucket and CloudFront for the frontend

deployments and an EC2 Instance with a Nginx reverse proxy server for the APl backend

34

Figure 9 MERN

3.7.2 System Architecture

System architecture explains the systems core ideas and characteristics regarding its

relationships, environment, and other design principles. The architecture includes the

organisational structure, behavioural components, and the composition of those components

into more complex subsystems. (Gupta, R, 2024).

3.7.2.1 Three tier Architecture

The system being developed follows a three-tier architecture, a widely adopted design pattern

that separates the application into three layers.

Presentation layer (Frontend): React.js is used by the frontend to provide an intuitive
user interface, and HTTPS is used to securely communicate data with the backend REST
API. It manages authentication, prescription, patient, and responsive design across
platforms.

Business logic layer (Backend REST API): NodelS Express is used by the backend REST
API for data processing, authorisation, and authentication. The APl is protected by
HTTPS, validation, and auth middleware and will adhere to RESTful standards. It stores
and retrieves data by interacting with a MongoDB database.

Data Layer (Database & Storage): MongoDB Atlas is used by the data persistence layer
to store encrypted user credentials, patient information, and medications in a cloud
managed NoSQL database. To avoid unwanted access, the system has role based

access control in and backup capabilities.

Basic diagram outlining a high-level overview of the system architecture as seen in figure 10:

35

Front-end Back-end Database

s

MongoDB

%

Node.js

Figure 10 Architecture

3.7.2.2 Advantages of Three tier Architecture

There are various advantages to the three tier architecture:

Separation of concerns: The system is simpler to expand and maintain since each
layer concentrates on a different component.

Scalability: Due to its decoupling, each layer may be grown separately to deal with
growing traffic.

Security: There is less chance of data exposure because sensitive processes like
encryption and authentication are only managed on the backend.

Improved Maintainability: Faster development cycles are made possible by the fact

that code changes made to one layer wont immediately affect the other layers.

Using ALB for traffic control, CloudFront for content distribution, Route 53 for DNS resolution,

and EC2 for backend hosting, the architecture is deployed on AWS. These cloud based

solutions ensure the systems high availability, scalability, and security.

3.7.3 Technical Challenges and Mitigations

Below is list of the most important challenges for the application and their mitigation strategies

Challenges Mitigation Strategy

Data Security & Encryption Use AES256 encryption for sensitive patient &

prescription data, HTTPS/TLS for secure

communication

Scalability AWS EC2 autoscaling, AWS CloudFront to

serve and protect the static assets in the S3

bucket

36

Realtime notifications Socket.io for realtime notifications

Role Based Access Control Implement RBAC to restrict access to certain
routes in the application for both doctor &

pharmacist.

High Availability An Application Load Balancer in front of the

Nginx proxy server to ensure uptime

Frontend performance Optimise React with lasy loading,

memoisation, efficient state management

3.7.4 Cloud Infrastructure

Cloud infrastructure and deployment are fundamental for modern software systems since it
offers applications scalability, flexibility, and security. Cloud based deployment makes sure
fault tolerance and high availability while reducing operational expenses by removing the need
for on premises equipment.

Using several AWS services to manage frontend, backend, networking, security, and data
storage, the cloud infrastructure for this system is meant to be scalable, safe, and very

available.
Amason S3 - Static Asset storage for Frontend

Amason S3, arobust and scalable object storage solution, will host the React frontend. S3
offers a serverless and affordable solution for hosting static files, including photos, HTML, CSS,
and JavaScript.
Requirements:

e AWS restrictions are used to limit public access to CloudFront exclusively.

e Lifecycle rules and versioning for effective storage management.

Benefits:
e Benefits include durability and high availability (99.9% uptime).
e Delivery of content with low latency when combined with CloudFront CDN.

e Scalable storage that doesn’t require human involvement.

Amason CloudFront — Content Distribution

37

Amason CloudFront is used as a Content Delivery Network (CDN) to distribute frontend content
globally, ensuring low latency access for users. It caches static assets from S3 across edge
locations, improving performance and reducing load times.
Requirements:

e CloudFront distribution set up with S3 as the origin.

e TLS/SSL configuration using AWS Certificate Manager (ACM) for secure HTTPS access.

e |ambda@Edge function to handle security headers.
Benefits:

e Faster content delivery via edge caching.

e DDoS protection via AWS Shield integration.

e |mproved security with signed URLs and HTTPS enforcement.

Amason Route 53 — Domain hame management

Amason Route 53 is a scalable and highly available DNS (Domain Name System) service that
will manage the custom domain (healthservice.click) for the system.
Requirements:

e Custom domain name configuration for the front end and API.
o DNSrecords route traffic to CloudFront (frontend) and ALB (backend API).
e SSL/TLS security integrated via ACM.

Benefits:

¢ Low latency DNS resolution with high availability.
o Automatic failover in case of service outages.
e Easyintegration with AWS services for seamless routing.

AWS Web Application Firewall (WAF) — Security Layer

AWS WAF will be used to protect the frontend and backend from common web attacks, such as
SQL injection, XSS, and bot attacks.
Requirements:

o WAF rule set to filter malicious traffic.
e Integration with CloudFront for frontend protection.
¢ |P blocking and rate limiting to mitigate DDoS threats.

Benefits:

e Advanced threat protection for APIs and web applications.
¢ Blocks malicious traffic before it reaches the backend.
¢ Reduces security vulnerabilities and compliance risks.

38

Lambda@Edge — Security Headers Enforcement

AWS Lambda@Edge is used to execute custom logic at CloudFront edge locations, allowing
security headers to be applied before responses are sent to users. This ensures strict security
policies and prevents common web security vulnerabilities.
Requirements:

¢ Alambda@Edge function that modifies HTTP headers to include security policies.

e Integration with CloudFront to apply headers globally.

e Custom rules for CORS, Content Security Policy (CSP), and XSS protection.

Benefits:
e |t prevents security threats like XSS, Clickjacking, and CSRF attacks.
e Improves compliance with security standards (e.g., OWASP, GDPR, HIPAA).

¢ Reduces load on the backend by handling security at the edge.

AWS Certificate Manager (ACM) — SSL/TLS Security

AWS ACM provides SSL/TLS certificates to encrypt communications between the user and
the application, ensuring secure HTTPS connections.
Requirements:

e SSL/TLS certificate for both the frontend and backend domains.
e Automatic renewal to prevent certificate expiry issues.
e Integration with ALB and CloudFront.

Benefits:
e Ensures encrypted communication between users and the system.
e Simplifies certificate management with autorenewals.

e |mproves security compliance (GDPR, HIPAA).
Amason EC2 - Backend Compute Instance

Amason EC2 provides a virtual machine to host the backend Node.js API, running on an Nginx
proxy server for handling requests efficiently.
Requirements:
e EC2instance running Ubuntu with Node.js, Nginx, and PM2 for process management.
e Security group rules to allow only ALB traffic.

e Autoscaling setup for handling increased API load.

39

Benefits:
e High flexibility to scale compute power as needed.
e Customisable networking and security configurations.

e Reliable APl hosting with minimal downtime.

NGINX - Reverse Proxy for backend

Nginx is used as a reverse proxy server to handle incoming requests to the Node.js APl running
on EC2.
Requirements:

e Nginx configuration to route requests to Node.js.
e SSL termination using certificates from ACM.
e |oad balancing capabilities.

Benefits:

e Enhances backend performance by handling concurrent connections efficiently.
e |mproves security by hiding the internal structure of the backend.
o Facilitates SSL termination to manage encrypted connections.

Application Load Balancer (ALB) — Backend Load Balancing

AWS ALB distributes traffic between multiple EC2 instances running the backend API, improving
fault tolerance and reducing downtime.
Requirements:

e ALB listener rules to forward traffic from HTTPS (443) to backend instances.
e Health checks to ensure only healthy instances receive traffic.
e Security group rules restricting access only to Nginx proxy servers.

Benefits:

e Ensures backend availability & redundancy.
o Balances traffic efficiently to prevent overloading a single instance.
e Auto scale to handle sudden traffic spikes.

3.7.5 Development Environment — Security, Code Quality, Testing

The development environment for this project aims to ensure code quality, implement security,
and implement best practices all through the software development lifecycle. The development
pipeline has included several tools and techniques to do this. These technologies improve all

code linting, formatting, commit validation, security scanning, and automated testing.

Code Quality & Linting

40

The following technologies help implement best practices and avoid code smells:
ESLint:

e Astatic analysis tool that helps find syntax problems, enforce code styles, and prevent
possible bugs
e Best practices in JavaScript and TypeScript.

Prettier:

e Automatically formats code for readability and consistency.
e Maintain a uniform coding style across different team members.
e |ntegrated with ESLint to avoid conflicts between linting and formatting.

Husky:

e Enforces Git hooks to prevent bad commits and run linting and tests before pushing
code.

e Follow defined coding standards before committing changes.

e |ntegrated with ESLint and Prettier to block commits with syntax/style violations.

Commiitlint:

e Enforces a structured commit message format following Conventional Commits.
e |mproves commit history readability and helps with automated versioning and
changelogs.

Security & Vulnerability Scanning

In a healthcare related system, security is of the greatest concern as it concerns private patient
information. The following tools are combined to find security weaknesses and stop exploits:
Snyk:

e Scans dependencies for security vulnerabilities and suggests fixes.

e Provides Realtime alerts if a thirdparty package contains security risks.

e Help automate dependency management to prevent outdated or insecure packages
from being used.

SonarQube:

e Analyses code for bugs, vulnerabilities, and security risks.

o OWASP security best practices for secure development.

e Provides detailed insights into code quality metrics, such as maintainability, reliability,
and security.

Helmet.js (for Node.js API):

e Adds secure HTTP headers to protect against common web security threats such as
XSS, Clickjacking, and MIME sniffing attacks.
e Usedin combination with Lambda@Edge for security headers at the CloudFront level.

41

Automated Testing and Quality Assurance

Testing guarantees the system works as intended and helps to avoid regression problems.
Different facets of the system are covered by several testing frameworks:
Jest
e Unit testing of backend API functions and business logic.
e Ensures thatindividual functions work correctly before integration.
Vitest
o Lightweight alternative to Jest, specifically optimised for faster test execution.
e Usedinfrontend components testing to validate Ul logic.
Playwright

e Endtoend (E2E) testing framework for simulating real user interactions.
e Usedto test the React frontend and its integration with the backend API.
e Cross browser compatibility and user flow correctness.

Insomnia

e APl testing and automation to validate endpoint behavior.
e Used for manual and automated API testing before deployment.

3.7.6 Continuous Integration & Continuous Deployment

Using GitHub Actions, a Continuous Integration (Cl) pipeline will be included to automate
testing, security validation, and code quality checks. Maintaining code quality, security, and
dependability of the Doctor Pharmacist Secure Prescription System depends on the use of
Continuous Integration (Cl) and Continuous Deployment (CD). The CI/CD pipeline guarantees
that every code change is validated, secure, and effectively deployed to the production

environment.
YAML Syntax & GitHub Actions for CI/CD

To automate software development processes, GitHub Actions describes methods like building,
testing, security analysis, and deployment using YAML (.yml) configuration files. YAML is a
human readable data serialisation format that is often used for configuration files given its
simplicity and indentation based structure.

YAML (Yet Another Markup Language) is quite popular for designing workflows in GitHub
Actions. YAML files use a key value structure and depend on whitespace indentation rather than

brackets or commas.
GitHub Actions Workflow Structure

e Name -Process hame
o Triggers (on) - events activating the workflow under Triggers: push, pull request, main.

42

o Jobs - Aset of actions executed in parallel or sequentially.
e Steps - Individual tasks executed in sequence.
o Runners - The operating system (Linux, Windows, macOS) where jobs execute.

name: CI Pipeline # Workflow name

push:
branches:
- main
- develop
pull request:
branches:
- main
- develop

jobs:
build_and_test:
runs-on: ubuntu-latest # Specifies the runner environment

steps:
- name: Checkout Repository
uses: actions/checkout@v? # Pulls the latest code

name: Set up Node.js

uses: actions/setup-nod
with:
node-version: ‘18"

name: Install Dependencies # Clean installation
run: npm ci

name: Run ESLint
run: npm run lint

name: Run Unit Tests
run: npm test

|

Figure 11 Basic Pipeline

Backend CI/CD Pipeline Overview

Using GitHub Actions to automate testing, security checks, and deployment, the CI/CD process
of the backends runs in three stages.
ci.yml - Continuous Integration Pipeline

e Runs linting, formatting, and commit validation
e Executes unit and integration tests
e Ensures code quality before merging

security.yml - Security & Vulnerability Scanning

e Runs Snyk for dependency vulnerability detection
e Executes SonarCloud for static code analysis
e Ensuresthe backend code is secure

deploy.yml - Automated Deployment Pipeline

43

e Sets up environment variables using GitHub Secrets
e Deploys the backend to the EC2 instance
e Restarts the PM2 process to apply new changes

CIl/CD Benefits for Backend:

e Security Compliance - Using Snyk and SonarCloud, finds vulnerabilities before

deployment.

e Automated Deployments — Reduces human effort by deploying straight to AWS EC2.

e Sero Downtime Updates - Backend is updated without service interruptions.

e Efficient Issue Detection — Catches bugs and security flaws early in development.

Frontend CI/CD Pipeline Overview

The frontend CI/CD pipeline is responsible for code validation, testing, security checks, and
automatic deployment to Amason S3 and CloudFront.
ci.yml - Continuous Integration Pipeline

e Runs unit tests with Vitest
e Executes ESLint and Prettier for formatting and linting
e Commit message validation

playwright.yml - EndtoEnd Testing Pipeline

e Runs Playwright for Ul testing
e Uploads test reports for visibility
e Cachingto improve test efficiency

security.yml - Security & Vulnerability Scanning

e Runs Snyk to detect dependency vulnerabilities
e Executes SonarCloud for code security analysis

deploy.yml - Automated Deployment Pipeline

Configures AWS credentials for deployment

Build the React app using Vite

Deploys to Amason S3 (development or production bucket based on branch)
Creates a CloudFront cache invalidation for real time updates

CI/CD Benefits for Frontend

o Ensures Code Quality — Linting and formatting guarantee clean, readable code.

o Enhances Security — Vulnerability scanning protects against security flaws.

e Automates Testing — Unit tests (Vitest) and E2E tests (Playwright) prevent regressions.

44

e Fast Deployment - AWS S3 and CloudFront automation ensure smooth releases.

e Optimised Performance — CloudFront invalidation ensures users get the latest Ul

instantly.

3.8 Conclusion

The system will provide an easy user interface, prescription management, role based access
control, along with secure authentication. Technical criteria are cloud architecture, security

policies, and automated approaches for data protection laws compliance and scalability.

45

4 Design

4.1 Introduction

The Secure prescription systems design phase began after completing the requirements phase.
This section covers technical and visual aspects, with a focus on system structure, ux design,

and smooth integration.

4.2 System Architecture

As shown in the figure 12 below, the architecture of this system is a three tier client server
architecture where the client (doctor or pharmacist) sends HTTP requests to the server (NodelS

with express), which in turn communicates with the database (MongoDB).

Client Server Database

o9 HTTP Requests Request Data

Node.js .
MongoDB
HTTP Response JSON Response
I I ExpressJs -

Database
Figure 12 System Architecture

o Client Layer (Frontend): The client represents the doctor or pharmacist accessing the
system through a web interface that is developed using React.js alongside TypeScript.
The client communicates with the server by sending HTTP requests (via Axios/Fetch
API).

e Server Layer (Backend): The server built using NodelS and express.js handles
authentication, authorisation, prescription processing, pharmacist assignments, and
adding patients. It manages the business logic, notifications, and APl endpoints.
Realtime notifications are created through socket.io. The server then validates HTTP
requests, authenticates users, processes them, and will interact with the database, that

returns a JSON response with requested data.

46

e Database Layer (MongoDB): MongoDB is a NoSQL database used for storing users,
maintaining encrypted medical records, prescription data, and medications. It responds

with a JSON response when a query is made to the database.

4.3 Application Design

4.3.1 Technologies

4.3.1.2 Frontend Technologies

o React: Reactis a JavaScript library, that allows you to use modular and reusable Ul
components, while working with TypeScript for improved type safety, runtime error
reduction, tooling support, bug reduction, maintainability, and code reliability and
collaboration.

e Vite: Vite is a build tool for fast development builds and optimised production output,
significantly faster than webpack due to its ES module based hot module replacement

and optimised tree shaking and code splitting.

React + Vite + TypeScript

Figure 13 Frontend Tech

o ShadCN: is used for modern, accessible, and highly customisable Ul components.
Shadcn provided prestyled components with support for dark and accessibility. It
also integrates easily with Tailwind CSS and makes sure of a consistent Ul design
across the application.

e TanStack Query: TanStack Query is a tool for data fetching, caching, and
synchronisation with the backend API, it reduces unnecessary calls and optimising

performance as the application grows.

47

4.3.1.2.1

TanStack Router: TanStack router manages client side navigation with typesafe
route management, nested routing, code splitting, and optimisation for TanStack
Query, offering parallel Route Loaders, automatic prefetching, and error boundaries.
Figma: Creating interactive Ul prototypes and user interface designs. Figma
provided design specs for react component implementation.

Sod: Sod is a TypeScriptfirst schema validation package that ensures data accuracy
and type safety in form data and API POST requests, error messages and interaction
with form libraries like React Hook Form.

ReactHookForm: React Hook Form is a package that manages form state and
validation, realtime validation feedback, and lightweight compatibility with schema
validators like Sod.

Socket.io Client: The Socket.lO client library enables realtime communication
between the frontend and backend, enabling pharmacists to receive prescription
notifications from doctors, enhancing responsiveness and interaction through
persistent WebSocket connections.

Tailwind CSS: This CSS framework, which prioritises functionality, is used to style
frontend applications. Through the direct use of predefined classes in the HTML
framework, it facilitates quick user interface development with responsive and
uniform design. Tailwind facilitates accessibility, dark mode, and custom theming

while integrating easily with ShadCN components.
Backend Technologies

NodelJS: Node.js is a JavaScript nonblocking runtime environment, built on the V8
engine, enabling developers to create servers, web applications, command line
tools, and scripts, with asynchronous, event driven architecture for high load
performance.

ExpresslJS: Is a fast, lightweight web framework for handling APl requests. It also
supports middleware for authentication, logging and error handling. Simplifies REST
API creation for handling prescriptions, users, and orders.

Morgan: Morgan is a request logging middleware that records incoming HTTP
requests, helping developers track APl interactions, monitor performance, and
debug issues.

JWTs: JWT is a secure authentication mechanism used to generate signed tokens for
user sessions. It enables stateless authentication, reducing server side session

management overhead while ensuring secure APl access.

48

CORS: Cross Origin Resource Sharing (CORS) is a security feature that allows
controlled access to APIs from different origins. It ensures that only trusted frontend
applications can communicate with the backend, preventing cross origin security
vulnerabilities.

Nodemon: Nodemon is a development tool that automatically restarts the Node.js
application whenever changes are detected. This streamlines development by
eliminating the need to manually restart the server after making code updates.
OTPLib: OTPLib is a library used to generate and verify Time based One Time
Passwords (TOTP) for Multifactor Authentication (MFA), enhancing account security.
Dotenv: Dotenv is used to load environment variables from a .env file into the
application. This ensures sensitive configuration details, such as APl keys and
database credentials, are not hardcoded in the codebase.

Cookieparser: CookieParser is an Express.js middleware that parses incoming
HTTP cookies, enabling session based authentication and user session
management.

Bcerypt: is a cryptographic hashing algorithm used to securely hash user passwords
before storing them in the database. It implements salting to prevent brute force
atacks.

Node:crypto module: The built in crypto module in Node.js provides encryption,
hashing, and random token generation, ensuring secure handling of sensitive data.
Expressvalidator: ExpressValidator is a middleware that validates and sanitises
incoming APl requests. It prevents malicious inputs, enforcing data integrity and
security.

Helmet: Helmet is an Express.js middleware that enhances APl security by
configuring secure HTTP headers. It protects against vulnerabilities like cross site
scripting (XSS) and clickjacking.

Nodemailer: Nodemailer is a Node.js module that enables email sending directly
from the backend server, supporting SMTP and OAuth2 transport protocols for HTML
formatted emails with attachments or dynamic content.

xml2js: This Node.js lightweight XML parser. JavaScript objects are created from
XML data using JS. Structured XML input may be parsed into JSON format so that the
program may process it using xml2js. This facilitates the smooth integration of

external data into the system and makes working with third party data types easier.

49

4.3.1.3 Database Technologies

e MongoDB: MongoDB is a NoSQL database that provides flexible schema design, high
scalability, and fast query performance. It supports document based storage, indexing,

and replication, ensuring efficient data management.

0 MongoDB

a

e Mongoose: Mongoose is an Object Data Modelling (ODM) library for MongoDB. It

Figure 14 MongoDB

provides a structured schema definition, built in data validation, and middleware

support, simplifying database interactions.

4.3.1.3 Cloud Technology
A variety of AWS Cloud services will be used in the systems deployment to enable scalability,
performance, and security. Frontend and backend issues are separated by the cloud
infrastructure, which also enhances worldwide content delivery and guarantees secure
communication.
The following services will be used by the architecture:

e Amason Route 53 for custom domain routing

o Amason CloudFront as a global content delivery network

e Amason S3 to host the React frontend

e AWS Certificate Manager (ACM) for managing SSL/TLS certificates

e AWS Web Application Firewall (WAF) for threat mitigation

o AWS Lambda@Edge for applying security headers

e AWSEC2 to host the backend Node.js API

e Application Load Balancer (ALB) for backend traffic routing

e NGINX as areverse proxy on the EC2 instance

50

e MongoDB Atlas for cloud based database hosting
To maintain the systems security, high availability, and performance across many geographic

locations, these services were chosen.

4.3.2 Design Patterns

Software design patterns are very important tools for developers as they provide proven
solutions to common problems that are encountered during software development. If
developers can apply these patterns to their own project, they can create more robust,
maintainable and scalable software systems.

