

Secure Prescriptions
System

Liam Ronan (Student) N00212101
WORD COUNT: 25875
SUBMISSION DATE: 29/04/2025
CHARACTER COUNT: 190698
FILE NAME: LIAM-RONAN-THESIS

1

Secure Prescriptions System – A web application to allow doctors to send

prescriptions securely to pharmacists

Author: Liam Ronan

Student Number: N00212101

Supervisor: John Montayne

Second Reader: Cyril Connolly

Frontend code: https://github.com/LiamRonandev/MajorProjectFrontend

Backend code: https://github.com/LiamRonandev/MajorProjectBackend

Date: 30/04/2025

Thesis submitted in partial fulfilment of the requirements for the BSc (Hons) in Creative
Computing at the Institute of Art, Design and Technology (IADT)

https://github.com/Liam-Ronan-dev/Major-Project-Frontend
https://github.com/Liam-Ronan-dev/Major-Project-Backend

2

Declaration of Authorship

I hereby certify that the material which I now submit for assessment is entirely my own work

and has not been taken from the work of others except to the extent of such work which has

been cited and acknowledged within the text of my own work.

Declaration
I am aware of the Institutes policy on plagiarism and certify that this thesis is my own work.

Signed: Liam Ronan

Date: 30/04/2025

3

Abstract

This project explores the development of a secure, cloud-based prescription management

system designed for doctors and pharmacists. It begins by looking into current solutions on the

market, identifying key pain points for users, and then planning a system that could solve those

issues in a practical and efficient way. The main focus throughout was ensuring robust security

measures while enabling a good user experience. In parallel, the project explores industry best

practices around cloud infrastructure, CI/CD pipelines and code quality. Some of the main

features include role-based access control, multifactor authentication, data encryption, and

real time notifications. The system allows doctors to manage digital prescriptions and patient

information, while pharmacists can update statuses and leave notes. Its deployed using various

AWS services such as EC2, S3, CloudFront, Route 53, and more. The end result is a modern,

reliable, and scalable solution that makes prescription management more efficient, secure, and

user friendly.

4

Acknowledgements

I would like to thank my project supervisor, John Montayne, for his excellent guidance and

encouragement during this project.

John's technical expertise, encouragement, and willingness to push me beyond my comfort

zone greatly enhanced the system. His constructive criticism and strategic thinking kept me

focused on realistic, user-centered solutions and inspired me to achieve my full potential

throughout the project.

I also thank Dan, a practicing pharmacist, for testing the PharmaLink app and providing real-

world feedback.

I'd like to thank my IADT lecturers over the past four years. Their teaching, guidance and support

gave me the technical and professional skills to finish this project and prepare for a software

development career.

Finally, I want to thank my family for their unwavering support, encouragement, and patience

during my time in college.