Design patterns act as reusable solutions for typical software design challenges. Design
patterns provide a standard terminology and are specific to scenarios and problems. They are

not finished code but templates or blueprints. (Geeksforgeeks, 2017)

Key Characteristics of Design Patterns:

o Reusability: The patterns can be applied to various projects and problems, saving time
and effort.

e Standardisation: Provide a shared language and understanding among developers

o Efficiency: Developers can avoid finding the solution to the same recurring problems,
which leads to faster development

o Flexibility: Patterns are abstract solutions/templates that can be adapted to fit the
requirements

Below will go into more detail around my chosen design pattern for this project
4.3.2.1 MRC Design Pattern

The Model Router Controller (MRC) pattern is a variation of the classic Model view controller
(MVC) pattern, specifically tailored for building RESTful APIs as there is no direct Ul layer in this
architecture. In this pattern, the view is replaced by the router because the APl will server JSON
responses instead of rendering HTML. The MRC pattern helps maintain a structured, modular,

and scalable backend by separating concerns into three layers:
Model (M) — Data Layer

The model represents the data structure and is responsible for interacting with the database. In
this case, MongoDB will be used alongside Mongoose as the ODM to define schemas and
interact with the database efficiently.

Responsibilities:

e Define Schema and data validation

51

e |Implement data relationships and indexing
e Provide querying mechanisms (CRUD operations).

e Encrypt or sanitise sensitive data before storing.
Router (R) — Routing Layer

The router acts as the middle layer between client requests and corresponding controller
functions. It defines the APl Endpoints and maps them to the right controller function.
Responsibilities:

e Define RESTful HTTP Endpoints (GET, POST, PUT, DELETE)

e Route requests to the appropriate controller function.

e Apply middleware functions (e.g., Authentication, role based access control).

e Ensure modularity and maintainability of the API.
Controller (C) — Business Logic Layer

The controllers need to contain the core logic of the API. It processes the requests, interacts
with the Model, and returns responses.
Responsibilities:

e |Implement Business logic (e.g., Data validation, prescription assignment)

e |nteract with the Models to perform CRUD Operations.

e Handle errors and validation responses

e Ensure datais formatted properly before sending it back

4.3.2.2 REST API

An APl is a secure interface used by computer systems to exchange data over the internet. It
defines rules for communication and acts as a gateway between clients and web resources.
Representational State Transfer (REST) is software architecture that imposes conditions on
APIls, enabling high performing, reliable communication on complex networks. A uniform
interface is crucial for RESTful webservice design, indicating that server information is
transferred in a standard format, known as a representation.

In REST architecture, stateless refers to a communication method in which the server
completes every client request independently of all previous requests. Clients can request

resources in any order, and every request is stateless or isolated from other requests. (AWS,

2024)

52

REST API IN ACTION

REST clients REST server

REST request B
—_— />
8 GET/POST/PUT/DELETE method HTML

resource
[jffjp

REST response EeSOLijes
XML/JSON format @

—_——
resource

O altexsoft

Figure 15 REST API
4.3.3 Database Design

4.3.3.1 Introduction to Database Design

Database Design is a crucial aspect of developing a secure, scalable, and high performing
application. The database structure determines how the data is stored, retrieved, and managed,
impacting the efficiency and security of the system. In this project, MongoDB Atlas will be used

as a NoSQL database, designed to store structured and semi structured data effectively.
Why MongoDB?
MongoDB is a document-oriented NoSQL database that provides:
e Scalability: Can handle large volumes of data using sharding and replication.
o Flexibility: Supports dynamic Schema to allow changes without breaking the database.

e High Performance: Indexing and embedded documents to improve query speed

e Security: Supports encryption, access control, and IP whitelisting

4.3.3.2 Database Schema Overview
The database is designed using a relational structure within a NoSQL framework. It consists of
the following main collections (tables in SQL terms):

e Users - Stores doctors and pharmacists

o Patients — Stores patient records

e Prescriptions — Stores medical prescriptions

e Medications - contains real distributable medications in Ireland

e Appointments — Contains the patient appointments

Each collection uses references (Objectlds) to efficiently manage relationships

53

4.3.3.3 Entity Relationship Design

An ERD diagram is a type of flowchart that illustrates how “entities” such as people, objects or
concepts relate to one another. ER diagrams are often used to design or debug relational
databases. Also known as ERDs, they use a defined set of symbols, such as rectangles,
diamonds and ovals. (LucidChart, 2024)
ER diagrams are related to data structure diagrams (DSDs), which focus on the relationships of
elements within entities instead of the relationships between the entities themselves.
Uses:
o Database design: Used to model and design relational databases. In terms of logic and
business rules and in terms of specific technology to be implemented.
o Database troubleshooting: ER diagrams are sued to analyse existing databases to find
and resolve problems in logic or deployment.
o Guiding Implementation: ERDs can act as a blueprint for actual database schemas.
Developers can use this diagram to implement tables/models, fields, and relationships
in the database.

Below in figure 16 is the ERD designed to outline the relationship between the various models.

54

Appaintment

PE | _id

dociorld (Otjectkd)
pasizntid (Chjectid)
dste (Date)

status (Siring ENUM]

pharmacistiate [String)

Figure 16 ERD

nofEs (String)
Crastzdis (Date)
updatedAt (Date)
User = Patient
_id PR | _id
email [String) firsth=me {String)
password (Siring) lastMame (String)
licenzetumber {String} dob {Diate)
Rele [Pharmacist] doctorld (Objectid)
Rele [Doctor] presenigtions [(Objectid)]
mizSecret {String) pender {String EMUN)
misEnabled (Boolean) phoneMumber (String)
is\eified (boolean) email {String)
werification Token (String) address (3tring)
warification TokenExpires {1 medicalHistony(Sting)
emergencyContactSiring)
cres=ddn Date)
Medication] Prescription
Item
_id PK | _id
_id
name (Saring) ctatus (String ENUM
specificinstructions (String)
aciiveSubstance (Siring) notes | Siring)
repeats {Number)
authonsstonMumber (Strin crea=ddt (Date)
dosage | Sting)
ateCode (String) updatedat (Date)
amount { String
routeCdAdministration (S item [(Oijectid) |
medications [Cigjectid)]
producild (String) doctorld (Objectid)
prescrighicnld {Objecid)
createdAs (Date) pharmacistld (Chjectd)

patientld (Cbjectd)

55

4.3.4 Process Design

Process design is a systematic method in software development that outlines the functionality
and maintenance of software applications. It involves simulating data flow, input output
conversion, and system component interactions. The main objective is to ensure the software
operates effectively and predictably, using tools like flowcharts, sequence diagrams, and

activity diagrams to visualise and record system behaviour and logic (Sommerville, 2016).

4.3.4.1 Sequence Diagrams

Sequence diagrams are a crucial part of Unified Modelling Language (UML) that visualise object
interactions in a sequential order. They help model dynamic behaviour in systems, understand
use cases, design system architecture, and document complex processes. They clarify system
logic, define component responsibilities, and ensure system functionality. They also help
developers identify workflow issues early and serve as documentation for handling complex
processes (GeeksforGeeks, 2023). Below in figure 17 is the sequence diagram created for the

authentication flow.

Lagin Validate MFA Database

Doctor

Click Login

- - ! ! | | ! | —
ValidateUser (emall, password) amail: found, password: matched Enter TOTP from Authenticator

JWT issued
patientsList patlantsList
JWT verifled
LoginSuccess message

patientsList
dlsplay: patlentsList

Figure 17 Sequence Diagram 1

56

Below in figure 18, created this sequence diagram to outline the sequence of events for a

pharmacist working with the prescriptions

l, ___/:' Prescriptions Single prescription Medications Orders

bharrljl acist

Click Prescriptions

View assignad Prascription Medication not in stock

Create an Onder
Updats Status - Pending

-
Update Status - Medication not in stock -
P A Update Status - Order pending

W Madication available Process Order

Update Status - Order fulfilled

Update Status - Prescription fulfilled - Updata Status - madication in stock

| D'\s_play prescrl’pﬁo_ns |

Figure 18 Sequence Diagram 2
4.3.4.2 Flow Charts

A flow chart is a visual representation of a process sequence of steps and decisions, illustrating
the operating processes through basic shapes and symbols. Originating from industrial
engineers, flow charts are used in various fields like engineering, education, and science. They
are often used in early development stages for requirement analysis, process design, system
documentation, and debugging. Visualising the process flow can improve communication,
minimise miscommunication, and agree on desired results, making it adaptable for both
developers and non-developers (Lucidchart, 2023).

Below in figure 19, created a flow chart in Lucid chart to show the user flow for a doctor working

with patients.

57

!

No

User verified, m—b- Patient exists,
[y

{

Figure 19 Flow Chart 1

In figure 20, we can see the user flow for a pharmacist working with prescription.

Figure 20 Flow chart 2
4.4 User Interface Design

The application design stage involves user interface design, using wireframes for each screen
and components from the Open Source project Shadcn. Shadcn offers modern design
principles, flexibility with TailwindCSS, and seamless integration with React. It provides
accessible, customisable components built on Radix Ul and Tailwind CSS, ensuring compliance

with WCAG standards and making the application usable for a broader audience.

4.4.1 Wireframes

For the authentication wireframes, to present a clean and well structured user flow for logging in

and registering. Here’s a breakdown of the design

58

e Account Creation — Users enter their email, password, license number and select a role
to sign up

e Multifactor Authentication (MFA) Setup — A QR Code is presented for users to scan with
an authenticator app of their choice such as Microsoft authenticator.

e Login Screen - Users enter their email and password to sign in.

o MFA Code Entry — Users input the time based OTP (One Time Password) to complete the

login process

Figure 21 Authentication Designs
The main dashboard that is used for pharmacists and doctors, follows a dark theme with a data

driven Ul, showcasing critical patient, prescription or medical information in an organised and

accessible manner. It facilitates quick navigation and decision making

Figure 22 Dashboard designs

4.4.2 Design System

4.4.2.1 Key Components

e Typography

o Features a clear, readable typographic hierarchy, with distinct H1, H2, H3, and
paragraph styles

o Chosen fontis modern and minimalistic, ensuring readability.
o Strong emphasis on contrast for accessibility

e Color Palette
o Organised shades of grey, blue, and red, allowing flexibility.
o The contrast in colours follow WCAG accessibility guidelines

e Ul Components

59

O
O

e Navigat
O

O

A collection of essential ShadCN Ul elements is included to ensure consistency:
Buttons (Primary, Secondary, Destructive, Loading States)

Radio Groups (Used for selections with clear states)

Text areas & Inputs (Form elements with proper spacing and labels)
Dropdowns & Select Menus (Ensuring easy navigation and interactions)
Tables & Data Lists (For organising large data sets efficiently)

ion & Sidebar

Dark mode optimised navigation panel for ease of access.

Streamlined Ul for improved efficiency, reducing cognitive load.

yyyyyyy

The Peaple of th
3

m
Taxing Laughter: The Joke Tax
Chronicles

e Kingdom

et gl

Figure 23 Design system

4.5 Conclusion

The PharmalLink design system is designed for doctors and pharmacists to balance usability,

accessibility, and aesthetics. It uses Tailwind CSS, ShadCN, and a well organised component

library for scalability and ease of development. Key design features include dashboards,

structured navigation, and a dark themed interface. It supports seamless workflow for

prescriptions, p

atient records, and appointments.

60

5 Implementation

5.1 Introduction

The chapter details the implementation of the Secure Prescription System, focusing on
translating database schema, user interface designs, and architectural designs into a functional
application. It covers the development environment, frontend and backend projects, cloud
infrastructure integration, and CI/CD pipelines. The focus is on transforming conceptual models

into actual code, ensuring a secure, scalable, and maintainable application.

5.2 Development Environment

The Secure Prescription System project was developed using a modern, developer friendly
environment, including Visual Studio Code (VS Code), ESLint, Prettier, and VS Code. Git was
used for version control, ensuring code quality and avoiding conflicts. Commitlint and Husky
hooks were integrated into the development pipeline for standardisation. Insomnia was the
primary tool for manual REST API testing, verifying backend endpoints and ensuring the API
followed expected behaviour. The project also utilised Insomnia for data forms for the frontend,
supporting environment variables, authentication headers, and JSON response visualisation.

Below in figure 24, we can see the various APl endpoints for testing with the insomnia Ul.

61

Major-Project-Backend ~ X * search Medication

@ Base Enviro
© Manag

ervice: et from URL © Bul

% Appointments Abacavir, Lantvudine

BE Delete an Appointment
an Appointme
an Appointment

Get Single Appointment

@ Get All Appointm

& Medications

Update a Patient AMOAESA
5 —
BT Create a Patient a/044/601 604

04-84109:0

@0 Get Single Patient
G Get All Patient
& Prescriptior

Bl Update prescription Status

B Delete a prescription “Subcutaneou

14/944/605-008

M Update a Prescription 25-04-84709:01:22
BOST) Create Prescrip

G Get Single Prescription

G Get all Prescription:

MFA

BOSEl MFA Login

Get Single Pharmacis

TS Get all Pharmacist

OS] Login User

POST. Register User 001-005"
£4-94709:01:2
POSE! Logout User

04-04709:0

Figure 24 Insomnia

Figure 25 VS Code

5.3 Database

A MongoDB Atlas cluster was established for document storage, including users, patients,
prescriptions, and medications. MongoDBs built in features, including IP whitelisting,
monitoring, and automatic backups, ensured security and reliability. AMongoDB connection
string was created from the Atlas dashboard for backend application communication, which
was securely saved in a .env file under MONGO_URI to avoid credential exposure.

Below in figure 26, we can see the setting up a MongoDB cluster in MongoDB Atlas.

63

Connect to Major-Project

o v ®

Set up connection security Choose a connection method Connect

Connecting with MongoDB Driver

1. Select your driver and version

we recommend installing and using the latest driver version.

Driver Version

Mongoose hd ‘ | 7.0 or later hd

Deciding between Mongoose and the Mode.js Driver? Learn more about the differences®

2. Install your driver

Run the following on the command line
Node.js must be installed as a prerequisite. Download Node.js®

npm install mongoose
View MongoDB Mongoose installation instructions. ®
3. Add your connection string into your application code
Use this connection string in your application

(B view full code sample

mongodb+srv: //1liamronanlé: <db_password>@major-project.hzgvl.mongodb.net/?
retryWrites=truedw=majority&appName=Major-Project

2

Replace «db_password> with the password for the liamrenan1é dotabase user. Ensure any option params are

URL encoded & .
RESOURCES
Mongoose Quickstart @ MongoDB & Mongoose Starter App®
Access your Database Users® Troubleshoot Connections ©

‘ Go Back ‘

Figure 26 MongoDB Atlas

64

5.4 Cloud Infrastructure

5.4.1 Overview

The Secure Prescription Systems cloud infrastructure was built using AWS services and
MongoDB Atlas for a scalable, secure, and high performing deployment. The infrastructure
supports a three tier architecture: frontend, backend, and database. MongoDB Atlas hosts the
database, while EC2 and NGINX handle backend hosting, ALB for load balancing, and Amason
Route 53 for DNS routing. Security measures include SSL/TLS and AWS WAF.

A high level architecture diagram illustrating the integration of each service may be found below

S—
} Aaces: mazon EC2
i o]
el ® it £
AwshwaF
i s
R e
nnnnnnnnnn
22 A e e\ bl N Rt e
- E y) - E -~ R PO i
By~ b N P I R 1 2 M e Lo smen gk =]
3

Figure 27 Cloud Infrastructure

5.4.2 Backend

The Secure Prescription Systems backend APl was developed using Node.js and Express and
deployed on an Amason EC2 instance for scalability and control. The architecture is protected
and optimised using NGINX, ALB, ACM, and DNS routing. The backend is hosted on an Ubuntu
powered EC2 instance, with additional software like NGINX installed on the virtual server

(Amason Web Services, 2023).

Amason EC2 (Elastic Compute Cloud)

Configuration Steps:
e Chose at2.micro instance for the backend
e Created a new security group to only allow SSH (port 22) only from my IP, allow HTTP
(port 80) and HTTPS (Port 443) access only from the ALB (application load balancer), and

to block all other external access.

65

Security Groups (3) info @ Export security groups to CSV E) Create security group

[Q. Find resources by attribute or tag] 1 e

Name v | Security group ID v | Security group name v | vPCID v | Description v | Owner
- 50-Obabe3441751cfc7 ALBSG ¥pC-0675b1128c506f6ba [2 allows inbound from theiinternet onpo... 730335616885

- 50-03a8f17c65b06221 default ¥pC-0675b1128c506f6b4 [2 default VPC security group 730335616885

0O00oo

- 59-00ec9ca08fde01133 launch-wizard-1 vpc-0675b1128¢506f6b4 [2 launch-wizard-1 created 2025-01-15T2... 730335616885

Figure 28 EC2 Security Groups

e Then connected to the instance via SSH using a generated PEM key which is a container

format used for storing cryptographic keys

[nodels-api rsa 2025/01/15 ... 60:99:3f:d0:5... key-Oacaa3823ccla26a?
Figure 29 SSH PEM Key

e When inside the ubuntu machine, installed various programs and or packages such as
NodelS, PM2 for process management, NGINX to serve as a reverse proxy and git to
clone the project repo.

o Pulled the backend codebase, used npm install to fetch dependencies, and created a
.env file with secrets and MongoDB credentials

e Could then start the API server using pm2 start server.js and enabled boot persistence

with pm2 startup
NGINX — Reverse Proxy Setup

NGINX was configured as a reverse proxy to receive HTTP traffic from the ALB and forward it
internally to the Node.js application running on the port specified in the .env file (e.g., port
3001). This adds a layer of security and abstraction while also handling tasks like compression
and connection handling more efficiently than Node.js alone.

Configuration:

May edit the NGINX config file with sudo nano /etc/nginx/sites/available/default

66

Figure 30 NGINX Config

Restarted NGINX with sudo systemctl restart nginx. This allowed the EC2 instance to receive
traffic on port 80 and forward it internally to the API via part 3001(.env), keeping the app isolated

and protected.
Application Load Balancer (ALB)

The backend APl is protected and routed through an Application Load Balancer (ALB), which is
configured to distribute traffic securely and efficiently to the EC2 instance running the Node.js
server. As shown in Figure X, the ALB named healthserviceapialb is set up as an internet facing

load balancer spanning multiple availability sones for high availability.

67

health-service-api-alb ©

¥ Details
Load balancer type Status VPC Load balancer IP address type
Application @ Active VpC-0675b1128c506f6b4 [2 1Pvd
Scheme Hosted zone Availability Zones Date created
Internet-facing 732012XQLNTSW2 subnet-0685d94cf173d184d [eu-west-1b (euwl-az1) January 28, 2025, 18:31 (UTC+00:00)
subnet-0b6265d 133863239 [7 eu-west-1c (euw1-az2)
Load balancer ARN DNS name Info
I5 am:awseelasticloadbalancingreu-west-1:7303356 16885 0adbalancer/app/health-service-api-alb/ 1cd8 1fe917e87113 TG health-service-api-alb-15! 458.eu-west-1.elb om (A Record)
Listeners and rules Network mapping Resource map Security Monitoring Integrations Attributes Capacity Tags
Listeners and rules (2) info @ Manage rules ¥ Manage listener ¥ Add listener
Alistener checks for connection requests on its configured protocol and port. Traffic received by the listener is routed according to the default action and any additional rules.
[Q Filter listeners] 1 i3
O | Protocal:Port v | Default action v | Rules v | ARN ¥ | Security policy v | Default SSL/TLS certificate ¢ | mTLS 9 | Truststore

Redirect to HTTPS://#{host}:443/#{path}?
O HTTP80 #lquery} 1rule T5 ARN Not applicable Not applicable Not applicable Not applice
 Status code: HTTP_301

Forward to target group
O HITPS443 - nodejs-target-group [7: 1 (100%) 1rule 5 ARN ELBSecurityPolicy-TLS13-1-2-... health-service-api.click (Certifi... off Not applic:
« Target group stickiness: Off

Figure 31 Application Load Balancer

In the listeners and rules section, two key listeners are configured:

e HTTP (port 80): This listener automatically redirects all unsecured HTTP requests to
HTTPS using a 301 redirect. This ensures that all incoming traffic is encrypted before
reaching the application.

o HTTPS (port 443): This is the main listener that accepts secure traffic. It uses an
SSL/TLS certificate issued through AWS Certificate Manager (ACM) for the domain
healthserviceapi.click. The certificate is attached to this listener, allowing the ALB to
terminate SSL connections, i.e., decrypt HTTPS traffic at the load balancer level.

The decrypted requests are sent internally to the target group, that manages the backend EC2
instance, when the SSL handshake is finished. By removing the encryption workload from the
EC2 instance, this configuration increases security by guaranteeing end to end encryption for
users and boosts speed.

Because the ALB is connected, harmful traffic can be filtered and blocked before it reaches the
backend application. Under various traffic scenarios, the backends scalability, security, and

performance are guaranteed by this multilayered setup. (Amason Web Services, 2023).

AWS Certificate Manager (ACM) — SSL/TLS Certificate Provisioning

Using AWS Certificate Manager (ACM), an SSL/TLS certificate was provisioned to allow users
and the backend APl to communicate securely over HTTPS. The Application Load Balancer
(ALB) uses this certificate to manage SSL termination and was set up especially for the domain
healthserviceapi.click.

The certificate has been issued, validated, and is now in use, as seen in Figure Y:

68

3820b256-efff-44db-9ff9-adede1518417

Certificate status

Identifier

3820b256-efff-44db-9ff9-adede 1518417

ARN

I0) arm:aws:acm:eu-west-1:730335616885:certificate/3820b256-efff-44db-9ff9-adede 1518417

Type
Amazon Issued

Domains (1)
Domain | status Renewal status
health-service-api.click @ Success

Details

In use Serial number

Yes 0f:1d:04:de:01:78:6a:92:7b:57:1e:2b:c8:ed:a3:a3

Public key info
RSA 2048

Domain name

health-service-api.click

Number of additional names Signature algorithm
0 SHA-256 with RSA

Can be used with
CloudFront, Elastic Load Balancing, APl Gateway
and other integrated services. [2

Status
@ Issued

C Create records in Route 53) (Export to CSV 3)

1

Type | CNAME name | CNAME v
[]
[5] _77e538f6bbcd788bf86eb4418¢40e170.health-
CNAME N _9d268b8
service-api.click. Talidation

>

Requested at
January 28, 2025, 17:39:25 (UTC)

Renewal eligibility
Eligible

Issued at
January 28, 2025, 17:39:38 (UTC)

Not before
January 28, 2025, 00:00:00 (UTC)

Not after
February 26, 2026, 23:59:59 (UTC)

Figure 32 API SSL Cert

Amason Route 53 — Domain hame management

AWS scalable Domain Name System (DNS) web service, Amason redirect 53, to handle custom

domain names and redirect traffic to the Secure Prescription Systems frontend and backend

endpoints. For dependable and secure domain management, Route 53s low latency and highly

accessible DNS routing is crucial. (Amason Web Services, 2023).

Route 53 to setup two custom domain names:
e Healthserviceapi.click

e Healthservice.click

Hosted zones (2)

Automatic mode is the current search behavior optimized for best filter results. To change modes go to settings.

[Q Filter records by property or value

Hosted zone name v | Type v | Created by
o health-service-api.click Public Route 53
o health-service.click Public Route 53

@ View details Edit Delete Create hosted zone
) R
v | Record count v Description v | Hosted zone ID v
5 HostedZone created... Z0101728CNA35TH. ..
6 HostedZone created... Z091131627CI9XN7....

Figure 33 Domain Names

69

Alias records were used to connect each domain to its resource, enabling interaction with
CloudFront and ALB without requiring IP addresses. The ACM certificate was also validated
using DNS records, allowing for safe, HTTPS based access.

Avital component of the safe, cloud native infrastructure, Route 53 guarantees low latency

routing, intelligent failover, and smooth AWS integration.

5.4.3 Frontend

The Secure Prescription Systems React based frontend was implemented using AWS services
like React with Vite, Amason S3, CloudFront, ACM, WAF, Lambda, and Route 53, ensuring fast
performance, global accessibility, and robust security for a scalable and secure frontend

experience under www.healthservice.click.
Amason S3 - Static hosting of React App

After Vites compiling of the React application, the static files were uploaded to Amason S3,
which is CloudFront origin. Two S3 buckets were built by me:

e healthservicefrontenddev for development

e healthservice.click for production
Each buckets "Properties" tab had static website hosting enabled. All public access was shut
down to ensure security. Rather, set up Origin Access Control (OAC), which restricts item
retrieval from the S3 bucket to CloudFront alone. This stops the files from being accessed
directly from the public internet.
Used an automated workflow to deploy the application, using npm run build and then uploading
the contents of the dist folder. Bucket versioning was also enabled to track deployment history

and facilitate rollbacks. (Amason Web Services, 2023).

General purpose buckets (4) info @ [0 Copy ARN Empty Delete Create bucket
Buckets are containers for data stored in S3.
[Q Find buckets by name] 1 @
Name a | AWS Region v 1AM Access Analyzer Creation date v
O dev-health-service-app Europe (Ireland) eu-west-1 View analyzer for eu-west-1 January 28, 2025, 21:14:50 (UTC+00:00)
0] health-service.click Europe (Ireland) eu-west-1 View analyzer for eu-west-1 January 24, 2025, 16:43:35 (UTC+00:00)
o] pigeon-api-file-upload Europe (Ireland) eu-west-1 View analyzer for eu-west-1 November 11, 2024, 20:59:44 (UTC+00:00)
O www.health-service.click Europe (Ireland) eu-west-1 View analyzer for eu-west-1 January 24, 2025, 16:56:22 (UTC+00:00)
Figure 34 S3 Buckets

70

Below in figure 35 we can see the static files last modified date:

health-service.click i

Objects Properties

Objects (3)

Permissions Metrics

@ (@ens

Management Access Points

& Download Open [2

Create folder) (FadUpIoad

Obijects are the fundamental entities stored in Amazon S3. You can use Amazon 53 inventory [7 to get a list of all abjects in your bucket. For others to access your objects, you'll need to explicitly grant them

permissions. Learn more [3

| Q@ Find objects by prefix
[Name a | Type
O 0 assets/ Folder
O [indechtml html
O D viteswg svg

v | Last modified v | size

March 23, 2025, 14:05:21
(UTC+00:00)

March 23, 2025, 14:05:21
(UTC+00:00)

Figure 35 S3 Latest Files

1 @

v | Storage class v

46108 Standard

15KB Standard

Amason CloudFront — Global Content Delivery Network

The Amason CloudFront distribution, with the production S3 bucket as the origin, provides

global performance and minimal latency for the React frontend. CloudFront caches static

assets across AWS edge locations, serving as a Content Delivery Network, reducing user access

time (Amason Web Services, 2023).

To make sure that CloudFront connection is encrypted, added an SSL/TLS certificate from AWS

Certificate Manager and enforced HTTPS only access during setup. Gsip compression and

caching were turned on to minimise file sises and enhance end user load times.

E340QBD9DBBOIW
General Security Origins
Details

Distribution domain name
[0 dgho1dhie7i23.cloudfront.net

Settings

Description

Price class
Use all edge locations (best performance)

Supported HTTP versions
HTTP/2, HTTP/1.1, HTTP/1.0

Continuous deployment info

Behaviors

Error pages Invalidations Tags

ARN

[u]
arn:aws:cloudfront::730335616885:distribution/
E340QBD9DBBOIW

Alternate domain names
www._health-service.click
health-service.click

Customn SSL certificate
@ health-service.click [2

Security policy
TLSv1.2_2021

(Create staging distribution)

Figure 36 CloudFront Distribution

View metrics

Logging

Last modified
March 23, 2025 at 1:13:37 PM UTC

Standard logging
off

Cookie logging
off

Default root object
index.html

71

Managing cache invalidations is an essential aspect of using a CDN. CloudFront could keep

serving out of date cached files from edge locations after deploying a new frontend version to

the S3 bucket. Set up CloudFront invalidations to fix this. To guarantee that users receive

updated files right away after deployment, sent invalidation requests, focusing on paths like /*.

Users will always view the most recent version of the program without any delays thanks to this

procedure.

Invalidations

[Q Filter invalidations by property or value

O 0O O 0O O 0O 0O 0O 0 0o

Invalidation ID

12EBHZKNMHUSRJIMWMS225XTE4

IBHNCRMMG50VQ6Y466Z7 OH7N8M

IFQLLTPZU3MYFDMA4X8AYGGPFQ

1TAMO17C9U6ZELWBQISACPPTQ8

147BA5SROOR50N3034V36CLQNH2

14BQEWRE827Z1L 8B3DS8QU39FLLY

I9E7JMTNANTOOXTE6DNB12W64DL

1696HBS96Z088C47IR64AXB6V64

1214DKWK100PB3B4FCLNZRTNGO

1927GOVL36VXZ9HFL655Z5JJE1

v | Status
@ Completed
@ Completed
@ Completed
@ Completed
@ Completed
@ Completed
@ Completed
@ Completed
@ Completed

@ Completed

Figure 37 Cloud Invalidations

View details

v |

Copy to new
1 2
Date created
March 23, 2025 at 2:05:21 PM UTC
March 23, 2025 at 1:13:43 PM UTC
March 23, 2025 at 12:53:11 PM UTC
March 23, 2025 at 12:44:00 PM UTC
March 23, 2025 at 12:38:21 PM UTC
March 23, 2025 at 12:33:19 PM UTC
March 23, 2025 at 12:21:36 PM UTC
March 23, 2025 at 12:14:51 PM UTC
March 23, 2025 at 12:09:20 PM UTC

March 21, 2025 at 9:24:22 PM UTC

Create invalidation

3.4 > @

v

Security is enforced at the CDN level in addition to performance enhancement. Combined the

CloudFront distribution with AWS WAF (Web Application Firewall) to stop malicious or

suspicious traffic before it even gets to the S3 origin.

AWS WAF Web Application Firewall

The CloudFront distribution and AWS Web Application Firewall (WAF) were combined to protect

the frontend from common web threats like SQL injection, XSS, and bot attacks. Custom rate

based rules and AWS Managed Rules were implemented to restrict excessive requests from a

single IP address, reducing server burden and potential risk (Amason Web Services, 2023).

v Security - Web Application Firewall (WAF) i

Core protections

» CloudFront geographic restrictions

Figure 38 CloudFront Web Application Firewall

Keep your application secure from the most common web threats and security vulnerabilities using AWS WAF. Blocked requests are stopped before they reach your web servers.

72

Lambda@Edge - Injecting Security Headers

Implemented a Lambda@Edge function that inserts HTTP security headers into each response
to enforce browser level security regulations. After CloudFront retrieves content from S3, but
before sending it to the client, the function is activated during the origin response phase.
Without needing modifications to the S3 files, this method allows for centralised and uniform
security enforcement across all client responses (Amason Web Services, 2023).

To enforce safe browser behaviour without requiring changes to the static files housed in S3, the

functions main goal was to dynamically insert HTTP security headers into each response.