5

Table of Contents

Declaration of Authorship ... 2

Abstract ... 3

Acknowledgements ... 4

Table of Figures .. 9

1 Introduction .. 13

2 Research... 14

2.1 Introduction .. 14

2.1.1 Security in Software Development .. 14

2.1.2 Importance of Security in Software Development .. 14

2.1.3 Challenges in Implementing Security in the SDLC.. 15

2.2 Security Challenges related to Personal Data .. 16

2.2.1 Unique Security Challenges in Handling Personal Data .. 16

2.2.2 GDPR and Compliance Considerations ... 17

2.3 Code Quality, Testing, and CI/CD for Secure Healthcare Systems 18

2.3.1 Code Quality and Security in Healthcare Systems ... 18

2.3.2 Testing for Security and Compliance ... 20

2.3.3 CI/CD Pipelines for Secure Development .. 21

2.4 Conclusion .. 23

3 Requirements Analysis .. 24

3.1 Introduction .. 24

3.2 Existing Applications ... 24

3.2.1 PioneerRX Pharmacy Software .. 24

3.2.2 WellSky Medication Management .. 26

3.4 User Personas .. 28

3.5 Use Case Diagrams ... 30

3.6 Requirements ... 31

3.6.1 User Requirements ... 31

6

3.6.2 Technical Requirements ... 32

3.6.3 Functional Requirements .. 33

3.6.4 Nonfunctional Requirements .. 33

3.7 Technical Feasibility Study .. 34

3.7.1 Technology Stack Selection .. 34

3.7.2 System Architecture ... 35

3.7.3 Technical Challenges and Mitigations .. 36

3.7.4 Cloud Infrastructure ... 37

3.7.5 Development Environment – Security, Code Quality, Testing 40

3.7.6 Continuous Integration & Continuous Deployment .. 42

3.8 Conclusion ... 45

4 Design .. 46

4.1 Introduction .. 46

4.2 System Architecture .. 46

4.3 Application Design .. 47

4.3.1 Technologies .. 47

4.3.2 Design Patterns .. 51

4.3.3 Database Design .. 53

4.3.4 Process Design ... 56

4.4 User Interface Design .. 58

4.4.1 Wireframes .. 58

4.4.2 Design System.. 59

4.5 Conclusion ... 60

5 Implementation... 61

5.1 Introduction .. 61

5.2 Development Environment .. 61

5.3 Database .. 63

5.4 Cloud Infrastructure .. 65

7

5.4.1 Overview .. 65

5.4.2 Backend ... 65

5.4.3 Frontend .. 70

5.4.4 Summary ... 74

5.5 Continuous Integration & Continuous Deployment ... 75

5.5.1 Overview .. 75

5.5.2 Backend ... 75

5.5.3 Frontend .. 82

5.6 Development .. 89

5.6.1 Backend ... 89

5.6.2 Frontend .. 122

6 Testing .. 140

6.1 Introduction .. 140

6.2 Pharmacist Testing .. 140

6.2.1 Pharmacist Feedback ... 140

6.2.2 Analysis & Future Improvements ... 143

6.3 Front End Testing ... 144

6.3.1 End-to-End Testing ... 145

6.3.2 Vitest Unit testing ... 148

6.4 Backend Testing .. 151

6.4.1 Unit Testing with Jest ... 151

6.5 Conclusion ... 152

7 Project Management ... 153

7.1 Introduction .. 153

7.2 Project Phases .. 153

7.2.1 Proposal ... 153

7.2.2 Requirements ... 154

7.2.3 Design .. 154

8

7.2.4 Implementation .. 155

7.2.5 Testing ... 156

7.3 Project Management Tools .. 156

7.3.1 GitHub ... 156

7.3.2 Notion .. 158

7.4 Reflection ... 159

7.4.1 Personal Overview .. 159

7.4.2 Project Development .. 160

7.4.3 Project Oversight and Supervisor Communication ... 160

7.4.4 Technical Skills ... 161

7.4.5 Further Competencies and Professional Skills ... 162

7.5 Conclusion ... 162

8 Conclusion ... 163

References .. 165

9

Table of Figures

Figure 1 PioneerRx Screen ___ 25
Figure 2 PioneerRx Screen ___ 26

Figure 3 WellSky Screen 1 __ 27
Figure 4 WellSky Screen 2 __ 27

Figure 5 User Persona 1 __ 28
Figure 6 User Persona 2 __ 29

Figure 7 Use Case Diagram 1 ___ 30

Figure 8 Use Case Diagram 2 __ 31
Figure 9 MERN __ 35

Figure 10 Architecture ___ 36
Figure 11 Basic Pipeline ___ 43

Figure 12 System Architecture __ 46

Figure 13 Frontend Tech ___ 47
Figure 14 MongoDB ___ 50

Figure 15 REST API __ 53
Figure 16 ERD ___ 55

Figure 17 Sequence Diagram 1 ___ 56

Figure 18 Sequence Diagram 2 ___ 57
Figure 19 Flow Chart 1 ___ 58

Figure 20 Flow chart 2 ___ 58
Figure 21 Authentication Designs ___ 59

Figure 22 Dashboard designs___ 59
Figure 23 Design system ___ 60

Figure 24 Insomnia __ 62

Figure 25 VS Code ___ 63
Figure 26 MongoDB Atlas __ 64

Figure 27 Cloud Infrastructure __ 65
Figure 28 EC2 Security Groups ___ 66

Figure 29 SSH PEM Key __ 66

Figure 30 NGINX Config __ 67
Figure 31 Application Load Balancer __ 68

Figure 32 API SSL Cert ___ 69
Figure 33 Domain Names __ 69

Figure 34 S3 Buckets __ 70
Figure 35 S3 Latest Files ___ 71

Figure 36 CloudFront Distribution ___ 71

10

Figure 37 Cloud Invalidations ___ 72

Figure 38 CloudFront Web Application Firewall __ 72
Figure 39 Lambda@edge Security Function ___ 73

Figure 40 Security Pipeline ___ 76
Figure 41 Snyk Dashboard ___ 77

Figure 42 SonarCloud Dashboard___ 78

Figure 43 CI Pipeline ___ 79
Figure 44 Deployment Pipeline ___ 81

Figure 45 E2E Testing Pipeline __ 83
Figure 46 CI Pipeline ___ 86

Figure 47 Deployment Pipeline ___ 87
Figure 48 Backend Folder Structure ___ 90

Figure 49 Prescription Model ___ 92

Figure 50 Item Model __ 93
Figure 51 Database Connection Function ___ 94

Figure 52 Application Starting Point ___ 95
Figure 53 Server.js ___ 96

Figure 54 env Example ___ 96

Figure 55 User Model __ 97
Figure 56 Patient Model __ 98

Figure 57 Prescription Model ___ 99
Figure 58 Medication Model ___ 100

Figure 59 Item Model ___ 101

Figure 60 Appointment Model ___ 102
Figure 61 Create Prescription Function ___ 103

Figure 62 Get Prescriptions ___ 104
Figure 63 Pharmacist Update Function ___ 105

Figure 64 Pharmacist Update Item Note __ 106
Figure 65 Prescription Route __ 107

Figure 66 Ensure Authenticated Middleware __ 108

Figure 67 Access Control Middleware __ 108
Figure 68 Verify Ownership Middleware __ 109

Figure 69 Validation Middleware ___ 110
Figure 70 Error Middleware __ 110

Figure 71 Create JWT Function __ 111

Figure 72 Hashing Functions __ 111
Figure 73 Login Function __ 112

Figure 74 MFA Variables __ 113

11

Figure 75 Session Cookie ___ 114

Figure 76 Verify TOTP Function __ 114
Figure 77 Patient Model 2 ___ 116

Figure 78 Encryption Key __ 116
Figure 79 Encrypt function __ 117

Figure 80 Decrypt Function ___ 118

Figure 81 Socket.io Connection ___ 119
Figure 82 Doctor Notification __ 119

Figure 83 Send Email Function __ 120
Figure 84 Medication Seeding ___ 122

Figure 85 Frontend Project Structure ___ 123
Figure 86 UI Components ___ 125

Figure 87 Conditional Rendering ___ 126

Figure 88 Inline Row Actions __ 127
Figure 89 Routes ___ 127

Figure 90 __root Layout ___ 128
Figure 91 Public Login Page ___ 129

Figure 92 Dashboard Delete Mutation __ 130

Figure 93 React Hook Form Usage ___ 130
Figure 94 Zod Validation Schema __ 131

Figure 95 Async Medication Select ___ 132
Figure 96 usePrescriptions Hook __ 133

Figure 97 useMutation __ 134

Figure 98 OTP API Function ___ 134
Figure 99 useQuery Auth __ 135

Figure 100 AuthContext ___ 135
Figure 101 useAuth Hook ___ 136

Figure 102 useAuth Usage __ 136
Figure 103 Quick Prescription Button __ 136

Figure 104 Socket Initialisation __ 137

Figure 105 Socket User Roles ___ 138
Figure 106 Socket State ___ 138

Figure 107 New Prescription Notification Function __ 138
Figure 108 useSocket Hook ___ 138

Figure 109 Displaying Notification ___ 139

Figure 110 Pharmacist Feedback __ 142
Figure 111 Pharmacist Issues Solved __ 144

Figure 112 E2E Tests Passing __ 145

12

Figure 113 Firefox & Chrome Tests ___ 146

Figure 114 Navigation Test __ 147
Figure 115 Login Testing Setup __ 148

Figure 116 Prescription Unit Test ___ 149
Figure 117 React Hook Unit Test ___ 150

Figure 118 Unit Tests Passing __ 150

Figure 119 Jest Unit Tests Passing __ 151
Figure 120 JWT & Hashing Tests ___ 152

Figure 121 GitHub Repository ___ 157
Figure 122 GitHub Actions Workflows __ 158

Figure 123 Notion Tasks __ 159

13

1 Introduction

The project aims to develop a secure, cloud-based web application for doctors and pharmacists

to track prescriptions. The project attempts to be user-friendly, emphasise secure data, and real

time notifications for doctors and pharmacists. The doctors may create prescriptions whilst the

pharmacist can update the status and notes of a prescription they were assigned to. The app

will require the user to setup multi factor authentication and certain resources are only visible

to specific roles. The system was developed using the MERN stack and AWS infrastructure.

14

2 Research

Investigating Security and the Software Development lifecycle of

healthcare systems.

2.1 Introduction

Adding security to the Software Development Lifecycle (SDLC) is necessary to make systems

that are strong and resilient. It is important to do this in areas like healthcare that deal with

private information and important tasks. In this study, problems that can happen and ways to

avoid them are looked at along with the reason why adding security to software development is

important. This part talks about how to make systems that are safe and useful by looking at best

practices for security, compliance, and new tools.

2.1.1 Security in Software Development

2.1.2 Importance of Security in Software Development

Security plays a huge role in software development it’s what protects systems from potential

threats, data breaches, and the kind of vulnerabilities that can lead to serious issues down the

line. If security is ignored during the Software Development Lifecycle (SDLC), it can result in

costly fixes, data loss, or even major system compromises. Assal and Chiasson (2018) highlight

how this is often the result of rushed deadlines or gaps in developer knowledge, and they

emphasise the importance of thinking about security from the very beginning of a project.

As systems become more complex, identifying risks early becomes even more important. Khan

et al. (2022) explain that dealing with security concerns early in the SDLC not only reduces the

number of vulnerabilities but also helps avoid the higher cost of fixing issues later. By

implementing security into the process from the start, teams can avoid problems before they

become serious.

Developers need the right training and tools to properly handle secure coding practices. Khair

(2018) argues that secure development should be part of every stage of the SDLC, helping

teams understand common vulnerabilities and how to prevent them. This approach improves

15

overall code quality, keeps systems compliant with regulations, and builds more reliable

software.

Altogether, the research points to a clear conclusion: security shouldn’t be treated as an

afterthought. By making it a core part of the development process from requirements all the way

through to deployment teams can build software that’s both safe and effective. This not only

protects users but also supports the growing need for transparency and trust in digital systems.

2.1.3 Challenges in Implementing Security in the SDLC

Theurich et al. (2023) say that implementing measures like threat modeling can be hard

because team members aren't always experienced, there are tight deadlines, and it can be hard

to find the right mix between being flexible and following strict security procedures. Because

agile works in small steps, it might be hard to keep up the level of security research needed to

find and fix problems as they arise.

People who are unwilling to change make these problems worse. ValdésRodrígues et al. (2023)

say that the biggest problems with adding security to agile routines are limited organizational

and procedural freedom, separate processes, and a lack of teamwork. Teams sometimes see

security measures as getting in the way of production, putting more value on usefulness and

speed of delivery than on long-term security and stability.

To get around these problems, you need an individualized approach. Theurich et al. (2023) say

that security measures should be built into agile processes as essential parts of the work, not as

extra chores. To create a mindset of shared security duty, departments can work together and

developers can get focused training to fill in any gaps in their knowledge. ValdésRodrígues et al.

(2023) say that adopting this way of thinking is important for dealing with security problems in a

way that doesn't compromise the flexibility and efficiency that agile methods need.

To get around these problems, organizations need to come up with unique solutions that

combine rapid ideas with security measures. For example, lightweight threat modeling methods

like STRIDE or PASTA can be used during sprint planning meetings to make sure that security

risks are identified and reduced without getting in the way of the development process. Theurich

16

et al. (2023) say that security jobs should be added to agile practices like standups and

retrospectives so that security issues are always visible.

We also need better training and tools. You can help developers find and fix security holes by

giving them tools like OWASP's Secure Coding Practices Guide or by making security learning

sites like Secure Code Warrior a normal part of their work.

Companies can make software that is both flexible and reliable by making their security goals

match the concepts of rapid development and continuous security integration.

2.2 Security Challenges related to Personal Data

2.2.1 Unique Security Challenges in Handling Personal Data

Specifically in the context of the big data lifecycle, managing personal data poses

serious security issues. Data collection, storage, processing, and sharing

are some of the stages that make up this lifecycle, and each one presents unique

vulnerabilities. Inadequate protections or poorly secured systems can lead to breaches

and illegal access at any point, presenting significant risks to both individuals and

companies (Koo et al., 2020). These difficulties are only made worse by the growth

dependence on data driven decision making, since vast amounts of personal data are

now easy targets for criminals.

It is especially difficult to protect privacy while preserving data usability. Businesses

need to find a balance between protecting private data and facilitating insights based on

large databases. According to Kantarcioglu and Ferrari (2019), achieving this happy

medium often means sacrificing security for scalability. For example, scalable

Encryption techniques are necessary to safely protect data in large systems, but

They may also slow down the efficiency and speed of data analytics. Strong access control

measures must also be put in place to stop illegal use, but badly designed systems may

unintentionally restrict the use of data that is approved or make processes more

difficult.

Some of these issues may be resolved by emerging technology like privacy preserving

17

data analytics. Organisations can examine data without putting individual records at risk thanks

to strategies like homomorphic encryption and differential privacy. According to Kantarcioglu

and Ferrari (2019), incorporating these strategies into the data lifecycle is crucial for protecting

privacy and guaranteeing adherence to changing legal requirements. However, large

investments in infrastructure, knowledge, and development is necessary for the largescale

adoption of such technologies.

Organisations must deal with more general systemic problems in addition to

technological ones, like developing a security aware culture and coordinating

procedures with legal requirements. For example, regular policy updates and security

audits may help minimise the risks brought on by quickly evolving threats and

technologies. A single approach to protecting personal data requires cooperation from

All parties involved, including developers, data scientists, and legal teams.

Protecting personal data requires more than reactive measures as its use continues to

grow. Organisations may manage the challenges of protecting personal data and create

systems that inspire confidence by implementing innovative technologies, encouraging

teamwork, and strictly adhering to legal requirements.

2.2.2 GDPR and Compliance Considerations

Software development processes face a difficult task when trying to comply with the General

Data Protection Regulation (GDPR), especially when managing personal data. Principles like

data minimisation, privacy by design, and the defence of individual rights are highlighted by the

GDPR. It takes a good understanding of both technical implementation and legal requirements

to incorporate these ideas into software development. NegriRibalta et al. (2024) emphasise the

importance of requirements engineering in this procedure, contending that early in the SDLC,

specific legal requirements must be translated into workable development tasks. However,

knowledge gaps and the challenge of converting recommendations into practical engineering

practices often make this difficult.

Putting in place efficient consent procedures is one common issue. According to Franke

et al. (2024), several open source projects have inconsistent or inadequate

18

permission procedures that do not adhere to GDPR regulations. For example, non

compliance may occur from unclear and difficult to use interfaces for gaining user

consent, which could expose companies to penalties and harm the company.

These problems are made worse by a lack of resources and experience, which makes it

challenging for smaller teams to guarantee compliance in every area of their program.

Organisations must take a deliberate and methodical approach to GDPR compliance in

order to overcome these challenges. NegriRibalta et al. (2024) advise that the SDLC

incorporate GDPR principles immediately, starting with requirements gathering that is

privacy focused. To make sure developers are aware of their compliance

responsibilities, this involves working with legal and regulatory professionals.

Development teams can also be less burdened by tools and frameworks that automate

GDPR compliance tests, like confirming consent channels or evaluating data reduction

techniques.

According to Franke et al. (2024), incorporating these procedures into team processes can

lower the possibility of expensive oversights while also greatly improving compliance results.

2.3 Code Quality, Testing, and CI/CD for Secure

Healthcare Systems

2.3.1 Code Quality and Security in Healthcare Systems

The safety and reliability of healthcare systems, which handle sensitive patient data and

vital functions, depend on maintaining excellent code quality. In addition to making

vulnerabilities more likely, poorly written or unmaintainable code makes debugging and

Updating is more difficult and may compromise system functionality. Effective techniques like

automated testing, secure coding standards, and static code analysis can greatly improve code

quality and security, according to Java Tech Blog (2024).

Early in the development process, static code analysis tools such as SonarQube,

Checkmarx and Fortify are vital for identifying coding discrepancies and security flaws.

These tools check the source code for problems such as poor cryptographic

19

implementations, buffer overflows, and hardcoded credentials. By integrating these

technologies throughout the development process, developers can reduce technical debt by

identifying and correcting issues before they become more serious. Such proactive detection is

essential for healthcare institutions, because hacks may reveal private medical information.

Writing robust, secure code is based on secure coding recommendations, like those offered by

OWASP or CERT. Developers can steer clear of common dangers like SQL injection, inadequate

input validation, and unsafe error handling by following these standards. According to Java Tech

Blog (2024), implementing these standards into regular development procedures promotes a

security culture and guarantees that teams give equal weight to functionality and resilience.