- - ~ N ~
fixSecurityHeaders (_mhwottie) (15 copy arN J(Actions v)
5 . - ~ ~
¥ Function overview i (_Export ta Infrastructure Composer) (Download ¥)
[,\5 fixSecurityHeaders I
1dayago
S s ©
Function ARN
(+ addrrigger) (+ add destination) D) amuawsdambdaus-east- 1730335616885 function:fixSecurityHe
S—— _ aders
Function URL Info
Code Test Monitor Configuration Aliases Versions
Code source 1o (_uptoad from w) (v)
faSecurinencers Coonx
0 -

~~~~~~ t-src 'self' https://health-service-api.click; img-src 'self’ data:; font-src ‘sel

Figure 39 Lambda@edge Security Function

The function added the following headers;

e Content Security Policy: By specifying which sources the browser may load material
from (such as scripts, fonts, and images), the material Security Policy (CSP) prevents
data injection and crosssite scripting (XSS) attacks. Even if malicious scripts are
introduced into the website, it stops them from running (MDN Web Docs, 2023).

e Strict Transport Security (HSTS): By requiring the browser to view the website
exclusively over HTTPS, even if the user manually inputs http://, Strict Transport Security
(HSTS) guards against protocol downgrade and man in the middle (MITM) attacks

(OWASP, 2021). This guarantees always encrypted communication.

73



e XContentTypeOptions: This header stops browsers from trying to guess the file type, a
practice known as MIME type sniffing. A file meant to be plain text could be interpreted
and run as JavaScript if this limitation wasn’t in place. XContentTypeOptions Setting:

Strict MIME type compliance is enforced by no sniff (OWASP, 2021).

AWS Certificate Manager (ACM) — SSL/TLS Encryption

Issued an SSL/TLS certificate for the domain www.healthservice.click using AWS Certificate
Manager (ACM) to safeguard data sent between users and the application. ACM manages the
automatic issue, validation, and renewal of certificates (via DNS in Route 53). After that, the
certificate was added to the CloudFront distribution, allowing all client connections to be

encrypted over HTTPS (Amason Web Services, 2023).

By eliminating the need for manual certificate installation or renewal, ACM streamlines SSL

administration and guarantees encrypted transmission.

5.4.4 Summary

The Secure Prescription System uses Amason Web Services (AWS) for its cloud infrastructure,
ensuring security, scalability, performance, and high availability. The frontend and backend
follow best practices for fault tolerance, security, and deployment. An EC2 instance hosts the
Node.js and Express API, while NGINX serves as a reverse proxy. An Application Load Balancer
manages SSL termination with certificates provided by AWS Certificate Manager (ACM).
Amason Route 53 manages custom domain resolution, and security groups regulate access.
The frontend is stored on Amason S3 and compiled into static files using React and Vite.
Amason CloudFront distributes these files globally, and AWS WAF safeguards the distribution.
ACM enforces SSL/TLS encryption and Route 53 manages domain routing. This architecture
provides a secure, dependable, and responsive application environment that meets current

demands and can grow with future demands.

74



5.5 Continuous Integration & Continuous Deployment

5.5.1 Overview

This project utilises GitHub Actions to create a Continuous Integration and Continuous
Deployment (CI/CD) pipeline to maintain high code quality, security, and dependability while
streamlining the development lifecycle. CI/CD automates testing, code validation, and
deployment, reducing manual work and human error. Code changes sent to a version control
system are automatically built and tested, preventing bugs from production and ensuring
seamless integration with the current codebase. CD automates the release process, only
deploying new code after successful checks. GitHub Actions interface with GitHub allows for
automatic workflows, promoting an agile development process and preserving code integrity.
Cl/CD implementation also reduces time to deploy, increases system dependability, and allows
sero downtime improvements through automatic CloudFront cache invalidation and backend

process management with PM2.

5.5.2 Backend

5.5.2.1 Security

A specialised security pipeline was set up using GitHub Actions, combining SonarCloud for
static code analysis and Snyk for dependency vulnerability scanning, to protect the backend
codebase from known vulnerabilities and preserve a high degree of code quality. This pipeline
makes sure security checks are a part of the continuous integration process by running

automatically on all pull requests and on every push to the main or development branches.

75



name: Security Scan

on:
push:
branches:
- main
- develop
pull_reguest:

jobs:
security:
name: Security Scan (Snyk)
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkoutiva

- name: Install Node.js
uses: actions/setup-nodegvd
with:
node-version: '18°
cache: "npm’

- name: Cache Snyk CLI
id: snyk-cache
uses: actions/cacheivi
with:
path: ~/.npm
key: snyk-3{{ runner.os }}-%{{ hashFiles{'package-lock.json'} }}
restore-keys: snyk-3{{ rumner.os }}-

- name: Install Snyk CLI (Only If Mot Cached)
if: steps.snyk-cache.outputs.cache-hit != "true’
run: npm install -g snyk

- name: Display Snyk ASCII Logo & Run Security %can
run: |
echo "
echo " f
echo " | {__
echo " A ||
echo " __ )| I_|
echo " | S LIl
echo " Running Snyk Security Scanm...”
snyk test --severity-threshold=high || echo "Medium/low wulnerabilities detected but not failing the build”
anv:
SNYK_TOKEN: ${{ secrets.SNYK_TOKEN }}

sonarcloud:
name: SonarCloed Scan
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkoutivd
with:
fetch-depth: @ # Required for SonarCloud te analyze commit history

- name: Run SonarCloud Analysis
uses: SonarSource/sonargube-scan-actiongva
anv:
SOMAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
SOMAR_HOST_URL: “https://sonarcloud.io’

Figure 40 Security Pipeline

Snyk — Dependecny Vulnerability Scanning

A Snyk scan is a crucial task in the security workflow, comparing dependencies to a regularly

updated vulnerability database. This is essential for Node.js apps, which often depend on third

party packages that could introduce unnoticed security vulnerabilities. Snyk is installed globally

and run using the snyk test command with the severitythreshold=high flag in the GitHub Actions

76



process. This strategy combines rigorous security enforcement with developer flexibility,

allowing teams to gradually resolve noncritical concerns while recording medium and low risks

(Snyk, 2023).

Performance on many builds is enhanced by using a caching method to put the Snyk CLI in the

GitHub runners NPM cache. To authenticate every scan, the Snyk token is safely introduced into

the environment using GitHub Secrets.

Because flaws in packages like authentication libraries, request handlers, or cryptography tools

could compromise critical healthcare data and break industry compliance standards like HIPAA

and GDPR, automated dependency scanning is essential for modern web applications (OWASP,

2021).

@ Ccode Analysis

Overview  History ~ Settings

IMPORTED BY

o Liam Ronan

LIFECYCLE

Add a value

v SEVERITY
High
Medium
Low
~ PRIORITY SCORE
Scored between 0 - 1000
O
v STATUS
Open
Ignored
v LANGUAGES
Javascript
v WVULNERABILITY TYPES
Improper Type Valldation
Cleartext Transmission

Cross-Stte Request Forg

5

Lism-Ronan-dev + Projects » () Liam-Ronan-dev/Mzjor-Project Backend | man © Open on GitHub 2 | [ @

Created Sat 151 Feb 2025 | Snapshot for commit 4193879 # taken by snyk lo 18 hours ago | Retest now

PROJECT OWNER ENVIRONMENT BUSINESS CRITICALITY
(® Add a project owner (® add a value (@ Add avalue
ANALYSIS SUMMARY
40 analyzed files ( 74% ) Repo breakdown
Q search...
5 0f 7 issuee Groupby none v Sort by highest severtty v

u Improper Type Validation &
SNYK CODE | CWE-1287

472

B export const createPrescription = async (req, res) => {
tey {
const { patientld, pharmacistid, notes, items } = req.boedy;
12 if (lpatientIa || !pharmacistid || !items?.length) {

The type of this object, coming from body and the value of Its length property can be controlled by the user. An attacker may craft the properties of the object to crash the
application or bypass Its logic. Conslder checking the type of the object.

) src/controllers/prescription.]s # 3 stepzin 1file

CWETE 7 Learn how to fix this issue

SCORE

Improper Type Validation &
47

SNYK CODE | CWE-1287

fi Create items
const itemlds = awalt Promise.all(
31 itens.map(async (itea) => {

The type of this obrect. coming from body and the value of Its map property can be controlled by the user. An attacker may craft the properties of the object 1o crash the
application or bypass Its logic. Conslder checking the type of the object

©) src/controllers/prescription.|s 3 stepe in 1file

WP 72 Learn how to fix this issue

Figure 41 Snyk Dashboard

77



SonarCloud - Static Code Analysis

SonarCloud is a tool used for static code analysis and dependency scanning in backend
projects. It examines code for vulnerabilities, code smells, security hotspots, and flaws. It also
ensures code consistency and industry standards compliance. The SonarCloud scan uses Git
history metadata and requires a valid SONAR_TOKEN in GitHub Secrets. The dashboard
provides insights, graphing, and issue tracking.

In conclusion, this integration helps to decrease technical debt and improve long term
maintainability by encouraging the early detection of problems that traditional testing could
miss, such as unused code, unhandled exceptions, and excessively complex routines

(SonarSource, 2023).

3 SonarQube " a @ Py
&}) My Projects My lssues  Explore L& @ + &

Major-Project-Backend Liam-Ronan-dev > Major-Project-Backend > [ main ¥
OmE O *

Summary lssues  Security Hotspots Measures Code  Activity

NOT PROVIDED
April 4, 2025

TEO8PM I Version: rd

230PM !  Quality Profile
8:28AM

April 3, 2025

o14EM 1 Gualty Profile

April 2, 2025

122PM ©  Cuality Profile

March 31, 2025

6/PM 1

March 30, 2025

March 27, 2025

Figure 42 SonarCloud Dashboard

Advantages of Automated Security Testing:

There are various advantages to integrating Snyk and SonarCloud into the Cl pipeline:

e Shift left security lowers the cost of addressing problems by identifying them early in the
development process.

o Productivity of developers: Without compromising code quality or security, automated
scans free up developers to concentrate on creating features.

e Continuous assurance: The system automatically confirms that new code satisfies
security and quality criteria with each commit and pull request.

e Increased visibility: Progress and project health audits are made simple by the

centralisation of results in GitHub and SonarCloud dashboards.

78



5.5.2.2 Unit Testing & Code Quality

Using GitHub Actions, a code quality and unit testing pipeline was set up to ensure code
reliability, preserve a consistent codebase, and enforce development standards. Every push
and pull request to the main and development branches triggers this pipeline, which automates
several jobs such as formatting validation, linting, standard commit enforcement, and unit
testing.

By identifying problems early in the development cycle and making sure that only thoroughly
tested and formatted code makes it to production, this method complies with Continuous

Integration (Cl) best practices.

name: 'Rum Jest Tests & Format Code”

pull_reguest:

oranches:

- main
- dewvelop
push:
branches:
- main
- dewvelop

version: [22.x] # Test on multiple Node.js versions

- name: "Set up Nede.js {{ m

rsion }}'

1 actions/setup-nodegvd

: 3{{ matrix.node-version }}

- name: 'Install Dependencies’

run: npm ci

# Ensures commit messages follow conventions - Checks all commits, PRs, pushes

- na date commit messages with CommitLint”
b.event_name ==
run: npx commitlint --last --verbose

Figure 43 Cl Pipeline

79



Code Quality Tools: ESLint, Prettier, and commitLint:

ESLintis a tool used in the pipeline to analyse code for errors, antipatterns, and stylistic issues,
preventing runtime errors and ensuring consistent writing style. Prettier enhances ESLint by
automatically formatting code according to a style guide, allowing developers to focus on logic
rather than formatting details. CommitLint verifies commit messages according to the
Conventional Commits specification, ensuring a clear Git history and making versioning and

changelog generation more reliable.

Unit Testing with Jest

Jest is a JavaScript testing framework that confirms code unit accuracy and ensures
functionality without interference. It runs test suites in the backend, validating business logic,
data manipulation, and APl behaviour separately. Jest provides higher test coverage, simpler
debugging, and increased developer confidence. It also ensures cross version compatibility and

lowers risk when updating runtime environments.

Benefits of Automated Code Quality and Unit Testing

Incorporating these quality checks and tests into the Cl pipeline offers numerous benefits:
o FEarly error detection: By identifying problems before code is merged, regressions and
logic errors are kept out of production.
e Enforced consistency: Linting and formatting rules ensure a uniform codebase, making
the project easier to read and maintain.
o Better teamwork: Clear code and structured commit messages facilitate improved team

and external contributor communication.

5.5.2.3 Deployment

A GitHub Actions deployment pipeline was developed to deploy directly to an Amason EC2
instance running the Node.js APl to automate the release of backend code to the production
environment. As the last phase of the Continuous Deployment (CD) lifecycle, this procedure
guarantees that new backend versions may be released effectively, reliably, and with the least
amount of downtime.

Pushes to the main or develop branches initiate the deployment pipeline, which is run on an

EC2 instances selfhosted GitHub Actions runner. This eliminates the need for SSH based

80



processes or third party Cl runners by enabling direct access to local services like PM2 and

NGINX.

name: Deploy Back-snd to ECZ Instance

on:
push:

branches:

- main

- develop

jobs:
deploy:
runs-on: self-hosted

strategy:
matrix:
node-version: [23.x]

steps:
- name: Checkout Code
uses: actions/checkoutivd

- nameg: Use Mode.js #{{ matrix.node-version }}
uses: actions/setup-nodef@vd
with:
node-version: #{{ matrix.node-version }}
cache: "mpm'

- name: Install modules
run: npm ci

i

Append all secrets to .env file

- name: '%et Environment Variables®

run:
cat <<EOF > .env
PROD_ENV=${{ secrets.PROD_ENV }}
ENCRYPTION_KEY=%{{ secrets.ENCRYPTION_KEY }}
IWT_REFRESH_TOKEM_SECRET=3{{ secrets.IWT_REFRESH_TOKEN_SECRET }}
IWT_REFRESH_TOKEM_SECRET_EXPIRES_IN=3{{ secrets.IWT_REFRESH_TOKEN_SECRET_EXPIRES_IN }}
JWT_SECRET=3%{{ secrets.IWT_SECRET }}
IWT_SECRET_EXPIRES_IN=%{{ secrets.IWT_SECRET_EXPIRES_IN }}
MONGD_URI=3{{ secrets.MONGO_URI }}
PORT=3{{ secrets.PORT }}
TEMP_TOKEN_EXPIRES_IN=%${{ secrets.TEMP_TOKEN_EXPIRES_IN }}
ADMIN_EMAIL=%{{ secrets.ADMIN_EMAIL }}
ADMIN_EMALL_PASSWORD=${{ secrets.ADMIM_EMAIL_PASSWORD }}
BACKEND_URL=${{ secrets.BACKEND_URL }}
EOQF

# Restart PM2 and wpdate env wvariables
- nameg: ‘Restart PM2 Service”
run: pmZ restart BackendAPI --update-env

Figure 44 Deployment Pipeline

Breakdown:

1. Checkout Code:

The job begins by pulling the latest code from the GitHub repository using the actions/checkout
action. This ensures the most recent commit from the main or develop branch is available for
deployment.

2. Setup Node.js Environment:

Using actions/setupnode, Node.js version 22.x is installed on the selfhosted runner. This
guarantees that the environment used during deployment matches the one used in

development and testing.

81



3. Install Dependencies:
npm ci installs dependencies exactly as specified in the packagelock.json file. This method is
faster and more reliable than npm install, especially in Cl environments where clean,
reproducible builds are essential.
4. Set Environment Variables:
Sensitive credentials and configuration values (e.g., JWT secrets, MongoDB URI, encryption
keys) are injected securely into a .env file using GitHub Secrets. This ensures:

e Credentials never appear in source control.

e The deployed app has access to all runtime environment variables needed for secure

operation.

o Configuration changes can be managed without modifying code.
Managing secrets through GitHub Actions is a secure and centralised method of configuration
management
5. Restart PM2 Service:
Finally, the backend service is restarted using pm2 restart with the updateenv flag to apply the
updated environment variables. PM2 is a Node.js process manager that ensures the API
remains alive, logs errors, and supports sero downtime restarts (PM2 Docs, 2024). Restarting
the service after deployment ensures that the latest code is deployed, and new environments
configurations are loaded.
Benefits of Automated Backend Deployment

e Consistency: Human error is minimised because every deployment follows the same

set of procedures.

e Speed: After being merged, changes can be made public in a matter of seconds.

e Security: GitHub Secrets is used to safely manage secrets and environment variables.

o Traceability: Every deployment has a commit associated with it, allowing for complete

visibility and rollback capabilities.

5.5.3 Frontend

5.5.3.2 End to end Testing

Using Playwright, an opensource testing framework created by Microsoft, an end to end (E2E)
testing pipeline was put in place to make sure the Secure Prescription Systems frontend
functions properly from the users point of view. Every push to the main and development

branches triggers this pipeline, which is integrated with GitHub Actions.

82



By starting real browser instances and verifying the Uls functional and visual behaviour, end to

end testing replicates real user interactions with the application, including navigating pages,

logging in, and submitting forms (Playwright, 2024).

name: Playwright Tests

on:
push:
branches:
- main
- develop

Jobs:
test:
name: Run Playwright Tests
timeout-minutes: 60
runs-on: ubuntu-latest

steps:
- name: Checkout Repository
uses: actions/checkoutgvd

- name: Setup Node.js
uses: actions/setup-nodegvd

with:
node-version: 22
cache: "npm'

- name: Install Dependencies
run: npm ci

- name: Cache Playwright Browsers
uses: actions/cachegvd
with:
path: ~/.cache/ms-playwright
key: playwright-%{{ runner.os }}
restore-keys: |
playwright-

- name: Install Playwright Browsers (I Mot Cached)
run: npx playwright install --with-deps

- nmame: Run Playwright E2E Tests
run: npm run ee

- name: Upload Playwright Test Report
uses: actions/upload-artifact@vd
if: ${{ !cancellsd() }}
with:

name: playwright-report
path: playwright-reports
retention-days: 3@

Figure 45 E2E Testing Pipeline

83



Breakdown of the Playwright Test Workflow:

1. Checkout Repository
In order to make the entire project source code available for testing, the pipeline begins by
cloning the code repository using actions/checkout@v4.
2. Node.js
Actions/setupnode is used to install Node.js version 22 on the runner environment. This
provides compatibility with JavaScript/TypeScript test scripts and the frontend build
3. Set Up Dependencies
Based on the packagelock.json file, npm ci is used to install all frontend dependencies,
guaranteeing a clean and repeatable dependency installation. For consistent test
environments, this is crucial.
4. Playwright Browser Cache
The workflow uses the actions/cache action to cache Playwrights browser binaries (Chromium,
Firefox, and WebKit) in order to enhance build efficiency. Test setup times are significantly
reduced because Playwright browsers do not need to be downloaded again in the case of a
cache hit.
5. Install browsers for Playwright
Playwright uses the npx playwright install withdeps command to install the required browser
engines if the cache is out of date or non existent. This guarantees that the most recent
compatible browsers and system prerequisites are present in the test environment (Playwright,
2024).
6. Execute the E2E tests for Playwright
The Playwright test suite is executed by npm run e2e after the environment is prepared. These
tests validate important user journeys like these by simulating actual interactions in a headless
browser:

e Authentication

e Role based access control (RBAC)

e Viewing and managing prescriptions

e Ul Accessibility and form handling
7. Upload playwright test report
Lastly, actions/uploadartifact is used to upload the test findings as a downloadable artifact.
Visual traces, error logs, and test summaries are all included in the report. This artifact, which is
kept for 30 days, aids developers in identifying errors and guarantees responsibility in quality

assurance.

84



Benefits of Automated End to End Testing:
The following benefits come from integrating Playwright E2E testing into a CI/CD pipeline:
e Comprehensive Validation: Tests assists identify Ul problems that unit tests might
overlook by simulating actual user interactions across several browsers (Microsoft,
2024).
o Early Detection: Defects are found as soon as code is pushed, which lowers the
expense of repairing them later on in the development process.
e Cross Browser Support: Playwright ensures consistent behaviour across platforms by

supporting WebKit, Chromium, and Firefox (Playwright, 2024).

5.5.3.3 Unit Testing & Code Quality

First, a Node.js environment with cached dependencies is set up and the most recent code is
checked out. After that, it uses ESLint to find any possible problems or antipatterns and Prettier
to check the code formatting. These procedures prevent frequent errors during development
and maintain consistency.

This pipeline makes use of Vitest a testing framework made for frontend projects that are quick
and easy to use, for unit testing. Vitest is perfect for projects built with React and Vite because it
provides tight integration with Vite and executes tests in a quick, lightweight development

environment (Vitest, 2024).

85



name: Comtinuous Integration

on:
push:
branches:
- main
- dewvelop

jobs:
lint-format-test:
name: Lint, Format, and Test
runs-on: ubuntu-latest

steps:
- name: Checkout Repository
uses: actions/checkout@vd

name: Setup Node.djs
uses: actions/setup-node@ud
with:

node-version: 22

cache: "npm"
name: Install Dependencies
run: npm ci

: Run Prettier Formatting Check
: npm run format

: Run ESLint
: npm run lint

: Run Vitest
: npm run test:unit

Figure 46 Cl Pipeline

86



5.5.3.4 Deployment

To automate the release of the Secure Prescription Systems, React based frontend, a dedicated
deployment pipeline was created using GitHub Actions. This pipeline builds and deploys the
compiled frontend to an Amason S3 bucket and, if pushed to the production branch, also
triggers a CloudFront invalidation to refresh cached content. It ensures fast, secure, and reliable
updates to both the development and production environments without any manual

intervention.

name: Deploy Front-end to 53

on:
push:
branches:
- develop # Deploy to Dev 53 bucket
- main

jobs:
deploy:
runs-on: ubuntu-latest
steps:
# Checkout code
- name: Checkout Code
uses: actions/checkout@v3

# Configure Credentials
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentialz@vl
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: su-west-1

# Install modules - Clean Installation
- name: Install modules
run: npm ci

# Build front-end
- name: Build Fromt-end
run: npm run build

# Determine env
- name: Determine environment
run: |
if [[ "${{ github.ref }}" == "refs/heads/main" ]]; then
echo "BUCKET_ID=health-service.click" »> $GITHUB_ENV
echo "RUN_INVALIDATION=true® >> $GITHUB_EMV
echo "DISTRIBUTION_ID=%${{ secrets.DISTRIBUTION_ID }}" »»> $GITHUB_ENV
else
echo "BUCKET_ID=dev-health-service-app” »>» $GITHUB_ENV
echo "RUN_INVALIDATION=false™ »» SGITHUB_ENV
fi

# Deploy to 53 Bucket
- name: Deploy to 53
run: aws s3 sync ./ dist/ s3://$BUCKET_ID --delete

# Only runs if the deploy is to main # Prod
- name: Create CloudFront invalidation
if: env.RUN_INVALIDATION == 'true’
run: aws cloudfront create-invalidation --distribution-id %#{{ secrets.DISTRIBUTION_ID
}} --paths "/*="

Figure 47 Deployment Pipeline

87



Breakdown of the Frontend Deployment Workflow

1. Checkout code

The pipeline starts by using the actions/checkout action to pull the most recent version of the
code from the repository, providing the runner with access to the frontends complete source
code.

2. Configure Amason credentials

The pipeline makes use of the awsactions/configureawscredentials action to communicate
securely with AWS services. In order to guarantee that credentials are never hardcoded in the
workflow and are encrypted both in transit and at rest, it authenticates using access keys keptin
GitHub Secrets.

3. Install dependencies

Using npm ci, the projects dependencies are installed cleanly, guaranteeing that the same
versions listed in packagelock.json are used. This lowers the possibility of environmentspecific
problems and facilitates deterministic builds.

4. Build Frontend

Using Vite, the application is built by running npm run build, which creates static HTML, CSS,
and JavaScript files in the dist directory from the React codebase. These are prepared for online
deployment and have been performanceoptimised (Vite, 2024).

5. Determine Environment

Whether the push was made to the main branch, or the development branch is verified using a
specially written conditional script. Depending on the outcome:

e |fthe branch is main, it signifies the pipeline to cause a CloudFront invalidation and sets
the environment variables to deploy to the production S3 bucket (healthservice.click).

e |fthe branch is develop, it deploys to the development bucket (devhealthserviceapp)
without triggering a CDN refresh. This supports proper staging workflows and minimises
unnecessary cache busting.

6. Deploy to Amason S3

The AWS CLI command aws s3 sync./dist/ s3://$BUCKET_ID delete is used to upload the
compiled frontend assets to the relevant S3 bucket. By replacing or deleting files in the
destination bucket to match the local dist/ subdirectory, this operation completes a full
synchronisation. For hosting static webpages, Amason S3 provides a dependable, scalable, and
highly accessible object storage solution.

7. CloudFront Invalidation (Production Only)

88



AWS CloudFront createinvalidation is used to send an invalidation request to the CloudFront

distribution if the push was to the main branch. In order to force the most recent frontend build

to be served to visitors worldwide, this makes sure that all edge locations clear their cached
content (/* path).
Benefits of Automated Frontend Deployment:
e Efficiency: Changes are distributed quickly following a push, removing the need for
manual uploads or intervention.
e Consistency: Because of automation, the build and deployment procedures are
repeatable and errorfree.
e Scalability and Speed: When combined, S3 and CloudFront provide static assets with

low latency and high availability on a global scale.

5.6 Development

5.6.1 Backend

5.6.1.1 Project Structure and Initial Setup

Using a modular architecture to promote scalability, separation of concerns, and
maintainability, the Secure Prescription Systems backend was developed with Node.js and
Express. The applications code is arranged into important directories under src/, along with

several configurations at the root level, as seen in the project structure figure 48.

89



~ MAJOR-FROJECT-BACKEND
5 github
huskcy

config
controllers

med

+ READMEmd

Figure 48 Backend Folder Structure

Folder Structure and Modular Design

.github/: contains the testing, security and deployment pipelines that were outlined
above.

.husky/: contains the git hooks such as the precommit hook for running lintstaged
which in turn will run the linters, formatter etc. Also, the prepush hook resonates
here with the ability to run the tests before pushing the code. If any of these hooks
fail the checks, they will stop the code from being pushed.

The core of the backend logic is the src/ directory, which has subfolders with various
functions:

Controllers/: Includes all of the business logic needed to respond to incoming API
requests. This covers tasks including updating patients records, registering users,
and filling prescriptions.