Other ways to improve code security and quality include pair programming and peer code

reviews. By allowing several developers to review the same code, these procedures increase the

possibility of finding mistakes or vulnerabilities that automated tools would miss. Peer

evaluations are essential for upholding coding standards and encouraging team members to

share information, according to Aptori.dev (2024).

In healthcare systems, technical debt results from hurried or inadequate coding

Technique is another area that requires careful management. Unmanageable, bloated

codebases that are more vulnerable to security flaws can be the outcome of unpaid technical

debt. Teams may measure and address technical debt with the aid of tools like SonarQube or

Code Climate, which offer useful insights into areas that need refactoring. Reducing technical

debt is a long term investment in system security and maintainability, according to Aptori.dev

(2024).

Code quality is maintained in large part by automated testing, especially in the form of

security, integration, and unit tests. For instance, unit tests that confirm that each system

component works as intended can be made using tools like JUnit or TestNG. While security

focused testing tools like OWASP SAP may imitate assaults on the application, integration

testing tools like Selenium or Cypress can evaluate how components interact. According to Java

Tech Blog (2024), adding these tests to the CI/CD pipeline guarantees that healthcare systems

are resilient to security and functional failures.

20

In conclusion, healthcare systems need a comprehensive strategy for secure development that

blends superior technical skills with a consistent dedication to security. Code quality must be

given top priority by organisations through thorough testing, teamwork techniques like code

reviews, and ongoing developer education. By implementing these precautions, healthcare

software can satisfy the needs of both security and functionality, safeguarding patient

information and preserving confidence in the systems that support vital healthcare services.

2.3.2 Testing for Security and Compliance

Software development must include security and compliance testing, especially in

industries like healthcare where strict regulations and sensitive data are combined.

Comprehensive testing guarantees that software systems continue to be safe from attacks and

comply with applicable legal requirements. To proactively detect vulnerabilities, Potter and

McGraw (2004) suggest that security testing should be beyond traditional functional testing. To

identify vulnerabilities that attackers could exploit and enable teams to fix them prior to

deployment, techniques like fault injection and penetration testing are essential.

Identifying vulnerabilities is only one aspect of security testing; another is foreseeing

possible attack routes that may evolve over time. Understanding the attackers point of view is

essential to doing effective security testing, say Potter and McGraw (2004). They highlight how

crucial it is to replicate actual attack instances to find system vulnerabilities that can go

undetected during regular functional testing. Techniques like fault injections, which

intentionally introduce problems into the system, can expose hidden vulnerabilities and show

how software responds under pressure.

Additionally, Potter and McGraw stress how important it is to use security testing to guide and

improve the software architecture. For example, businesses might

Proactively modify design concepts and coding techniques to prevent similar concerns in future

iterations by recognising recurrent patterns of vulnerabilities. This architectural

feedback loop improves the software’s longterm resilience against changing threats in

addition to its immediate security posture.

Selecting the highest risk areas for testing as a top priority is another important insight.

Potter and McGraw support focused security testing that concentrates on components with the

greatest possible impact in the case of a breach because not all system components need the

21

same level of attention. This could require making the testing of modules managing patient data

encryption, authentication systems, and external API integrations, the highest priority for

healthcare systems.

Finally, they note that security testing needs to cover the operational environment in which the

product will operate in addition to code level testing. For instance, even while a system passes

all internal security checks, it may not be able to fend against assaults that take advantage of

third party dependencies or network configurations. A more comprehensive approach is

ensured by integrating environmental aspects into security testing, which aligns the softwares

security posture with actual circumstances.

On the other hand, compliance testing makes sure that software systems adhere to legal

regulations, as those set down by the General Data Protection Regulation (GDPR) or the Health

Insurance Portability and Accountability Act (HIPAA). The significance of continuous

compliance testing, which incorporates automated compliance checks into the development

process, is pointed out by Moscher (2017). This ensures that, despite updates and alterations,

systems maintain compliance over the course of their lifetime. Without depending entirely on

manual audits, teams can find gaps in adherence to regulatory standards by automating

compliance validation.

In both security and compliance testing, automation is critical. Automated testing tools can

assess vulnerabilities, replicate real world attack scenarios, and confirm compliance with legal

requirements. For instance, compliance tools can make sure that systems comply with privacy

and data protection regulations, while penetration testing tools may imitate malicious assaults

to find any vulnerabilities. Automation improves the dependability of the results by speeding up

the testing process and lowering human error.

2.3.3 CI/CD Pipelines for Secure Development

For vulnerabilities to be found and fixed early in the software development lifecycle, security

must be included in CI/CD pipelines. This requires a blend of complex setups, specialist tools,

and careful pipeline architecture. Sydneyacademics.com (2024) underlines the importance it is

to incorporate security technologies straight into CI/CD processes to enforce strict security

guidelines without slowing down development.

22

Automated security testing tools are an essential part of secure CI/CD pipelines. During the

building phase, code can be examined by Static Application Security Testing (SAST) tools to find

vulnerabilities like SQL injection, cross site scripting (XSS), or unsafe function calls. Similarly, to

find runtime vulnerabilities that static analysis could overlook, Dynamic Application Security

Testing (DAST) technologies simulate assaults on the active application. For complete coverage,

CI/CD pipelines usually incorporate tools like SonarQube, OWASP SAP, and Snyk. Mangla

(2024) suggests the importance it is to automate these tools to impose uniform security

standards and guarantee that each build is put through the same rigorous inspection.

Ansible and Terraform are two examples of configuration management tools that are

essential to securing the deployment process. By defining infrastructure as code, these

technologies enable teams to create secure and consistent setups across environments.

Developers may avoid common configuration errors, including open ports or unsafe default

settings, that could leave systems vulnerable to assaults by incorporating these tools into CI/CD

pipelines.

Software composition analysis (SCA) tools such as Dependabot and WhiteSource come in

handy for finding vulnerabilities in third party libraries and dependencies, in addition to

vulnerability and configuration scanning. When opensource elements are used, these tools

make sure that vulnerable or out of date packages are identified and fixed before deployment.

This layer of automated dependency management lowers the risk of supply chain attacks,

which are becoming more common, according to Sydneyacademics.com (2024).

Another crucial component of secure CI/CD pipelines is ongoing monitoring. To monitor

pipeline activity and spot suspicious patterns, like unauthorised code or configuration

changes, tools like Prometheus, Datadog, and Splunk can be integrated. Realtime warnings

from these systems allow for quick reactions to threats.

Mangla (2024) recommends using cloud native security solutions to guarantee that

Protection is effective in a variety of environments. Built in security services like Google

Cloud Builds automated vulnerability scanning, Asure DevOps advanced compliance

checks, and AWS Code Pipeline integrated security testing are all provided by cloud

providers including AWS, Asure, and Google Cloud. Organisations can customise their

23

pipelines to meet the unique needs of their infrastructure by utilising these platform native

solutions.

In conclusion, creating secure CI/CD pipelines requires the purposeful integration of

modern tools, proper configurations, and strong monitoring systems in addition to a general

dedication to security. Organisations may make sure that their pipelines not only produce

secure software but also withstand changing threats by utilising automated testing,

infrastructure as code, and dependency analysis.

2.4 Conclusion

This research emphasises the importance of security in the Software Development Lifecycle

(SDLC) to create reliable systems, minimise risks, and protect sensitive data. Techniques

include integrating automated tools, incorporating security into agile practices, and cultivating a

collaborative culture. Prioritising safe coding, proactive threat modelling, and ongoing

compliance testing ensures the security of sensitive data and critical infrastructure, promoting

dependability and confidence in the digital environment.

24

3 Requirements Analysis

3.1 Introduction

The requirements analysis phase is an essential phase in ensuring that the system being

created satisfies the expectations of its users. This phase involves a thorough examination of

user expectations, system operation, and technical viability to provide a clear development

path. By considering the needs of doctors and pharmacists, the system can be designed to

provide a user friendly and efficient experience.

3.2 Existing Applications

Below are two examples of prescription management applications outlining a list of their

features along with benefits and drawbacks.

3.2.1 PioneerRX Pharmacy Software

A complete pharmacy management system called PioneerRx was created to improve several

pharmacy activities.

Key features:

• Medication therapy management (MTM): Medication synchronisation and adherence

monitoring.

• Patient Risk Scores: Evaluate and track health risks for patients to deliver

individualised treatment.

• Medication Synchronisation (Med Sync): Aligns patient prescriptions to increase

adherence and expedite refills.

Benefits:

• Rich Feature Set: Provides a variety of tools for efficient pharmacy operations

management.

• Customisable Interface: Customisable interface enables pharmacies to adapt it to

their unique workflows.

• Emphasis on Patient Care: Highlights resources that improve medication compliance

and patient outcomes.

25

Drawbacks:

• Learning Curve: Staff members may need some time and training to properly use the

numerous capabilities.

• Cost considerations: Smaller pharmacies may find comprehensive systems

prohibitively expensive.

Figure 1 PioneerRx Screen

26

Figure 2 PioneerRx Screen

3.2.2 WellSky Medication Management

WellSky provides a drug management solution that automates and streamlines clinical

operations.

Key Features:

• Clinical Workflow Automation: Reduces manual labour and increases efficiency by

streamlining procedures.

• Error Reduction Tools: Reduces drug distribution errors by implementing checks and

balances.

• Improvements to Patient Safety: Offers resources to guarantee that patients receive

their medications precisely.

Benefits:

• Emphasis on Safety: Puts patient safety first by minimising mistakes and managing

medications precisely.

• Efficiency Gains: Workflow automation can result in more productivity and time

savings.

• Innovative Tools: Uses modern features.

27

Drawbacks:

• Integration Challenges: During implementation, compatibility checks with current

systems could be necessary.

• Requirements for Training: Employees may require training to become accustomed to

new automated procedures and equipment.

Figure 3 WellSky Screen 1

Figure 4 WellSky Screen 2

28

3.4 User Personas

User Personas are a fictional, yet realistic depiction of a character that represent the traits of

the target audience. Developers can have a grasp of the requirements, habits, and preferences

of the audience by creating user personas. (NN Group, 2015)

Personas also serve as a basis for making well informed judgments at every stage of the

development process, from UI/UX design choices to feature priority. Teams can effectively

reduce any risks and difficulties during the development process by using personas. (M. Chu,

2023).

Below in figures 5 and 6, developed user personas for doctor and pharmacist users by outlining

their work preferences, needs & goals, and pain points.

Figure 5 User Persona 1

29

Figure 6 User Persona 2

30

3.5 Use Case Diagrams

Use case diagrams were created to visualise a high-level representation of the system to

illustrate the interactions between the users (actors) and a system. They capture the functional

requirements of the system, showcasing how the different users engage with various use cases,

or specific functionalities within the system. (GeeksForGeeks, 2025)

The first diagram illustrates how a user will create an account or login to the system, enabling

multi-factor authentication with an authenticator app of their choice

Figure 7 Use Case Diagram 1

31

The diagram in figure 8 below outlines how a doctor or a pharmacist may navigate through the

application. The ovals in blue contain core functionality and features whereas the ovals in white

are extended checks.

Figure 8 Use Case Diagram 2

3.6 Requirements

For it to make sure that the finished product satisfies business objectives, and technical

feasibility, requirements gathering is a key process in the software development lifecycle

(SDLC). Functional and nonfunctional needs must be gathered, examined, verified, and

documented. Project failures, rework, cost overruns, and misplaced expectations can result

from poor requirements engineering. Clear requirements allow development teams to produce

solutions that satisfy customer expectations, enhance user experience, and guarantee

regulatory compliance in industries including cybersecurity, finance, and healthcare.

After the completion of the user personas and use case diagrams, created a list of the various

types of requirements below. Below will go into more detail for each of the categories.

3.6.1 User Requirements

The User requirements ensure that the software system meets its intended users’ specific

needs, expectations, and goals. Understanding and effectively managing these user

requirements is essential.

• Users should be able to register with email and password and select a role such as

doctor or pharmacist.

32

• MFA Will be enabled by default and will generate a QR code that they can scan with their

authenticator app such as Microsoft Authenticator to create a TOTP.

• Upon logging in as a Doctor, they can add new patients to the system, create new

prescriptions and assign a pharmacist and patient to the prescription.

• A doctor may be allowed to update a patient with new emergency contact details,

address, DOB etc.

• A doctor may remove a patient from the system which will also remove all their

prescriptions.

• Upon logging in as a pharmacist, they may view all the prescriptions that they were

assigned to from a doctor.

• A pharmacist should be notified when a new prescription is assigned to them –

notification alert.

• A doctor should be notified when there is status change on a prescription.

• A pharmacist may update the status of a prescription such as pending, processed,

completed, cancelled etc and they may leave a note on the prescription such as

“Ordering medication”.

• A pharmacist can view patients through the prescription they were assigned to from the

doctor.

• The server generates a JSON web token and stores it in secure, HTTPonly cookie.

• Doctors should be able to select medication for prescriptions from a real list of verified

and marketed medications in Ireland

• Logout of their account.

3.6.2 Technical Requirements

Below will be a blueprint that outlines the functionalities, features, and technical aspects of this

software system. These requirements will outline how the technical aspects will function and

interact with one another.

• Will it be technically feasible to develop the full stack application.

• The system should be highly secure as it engages with sensitive patient and prescription

data.

• Upon registering, the administrator should receive an email with the users credentials.

• The system should be developed with software development best practices in mind

such as CI/CD, security, testing.

33

• The system should be fast and a smooth user experience.

• The system should be deployed safely and securely using AWS Cloud infrastructure.

• The system should encrypt passwords and GP/pharmacist license numbers.

• The system will follow Authentication best practices such as JWTs, encryption, MFA,

HTTP only cookies.

• The system should be end to end tested and have sufficient component unit tests on the

frontend and sufficient unit tests on the backend

• The system should be constantly scanned for security and code quality issues using

Snyk and SonarQube.

• The system should use real medication data.