Routes/: Ensures a clear separation between functionality and routing by mapping
HTTP endpoints to controller methods while adhering to RESTful API standards.
Models/: Mongoose schema definitions are stored under models/ . Core entities

including User, Patient, Prescription, Medication, and Appointment are included

90



here. The format and constraints on the data stored in MongoDB are specified by
each schema.

e Middleware/: Logging, error handling, authorisation, and security related tasks like
role permissions and JWT validation are all handled via reusable middleware.

e Config/: Reusable configuration logic, including CORS settings and allowed origins,
database connection logic (db.js), and email sending features, are contained here.

e Utils/: Contains utility functions like encryption for patients and prescriptions,
validators to ensure the data follows the correct format before sending requests,
and a prescription seeder to populate the prescriptions model with realistic data.

e Scripts/: These are used for onetime actions like seeding medicinal products data
from external, approved sources into the database.

e medicationData/: Contains the original xml file with all the medicines that have been
assessed by the Health Products Regulatory Authority (HPRA) (Data.gov.ie, 2018).

e Modules/: Hold the reusable authentication functions for hashing passwords and
license numbers, creating JWTs, and ensuring users are authenticated to request a
certain resource.

By organising functions and allowing independent testing or updates for specific components,

this structure enhances development workflow.

Database Model example: Prescription

The most important models are the prescription and item model which have a one to many
relationship as in a prescription may have many items associated with it. It defines relationships
to other core entities such as Doctor, Pharmacist, and Patient. Notably, it includes custom

fields for prescription status, automatically generated IDs, and encryption.

91



iI'I'||:|':JF‘t mongoose from
import { encrypitData, decryptData } from

const PrescriptionSchema = new mongoose.Schema({
pr riptionId: {
type: String,
unique: true,
} »
doctorId: {
type: mongoose.S5chema.Types.Objectld,
ref: "U »
required: true,
1s
pharmacistId
type: mongoose.S5chema.Types.Objectld,
ref: "U s
required: true,

} »

patientId: {
type: mongoose.5chema.Types.0ObjectId,
ref: 'P E
required:

} »
items: [
{
type: mongoose.S5chema.Types.0ObjectId,
ref: 'Ttem’,
I
] »
status: {
type:
enum:

createdAt: {
type: Date,
default: Date.now,
T
I
updatedAt: {
type: Date,
default: Date.now,

PrescriptionSchema.pre(
if (!this.prescriptionId)

this.prescriptionId = new mongoose.Types.ObjectId().toH

/¥ Enable automatic decryption when retrieving data
PrescriptionSchema.set( ] { getters: true });
PrescriptionSchema.set('toObject®, { getters: true }

port const Prescription = mongoose.model('Pr ription', PrescriptionSchema);

Figure 49 Prescription Model

92



import mongoose from 'mo H
import { encryptData, decryptData } from

prescriptionld: {
type: mongoose.Schema.Types.0ObjectId,
ref: ription

required: true,

]' »

medicationId: {
type: mongoose.Schema.Types.ObjectId,
ref: : ation’,
required: true,

Y
¥
5

pecificInstructions: {
type: String,
required: true,

repeats: {
type: Number,
default: 4,
} »
dosage: {
type: String,
required: true,
set: er f
get: ptData,
mount: {
type: string,
required: true,

1
I
dl

pharmacistNote: {
type: String,
default: null,

s 1 getters: true ]
ct', { getters: true });:

1", ItemSchema);

Figure 50 Item Model

Any notes and items that are added to a prescription are encrypted at the time of saving and
immediately decrypted upon retrieval using bespoke getter and setter functions. By utilising
AES256 encryption integrated into a utility function through Nodes crypto module, this provides
compliance to data protection regulations by rendering sensitive data in the database

unidentifiable.

93



Server Configuration and Entry Point

The Express server is started on an assigned port by server.js, which loads environment
variables using dotenv. Index.js manages the primary server logic, including middleware setup,

route configuration, realtime notifications initialisation, and running the connectDb function.
import * as dotenv from 'doten
import mongoose from
dotenv.config();

export const connectDB = async () => {
const dbURI = process.env.MONGOD URT;

try {

await mongoose.connect(dbURT);

console.log( Mor
catch (error) {

console.error( Failed

${error}’ };

Figure 51 Database Connection Function

94



origin: allowedOrigins,
credentials: true
allowedHeaders: [

: Map of userId
Map();

f connectedUsers.e

o
f
i

(userId);
{userl

ger to display request status code, origin, time/date etc

the Front-end to make requests to the Backend API
rsOptions));

A/ Apply Helmet to Secure HTTP Headers

app.

app.
app.
app.

Imet());

erRoutes);
dmin®, adminRoutes);
prescriptionRoute
appointmentRoutes);
patientRoutes);
medicationRoutes);

to the error Logger
orHandlerLogger);

ble database connection fune

Figure 52 Application Starting Point

95



impor
impor

dotenv.config();

/4 Run the Server
server.listen{PORT, () [
console.log(” Server listening on hittp://localhost:${PORT} );

Figure 53 Server.js

Additionally, it registers all APl routes including endpoints for patients, users, prescriptions,
under a single /api namespace. A connectedUsers map is used to monitor active sessions, and
Socket.iois initially configured to facilitate realtime notifications between doctors and
pharmacists.

Lastly, the credentials specified in the .env file are used by the connectDB() function to create a
connection to the MongoDB database. To confirm server availability during deployment or
continuous integration checks, a basic /api/health endpoint is also offered.

For secure and effective request handling, realtime communication, and database integration,

this structure offers a clear and modular structure.

Environment Configuration and Secrets Management

MONGO _URI=

JWT_SECRET=
JWT_SECRET_EXPIRES_IN=
ENCRYPTION_KEY=

Figure 54 env Example
e MONGO_URI-MongoDB Atlas connection string
o ENCRYPTION_KEY - AES key used for field level encryption
e JWT_SECRET - Used for signing access tokens

o ADMIN_EMAIL and ADMIN_EMAIL_PASSWORD - For sending notifications via

Nodemailer

96



5.6.1.2 Database Models and Relationships

The Secure Prescription Systems backend makes use of Mongoose, an Object Data Modelling
(ODM) module for MongoDB, to manage data persistence. Mongoose is perfect for keeping an
organised prescription database system since it enables the establishment of tightly typed
schemas with validation rules, default values, timestamps, and relationships between
documents.

User Model:

import mongoose from

const ROLES {
DOCTOR:
PHARMACIST:

serSchema = new mongoose.Schema({

String,
required: true,
unique: true,
Is
password: {
type: String,
required: true,
Is
role: {
type: String,
enum: [ROLES.DOCTOR, ROLES.PHARMACIST],
required: true,
i»
licenseNumber: {
gistration #

/ will be set to true after admin veri

type: Strin ores the one-time token sent to the admin
Is
verificationTokenExpires: {

type: Date,

=

i»

mfaEnabled: {
type: Boolean,
default: true,

Uzer®, UserSchema);

Figure 55 User Model
Specifically, "Doctor" and "Pharmacist" are supported by the User schema by an enum field.
Also, it supports multifactor authentication (MFA) with parameters like mfaEnabled and
mfaSecret. Email verification and secure account setup are handled by additional parameters
like isVerified, verificationToken, and verificationTokenExpires. Since both doctors and

pharmacists stem from this core structure, the schema is essential to the system.

97



Patient Model:

import mongoose from 'mo e';
import { encryptData, decryptData } from
1st PatientSchema = new mongoose.Schema({
fir
type: String,
required: true,

lastName: {
type: String,
required: true,

Is

dateOfBirth: {
type: String,
required: true,

type: String,
required: true,

1.
phoneNumber: {
type: String,

email: {
type: String,
unique: true,

yptData

1
I

medicalHistory:

pe: String,
typ Date },
String, s

By S
s.0bjectId,

pre ipti £ £ Schema.Types.ObjectId, ref: 'Pr
appointments: [{ type: ma.Types.ObjectId, ref:

ip: { type: String,
phoneNumber: { type: String,
I
createdAt: { ty

PatientSchema.
PatientSchema.

rt 3 i [ » PatientSchem

Figure 56 Patient Model



Personal information including name, gender, date of birth, medical history, and emergency
contact are all included in the patient schema. A doctorld references each patient to a doctor,
creating a onetomany relationship (one doctor > many patients). This guarantees that doctors
can only see and treat the patients they have been allocated.

Prescription Model:

import mongoose from £
import { encryptData, de tData } from

const PrescriptionSchema = new mongoose.Schema({
prescriptionId: {
type: String,
unique: true,
Is
doctorId: {
type: m ose. Schema. Types .ObjectId,
ref: c
required: true,
s
pharmacistId: {
type: m .Types .ObjectId,
ref:
required: true,
s
patientId: {
type: m )ose.5chema. Types.ObjectId,
ref: L',
required: true,
1.
items: [
{
type: mongoos ema.Types.0ObjectId,
ref: 'Item’,
ks
1,
status: {
type: Strin
enum: [
default:

createdAt: {
type: Date,
default: Date.now,
Is
updatedAt: {
type: Date,
default: Date.now,
1

PrescriptionSchema
if (!this.pre

3
¥

PrescriptionSchem [ { getters: true });

PrescriptionSchem ct', { getters: true });

xport const Prescription = mongoose.model('P tion', PrescriptionSchema);

Figure 57 Prescription Model



Objectld references (doctorld, pharmacistld, and patientld) link prescriptions to three parties:
the patient, the doctor, and the pharmacist. Prescriptions have embedded item references for
medications prescribed as well as a status field with an enum structure (e.g., Assigned,
Pending, Processed). AES256 encryption is used in this models notes field to secure sensitive
data.

Using the Mongoose middleware (pre(save)), a prescriptionld is automatically generated as a
distinct string identification that is distinct from MongoDBs native _id.

Medication Model:

import mongoose from

const MedicationSchema = new mongoose.Schema({
name: { type: String, required: true },
activeSubstance: { type: String },
authorisationNumber: { type: String },
atcCode: { type: String },
route0fAdministration: { type: String },
productId: { type: String, unigue: true %,
createdAt: { type: Date, default: Date.now 7},

export const Medication = mongoose.model{'Medication', MedicationSchema);

Figure 58 Medication Model

Name, activeSubstance, authorisationNumber, and routeOfAdministration are among the
structured medical data fields in the Medication schema that are extracted from HPRA verified
API. When creating prescriptions, this dataset which is read only within the system is utilised for

searching medications.

100



Item Model:

import mongoose from
import { encryptData, decr

const ItemSchema = new mongoose.

prescriptionId: {
type: mongoose.Schema.Types.0ObjectlId,
ref: 'F ion
required:

]' >

medicationId: {
type: mongoose.Schema.Types.0ObjectlId,
ref: =d o]y

e 0
required: true,

1
Iy
specificInstructions: {
type: String,
required: true,

: Number,
default: @,
1

dosage:

pharmacistNote: {
type: String,
default: null,

ItemSchema. to N, { getters: true
ItemSchema. s E t', { getters: true });

ose.model( ' Item"', ItemSchema);

Figure 59 Item Model

Multiple items (medication entries) with fields for dosage, amount, repeats, and
pharmacistNote may be included in a single prescription. Every item is associated with a
specific prescription (prescriptionld) and refers to a medication. A single prescription can have

multiple independently trackable items due to this structure.

101



Appointment Model:

import mongoose from

const AppointmentSchema = new mongoose.Schema({
doctorId: {

patientId:
type: mong
ref: °F
required:

Y}, /f The patient
date: { type: Date, required: true }, // Date & time of the appointment
status: {

type: String,

enum: ['S

default:

required: true,
Y}, S/ Appointment status
notes: { typ ring, required: true }, /, from the doctor
createdAt E Timestamp for creation

Timestamp for updates

export const Appointment = mongoose.model('Appointment’, AppointmentSchema);

Figure 60 Appointment Model

Doctors schedule appointments. Along with a date, status, and optional notes field, the model
refers to both parties (doctorld, patientld). This makes it possible to keep track of user follow

ups, consultations, and scheduled appointments.

102



5.6.1.3 Controllers and Route Definitions

A separate controller handles prescriptions, ensuring secure interactions between doctors and
pharmacists over role based HTTP endpoints. Layered middleware and validators protect
routes, enabling access control and strong request validation. Prescription.js controller file
defines CRUD actions and pharmacist specific modifications, defining a document with related

medication items and metadata.
Creating Prescriptions:

CRUD actions and pharmacist specific modifications for prescriptions are defined in the
prescription.js controller file. A prescription is essentially a document made up of related
medication items and metadata (doctor, patient, and pharmacist).

Creating Prescriptions: Only authorised doctors are able to fill prescriptions. Using doctorld, the
controller first confirms that the patient is the patient of the requesting doctor. After that, it
generates the prescription and related item data, each of which refers to a distinct medication.
To protect sensitive medical data while it is at rest, the prescription is encrypted using a getter

setter pair that is specified in the schema.

t { patientId, pharmacistId, notes, items } = reg.body;

length) {

" Ensure potient belongs to the doctor
patient = await Patient.findOne({ _id: patientId, doctorId: reg.user.id });
atient) {
turn res.status(483).json({ message:

const prescripti await Prescription.create({
doctorId: req.user.id,
patientId,
pharmacistId,
notes,

itionId, dosage, amount, specificInstructions, repeats, pharmacistMote } =

medication = t Medicatiol
medication) thro e = ot fou ${medicationId}” );

m.create({
ription._id,
medicationId,
dosage,
amount,
specificInstructions,
pharmac:
repeats: repeats 2?7 @,

1)

return newItem._id;

prescription.itel
await prescription

Figure 61 Create Prescription Function

103



Item Creation Logic:

Every prescription has several items that correspond to different drugs. Promise.all() is used to
insert them into the database, allowing asynchronous reference generation and collection.

These item IDs are associated with the Prescription document after they are created.

Retrieval & Population:

The populate () method is widely used to incorporate relevant user and medication data in the
same query when retrieving prescriptions (getAllPrescriptions and getPrescriptionByld). This
removes the need for extra fetches, improving frontend rendering. To enable rich data in user
interface displays, for instance, prescription.items.medicationld is filled with the names of

medications and their active ingredients.
" Get ALL Prescriptions (Doctors & Phormacis
rt const getAllPre ptions = a c (reg, res) =»

nst role = reg.user.role;
userIld = reg.user.i

const filter = role === ‘"doctor’ ? { doctorId: userld } : { pharmacistId: userId };

path:
select:

populate:

path:
select:

-sort({ createdAt: -1 });

res.status(200) .json{{ count: prescriptions.length, data: prescriptions });
+ catch (err) {

console.error(’Error fetching prescri ons: ', err);

res.status(508) .

Figure 62 Get Prescriptions

104



Pharmacists Status Updates:

Pharmacists Status Updates: Pharmacists can update the status and optional remarks on
individual items via the PATCH mechanism. The controller verifies their position and makes sure
that only allowed statuses (such as Processed and Completed) can be set. It modifies the
prescription and related items appropriately if it is valid. Additionally, the schemas getter setter

is used to safely store and retrieve encrypted data, such as notes.
= reéq.params
status, notes, itemMot

user.role !==

const allowedStatuses = ["Pend »

if (status && !allowedStatuses.includes

return res.status(488).

prescription = await Prescription.
if (!prescription) {

return res.status(484).

/4 Update status and notes if provided
if (status) prescription.status = status;
if (notes) prescription.notes = notes;

await prescription.sa

Figure 63 Pharmacist Update Function

105



S Update pharmacist notes on individual items
itemNotes)) {
await Promise.all(
itemMotes.map({async ({ itemId, pharmacistNote }) =» {

const item = await Item.findOne({
_dd: itemId,

prescriptionld: prescription._id,

if (item && phormacisthNote !== undefined) {

item.pharmac ote = pharmacistNote;
await item.sa F

Figure 64 Pharmacist Update Item Note

106



Prescription Route Definitions:

The middleware layers and endpoint structure for every prescription operation are specified in

the routes/prescription.js file.

#F Docte
router.

£/ Docty
router.

validateUpdatePrescription,
handleInputEr
updateP

/7 Doctor/Pharmacist: View a single prescription
router

validatePatchPrescription,
handleInputEr
updateP rip

Figure 65 Prescription Route

107



Authenticated middleware guarantees that these routes are only accessible by logged in users.

f/ Protect Middleware
= (reg, res, next) =»

(ies.accessloken;

if (!token) {
return res.status(401).7 ({ message:

LS
g

const decodedToken = verifyToken(token);

if (!decodedToken) {
return res.status{481).json({ message:

user = decodedToken;

Figure 66 Ensure Authenticated Middleware

RBAC is enforced by authoriseRoles(...), which limits access according to user roles (e.g.,

pharmacist or doctor).

/f Role-based occess control middleware
export const authorizeR
eturn {(reg, res, mext) i
const userRole = reg.user.role.tolowerCas
if (!roles.includes(userRole)) {
return res.status(483).json({ message:

Figure 67 Access Control Middleware

verifyOwnership(Prescription) verifies that the person logged in is, in fact, associated with the
resource being accessed (e.g., the pharmacist assigned to the prescription or the doctor who

owns it). By doing this, horisontal privilege escalation is avoided.

108



is ${modeLType}

» error);

Figure 68 Verify Ownership Middleware

Incoming data is guaranteed to follow expected formats via validation middlewares such as
validateCreatePrescription and validatePatchPrescription. These enforce criteria like required
enum, and correct object ID references and check nested arrays (like items) using tools like

expressvalidator and custom logic.

109



sable wvolidotion for items in a prescription

Figure 69 Validation Middleware

Before reaching the controller code, handlelnputErrors gathers validation errors and provides

the correct error responses.

rt const handleInputErrors = (req, res, next) =»
const errors = validationResult{reg);

Figure 70 Error Middleware

The routing structure ensures clean RESTful design. HTTP methods align with operations:

e POST /prescriptions — Create

PUT /prescription/:id - Update

e DELETE /prescription/:id — Delete

e GET /prescriptions — List all (filtered by role)
e  GET /prescription/:id — View one

e PATCH /prescription/:id/status — Update status and item notes (pharmacist only)

110



This designh ensures granular access control, strict input validation, encrypted data handling,

and secure role-based data flow throughout the lifecycle of a prescription.

5.6.1.4 Authentication and Authorisation
The system uses industry standard procedures to guarantee that users can only carry out tasks
relevant to their responsibilities and that only verified users have access to protected

endpoints.
Passwords and Sessions for Authentication:

Session based login with JWTs and hashed passwords are used to securely handle user

credentials

/7 Create JWT - using JWT secret
wort const createlWT = (user) =»> {

a
3

const token =
s 1
subject: 'Acce E
expiresIn: process.env.JWT_SECRET_EXPIRES_IN,

wt.sign({ id: wser._id, role: wser.role }, process.env.JWT_SECRET

Figure 71 Create JWT Function

Password Hashing: Bcrypt with salting is used to hash user passwords and license numbers
during registration (hashField). This reduces the possibility of data breaches and stops
unencrypted storage.
Sf Function for hashing fields into the dotabose
Field = asy (field) =» {

salt = await bcrypt.gensalt(saltRounds);
urn bcrypt.hash(field, salt);

S/ Function for comparing user credentials with hashed value in the database
eField = async (field, hashedField) => {
eld, hashedField);

Figure 72 Hashing Functions

Login Procedure: The users email address and password are verified during the login process. If
successful, the users ID is saved in a secure, HTTP only cookie (mfa_session) to start a brief
session in preparation for multifactor authentication. This is the beginning of a secure login flow,

even though MFA is covered later.

111



const { email, password, licenseMumber, role } = reg.body;

Correct way to check for duplicote License number
const users = await User.find();
user of users) {
isMatch = await compareField(licenseNumber, user.licenseNumber);
if (isMatch) {

eturn res.status(4e9)

// Hash password & License number

nst hashedPassword = await h i password) ;
const hashedlicenseNumber am as d(1licenseMumber);

//f Generate MFA Secret
const mfaSecret = authenticator.

st mfaURI = awthenticator.key emai Health-service.click', mfaSecret);
const griode

const tokem = crypto.r
= Date.
user (Set TisVerified = true” before saving)
new User({
email,
password: hashedPassword,
licenseMumber: hashedLicens
role: role.toLowerCase(),
isVerified: false,
verificationToken: token,
verificationTokenExpires: expires, // 5et before saving
mfaEnabled: true,
mfasecret, S/ Store the MFA secret

Figure 73 Login Function

112



Using JWTs to Manage Sessions:

Every protected route uses the ensureAuthenticated middleware to verify that the access token
is legitimate. This middleware takes the token out of the cookies,

e uses the verifyToken() function to confirm it (based on jsonwebtoken),

e Addstoreq.userthe decoded user data (role and ID).
Access is instantly refused with a 401 Unauthorised response if the token is lost, expired, or
altered. This method preserves a safe, stateless authentication process while doing away with

the requirement for serverside session storage.

Authorisation: RoleBased Access Control (RBAC):

Once a user is authenticated, their role governs which resources they can access. Role
enforcement is handled using the custom authoriseRoles middleware, which:

e Accepts one or more allowed roles (e.g., doctor, pharmacist)

e Checks if req.user.role matches

e Blocks access if unauthorised

5.6.1.5 Multifactor Authentication (MFA)

The Secure Prescription System uses Time based One Time Passwords (TOTP) in conjunction
with Multifactor Authentication (MFA) to improve security beyond password based login.
Unauthorised access is avoided even if a users login credentials are compromised thanks to

this extra verification step.

MFA Setup During Registration

Figure 74 MFA Variables

The authenticator.generateSecret() function of the otplib package is used by the backend to
create a distinct secret key for every user during user registration. This key is used to generate a

TOTP URI, which the grcode library then transforms into a QR code. The client receives the

113



generated QR code back, enabling the user to scan it with an authenticator app such as Authy
or Google Authenticator.

Along with other registration information, the secret is kept in the User models mfaSecret field.

MFA Flow During Login

The server validates the users email address and password when they log in. If this is the case,
the users ID is stored in a temporary cookie (mfa_session) that is created by the server and
expires after five minutes. This cookie indicates that the user is now prepared for MFA after the

first factor (password) has been validated.

ion cookie

tostring(), {

secure: true,
same5Site: 'None’,
maxfAge: 5 * 68 * 1888, // Expires in 5 minutes

Figure 75 Session Cookie

The client is then prompted to enter their 6digit code generated by the authenticator app.

Verifying the TOTP

In the mfalLogin() controller, the server retrieves the users mfaSecret and verifies the onetime

code submitted by the user using:

Figure 76 Verify TOTP Function

If it is valid, the system issues a secure JWT access token, which is saved in the accessToken
httpOnly cookie. To prevent its reuse, the mfa_session cookie is deleted.
The risk of unwanted access is greatly decreased by this twostep login process, particularly in a

medical setting where the application handles private patient and prescription data.

114



Security and Compliance Considerations

TOTP is time based and each code is only valid for a brief period of time, it is resilient to replay
attacks.
e MFA bypasses are blocked: The login is refused if the session has ended or the TOTP is
not accurate.
e The management of sessions is safe: Secure cookies (HTTP Only, Secure, and
SameSite=None) are used to store both temporary and permanent tokens.
By using MFA, the application complies with security standards in contemporary web systems

and best practices for protecting medical data (OWASP, 2023).

5.6.1.6 Field Level Data Encryption

Securing sensitive data when it’s at rest is crucial for any system involving healthcare. The
backend uses AES256GCM encryption, which is implemented via a custom utility module using
Node.js native crypto library, to protect sensitive data like prescriptions, patient information,
and pharmacist instructions.

Mongooses getters and setters make it easy to deploy secure encryption and decryption across
several models because this encryption code is abstracted into a reusable utility module

(utils/encryption.js).

115



firsthiame: {
type: String,
required: true,

dateOfBirth: {
type: String,
reguired: true,
encryptData

decryptData,

gender: {
type:

required: true,

encryptData,

phonelumber: {
type: String,
reguired: true,

unique: true,
sparse: true,
cryptData,

rptData,

address: {
street: { type: String,
city: { type: String, yptDat
postalCode: { type: S5tring, encryptData,
country: {
type: String,

Figure 77 Patient Model 2

The module uses the AES256GCM algorithm, a secure and efficient symmetric encryption mode
that offers both confidentiality and data integrity. The encryption key is securely loaded from an

environment variable (ENCRYPTION_KEY) and parsed as a buffer:

const encryptionKey = Buffer.from(process.env.ENCRYPTION _KEY,

Figure 78 Encryption Key

116



try {
/f Generate g unique IV for each encryption
const iv = crypto.randomBy (iviLength);

S Create cipher instanc
const cipher =

S/ Encrypt Data
let encrypted = cipher.update(data,
encrypted += cipher.final( 'hex');

/f Generate auth tag
const authTag = cipher.getAuthTag().toString( ' hex

iv: diw.
authTag,
encryptData:

H F
+ catch (error) {
onsole.error('Encryption error:’', error.message);

5
return null;

Figure 79 Encrypt function

Every time data is encrypted, crypto.randomBytes() is used to create an unique Initialisation

Vector (IV). By preventing the ciphertext from being reused or altered, the IV and an

authentication tag (authTag) produced by GCM help to prevent common attacks like replay and

padding oracle attacks.

A JSON string with the following structure makes up the encrypted output:
e jv:theinitialisation vector generated at random
e authTag: used to confirm that the encrypted message is intact
e encryptData: the data that has been encrypted

Using the Mongoose schema set() methods, this is returned and saved straight into the

database.

The Decryption Logic

The decryptData() function reverses the process when data is read from the database.
e parses the encrypted JSON that is stored.
e uses the original IV and auth tag to reconstruct the cipher.

e returns the plaintext string after decrypting it.

117



The developer never has to explicitly decrypt fields because Mongooses get() method in schema

definitions transparently handles this procedure.

{ iv, authTag, encryptData } = JSON.parse(encryptedsString);

const decipher = crypto.createDecipheriv(
algorithm,
encryptionkey,
Buffer.from{iv,

);

decipher.setAuthTag(Buffer.from{authTag,

let decrypted = decipher.update(