3.6.3 Functional Requirements

Functional requirements are services or components the system must deliver. The functional

components are the features and functions that the developers must implement to enable the

users to accomplish their tasks (Altexsoft, 2023). Below is a list of features to develop with the

first feature the most important and critical to implement

1. The users should be able to successfully log in and create accounts securely

2. Allow doctors to create a prescription and assign a pharmacist and a patient

3. Allow doctors to modify, or edit a prescription for the pharmacist

4. Encrypt the sensitive patient and prescription data

5. Allow doctors to add patients to the system and view all their medical history,

prescriptions, personal details

6. Allow pharmacist to update a prescription with a new status

3.6.4 Nonfunctional Requirements

A set of specifications that describe the systems operation capabilities and constraints. These

requirements are to outline how well the system operates, including speed, security, reliability,

and data integrity. If these specs were not mot, it could result in the system not performing as

well as it should.

• The frontend application should be a smooth and accessible user interface.

• Should have fast load times navigating through pages and should not take too long to

modify or create a resource.

• Patient and prescription data should be securely encrypted.

• Should be able to scale with large volumes of traffic.

34

• Should be available to users of various regions.

• The design should follow a design system with consistency.

3.7 Technical Feasibility Study

There are various technologies and languages that could be used to develop this system;

however, the secure prescriptions system is being developed using the MERN (MongoDB,

Express, React, Node) stack. Below will delve into more detail around the specifics of the

technologies used

3.7.1 Technology Stack Selection

• Frontend: React with TypeScript for a type safe and scalable user interface

• Backend: NodeJS with express.js for developing the REST API

• Database: MongoDB atlas for flexible and scalable NoSQL data storage

• Authentication & Security: JWT for auth, multifactor authentication using time based

onetime passwords for enhanced security, Node native crypto module for encrypting

and decrypting sensitive patient and prescription data

• Testing: Vitest Unit tests and Playwright end to end test for the frontend and Jest unit

tests for the backend

• Realtime notifications: Socket.io for pharmacist notifications

• Continuous Integration: GitHub Actions for running tests, linting, security and code

quality scanning, formatting

• Continuous Deployment: AWS S3 Bucket and CloudFront for the frontend

deployments and an EC2 Instance with a Nginx reverse proxy server for the API backend

35

Figure 9 MERN

3.7.2 System Architecture

System architecture explains the systems core ideas and characteristics regarding its

relationships, environment, and other design principles. The architecture includes the

organisational structure, behavioural components, and the composition of those components

into more complex subsystems. (Gupta, R, 2024).

3.7.2.1 Three tier Architecture

The system being developed follows a three-tier architecture, a widely adopted design pattern

that separates the application into three layers.

• Presentation layer (Frontend): React.js is used by the frontend to provide an intuitive

user interface, and HTTPS is used to securely communicate data with the backend REST

API. It manages authentication, prescription, patient, and responsive design across

platforms.

• Business logic layer (Backend REST API): NodeJS Express is used by the backend REST

API for data processing, authorisation, and authentication. The API is protected by

HTTPS, validation, and auth middleware and will adhere to RESTful standards. It stores

and retrieves data by interacting with a MongoDB database.

• Data Layer (Database & Storage): MongoDB Atlas is used by the data persistence layer

to store encrypted user credentials, patient information, and medications in a cloud

managed NoSQL database. To avoid unwanted access, the system has role based

access control in and backup capabilities.

Basic diagram outlining a high-level overview of the system architecture as seen in figure 10:

36

Figure 10 Architecture

3.7.2.2 Advantages of Three tier Architecture

There are various advantages to the three tier architecture:

• Separation of concerns: The system is simpler to expand and maintain since each

layer concentrates on a different component.

• Scalability: Due to its decoupling, each layer may be grown separately to deal with

growing traffic.

• Security: There is less chance of data exposure because sensitive processes like

encryption and authentication are only managed on the backend.

• Improved Maintainability: Faster development cycles are made possible by the fact

that code changes made to one layer wont immediately affect the other layers.

Using ALB for traffic control, CloudFront for content distribution, Route 53 for DNS resolution,

and EC2 for backend hosting, the architecture is deployed on AWS. These cloud based

solutions ensure the systems high availability, scalability, and security.

3.7.3 Technical Challenges and Mitigations

Below is list of the most important challenges for the application and their mitigation strategies

Challenges Mitigation Strategy

Data Security & Encryption Use AES256 encryption for sensitive patient &

prescription data, HTTPS/TLS for secure

communication

Scalability AWS EC2 autoscaling, AWS CloudFront to

serve and protect the static assets in the S3

bucket

37

Realtime notifications Socket.io for realtime notifications

Role Based Access Control Implement RBAC to restrict access to certain

routes in the application for both doctor &

pharmacist.

High Availability An Application Load Balancer in front of the

Nginx proxy server to ensure uptime

Frontend performance Optimise React with lasy loading,

memoisation, efficient state management

3.7.4 Cloud Infrastructure

Cloud infrastructure and deployment are fundamental for modern software systems since it

offers applications scalability, flexibility, and security. Cloud based deployment makes sure

fault tolerance and high availability while reducing operational expenses by removing the need

for on premises equipment.

Using several AWS services to manage frontend, backend, networking, security, and data

storage, the cloud infrastructure for this system is meant to be scalable, safe, and very

available.

Amason S3 – Static Asset storage for Frontend

Amason S3, a robust and scalable object storage solution, will host the React frontend. S3

offers a serverless and affordable solution for hosting static files, including photos, HTML, CSS,

and JavaScript.

Requirements:

• AWS restrictions are used to limit public access to CloudFront exclusively.

• Lifecycle rules and versioning for effective storage management.

Benefits:

• Benefits include durability and high availability (99.9% uptime).

• Delivery of content with low latency when combined with CloudFront CDN.

• Scalable storage that doesn’t require human involvement.

Amason CloudFront – Content Distribution

38

Amason CloudFront is used as a Content Delivery Network (CDN) to distribute frontend content

globally, ensuring low latency access for users. It caches static assets from S3 across edge

locations, improving performance and reducing load times.

Requirements:

• CloudFront distribution set up with S3 as the origin.

• TLS/SSL configuration using AWS Certificate Manager (ACM) for secure HTTPS access.

• Lambda@Edge function to handle security headers.

Benefits:

• Faster content delivery via edge caching.

• DDoS protection via AWS Shield integration.

• Improved security with signed URLs and HTTPS enforcement.

Amason Route 53 – Domain name management

Amason Route 53 is a scalable and highly available DNS (Domain Name System) service that

will manage the custom domain (healthservice.click) for the system.

Requirements:

• Custom domain name configuration for the front end and API.
• DNS records route traffic to CloudFront (frontend) and ALB (backend API).
• SSL/TLS security integrated via ACM.

Benefits:

• Low latency DNS resolution with high availability.
• Automatic failover in case of service outages.
• Easy integration with AWS services for seamless routing.

AWS Web Application Firewall (WAF) – Security Layer

AWS WAF will be used to protect the frontend and backend from common web attacks, such as

SQL injection, XSS, and bot attacks.

Requirements:

• WAF rule set to filter malicious traffic.
• Integration with CloudFront for frontend protection.
• IP blocking and rate limiting to mitigate DDoS threats.

Benefits:

• Advanced threat protection for APIs and web applications.
• Blocks malicious traffic before it reaches the backend.
• Reduces security vulnerabilities and compliance risks.

39

Lambda@Edge – Security Headers Enforcement

AWS Lambda@Edge is used to execute custom logic at CloudFront edge locations, allowing

security headers to be applied before responses are sent to users. This ensures strict security

policies and prevents common web security vulnerabilities.

Requirements:

• A Lambda@Edge function that modifies HTTP headers to include security policies.

• Integration with CloudFront to apply headers globally.

• Custom rules for CORS, Content Security Policy (CSP), and XSS protection.

Benefits:

• It prevents security threats like XSS, Clickjacking, and CSRF attacks.

• Improves compliance with security standards (e.g., OWASP, GDPR, HIPAA).

• Reduces load on the backend by handling security at the edge.

AWS Certificate Manager (ACM) – SSL/TLS Security

AWS ACM provides SSL/TLS certificates to encrypt communications between the user and

the application, ensuring secure HTTPS connections.

Requirements:

• SSL/TLS certificate for both the frontend and backend domains.
• Automatic renewal to prevent certificate expiry issues.
• Integration with ALB and CloudFront.

Benefits:

• Ensures encrypted communication between users and the system.

• Simplifies certificate management with autorenewals.

• Improves security compliance (GDPR, HIPAA).

Amason EC2 – Backend Compute Instance

Amason EC2 provides a virtual machine to host the backend Node.js API, running on an Nginx

proxy server for handling requests efficiently.

Requirements:

• EC2 instance running Ubuntu with Node.js, Nginx, and PM2 for process management.

• Security group rules to allow only ALB traffic.

• Autoscaling setup for handling increased API load.

40

Benefits:

• High flexibility to scale compute power as needed.

• Customisable networking and security configurations.

• Reliable API hosting with minimal downtime.

NGINX – Reverse Proxy for backend

Nginx is used as a reverse proxy server to handle incoming requests to the Node.js API running

on EC2.

Requirements:

• Nginx configuration to route requests to Node.js.
• SSL termination using certificates from ACM.
• Load balancing capabilities.

Benefits:

• Enhances backend performance by handling concurrent connections efficiently.
• Improves security by hiding the internal structure of the backend.
• Facilitates SSL termination to manage encrypted connections.

Application Load Balancer (ALB) – Backend Load Balancing

AWS ALB distributes traffic between multiple EC2 instances running the backend API, improving

fault tolerance and reducing downtime.

Requirements:

• ALB listener rules to forward traffic from HTTPS (443) to backend instances.
• Health checks to ensure only healthy instances receive traffic.
• Security group rules restricting access only to Nginx proxy servers.

Benefits:

• Ensures backend availability & redundancy.
• Balances traffic efficiently to prevent overloading a single instance.
• Auto scale to handle sudden traffic spikes.

3.7.5 Development Environment – Security, Code Quality, Testing

The development environment for this project aims to ensure code quality, implement security,

and implement best practices all through the software development lifecycle. The development

pipeline has included several tools and techniques to do this. These technologies improve all

code linting, formatting, commit validation, security scanning, and automated testing.

Code Quality & Linting

41

The following technologies help implement best practices and avoid code smells:

ESLint:

• A static analysis tool that helps find syntax problems, enforce code styles, and prevent
possible bugs

• Best practices in JavaScript and TypeScript.

Prettier:

• Automatically formats code for readability and consistency.
• Maintain a uniform coding style across different team members.
• Integrated with ESLint to avoid conflicts between linting and formatting.

Husky:

• Enforces Git hooks to prevent bad commits and run linting and tests before pushing
code.

• Follow defined coding standards before committing changes.
• Integrated with ESLint and Prettier to block commits with syntax/style violations.

Commitlint:

• Enforces a structured commit message format following Conventional Commits.
• Improves commit history readability and helps with automated versioning and

changelogs.

Security & Vulnerability Scanning

In a healthcare related system, security is of the greatest concern as it concerns private patient

information. The following tools are combined to find security weaknesses and stop exploits:

Snyk:

• Scans dependencies for security vulnerabilities and suggests fixes.
• Provides Realtime alerts if a thirdparty package contains security risks.
• Help automate dependency management to prevent outdated or insecure packages

from being used.

SonarQube:

• Analyses code for bugs, vulnerabilities, and security risks.
• OWASP security best practices for secure development.
• Provides detailed insights into code quality metrics, such as maintainability, reliability,

and security.

Helmet.js (for Node.js API):

• Adds secure HTTP headers to protect against common web security threats such as
XSS, Clickjacking, and MIME sniffing attacks.

• Used in combination with Lambda@Edge for security headers at the CloudFront level.

42

Automated Testing and Quality Assurance

Testing guarantees the system works as intended and helps to avoid regression problems.

Different facets of the system are covered by several testing frameworks:

Jest

• Unit testing of backend API functions and business logic.
• Ensures that individual functions work correctly before integration.

Vitest

• Lightweight alternative to Jest, specifically optimised for faster test execution.
• Used in frontend components testing to validate UI logic.

Playwright

• End to end (E2E) testing framework for simulating real user interactions.
• Used to test the React frontend and its integration with the backend API.
• Cross browser compatibility and user flow correctness.

Insomnia

• API testing and automation to validate endpoint behavior.
• Used for manual and automated API testing before deployment.

3.7.6 Continuous Integration & Continuous Deployment

Using GitHub Actions, a Continuous Integration (CI) pipeline will be included to automate

testing, security validation, and code quality checks. Maintaining code quality, security, and

dependability of the Doctor Pharmacist Secure Prescription System depends on the use of

Continuous Integration (CI) and Continuous Deployment (CD). The CI/CD pipeline guarantees

that every code change is validated, secure, and effectively deployed to the production

environment.

YAML Syntax & GitHub Actions for CI/CD

To automate software development processes, GitHub Actions describes methods like building,

testing, security analysis, and deployment using YAML (.yml) configuration files. YAML is a

human readable data serialisation format that is often used for configuration files given its

simplicity and indentation based structure.

YAML (Yet Another Markup Language) is quite popular for designing workflows in GitHub

Actions. YAML files use a key value structure and depend on whitespace indentation rather than

brackets or commas.

GitHub Actions Workflow Structure

• Name – Process name
• Triggers (on) – events activating the workflow under Triggers: push, pull request, main.

43

• Jobs – A set of actions executed in parallel or sequentially.
• Steps – Individual tasks executed in sequence.
• Runners – The operating system (Linux, Windows, macOS) where jobs execute.

Figure 11 Basic Pipeline

Backend CI/CD Pipeline Overview

Using GitHub Actions to automate testing, security checks, and deployment, the CI/CD process

of the backends runs in three stages.

ci.yml – Continuous Integration Pipeline

• Runs linting, formatting, and commit validation
• Executes unit and integration tests
• Ensures code quality before merging

security.yml – Security & Vulnerability Scanning

• Runs Snyk for dependency vulnerability detection
• Executes SonarCloud for static code analysis
• Ensures the backend code is secure

deploy.yml – Automated Deployment Pipeline

44

• Sets up environment variables using GitHub Secrets
• Deploys the backend to the EC2 instance
• Restarts the PM2 process to apply new changes

CI/CD Benefits for Backend:

• Security Compliance – Using Snyk and SonarCloud, finds vulnerabilities before

deployment.

• Automated Deployments – Reduces human effort by deploying straight to AWS EC2.