decrypted += decipher.final('utf

return decrypted;

} catch (error) {
console.error('Decryption fz
return null; /¥ Prevent crash

Figure 80 Decrypt Function

Why AES256GCM?

e Authenticated encryption: AESGCM protects against tampering by ensuring that data
hasn’t been changed while in transit or storage.
e Performance: Modern CPUs natively implement AESGCM, which is efficient.
e Consistent and reusable: By centralising the logic into a utility module, code duplication
is avoided, and consistent encryption standards are enforced across the codebase.
AESGCM offers authenticated encryption and strong security guarantees, being a NIST
approved standard widely used across critical sectors like healthcare and finance (National

Institute of Standards and Technology, 2001).

5.6.1.7 Realtime Notifications & Email Integration

Realtime notifications and administrative email processes are critical for ensuring
responsiveness, reduced delays, and improving the user experience in a prescription system
where doctors and pharmacists must communicate quickly. To accomplish this, the projects
backend implementation combines email processes with Nodemailer and WebSocket based
realtime communication with Socket.io.

RealTime Notifications with Socket.io

118



The backend server establishes a Socket.io connection via index.js, enabling bidirectional
communication between connected users. When a user connects, their userld is mapped to
their socket session using a global connectedUsers map. This enables the backend to directly

push updates or alerts to a specific user by their ID.

[/ Initialise socket.io
export const io = new Server(server, {
cors: {
origin: allowedOrigins,
credentials: true,
allowedHeaders: ['Content-Type', 'Authorization’, 'Origin’, "Accept’
1.
s
N

// Store connected users: Map of userld => socket.id
export const connectedUsers = new Map();

// Socket.io connection
io.on('connection’, (socket) =» {
console.log( Client connected: ${socket.id} );

socket.on('register’, (userId) => {
connectedUsers.set(userId, socket.id);
console.log( Registered user ${userld} );

1N

socket.on( 'disconnect”, () => {
for (const [userId, id] of connectedUsers.entries()) {
if (id === socket.id) {
connectedUsers.delete(userld);
console. log( User ${userId} disconnected™);
break;
}
1
s

Figure 81 Socket.io Connection

When a pharmacist updates the prescription status (e.g., to “Processed” or “Completed”), the

system identifies the relevant doctor and emits a prescriptionupdated event:

/{ Notify doctor via socket
const doctorSocketId = connectedUsers.get(prescription.doctorId.toString());
if (doctorSocketId) {
const patient = await Patient.findByld(prescription.patientId);

io.to({doctorSocketId).emit( prescription-updated’, {
prescriptionld: prescription._id,
status: prescription.status,
notes: prescription.notes,
updatedAt: prescription.updatedAt,
message: "Prescription updated by pharmacist.’,
patient: patient ? “${patient.firstName} ${patisnt.lastName}” : ’"Unknown patient’,

1

Figure 82 Doctor Notification

119



Benefits:
o Allows for immediate notifications when new or updated prescriptions are made.
e Minimises the need for manual refreshes or polling.
e Enhances collaboration between pharmacists and doctors.

Socket based notification systems are widely used in healthtech and fintech platforms to

minimise delays and ensure immediate feedback loops (Socket.io, n.d.).
Email Verification with Nodemailer

To manage user registrations and enforce administrative approval, the system includes a

verification email flow powered by Nodemailer. When a new user registers, the system

generates a unique token and expiration timestamp. An email is sent to the admin containing a

secure verification link, like:

https://api.healthservice.click/api/admin/verify/:userld/:token

This is handled by the sendEmail() function in the config/email.js file as seenin in figure 83.

Once the admin clicks the link, the backend marks the user as isVerified = true if the token is

valid and has not expired.

export const sendEmail = async (email, role, userld, token) => {
console.log(process.env.BACKEND URL);
const verificationLink = "${process.env.BACKEND URL}/api/admin/verify/${userId}/${token} ;
console.log( ' Generated Verification Link:", verificatienLink);

await transporter.sendMail({
from: process.env.ADMIN EMATL,
to: process.env.ADMIN_EMAIL, // Admin receives the email
subject: 'New User Registration - Verify User’,
html: °
<div style="font-family: Arial, sans-serif; text-align: center; padding: 2@px;">»
<hl style="color: #808;">A new user has registered to Health-Service.click</hl>
<p style="font-weight: bold; font-size: 16px;">Email: ${email}</p>
<p style="font-weight: bold; font-size: 16px;">»>Role: ${role}</p>»
<p style="font-weight: bold; font-size: 16px;">Click below to verify:</p>
<a href="${verificationLink}" style="
display: inline-block;
padding: 12px 24px;
margin-top: 18px;
font-size: 16px;
font-weight: bold;
color: #fff;
background-color: #888;
text-decoration: none;
border-radius: Spx;"»
Verify User
<fa>
</fdiv>

2

1
¥s

Figure 83 Send Email Function

120


https://api.health-service.click/api/admin/verify/:userId/:token

Together, this dual system of realtime alerts and email based workflow control strengthens both
user interactivity and administrative oversight. These features are particularly vital in medical
software, where secure, timely, and traceable communication can have a real impact on patient
safety and system reliability.

5.6.1.8 Data Seeding with HPRA verified Medication AP

Put in place a data seeding process that imports authorised medications from a reliable source
and fills the medications model database for testing and development in order to guarantee that
the Secure Prescription System is based on structured, authentic, and healthcare compliant

data.

Importing HPRA Verified Medications

Used an open data XML file provided by the Health Products Regulatory Authority (HPRA)
through Irelands data.gov.ie website as the primary source of data [HPRA, 2024]. A complete list
of approved or transfer pending medicinal products for human use is included in this collection.
To integrate the data, downloaded the XML file and placed it inside the medicationData/ folder.
Wrote a script using xml2js to parser and extract the XML data into usable JSON. Each product
was transformed to extract the following fields:

e ProductName (stored as name)

e Active Substances

e DrugIDPK (used as the products unique ID)

e ATC codes and RouteOfAdministration

121



await connectDB();

const xml = await fs.readFile(
path.resolve( dirname, '../medicationData/latestHumanlist.xml'),
‘utf-8°

)3

const parser = new xml2js.Parser({ explicitArray: false });

const result = await parser.parseStringPromise(xml);
let records = result?.Products?.Product;

if (!records) {
console.log('No Product data found in XML.');
return;

}

if (!array.isbrray(records)) {
records = [records];

}

const medications = records
.filter((med) => med.ProductName && med.DrugIDPK)
.map( (med) => ({
name: med.ProductName,
activeSubstance: Array.isArray(med.ActiveSubstances?.ActiveSubstance)
? med.ActiveSubstances.ActiveSubstance.join(", ")
: med.ActiveSubstances?.ActiveSubstance || null,
authorisationNumber: med.LicenceNumber,
atcCode: Array.isArray(med.ATCs?.ATC) ? med.ATCs.ATC.join(", ') : med.ATCs?.ATC || null,
routedfAdministration: Array.isArray(med.RoutesOfAdministration?.RoutesOfAdministration)
? med.RoutesOfadministration.RoutesOfAdministration.join(", ")
: med.RoutesOfAdministration?.RoutesOfAdministration || null,
productId: med.DrugIDPK,
I H

await Medication.insertMany(medications);

Figure 84 Medication Seeding

Once transformed, this data was saved to the MongoDB collection via the Medication model
using insertMany().This approach ensures that all medications available to doctors and
pharmacists during development are real, traceable products approved by national healthcare

authorities.

5.6.2 Frontend

5.6.2.1 Project Structure and Initial Setup

The frontend of the project comprises of Vite, a fast modern build tool optimised for
performance. The tech stack includes React for building the user interface, TypeScript for static
typing, shadcn/ui, Tanstack query for efficient data fetching and Tanstack router for client-side

routing.

122



o .github
Jhusky

columns
components

4 contexts

gitignore

# prettierrc

eslint.config.js
indexchtml
ged.config.js

e-lockjson

md
ct.properties

tsconfig.json
tsconfig.nodejson
vite.config.ts

Figure 85 Frontend Project Structure

Project Structure
To simplify code and separate concerns, the project uses modular and scalable folders.

Important folders and files:
e src/: Main source folder containing the application's logic.
o app/: Contains global providers and layout-related configuration.

o components/: Reusable Ul components.

o columns/: Configuration for data tables (e.g., patient lists, prescriptions).

o contexts/: React context providers for shared state.

123



o helpers/: Utility functions used across the app.
o hooks/: Custom React hooks.
o lib/: Shared libraries such as API clients.
o routes/: Route definitions and page components, aligned with TanStack Router.
o types/: TypeScript type definitions and interfaces.
o validations/: Zod schemas for form validation.
o App.tsx: The root component where the app is initialized.
o main.tsx: Entry point where the app is mounted to the DOM.
e public/: Static files like favicon and index.html.
e tests/: End-to-end and unit tests, including Playwright test results.

e vite-env.d.ts: Type definitions for Vite's environment variables.

Code Quality

o Prettier: .prettierrc formats code automatically.

e ESLint: Custom setup (eslint.config.js) ensures code meets linting standards and
conventions.

e Husky: Git hook manager in .husky/. Linting and formatting are automated via pre-
commit hooks.

e Lint-Staged: Improved commit efficiency by only linting and formatting staged files with
Husky.

e Playwright-report/ stores end-to-end testing findings.

e Commitlint: monitors commit messages for consistency and significance.

e SonarQube Integration: Sonar-project.properties sets up continuous code quality

analysis.

124



5.6.2.2 Component based Architecture

Pharmalink's frontend uses Reacts component-based architecture. Modularity improves
reusability, maintainability, and concern separation. Each component handles its own logic and

presentation, making scaling and updating straightforward.

avatar.tsx
badge.tsx
breadcrumb.tsx
button.tsx

calendar.tsx

dropdown-menu.tsx
input-otp.tsx
input

label.tsx

SONNer.tsx

st pper.tsx

toggle-

toggle.

nav-documents.tsx

nav-main.tsx

theme-provid

Figure 86 Ul Components

Ul Components and Shared Structure

The components/ directory has subfolders for ui/, forms/, and navigation (nav-main.tsx, nav-

user.tsx). These contained buttons, inputs, modals, dropdowns, tooltips, and layout containers.

125



Most Ul primitives use the shadcn/ui component system, which includes Radix Ul for
accessibility and allows Tailwind CSS changes. The app uses reusable components such as

<Button />, <Dialog />, <Select />, and <Table /> to maintain a consistent design language.

Layout Architecture and Sidebar Navigation

Pharmalink's persistent layout has a responsive sidebar for doctors and pharmacists. The
layout in __root.tsx conditionally renders navigation based on the current route:

The sidebar itself (app-sidebar.tsx) is composed using structured layout primitives
(SidebarHeader, SidebarContent, SidebarFooter) and integrates contextual role-checks via

AuthContext:

{user?.role === “doctor’

{user?.ro

Figure 87 Conditional Rendering

This modular architecture shows pharmacists and doctors only workflow-relevant Ul. Doctors
are also conditionally offered a Quick Prescription button for fast prescription creation.
Data table component
Pharmalink's robust DataTable component, designed with TanStack Table v8 is reusable. This
component powers most tabular views:

e Prescription lists

e Appointment schedules

e Patient directories
Features Include:

e Sorting, pagination, filtering.

e Select row, edit and delete inline.

e Mobile-responsive layout and controls.

126



' && selectedI:

ditlUrl && (
<Button

className="r

Edit
< /Button>

)}

{onDelete &&
<Button
variant=

ectedId)}

Figure 88 Inline Row Actions
5.6.2.3 Routing and Navigation
The modern, file-based routing system at PharmalLink uses TanStack Router, a type-safe and

versatile React routing solution. Separated concerns, role-based access control, and deep

linking for prescriptions, patients, and appointments are built into the routing architecture.

Routing Structure

The src/routes/ directory contains frontend routing configuration. The folder structure matches

the application URL, improving maintainability and developer experience.

dashboard
appointments

$appointmentld

patients
$patientld

Setup-mf:

verified.tsx

Figure 89 Routes

127



This structure leverages dynamic route segments (e.g., $prescriptionld) to handle CRUD

operations for specific resources.

Root Layout and Conditional Rendering

__root.tsx is the application's top layout. It renders child routes using TanStack Router's Outlet

component and dynamically decides whether to present the dashboard layout based on the

URL.

// Check if the current route starts with /dashboard
const isDashboardRoute = matchRoute({ to: pard”, fuzzy: true });
return (
<div className="mi
{isDashboardRou
<5idebarProvider>
<AppSidebar variant="1
<S5idebarInset>
<5iteHeader />
<main className="f1ex-1
<0Outlet />
</main>
<fSidebarInset>

</SidebarProvider>

<div className="fle
<ModeToggle />

<fdiv>

<Outlet />

<Toaster />
<Tan5tackRouterDevtools />
</div>

);

Figure 90 __root Layout
If the user is in the /dashboard route it will render
e AppSidebar: role-based navigation sidebar
e SiteHeader: header with controls for the user
e Sidebarlnset: Main content container for the dashboard routes

Or else it will render the public pages like Login, Register, and MFA Setup with a simpler layout.

128



Login in to your
account

Enter your email and password below to login to your

account
Email
ha-'ne@exa-ﬂp\e com

Password

Don't have an account? Register

By clicking continue, you agree to our Terms of Service

and Privacy Policy.

Figure 91 Public Login Page

Dashboard Overview Page

The dashboard home page (/dashboard/index.tsx) serves as the main landing page for
authenticated users. It is highly dynamic and role aware.
e Fetches all prescriptions using a custom hook usePrescriptions powered by TanStack
Query for server state management.
e Filters prescriptions based on the logged-in user's role (Doctor or Pharmacist) using
AuthContext.
e Renders areusable DataTable component with column sorting, filtering by patient
name, row selection, and row action buttons for prescriptions.

o Deletes prescriptions with optimistic Ul feedback using useMutation.

const { user } = us (AuthContext) ;

const queryClient = useQueryClient();
1 —

const { data: prescript , isloading, isError } = usePrescriptions();

const deleteMutation =

queryClient.invalidate(
1
Fa
onError: () => toast.error(’Fa

Tz

129



Figure 92 Dashboard Delete Mutation
5.6.2.4 Form Handling and Validation
Form handling is crucial to Pharmalink, especially for prescription creation and editing. The
frontend uses two strong libraries to provide a smooth, user-friendly, and robust form
experience:
e Manage form state with react-hook-form.
e Zod for schema-based validation.

This solution manages complicated forms with dynamic fields at high scale with good

performance and validation accuracy.

Form Management with React Hook Form:

React Hook Form is utilized widely throughout the application to efficiently handle form state

with minimalre-renders. It offers:
e |ntegration with controlled components is simple.
e Built-in error handling.

e Enhanced performance for large or dynamic forms.

const {
register,
control,
handleSubmit,
reset,
formState: { errors },

t = useForm<PrescriptionFormData>({
resolver: r{prescriptionSchema),
defaultValues: prefill || {

patientId: "°,
pharmacistId: "',
notes: 5

items: [

7
L

medicationId: ",
specificInstructions: '°,
dosage: ',

amount: ",

repeats: 1,

Figure 93 React Hook Form Usage
Features include:
e Field Registration.

e Controlled Inputs for custom components like Select.

130



e Dynamic fields using useFieldArray for adding/removing prescription items.
Schema Validation using Zod

Zod defines strict form data schemas to check user input against established rules.

Prescription item validation example:

const itemSchema = z
medicationld: z
-string()
-nonempty({ me
.regex(objectl

specificInstructions:
.string()

.nonempty({ message: 'S

dosage: z.string().nonempty({ message:

amount: z.string().nonempty({ message:

repeats: z.number().min(®, 'R

1);

Figure 94 Zod Validation Schema

Dynamic Prescription Form Design

The CreatePrescriptionForm is a reusable form component that allows doctors to create
prescriptions. Its key features include:
e Patient and pharmacist selection with the Select component with controlled values
e Dynamic prescription items with useFieldArray for adding/removing items
e AsyncMedicationSearch component for fetching medications dynamically

e Error handling using inline error messages via the errors from react hook form.

AsyncMedicationSelect Component

e Allow users to search for medications from the backend using an async API call
e Integrated react-hook-form using Controller for form state management

e Debounced search to prevent APl spamming

e Only starts searching when 2+ characters have been entered

e Uses custom useMedicationSearch hook to fetch medication from the backend
e Automatically shows pre-filled selected medication which is useful for the edit

prescription form or duplicate prescription

131



-

export function icationSelect({ field, initialValue }: Props) {

[query,

[hasInteracted, setHasInteracted] - useState(false);

[debounced] =

{ data = [],

unce(query, 300);

debounced. length 2 ? debounced :

H

[selectedMedication,

ctedMedication] =

useState<Medication | null»(initialValue ?? null

if (imitialValue eld.value initialValue._id) {
setSelectedMedication(initialValue);

retu

dMedication

Field.value) {

= data.find({m) => m._id

1

1
}, [data, field.value, initialValue]);

dication(match);

// Dynamically show Label in the input if user hasn't typed yet

co inputDisplayValue =

hasInteracted || query.length > @ ? query : selectedMedication?.name

return (
<div className="s
ommand className:
<CommandInput
value={inputDispl:

setQuery

ayVa.
al)

1
lue}

{isloading && <CommandTtem disabled>Loading. ..</CommandTtem>}

{hasInteracted &&
query.length >=
lisloading &%
data.length

8 && (

<CommandEmpty>No medications found.</CommandEmpty>

)}

{data_map( (med)
<CommandIte

/CommandItem>
N}
</CommandLi.:
</Command>

{selectedMedication &&

<div className
Selected
<span className=
</div>

</div>
)

7
I

 Reset for display purposes

</

Figure 95 Async Medication Select

5.6.2.5 State Management and Data Fetching

Pharmalink manages state and retrieves data using:

e TanStack React Query

e React Context API

e Built-in React hooks: useState, useEffect, useContext

132



This architecture enforces user role-based data access and keeps the frontend reactive,

efficient, and in sync with backend data.

React Query — Server State Management

Pharmalink manages server state across the app with React Query. React Query offers:
e Caching: Reduces unnecessary API calls.
e Background Refetching: Keeps data fresh automatically.
e Mutation handling: Easily handle create, delete and edit operations
e Query Invalidation: Automatically refetch data after a mutation

UsePrescriptions Hook:

export const usePrescriptions () =>{
const { user } seContext (AuthContext);

return useQuery(-
gueryKey: ['prescriptions’],
queryFn: getPrescriptions,
enabled: !luser,

Figure 96 usePrescriptions Hook

e Fetches all the prescriptions from the backend

e Queryisonly enabled if the sueris logged in

e Datais cached dynamically

e The query can be invalidated using queryClient.invalidateQueries to refresh data after

changes such as create or edit

133



Mutations - Creating, Editing and Deleting Data

For data mutations, useMutation is used:

const deleteMutation
mutationFn: deletePrescription,
onSuccess: () => {

toast.success( Prescr

1
I
onError: () =>»

1);

Figure 97 useMutation

e Call APl function —deletePrescription
e On success: show a notification and invalidate the prescriptions query so React Query
refetches the latest data.

e On error: Show an error toast

API Layer — Axios Integration

Api.ts defines all API functions utilizing Axios:
e Acentral baseURL and withCredentials configuration.
e Use handleApiError() for consistent logging.
A sample API function:
// Verify OTP
export const verifyOTP = async (otp: string) => {

try {
r

const res = await api.post(’/auth/login/mfa { totp: otp });

return res.data;
+ catch (error) {
handleApiError(error);

Figure 98 OTP API Function

React Hooks — Local State Management

React’s built-in hooks are used for:

e useState: Manage local Ul state (e.g., search input, form fields).
e useEffect: Handle side effects (e.g., reset form on prefill change, fetch data on mount).

134



e useContext: Access global user state via AuthContext
5.6.2.6 Authentication and Role based Access Control
Pharmalink enforces a secure and role-aware frontend experience through a custom
authentication context and React Query-based user session management. This system ensures
only authorized users can access protected routes and features — tailored to either doctors or

pharmacists.

Authentication Flow

Axios withCredentials authenticates APl requests using session cookies maintained by the
backend.

Frontend user session data is fetched:

const {

data: user,
isloading,
isFetching,
isError,

refetch,
= useQuery({

queryKey: ['u
queryFn: fetc
enabled: true,
retry: false,
refetchOnWindowFocus: false,

Figure 99 useQuery Auth
The fetchUser function:

e Sends a GET /auth/me request.
e Returns the currently logged-in user's _id, email, and role.
e Stores this data in React Query's cache for global access.

AuthContext — Global User Access

Custom AuthContexts provide user data and session state to the entire application.

<AuthContext.Provider
value={{ user, isloading: false, refetchUser: refetch }}

{children}
</AuthContext.Provider>

Figure 100 AuthContext

e Wraps the entire application in main.tsx.

e Blocks the app rendering with a loading screen while the user session is being fetched

135



useAuth Hook

return context;

1.
15

Figure 101 useAuth Hook

Allows components to easily access user data:

Figure 102 useAuth Usage

Role Based Access Control

The user's role (doctor or pharmacist) is used throughout the app to control:
o Sidebar Navigation: renders different menu items based on the users role.
o Data filtering: filters prescriptions by doctor or pharmacist id.
e Page Access: Protected routes if the user is authenticated.

e Quick Prescription button: only shows if the role is doctor.

{user?.role === 'doctor' &&
<S5idebarMenu>
<SidebarMenultem className="flex items-center gap-2"»>
<SidebarMenuButton
tooltip="Quick Create
className:

<PlusCircleIcon
<Link to= g

-I. J.
<span className="font-s
</Link>»
< /SidebarMenuButton>
< fSidebarMenultem>
</SidebarMenu>

Figure 103 Quick Prescription Button

Summary of Authentication System

e AuthProvider: fetches the user session and provides a global context
e useAuth: A custom hook to access user and session utilities.

e AuthContext: Stores the user, isLoading, and refetchUser.

e fetchUser API: Feteches the user data from secure backend.

e React Query: Manages the user session caching and loading state.

e Role checks: Used in the Ul and route logic to enforce access control.

136



This authentication and role-based access system ensures that only verified users can use
Pharmalink — and that their experience is personalized based on their medical role. It also

establishes a secure foundation for protecting sensitive healthcare data on the frontend.
5.6.2.7 RealTime Notifications

Pharmalink uses Socket.lO for real-time prescription updates for doctors and pharmacists.

Clinical process efficiency and responsiveness are improved by this.

Overview of Architecture

The real-time notification system is built with the following key pieces:
e Socket.ts: Initialises and configures the Socket.IO client.
e SocketProvider: Manages socket connection and event subscriptions.
e useSocket: Custom hook to access the socket context.

o NotificationBell: Ul component showing unread notifications.

Socket Initalisation

const socket = io(BASE APT URL, {
withCredentials: true,
autoConnect: false,

transports: ['w £ ],

export default socket;

Figure 104 Socket Initialisation
e The socketis configured to connect using WebSocket transport.

e Credentials (cookies) are sent for secure session validation.

e Connection is manually initiated when a user is authenticated.

Socket Provider — Connection Lifecycle

Socket Provider is a global context that connects the socket once a user is available from the
authContext. It will register the user on the server using socket.emit(‘register’, user._id).
Subscribes to events based on the user’s role such as pharmacists listening for new-

prescriptions and doctors listening for prescription-updated.

137



if (user.role ) {
socket.on( ', handleNewPrescription);

1
I

if (user.role
socket.on( *, handlePrescriptionUpdated);

1
I

Figure 105 Socket User Roles

These events update the local notifications state. unreadCount is incremented to show the
badge in the Ul.

const [notifications, setNotifications] = useState([]);
const [unreadCount, adCount] =

const handleNewP
console. log( ] =d: ", data);
s ---data }1);

13

Figure 107 New Prescription Notification Function

useSocket — Custom Hook

export const use ) =1
const context = u o (SocketContext);
if (!context)

throw new Error(’
return context;

13

Figure 108 useSocket Hook

Provides safe access to the socket context throughout the app.

NotificationBell Component

e Displays ared dot when there are unread notifications.
e Opens a popover showing a scrollable list of messages.
e Each notification is clickable and navigates to a relevant prescription.

e Users can "Mark all as read" to clear the unread count.

138



<div className=
{notificatiol
<p className="text
new notifications

id) => (

s/${notification._prescriptionld}”,

className="ro

<div className="font

{notification.type

<fdiv>
<div className="text-m
{notification.patient &&
<span className=""fc
otification.message} - {notification.patient}
<fspan>
)1
<fdiv>
{notification.createdAt || notification.updatedAt ? (
<div className= ind «t-[11px] mt-1"
{new Date(
notification.createdAt || notification.updatedAt
) caleString()}
£ fdi’
) : null}
<fdiv>
))
)}

<fdiv>

Figure 109 Displaying Notification
Summary of Real-Time Notification System

e Real-time updates: Socket.lO with role-based events.
e Secure User connection: Registered with backend after login.
e Global State: Stored inside the SocketProvider.
e Contextual Navigation: Clicking notifications routes to the details.
Pharmalink's real-time architecture lets users react quickly, streamline process, and avoid

missing prescription updates while retaining secure, role-based control.

139



6 Testing

6.1 Introduction

The software development lifecycle includes testing to ensure that the Pharmalink system
works reliably, meets functional requirements, and delivers an intuitive user interface for
doctors and pharmacists.
Automated and real user testing were used to validate the system from backend logic to
frontend interface in this project.
Used various tools and methodologies such as:
e Playwright: For end-to-end (E2E) testing of the frontend, simulating real user flows such
as login, prescription creation, and access control.
e Vitest: Frontend unit testing and component-level testing to ensure separated logic
works.
e Jest: For APl endpoint, service, and utility function backend unit testing.
e UserTesting: Conducted with real users (e.g. pharmacists and doctors) to gather
feedback on usability, functionality, and role-based workflows.

This chapter outlines the testing strategy used throughout PharmalLink.

6.2 Pharmacist Testing

6.2.1 Pharmacist Feedback

During user testing, a practicing pharmacist provided a detailed assessment of Healthmail and
Pharmalink's improvements. Professional perspective supplied real-world context to assess
the system's practicality and usability beyond technical performance.

Healthmail has limited search functionality, inconsistent prescription formatting, unclear
prescriber details, and disorganized communication procedures, according to the pharmacist.
Case-sensitive search behavior, manual archiving, lack of visibility across systems (e.g.,
hospitals, private practices), and transcription errors due to vague or misinterpreted dosage
instructions all showed an inefficient and error-prone system for pharmacy staff.

Pharmalink immediately addresses several of these issues. The pharmacist praised the
system's secure, centralized patient interface, date-ordered prescription view, and clear,
traceable prescriber-pharmacist communication. The feedback highlighted how PharmalLink
decreased patient misidentification, eliminated manual archive dependence, and quicker

prescription validation using improved prescriber notes and organized input fields.

140



The pharmacist considered a query system to be innovative even in its basic form. A built-in
doctor-to-pharmacist communication module would replace email, physical notes, and patient
discussions with a single, traceable channel which improves clarity, accountability, and
treatment speed.

This response clearly confirmed PharmalLink solves clinical problems. It showed that the
system's usability and design match pharmacy operations and suggested ways to improve
medical prescribing productivity and safety.

Below in figure 110, is the feedback document provided for the pharmacist.

141



Review for Dan Esmonde 14/04/2025

PSI Registration Name: Daniel O’Neill
PSI Registration Number: 13193

Title: Supervising Pharmacist Boots Gorey

Issues with Healthmail

Issues include:

* Basic Outlook email address interface with registration rule applied that only allows
registered medical professionals (medical doctors, registered nurses, dentists),
practice surgeries and pharmacies (via Supervising Pharmacist) to create accounts and
communicate.

* Increasingly private healthcare services are transitioning to using a Patient Hub... if the
pharmacy operates according to legislation... definining criteria for the electronic
transmission of prescriptions ... this allows for only Healthmail transfer between
clinician and pharmacy hence the patient cannot send their individual prescription to
Healthmail using non-Healthmail approved email addresses. This untimately causes
excessive stress to patient and pharmacy teams, multi-channel communication
(pharmacy phening to request prescription), delays in receiving prescription and hence
delay to medical treatment until the pharmacy receives either Healthmail copy of
prescription or physical prescription in the post.

* Search criteria - operates the same as Outlook search! Places “search hits” at the top.
The search is case and spelling sensitive and keywords (eg patient name and address)
must be in the subject line or body of the email. If the prescription was sent as an
attachment the basic search will not yield desired results. Searches are not in date
order and hence older or superseded prescriptions can be shown as top hits and
increases potential to dispensing errors.

* Archiving emails manually - emails are not separated into patient folders ... rather in
read receipt format archived manually by pharmacy staff once processed to folders
sorted by Month and Year archive. Therefore, searching for historical prescriptions can
be difficult, time consuming and yield inaccurate results (eg showing patients with
different names eg same forename but differing surnames).

+ Layout template for prescriptions varies depending on surgery.

* Not all prescribers adopt the same template - most have adopted a relatively uniform
layout (to meet all legal requirements of prescriptions) but some have issues eg
omission of key prescription requirements.

* Professionally | have encountered cases where there are notable differences between
GP view and pharmacy view... ie what surgery can see and what was transferred differ.

* Issues pertaining doctors’ instruction interpretation gg use of dose codes and free type
and hence can lead to dispensing errors
eg 10 x Amoxicillin 500mg ONE TO BE TAKEN THREE TIMES DAILY (pre-programmed
dose code). One to be taken twice daily as directed. FOR FIVE DAYS.

Above we see GP consultation notes would state patient prescribed 500mg Amoxocillin
twice daily for 5 days. There is a transcription error and leads to therapeutic delay

* GMS numbers of doctors often omitted off Healthmail prescriptions — important for
PCRS medicine reimbursement claims.

Review for Dan Esmonde 14/04/2025

* Prescriber details may not always be clear.

+ Hospitals do not routinely have access!

* Healthmail is still not universal with all GP surgeries. Interfaces such as Healthlink
integrate with software systems, but Healthlink has no adaptation to Community
Pharmacies.

* Large number of Dental Surgeries and Psychiatric Services do not use Healthmail or
Healthlink nor do they have access.

Figure 110 Pharmacist Feedback

142



6.2.2 Analysis & Future Improvements

Pharmalink is a secure, user-centered prescription management solution that solves several of
Healthmail's problems. The platform improves security, usability, and prescription workflow
efficiency by systematic requirements gathering, deliberate system design, and broad user
validation.
An experienced pharmacist confirmed that Pharmalink overcomes major operational concerns
such patient misidentification, ineffective archiving, confusing prescriber instructions, and
slow, fragmented communication. The platform's unified patient dashboard, secure
communication paths, mandatory field validation, and auditability improve current processes.
Further enhancements may increase Pharmalink's value and impact. A secure, traceable
doctor-to-pharmacist query process would be a major improvement. Pharmacists could
request prescription clarifications such dosage instructions, medication clarification, and
administrative details directly from the platform without using email or human interventions.
This would improve professional communication, prescription filling, and healthcare team
administration.
Other improvements may include:
e Prescription Analytics Dashboard: Showing doctors and pharmacists prescribing trends,
common errors, and patient drug histories should improve clinical decision-making.
e Extension of User Roles: Adding administrative staff for non-clinical prescription
management could improve flexibility for larger healthcare providers.
e Mobile Access: Creating a Pharmalink app for doctors and pharmacists to handle
prescriptions on the go.
e Patient Notifications: Notifying patients when a prescription is dispatched, queried, or
ready for collection could improve transparency and minimize pharmacy workload.
Below in figure 111, is the problems solved by the Pharmalink application as per the

pharmacist.

143



Issues solved by Pharmalink

Issues solved include:

* Secure hub with defined registration criteria.

* Patient-hub presentation of Pharmalink — unlike Healthmail it is not based on email
receipt ordered by most recent received to Pharmacy.

* All patient data in one secure location and for pharmacist conducting clinical and
legal screen of prescription having all data on one source is amazing.

* Reduces risk of wrong patient selection.

* Direct communication between prescriber and pharmacy. Prescriber notes clearer.
Option to extend to add pharmacy query section (this would document all
professional communication and gives rise to faster response rate with better
medical outcomes).

* Obvious tracking of prescription status. Solves issues with wrong information
being provided to patients re-prescription processing and unrealistic wait times.

* Prescriptions sorted via date order in patients account.

* Directtraceable communication line between prescriber and pharmacy. Takes
away need for long, detailed patient record notes detailing professional
intervention .... At present queries must be sent back to prescriber by email (one
interface), document intervention on patients dispensing record (second interface),
annotate physically onto prescription (interface 3), verbally speak with patient
(interface 4 — no physical record) and ensure responses are monitored (will only
come in as basic email) and thus reliance on support staff to monitor and update
notes and can involve pharmacist or GP not directly involved in query - Pharmalink
has a documented layout and removes this tedious administrative burden.

Figure 111 Pharmacist Issues Solved
6.3 Front End Testing

Frontend testing verifies that a web application's user interface (Ul) works properly, looks well,
and provides a consistent experience across devices and browsers. In BrowserStack (2023),
"frontend testing ensures that all parts of the user interface work properly and that the
application provides a seamless experience for users, from functionality to responsiveness and
visual consistency".

Frontend testing was necessary for doctors and pharmacists to use PharmalLink efficiently and
intuitively. Two main frontend testing methods were used:

e E2E Testing: Logging in, writing a prescription, and confirming role-based access
restriction were automated with Playwright. E2E testing validated frontend and backend
procedures to ensure end-user behaviour.

e Unit Testing: Vitest was used for isolated component testing. Verifying that form inputs,
buttons, and modals worked independently was required. Unit tests provided fast

frontend logic feedback without application installations.

144



6.3.1 End-to-End Testing

E2E testing checks an application's workflow from the user's perspective. Microsoft (2023)
states that E2E tests imitate real-world usage to ensure that "all pieces of an application work
together properly in real-life scenarios" across many components and layers.

Each E2E test mimicked real user experiences to ensure authentication, dashboard navigation,
and prescription management worked. Tests showed that pharmacists could only see their
prescriptions, whereas doctors could see all patient and prescription records.

Below in figure 101, a screen capture of the end-to-end tests can be seen passing

Liam@DESKTOP-Di Ad6 Jd/IADTYAWork/Major-Project-Frontend
% npm run ele

» react-cicd-app-testgd.0.8 ele
> npx playwright test

Running 16 tests using 6 workers
16 passed (12.0s)

To open last HTML report run:

Figure 112 E2E Tests Passing

145



Below in figure 111, is an image of the tests passing for both firefox and chrome browsers:

All ‘16 Passed ' 16 Failed ‘0 Flaky ‘0 Skipped 0

~ dashboard/dashboard.spec.ts

Dashboard page > should load dashboard and show welcome message (_chromium
Dashboard page > should allow navigating to patients page ( chromium
Dashboard page > should allow navigating to prescriptions page ( chromium

Dashboard page > should allow navigating to appointments page ( chromium

Quick Prescription button > should navigate to Quick Prescription page ( chromium

Dashboard page > should load dashboard and show welcome message ( firefox

Dashboard page > should allow navigating to patients page ( firefox

Dashboard page > should allow navigating to prescriptions page ( firefox

Dashboard page > should allow navigating to appointments page ( firefox

Quick Prescription button > should navigate to Quick Prescription page ( firefox

~ prescriptions/prescription.spec.ts

Prescriptions page > should load the prescriptions page ( chromium

Prescriptions page > should show “Add Prescription™ button for doctors ( chromium

Prescriptions page > should search for a patient by name (_chromium

Prescriptions page > should load the prescriptions page ( firefox 766ms

Prescriptions page » should show "Add Prescription™ button for doctors ( firefox

Prescriptions page > should search for a patient by name ( firefox

Figure 113 Firefox & Chrome Tests

146



Below is an example of end-to-end test code in figure 112:

» async ({ page }) => {

Patients/i }).click();

s/);
nts/i)).toBeVisible();

Figure 114 Navigation Test

Challenges Managing Authentication Credentials

Secure authentication for automated testing was a major difficulty during End-to-End testing.
Pharmalink uses two-factor authentication (TOTP) in addition to email and password access,
complicating login automation.

Using environment variables, a dedicated test user's email and password were safely loaded
from a.env.development file. TOTP input automation was not possible within the project
timeline.

During the first login, the user must manually enter the TOTP code within a 30-second timeout.
To simplify testing, Playwright's storageState feature saved the authenticated session (cookies
and localStorage) to a storageState.json file.

Reusing this cached information in subsequent E2E tests bypassed login and improved test
speed and reliability.

The testing process focused on securely managing environment variables and preventing

version control credential disclosure.

147



Below is a code sample of the login setup for testing in figure 113:

import { chromium } fr

import dotenv from
dotenv.config({ path: '.en

const TEST_USER_EMAIL = process.env.TEST_USER EMAIL!;
const TEST_USER_PASSWORD = process.env.TEST_USER_PASSWORD! ;

async function loginAn tate() {
st browser = await chromium.launch({ headless: false }); // headless false = you see the browser
const page = it browser.newPage();

console.log
await page. : t ¥;

/f Fill credentials
com').fill(TEST_USER_EMAIL);
. Fil1(TEST_USER_PASSWORD);
{ name: /login/i }).click();

S/ Wait for input-totp page
await page.waitForURL(/\/input-totp/);

console_log(’
console.log

await page.waitForTi t(30000); // Give you 30 seconds to enter OTP manually

// Confirm you are on dashboard
await page.wait L(/\/dashboard/);

console.log( " Lo

// Save storage (cookies, LocalStorage) to a file
await page.co

console.log("’ at

await browser.c

1
¥

loginAndSaveState();

Figure 115 Login Testing Setup
6.3.2 Vitest Unit testing

Unit testing checks that functions, API calls, and React hooks work separately. Testing Library
(2024) states that unit testing guarantees "small, focused parts of an application behave as
expected and support building reliable, maintainable systems"1.

Vitest was the major frontend logic unit testing framework for PharmalLink. Vitest makes
developing tests in Vite-powered apps fast, modern, and lightweight. Testing consisted of API
call and React hook testing.

Authentication, patient, and prescription API functions were evaluated separately. API
operations like api.get, api.post, api.put, and api.delete were mocked using vi.spyOn to

simulate server responses without a live backend.

148



Key examples include:

Authentication: Testing fetchUser, registerUser, login, verifyOTP, and logout API calls for
valid payloads and answers.

Patients API: Checking that getPatients, getPatientByld, createPatient, deletePatient,
and updatePatient returned proper patient data and interacted with APl endpoints.
Test Prescriptions APl functions getPrescriptions, getPrescriptionByld,
createPrescription, and updatePrescriptionStatus for accurate behavior and request

structure.

These tests verified that the frontend could interface with the backend and understand API

responses.

Below is a code sample of a prescription unit test in figure114:

async () => {
1

I

vi.spyOn(api, "get').mockResolvedValueOnce({ data: { data: mockData } });

const result = await getPrescriptionById(’123');

expect(api.get).to enCalledWith(' /prescription

xpect(result ).t );

Figure 116 Prescription Unit Test

React Query's QueryClientProvider and @testing-library/react's renderHook utility were used to

unit test custom React hooks like useAuth, usePatients, usePatientByld, and usePrescriptions.

Highlights are:

Ensured useAuth provided user authentication and loading status.

Verifying usePatients and usePrescriptions correctly retrieved patient and prescription
lists, loaded states, and replied to backend data.

Verifying mutation hooks like useUpdatePrescription and useUpdatePrescriptionStatus
trigger APl updates.

More mocks were utilized to represent authenticated users and backend data without

active external systems, speeding up and stabilizing tests.

149



Below is a code sample of a react hook unit test in figure 115:

it('c
(
updatePrescript as unknown as ReturnType
) -mockResolvedValue({ up : true });

const { result } Hook(() => uselUpdatePrescription(
wrapper,

1)

await act(as

await result.current.mutateAsync({ status:

expect(updatePres n) .toHav nCalledWith(
status:

1)

Figure 117 React Hook Unit Test

Below is a screenshot of all frontend unit tests passing in figure 116:

am@DESKTOP -D8RJALG /d/IADTY4Work/Major-Project-Frontend
$ npm run tes

> react-cicd-app-test@®.9.0 test

> vitest

Generating route
¥ Pro: d routes

{ _id: ‘userl’, email: ° @example.com” }

{ success: true,

prescriptions/prescriptions.test.ts (5 tests)
patients/patient.test.ts (5 t
auth/authentication.test.ts (
auth/useAuth.test.t

unit/prescription

unit/patients/usePatients.test.t

6 passed

Start at
Duration 3.3@s (transform 385ms, setup @ms, collect 3.11s, tests 324ms, environment 12.

5, C s, prepare 892ms)

Figure 118 Unit Tests Passing

150



6.4 Backend Testing

6.4.1 Unit Testing with Jest

Pharmalink tested backend logic, utilities, and APl endpoints with Jest. Supertest was used to
verify registration, login, and multi-factor authentication replies for /api/auth/register,
/api/auth/login, and /api/auth/login/mfa. Tests confirmed that unauthenticated users could not
access /api/prescriptions.
Utility functions were also thoroughly tested:

e Hashing: hashField and compareField correctly hashed and compared passwords.

o JWT Creation: createJWT generated valid JSON Web Tokens.

¢ Encryption/Decryption: encryptData and decryptData secured sensitive data and
safely handled invalid inputs.

Below is a screenshot of the backend unit tests passing in figure 117:

3 passed, 2 total
13 passed, 13 total
8 total
14.364 s

Ran all test suites.

Liam@DESKTOP -DERJALE Jd/TADTYAWork/Major-Project-Backend

Figure 119 Jest Unit Tests Passing

151



Below are code samples of testing JWTs and hashing utilities in figure 118:

describe(

it("sho
const passwor
const hashed =

const match = await compareField(password, hashed);

expect(match)
1);

it('should fail on
const password
const hashed =
ord’', hashed);

describe(
it(’sh
const fakelUser
const token = createll

expect(typeof token)
ct(token._split(’.

Figure 120 JWT & Hashing Tests
6.5 Conclusion

Pharmalink was reliable, secure, and tailored to real healthcare users thanks to testing.
Validated the system at every level using unit testing, integration testing, end-to-end testing,
and user input. Vitest and Jest unit tests ensured that components, APls, and business logic
worked properly in isolation, whereas Playwright end-to-end testing verified user workflows
from authentication to prescription administration.

Real-world users like pharmacists confirmed that PharmalLink solved Healthmail's problems.
This user-centered evaluation showed that Pharmalink increased clinical workflow-aligned
usability, security, and dependability.

The testing phase proved Pharmalink’s technical stability and demonstrated its healthcare
prescription management improvements. The system's quality, usability, and efficiency

improved with thorough testing.

152



7 Project Management

7.1 Introduction

For this software Project to be planned, developed, and delivered successfully, effective project
management was essential. This chapter describes the projects lifecycle in all its major stages,
from the first proposal and requirement collection to design, implementation, and testing. It
also emphasises the technologies that facilitate task tracking, version control, and
communication during the development process.

This part also examines the projects general management, including communication with the
project supervisor, difficulties encountered, and abilities developed. To give an in-depth
overview of the experience obtained from overseeing a real world software development

project, both technical and professional development are covered.

7.2 Project Phases

7.2.1 Proposal

The projects proposal phase outlined the fundamental goals, technological scope, and
rationale for developing a secure, modern prescriptions transmission system between doctors
and pharmacists. The "Pharmacist-Doctor Secure Prescriptions System" the proposal
acknowledged the significant disadvantages of the healthcare industry current email-based
communication systems, including Health mail, including problems with administrative burden,
phishing threats, delays, and mis delivery.
A platform centered around a REST APl was proposed as the solution, allowing doctors to assign
prescriptions straight to pharmacists via a secure, real time digital system. This system would
solve important issues with scalability, security, and efficiency and provide advantages like:

e End to end encrypted prescription transmission and storage.

e Realtime notifications for pharmacists.

e Role based access control (RBAC).

e Multifactor Authentication (MFA).

o Automated workflows that reduce manual overhead and improve reliability.
The proposal outlined an extensive list of objectives for the frontend and backend. GitHub
Actions and AWS were used to set up the infrastructure, ESLint, Prettier, and Commitlint were

used to enforce code quality, while Snyk and SonarQube were used for security tooling.

153



Additionally, it highlighted the necessity of employing strong testing techniques with Jest,

Playwright, and Vitest.

The project suggested a React based online application with a Ul driven by ShadCN
components, TypeScript, and modern state management technologies. A Figma prototype
would be used to create the frontends user friendly user flows, responsive user interface, and

strict access control based on user roles.

7.2.2 Requirements

The requirements phase was important for determining the projects limits and direction. | was
able to determine the advantages and disadvantages of the current prescription management
systems by examining PioneerRx and WellSky. This information helped to shape the creation of
a more specialised and user friendly solution.

Creating user personas for doctors and pharmacists assisted in focusing the design process on
actual user requirements, directing features like prescription processes, patient management,
and authentication. Frontend behaviour and API structure were directly influenced by the use
case diagrams, which highlighted key system interactions.

The system was made sure to be feature complete, secure, scalable, and performance driven by
separating needs into user, functional, technical, and nonfunctional categories. Architectural
choices were directly driven by requirements such as role based access control, multifactor
authentication, encryption, and the use of prescription data.

To make sure the system could satisfy user and industry requirements, the technical feasibility
study further evaluated the stack and tools selected, ranging from CI/CD and testing
frameworks to MERN and AWS.

With everything considered, this phase created a clear roadmap that eliminated uncertainty

and set the way for efficient, user entered development.

7.2.3 Design

The PharmalLink systems design phase had a vital part in translating user requirements into a
scalable and useful architecture. concentrated on developing a solution that could satisfy the
functional goals while maintaining high performance, security, and user experience throughout
the entire stack after determining what was necessary.

The three tier system architecture, which allowed for a clear separation of concerns between
the frontend, backend, and data layers, was a significant result of this phase. This framework

imposed secure access and communication between levels and significantly increased

154



scalability and maintainability. Utilising AWS cloud infrastructure together with technologies
like React, Express, and MongoDB provided an approach that was both production ready and
futureproof.

Usability and accessibility became the basis for frontend design decisions. A modular reliable
client experience was established with the aid of ShadCN Ul, Tailwind CSS, and technologies
like TanStack Router and TanStack Query. While Sod and React Hook Form provided solid form
validation, Figma was critical in building wireframes and visual hierarchy.

The Model Router Controller (MRC) design pattern was used to ensure structure and clarity for
the backend. This pattern allowed me to build a maintainable and testable API while keeping
business logic cleanly separated. Additionally, JWT, encryption using Nodes native crypto
module, Helmet, and express validator were integrated to emphasise the secure architecture.
During this phase, workflows and relationships were clearly modelled using a variety of UML
diagrams, including flowcharts, sequence diagrams, and ERDs. These tools acted as
documentation for upcoming development and assisted in evaluating system logic before
implementation.

Overall, this phase laid the foundation for building a robust, secure, and user friendly

application, aligning tightly with the technical goals and user needs.

7.2.4 Implementation

Implementation turned architectural and design plans into a working Pharmalink system. A
safe, scalable, and user-centered prescription management solution was my goal after the
requirements and design phases.

With Node.js, Express, MongoDB, and React, full-stack development proved efficient. Good
database schema design created clean relationships between users, patients, and
prescriptions, supporting business logic and role-based workflows.

AWS deployment and secure environment variable management kept the application
production ready. The frontend's modular architecture utilizing React and TanStack Router
enabled dynamic and intuitive navigation, while the backends’ Express and Model-Router-
Controller (MRC) paradigm created a clean, maintainable API.

Security was crucial during implementation. Multifactor authentication (MFA), HTTP-only cookie
session management, and field-level data encryption secured sensitive medical data. To ensure
security, frontend and backend role-based access control was consistent.

Notification handling improved real-time updates and improved pharmacist and doctor
processes. Comprehensive Jest, Vitest, and Playwright testing verified APl endpoints, frontend

components, and user journeys.

155



The Implementation phase turned Pharmalink from a technical design into a safe, production-

ready prescription management system with careful planning and implementation.

7.2.5 Testing

Pharmalink's functionality, performance, and security have to be tested to meet project
requirements.

Unit testing, end-to-end testing, and real user testing covered frontend and backend systems.
Vitest executed rapid, isolated unit tests on frontend components, React hooks, and API utility
functions. This detected logic problems early in development.

Jest and Supertest tested authentication routes, encryption utilities, and session management
operations on the backend to ensure system security and stability.

Playwright end-to-end testing verified login flows, role-based navigation, and prescription
management across user roles.

Real pharmacist user testing revealed workflow efficiency improvements, particularly in
navigation and role-based permissions.

Pharmalink ensured system stability, user experience, and security before deployment by

combining automated and manual testing.

7.3 Project Management Tools

7.3.1 GitHub

GitHub was important to the PharmalLink systems development lifecycle and project
management. GitHub functioned as a platform for task organisation, workflow automation, and
progress monitoring during the whole development process, in addition to its primary function

as aversion control system.

156



¥ main ~ #® 5 Branches © 0Tags Q Gotofile t Add file ~ <> Code ~

‘% Liam-Ronan-dev Merge branch ‘develop’ X 47974b8 - 20 hoursago L) 82 Commits
.github/workflows ci: updated deploy script 2 weeks ago
husky chore: fixing commitlint 2 months ago
docs feat: re-structured ERD and prescriptions, connected to real ... 3 days ago
Src Merge branch ‘develop’ 20 hours ago
tests configured eslint, prettier & jest, run on Cl 2 months ago

0 env.example feat: added new error handler, request logger, and correctly ... 3 weeks ago
0 .gitignore feat: added new error handler, request logger, and correctly ... 3 weeks ago
0 prettierrc feat: added medications functionality allowing pharmacists t... last month
[ README.md chore: testing nginx & EC2 2 months ago
0 commitlint.config.js chore: updated GH secrets to not overwrite env file on ubun... 2 months ago
0 eslint.config.js configured eslint, prettier & jest, run on Cl 2 months ago
0 Jest.config.)s configured eslint, prettier & jest, run on Cl 2 months ago
0 lint-staged.config.js test 2 months ago
0 package-lock.json feat: re-structured ERD and prescriptions, connected to real ... 3 days ago
0 package.json feat: re-structured ERD and prescriptions, connected to real ... 3 days ago
0 sonar-project.properties Update sonar-project.properties 2 months ago

Figure 121 GitHub Repository

The Gitbased version control system from GitHub made it easy to track changes, and rollbacks.
With a main branch for code that was ready for production and a develop branch for testing
features prior to merging, a clear branching strategy was put into place. The creation of feature
specific branches improved focus and decreased merge conflicts by isolating functionality.
GitHub Actions, one of GitHubs powerful features, was used in this project. These automated
processes handled the following tasks based on push events:
e Unit testing, linting, formatting, and commit message checks are all examples of
continuous integration (Cl).
e Security scanning: Using programs like Snyk and SonarCloud to automatically find
vulnerabilities.
e Executing Playwright test suites to guarantee Ul dependability is known as end to end
(E2E) testing.
e Deployment Pipelines: Upon successful builds, the frontend is automatically deployed

to S3/CloudFront and the backend is automatically deployed to EC2.

157



All workflows Q Filter workflow runs

Showing runs from all workflows

Help us improve GitHub Actions
© P P Give feedback X
Tell us how to make GitHub Actions wark better for you with three quick questions.

251 workflow runs Event v  Status ~  Branch ~  Actor ~

@ Merge branch ‘develop’ ain B 20 hours age
" Deploy Back-end to EC2 Instance #82: Commit 4797458 pushed by Liam-Ronan-dev @ 29
@ Merge branch ‘develop’ ain B 20 hours age
Run Jest Tests & Format Code #83: Commit 47974b8 pushed by Liam-Ronan-dev @ 16s
@ Merge branch ‘develop’ = B 20 hours age
© Security Sean #79%: Commit 47974b8 pushed by Liam-Ronan-dev & 1m 405
@ fix: comments eveion 5 20 hours ago
# Deploy Back-end to EC2 Instance #81: Commit 3#02a7f pushed by Liam-Ronan-dev & 30s
@ fix: comments eveion 5 20 hours ago
Run Jest Tests & Format Code #82: Commit 3f02a7f pushed by Liam-Ronan-dev @ 25
@ fix: comments R [=E h:_u-s ago
© Security Sean #78: Commit 3f02a7f pushed by Liam-Ronan-dev @ m 435
@ fix: removed comment o B yesterday
Run Jest Tests & Format Code #81: Commit chOccfa pushed by Liam-Ronan-dev @ 22
@ fix: removed comment ain B yesterday
@ Security Scan #77: Commit cb%ccfa pushed by Liam-Ronan-dev @ 1m 345
@ fix: removed comment ain B yesterday
4" Deploy Back-end to EC2 Instance #80: Commit cbdccfa pushed by Liam-Ronan-dev @ 31s

Figure 122 GitHub Actions Workflows

Overall, GitHub served as a complete project management platform in addition to a code
repository, enabling quality control, automation, and open project lifecycle documentation. It
was essential to sustaining a workflow for professional development because of its connection

with testing frameworks, security analysis tools, and CI/CD technologies.

7.3.2 Notion

For analysing the projects daily and weekly progress, Notion was a crucial tool. It was perfect for
monitoring development work, setting priorities, and keeping focus at every project phase
because of its adaptability and user-friendly design.

Used a weekly tracker to write out important goals and deliverables at the beginning of each
week. Could better prioritise activities and manage my time from looking back at the previous
weeks’ successes and deliverables.

Despite being the only developer on this project, being able to have the accountability and
structure of a larger team by using Notion. In a single workspace, it replicated agile

development techniques like sprint planning, progress monitoring, and retrospectives.

158



21st Jan - 27th Jan

Figure 123 Notion Tasks

7.4 Reflection

7.4.1 Personal Overview

thinking back on this projects journey, | can state with confidence that it has been the most
ambitious and fulfilling software development experience I’ve worked on. | faced challenges in
every aspect of building Pharmalink, a full stack, security focused prescription management
system, from architectural design and technical problem solving to time management and
making decisions under pressure.

This project involved more than just developing code; it involved resolving practical issues in an
area where usability, security, and reliability are essential. | had to develop a security first
mentality while working with sensitive data, such as patient information and medications, and
consider carefully how to appropriately and correctly apply features like encryption, multifactor
authentication, and access restriction.

The importance of process and planning was one of the main lessons learned. | had to
approach development methodically because | had to oversee cloud infrastructure, CI/CD
pipelines, backend APIs, and a dynamic frontend. Utilising platforms such as GitHub Actions,
Synk, AWS, SonarCloud etc taught me how to work in a more polished, production ready
setting.

There were numerous frustrating times, such as bugs, failing pipelines, or deployment

problems. However, each challenge turned into a chance to gain new knowledge, whether it was

159



how to set up a reverse proxy server, write more scalable and effective code, or gain a deeper

understanding of Node.js internals.

7.4.2 Project Development

This project was developed in an adaptable and iterative manner. | was aware of the scope and
complexity of what | wanted to create from the beginning, but as development went on, |
realised how much organisation, preparation, and discipline are needed to create a secure full
stack application.

Flexibility was essential, but | started with clearly defined phases: planning, infrastructure
setup, backend first, then frontend. Features like security or testing occasionally took longer
than anticipated, and other times, design or user interface elements had to adapt in response to
backend modifications. | had to constantly make little decisions, such as whether to push
forward to fulfil a deadline or restructure code for maintainability. | learned from this how
crucialitis to strike a balance between engineering best practices and efficiency.

The way | included technologies like Socket.lO for real time communication, AWS services for
deployment, and MFA using OTPs was a significant highlight of the development phase. These
were not little features; they required testing, trial and error, and study, but in the end, they
improved the systems realism and professionalism.

In terms of technical growth, | learned far more than just writing APIs or React components. |
learned about encryption strategies, proper model relationships in MongoDB, advanced routing
with TanStack, Data fetching, and deployment workflows. Most importantly, | learned to think

end to end from architecture to user experience to long term maintenance.

7.4.3 Project Oversight and Supervisor Communication

Pharmalink succeeded because to good communication and oversight. Weekly one-on-one
meetings with my supervisor, John, kept momentum and priorities clear throughout
development.

Each meeting checked the project's direction to avoid feature creep and technical diversions.
John's problem-solving and critical thinking skills inspired me to think strategically about
doctors' and pharmacists' real-world use cases rather than just coding features. | was
challenged to consider whether each system design decision made sense from a user-centered
rather than technical or engineering standpoint throughout our discussions.

A shift in mindset greatly affected the project's outcome. | prioritized workflows and interactions
that fit with clinical practice, such as streamlining prescription creation for doctors and

restricting pharmacists to relevant prescriptions.

160



John also advised on database model structure and relationships. Early conversations revealed
where the initial data models needed improved normalization and where key interactions (such
as patients, prescriptions, and assigned pharmacists) needed strict enforcement to preserve
security and consistency. He encouraged solid database architecture from the start to avoid
problems in the future.

Consistent supervisor communication turned the project from a technical projectto a
meaningful, real-world solution. The weekly 1:1 sessions meant that crucial decisions were

made intentionally with user needs in mind, improving system functionality and credibility.

7.4.4 Technical Skills

| learned a lot about frontend, backend, cloud infrastructure, and modern development
practices while developing PharmalLink.

On the frontend, | learned TanStack Router and TanStack Query for dynamic client-side routing
and advanced server-state caching. | also got stronger at form validation, APl integration, and
developing clean, reusable components that worked well with the backend in React and
TypeScript.

Clean code was prioritized during implementation. Wrote improved modular, well-organized
code, followed single-responsibility principles, and made the project easier to scale and
maintain.

Acquired knowledge of EC2, S3, Route 53, and CloudFront to manage deployment, storage,
DNS, and global content delivery on the cloud and backend. Creating an AWS environment
helped me understand scalable infrastructure and production deployment procedures.
Growth also took place during testing. Vitest, Playwright, Jest, and Supertest showed me how to
build efficient unit tests, broad user flow tests, and backend API tests. Adding these testing
frameworks to the development cycle helped me create more reliable and production-ready
software.

Security principles were crucial to the project. MFA, RBAC, data encryption, and cookie-based
web application session security were my practical experiences. Investigated web sockets for
real-time features to improve pharmacist and doctor system interaction.

In development, set up CI/CD pipelines with GitHub Actions and used Husky, ESLint, Prettier,
and lint-staged to ensure consistent, high-quality code before merging changes.

Also, learned to parse XML into JSON for prescription data imports, improving my data

transformation and backend APl integration skills.

161



This project helped me learn modern technologies, scalable system architecture, secure
authentication, and cloud deployment best practices, accelerating my full-stack development

experience.

7.4.5 Further Competencies and Professional Skills

Pharmalink taught me several professional skills beyond technical coding. Planning
development phases, prioritizing security and access control, and maintaining weekly progress
increased project management abilities. Splitting the project into milestones and reviewing
priorities during supervisor meetings kept it focused and prevented scope creep.

Regular reviews of system design decisions, including database modelling, role-based access
control, and real-world user workflows, improved critical thinking and problem-solving.
Enhanced the project's usability and relevancy by thinking strategically about how doctors and
pharmacists would use the system.

Multifactor authentication, cookie-based session management, and encrypted data processing
raised security awareness. Knowing that security is a need for every component of the system
changed how | approached backend, frontend, and deployment responsibilities.

Finally, PharmalLink deployed to AWS, setting up EC2, S3, Route 53, and CloudFront, and
developing a CI/CD pipeline with GitHub Actions improved my cloud infrastructure and DevOps
skills. Integrating code quality tools like Husky, ESLint, Prettier, and lint-staged helped maintain

professional development standards throughout the project.

7.5 Conclusion

Pharmalink's success depended on project management. During requirements and design,
careful planning created a path for development that met user needs and industry standards.
Supervisor meetings kept the project on track and encouraged realistic, user-centered decision
making throughout.

Continuous communication, planned milestones, and critical technical assessment lowered
risks, managed complexity, and maintained momentum. This approach enables the project to
adapt to new technical obstacles and possibilities without losing sight of key aims.

Pharmalink was feature complete, resilient, secure, and scalable due to project management

practices.

162



8 Conclusion

The Pharmalink project was difficult, gratifying, and transforming technically and
professionally. From the start of requirements gathering and planning, an organized, careful
approach was required to deliver a system that truly met doctors' and pharmacists' needs.
Deeply understanding user stories, workflows, and security needs shaped every design and

development decision.

The design process was essential also. Early design of system architecture, data models, and
user experience flows streamlined development and prevented severe architectural challenges.
Careful upfront design allowed role-based access control, multifactor authentication, and real-

time notifications to be implemented cleanly and uniformly throughout the program.

The plan emphasised problem-solving. Practical, critical thinking was needed to improve
database relationships, enforce security at every level, and modify frontend logic to fit real-
world user behaviors. Weekly communication with my supervisor, John Montayne, was key to
success. His strategic guidance and encouragement for including technical and real-world

considerations improved my decision-making and kept the project practical.

My technical skills improved across the stack. On the backend, | gained knowledge to design
secure APIs with Node.js and Express, manage sessions with secure cookies, and set up strong
authentication and authorization.

My React, TypeScript, TanStack Router, and TanStack Query skills improved, allowing me to
develop a modular, scalable, and dynamic user interface.

Deploying the system using AWS services like EC2, S3, Route 53, and CloudFront gave me
hands-on experience with cloud infrastructure, deployment pipelines, and production

environments, which will be significant in my career.
In the future, | would like to add a doctor-pharmacy query system. Pharmacists might easily
request prescription clarifications using the application, increasing communication, delays,

and patient safety.

Overall, | am satisfied with the final PharmaLink application. It delivers the key functionality

envisioned at the beginning of the project while prioritising security, usability, and scalability.

163



This project improved my coding, architectural thinking, security awareness, cloud deployment,

and professional communication, along with technical achievements.

164



References

e Assal, H., & Chiasson, S. (2018). Open access to the Proceedings of the Fourteenth
e Symposium on Usable Privacy and Security is sponsored by USENIX. Security in the
e Software Development Lifecycle Security in the Software Development Lifecycle.
e https://www.usenix.org/system/files/conference/soups2018/soups2018assal.pdf
e Balancing Code Quality and Security: A Practical Guide. (2024, August). Java Tech Blog.
e https://javanexus.com/blog/balancingcodequalitysecurityguide
e Franke, L., Liang, H., Farsanehpour, S., Brantly, A., Davis, J. C., & Brown, C. (2024). An
e Exploratory MixedMethods Study on General Data Protection Regulation (GDPR)
e Compliance in OpenSource Software. ArXiv.org. https://arxiv.org/abs/2406.14724
e Kantarcioglu, M., & Ferrari, E. (2019). Research Challenges at the Intersection of Big
e Data, Security and Privacy. Frontiers in Big Data, 2.
e https://doi.org/10.3389/fdata.2019.00001
e Khan, R. A.,Khan, S. U, Khan, H. U., &llyas, M. (2022). Systematic Literature Review on
e Security Risks and its Practices in Secure Software Development. IEEE Access, 10,
e 5456-5481. https://doi.org/10.1109/ACCESS.2022.3140181
e Md Abul Khair. SecurityCentric Software Development: Integrating Secure Coding
e Practices into the Software Development Lifecycle. Technology & Management Review,
e 2018,3(1), pp.1226. hal04565385
Koo, J., Kang, G., & Kim, Y.G. (2020). Security and Privacy in Big Data Life Cycle: A Survey
e and Open Challenges. Sustainability, 12(24), 10571. MDPI.
e https://doi.org/10.3390/su122410571
e Mastering Code Quality and Application Security: A Comprehensive Guide for
e Developers to Secure Coding Practices. (2024). Aptori.dev; Aptori.
e https://aptori.dev/guide/masteringcodequalityandapplicationsecurity
e Moscher, M. (2017). Continuous Compliance Testing. (Masters thesis). RWTH Aachen
o University, Aachen, Germany. https://swc.rwthaachen.de/theses/continuous
e compliancetesting/2017_Moscher_ContinuousComplianceTesting__ FINAL.pdf
e NegriRibalta, C., Marius LombardPlatet, & Salinesi, C. (2024). Understanding the
o GDPR from a requirements engineering perspective a systematic mapping study on
o regulatory data protection requirements. Requirements Engineering.

e https://doi.org/10.1007/s00766024004234

165


https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
https://javanexus.com/blog/balancing-code-quality-security-guide
https://arxiv.org/abs/2406.14724
https://doi.org/10.3389/fdata.2019.00001
https://doi.org/10.1109/ACCESS.2022.3140181
https://doi.org/10.3390/su122410571
https://aptori.dev/guide/mastering-code-quality-and-application-security
https://doi.org/10.1007/s00766-024-00423-4

Potter, B., & McGraw, G. (2004). Software Security Testing. IEEE Security & Privacy, 2(5),
81-85. https://doi.org/10.1109/MSP.2004.84

Securing CI/CD Pipeline: Automating the Detection of Misconfigurations and Integrating
Security Tools. (n.d.). Retrieved January 9, 2024, from
https://norma.ncirl.ie/6529/1/muskanmangla.pdf

Theurich, P., Witt, J., & Richter, S. (2023). Practices and Challenges of Threat Modelling in
Agile Environments. Informatik Spektrum, 46(4), 220-229.
https://doi.org/10.1007/s00287023015495

ValdésRodrigues, Y., HochstetterDies, J., DiasArancibia, J., & CadenaMartines, R.
(2023). Towards the Integration of Security Practices in Agile Software Development: A
Systematic Mapping Review. Applied Sciences, 13(7), 4578.
https://doi.org/10.3390/app13074578

View of SecurityFirst Approaches to CI/CD in CloudComputing Platforms: Enhancing
DevSecOps Practices. (2024). Sydneyacademics.com.
https://sydneyacademics.com/index.php/ajmlra/article/view/131/126

GeeksforGeeks. (2023, November 24). Use Case Diagram. GeeksforGeeks.
https://www.geeksforgeeks.org/usecasediagram/

Altexsoft. (2023, November 30). Functional and Nonfunctional Requirements:
Specification an. AltexSoft.
https://www.altexsoft.com/blog/functionalandnonfunctionalrequirementsspecification
andtypes/

Gupta, R. (2024, February 23). Software Architecture Patterns: What Are the Types and
Which Is the Best One for Your Project. Www.turing.com.
https://www.turing.com/blog/softwarearchitecturepatternstypes

Sommerville, I. (2015). Software Engineering (10th ed.). Pearson. Discusses the role of
requirements engineering in successful software development and project
management.

Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer. Provides an indepth understanding of the requirements gathering process,
including elicitation, validation, and management.

Wiegers, K. E., & Beatty, J. (2013). Software Requirements (3rd ed.). Microsoft Press.
Covers best practices for gathering and managing software requirements in different

project environments.

166


https://doi.org/10.1109/MSP.2004.84
https://norma.ncirl.ie/6529/1/muskanmangla.pdf
https://doi.org/10.1007/s00287-023-01549-5
https://doi.org/10.3390/app13074578
https://sydneyacademics.com/index.php/ajmlra/article/view/131/126
https://www.geeksforgeeks.org/use-case-diagram/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.turing.com/blog/software-architecture-patterns-types

Chu, M. (2023, December 1). Why Personas are Important in Software Development.
Techblocks.

https://tblocks.com/articles/whypersonasareimportantinsoftwaredevelopment/

geeksforgeeks. (2017). Software Design Patterns GeeksforGeeks. GeeksforGeeks.

https://www.geeksforgeeks.org/softwaredesignpatterns/

Amason Web Services. (n.d.). What is RESTful API? RESTful API Beginners Guide AWS.
Amason Web Services, Inc. https://aws.amason.com/whatis/restfulapi/
GeeksforGeeks. (2017, October 27). Unified Modeling Language (UML) | Sequence
Diagrams. GeeksforGeeks.
https://www.geeksforgeeks.org/unifiedmodelinglanguageumlsequencediagrams/
Flowcharts in Programming Applications & Best Practices. (n.d.).
Www.senflowchart.com.
https://www.senflowchart.com/guides/flowchartsinprogramming
https://medium.com/@amanuelabraham0202/flowchartsforprogrammers2aff6a6d8f63
LucidChart. (2024). What is an Entity Relationship Diagram (ERD)? Lucidchart.
https://www.lucidchart.com/pages/erdiagrams

Amason Web Services. (2023a). Lambda@Edge — Run your code closer to your users.
Retrieved from https://docs.aws.amason.com/lambda/latest/dg/lambdaedge.html
Amason Web Services. (2023b). Using Lambda@Edge to add HTTP security headers.
Retrieved from:

https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityhead

ersusinglambdaedgeandcloudfront/

MDN Web Docs. (2023). Content Security Policy (CSP). Retrieved from
https://developer.mosilla.org/enUS/docs/Web/HTTP/CSP

Mosilla Developer Network. (2023). XFrameOptions. Retrieved from

https://developer.mosilla.org/enUS/docs/Web/HTTP/Headers/XFrameOptions

OWASP. (2021). HTTP Headers — A guide to securing your web application. Retrieved

from https://owasp.org/wwwprojectsecureheaders/

Sommerville, I. (2016). Software engineering (10th ed.). Harlow, England: Pearson
Education.

GeeksforGeeks. (2023). UML Sequence Diagram. Retrieved from
https://www.geeksforgeeks.org/umlsequencediagram/

Lucidchart. (2023). What is a flowchart? Process flow diagram explained. Retrieved from

https://www.lucidchart.com/pages/whatisaflowchart

167


https://tblocks.com/articles/why-personas-are-important-in-software-development/
https://www.geeksforgeeks.org/software-design-patterns/
https://aws.amazon.com/what-is/restful-api/
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams/
https://www.zenflowchart.com/guides/flowcharts-in-programming
https://medium.com/@amanuelabraham0202/flowcharts-for-programmers-2aff6a6d8f63
https://www.lucidchart.com/pages/er-diagrams
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityheadersusinglambdaedgeandcloudfront/
https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityheadersusinglambdaedgeandcloudfront/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://owasp.org/www-project-secure-headers/
https://www.geeksforgeeks.org/uml-sequence-diagram/
https://www.lucidchart.com/pages/what-is-a-flowchart

Amason Web Services. (2023). What is Amason EC2? Retrieved from

https://aws.amason.com/ec2/

Amason Web Services. (2023). Elastic Load Balancing features. Retrieved from

https://aws.amason.com/elasticloadbalancing/features/

Amason Web Services. (2023). Amason Route 53 — Scalable Domain Name System.
Retrieved from https://aws.amason.com/route53/

Amason Web Services. (2023). AWS Certificate Manager. Retrieved from
https://aws.amason.com/certificatemanager/

Amason Web Services. (2023). Amason S3: Object storage built to retrieve any amount

of data. Retrieved from https://aws.amason.com/s3/

Amason Web Services. (2023). What is Amason CloudFront? Retrieved from

https://aws.amason.com/cloudfront/

Amason Web Services. (2023). AWS WAF — Web Application Firewall. Retrieved from

https://aws.amason.com/waf/

Amason Web Services. (2023). Using Lambda@Edge to add HTTP security headers.
Retrieved from

https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityhead

ersusinglambdaedgeandcloudfront/

Fowler, M. (2006). Continuous Integration. Retrieved from

https://martinfowler.com/articles/continuouslintegration.html

GitHub Docs. (2024). Understanding GitHub Actions. Retrieved from

https://docs.github.com/en/actions/learngithubactions/understandinggithubactions

Snyk. (2023). Find and fix vulnerabilities in open source dependencies. Retrieved from

https://snyk.io/

SonarSource. (2023). SonarCloud documentation. Retrieved from

https://docs.sonarcloud.io/

GitHub Docs. (2024). GitHub Actions — Security automation. Retrieved from

https://docs.github.com/en/actions/securityguides/securityhardeningforgithubactions

ESLint. (2024). Find and fix problems in your JavaScript code. Retrieved from

https://eslint.org/

Playwright. (2024). Playwright for endtoend testing. Retrieved from

https://playwright.dev/

Microsoft. (2024). Playwright Testing Framework Overview. Retrieved from

https://playwright.dev/

168


https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/route53/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/waf/
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-cloudfront/
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-cloudfront/
https://martinfowler.com/articles/continuousIntegration.html
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://snyk.io/
https://docs.sonarcloud.io/
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://eslint.org/
https://playwright.dev/
https://playwright.dev/

Vitest. (2024). A blasing fast unit test framework powered by Vite. Retrieved from

https://vitest.dev/

Vite. (2024). Vite — Next Generation Frontend Tooling. Retrieved from https://vitejs.dev/

Human Medicines Authorised Products Latest list of Authorised or Transfer Pending
Products data.gov.ie. (2018). Data.gov.ie.
https://data.gov.ie/dataset/medicinesauthorisedortransferpendingproducts/resource/6
987c2af0c4048da820776b5da141266

National Institute of Standards and Technology. (2001). Announcing the Advanced
Encryption Standard (AES) (FIPS PUB 197). U.S. Department of Commerce. Retrieved
from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Socket.io. (n.d.). Socket./O Documentation. Retrieved from https://socket.io/docs

Nodemailer. (n.d.). Nodemailer — Easy as cake email sending from Node.js. Retrieved

from https://nodemailer.com

Health Products Regulatory Authority. (2024). Medicines: authorised or transfer pending
products [XML dataset]. Retrieved from

https://data.gov.ie/dataset/medicinesauthorisedortransferpendingproducts

Harley, A. (2015, February 16). Personas Make Users Memorable for Product Team

Members. Nielsen Norman Group. https://www.nngroup.com/articles/persona/

BrowserStack. (2023). Frontend Testing: What is it & How to Perform it? Retrieved from

https://www.browserstack.com/guide/frontend-testing

Microsoft Learn. (2023). End-to-end testing overview. https://learn.microsoft.com/en-

us/azure/devops/pipelines/test/end-to-end-testing

Testing Library. (2024). What is unit testing? Retrieved from https://testing-

library.com/docs/guiding-principles/

169


https://vitest.dev/
https://vitejs.dev/
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products/resource/6987c2af-0c40-48da-8207-76b5da141266
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products/resource/6987c2af-0c40-48da-8207-76b5da141266
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://socket.io/docs
https://nodemailer.com/
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products
https://www.nngroup.com/articles/persona/
https://www.browserstack.com/guide/frontend-testing
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/end-to-end-testing
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/end-to-end-testing
https://testing-library.com/docs/guiding-principles/
https://testing-library.com/docs/guiding-principles/