• Sero Downtime Updates – Backend is updated without service interruptions.

• Efficient Issue Detection – Catches bugs and security flaws early in development.

Frontend CI/CD Pipeline Overview

The frontend CI/CD pipeline is responsible for code validation, testing, security checks, and

automatic deployment to Amason S3 and CloudFront.

ci.yml – Continuous Integration Pipeline

• Runs unit tests with Vitest
• Executes ESLint and Prettier for formatting and linting
• Commit message validation

playwright.yml – EndtoEnd Testing Pipeline

• Runs Playwright for UI testing
• Uploads test reports for visibility
• Caching to improve test efficiency

security.yml – Security & Vulnerability Scanning

• Runs Snyk to detect dependency vulnerabilities
• Executes SonarCloud for code security analysis

deploy.yml – Automated Deployment Pipeline

• Configures AWS credentials for deployment
• Build the React app using Vite
• Deploys to Amason S3 (development or production bucket based on branch)
• Creates a CloudFront cache invalidation for real time updates

CI/CD Benefits for Frontend

• Ensures Code Quality – Linting and formatting guarantee clean, readable code.

• Enhances Security – Vulnerability scanning protects against security flaws.

• Automates Testing – Unit tests (Vitest) and E2E tests (Playwright) prevent regressions.

45

• Fast Deployment – AWS S3 and CloudFront automation ensure smooth releases.

• Optimised Performance – CloudFront invalidation ensures users get the latest UI

instantly.

3.8 Conclusion

The system will provide an easy user interface, prescription management, role based access

control, along with secure authentication. Technical criteria are cloud architecture, security

policies, and automated approaches for data protection laws compliance and scalability.

46

4 Design

4.1 Introduction

The Secure prescription systems design phase began after completing the requirements phase.

This section covers technical and visual aspects, with a focus on system structure, ux design,

and smooth integration.

4.2 System Architecture

As shown in the figure 12 below, the architecture of this system is a three tier client server

architecture where the client (doctor or pharmacist) sends HTTP requests to the server (NodeJS

with express), which in turn communicates with the database (MongoDB).

Figure 12 System Architecture

• Client Layer (Frontend): The client represents the doctor or pharmacist accessing the

system through a web interface that is developed using React.js alongside TypeScript.

The client communicates with the server by sending HTTP requests (via Axios/Fetch

API).

• Server Layer (Backend): The server built using NodeJS and express.js handles

authentication, authorisation, prescription processing, pharmacist assignments, and

adding patients. It manages the business logic, notifications, and API endpoints.

Realtime notifications are created through socket.io. The server then validates HTTP

requests, authenticates users, processes them, and will interact with the database, that

returns a JSON response with requested data.

47

• Database Layer (MongoDB): MongoDB is a NoSQL database used for storing users,

maintaining encrypted medical records, prescription data, and medications. It responds

with a JSON response when a query is made to the database.

4.3 Application Design

4.3.1 Technologies

4.3.1.2 Frontend Technologies

• React: React is a JavaScript library, that allows you to use modular and reusable UI

components, while working with TypeScript for improved type safety, runtime error

reduction, tooling support, bug reduction, maintainability, and code reliability and

collaboration.

• Vite: Vite is a build tool for fast development builds and optimised production output,

significantly faster than webpack due to its ES module based hot module replacement

and optimised tree shaking and code splitting.

Figure 13 Frontend Tech

• ShadCN: is used for modern, accessible, and highly customisable UI components.

Shadcn provided prestyled components with support for dark and accessibility. It

also integrates easily with Tailwind CSS and makes sure of a consistent UI design

across the application.

• TanStack Query: TanStack Query is a tool for data fetching, caching, and

synchronisation with the backend API, it reduces unnecessary calls and optimising

performance as the application grows.

48

• TanStack Router: TanStack router manages client side navigation with typesafe

route management, nested routing, code splitting, and optimisation for TanStack

Query, offering parallel Route Loaders, automatic prefetching, and error boundaries.

• Figma: Creating interactive UI prototypes and user interface designs. Figma

provided design specs for react component implementation.

• Sod: Sod is a TypeScriptfirst schema validation package that ensures data accuracy

and type safety in form data and API POST requests, error messages and interaction

with form libraries like React Hook Form.

• ReactHookForm: React Hook Form is a package that manages form state and

validation, realtime validation feedback, and lightweight compatibility with schema

validators like Sod.

• Socket.io Client: The Socket.IO client library enables realtime communication

between the frontend and backend, enabling pharmacists to receive prescription

notifications from doctors, enhancing responsiveness and interaction through

persistent WebSocket connections.

• Tailwind CSS: This CSS framework, which prioritises functionality, is used to style

frontend applications. Through the direct use of predefined classes in the HTML

framework, it facilitates quick user interface development with responsive and

uniform design. Tailwind facilitates accessibility, dark mode, and custom theming

while integrating easily with ShadCN components.

4.3.1.2.1 Backend Technologies

• NodeJS: Node.js is a JavaScript nonblocking runtime environment, built on the V8

engine, enabling developers to create servers, web applications, command line

tools, and scripts, with asynchronous, event driven architecture for high load

performance.

• ExpressJS: Is a fast, lightweight web framework for handling API requests. It also

supports middleware for authentication, logging and error handling. Simplifies REST

API creation for handling prescriptions, users, and orders.

• Morgan: Morgan is a request logging middleware that records incoming HTTP

requests, helping developers track API interactions, monitor performance, and

debug issues.

• JWTs: JWT is a secure authentication mechanism used to generate signed tokens for

user sessions. It enables stateless authentication, reducing server side session

management overhead while ensuring secure API access.

49

• CORS: Cross Origin Resource Sharing (CORS) is a security feature that allows

controlled access to APIs from different origins. It ensures that only trusted frontend

applications can communicate with the backend, preventing cross origin security

vulnerabilities.

• Nodemon: Nodemon is a development tool that automatically restarts the Node.js

application whenever changes are detected. This streamlines development by

eliminating the need to manually restart the server after making code updates.

• OTPLib: OTPLib is a library used to generate and verify Time based One Time

Passwords (TOTP) for Multifactor Authentication (MFA), enhancing account security.

• Dotenv: Dotenv is used to load environment variables from a .env file into the

application. This ensures sensitive configuration details, such as API keys and

database credentials, are not hardcoded in the codebase.

• Cookieparser: CookieParser is an Express.js middleware that parses incoming

HTTP cookies, enabling session based authentication and user session

management.

• Bcrypt: is a cryptographic hashing algorithm used to securely hash user passwords

before storing them in the database. It implements salting to prevent brute force

atacks.

• Node:crypto module: The built in crypto module in Node.js provides encryption,

hashing, and random token generation, ensuring secure handling of sensitive data.

• Expressvalidator: ExpressValidator is a middleware that validates and sanitises

incoming API requests. It prevents malicious inputs, enforcing data integrity and

security.

• Helmet: Helmet is an Express.js middleware that enhances API security by

configuring secure HTTP headers. It protects against vulnerabilities like cross site

scripting (XSS) and clickjacking.

• Nodemailer: Nodemailer is a Node.js module that enables email sending directly

from the backend server, supporting SMTP and OAuth2 transport protocols for HTML

formatted emails with attachments or dynamic content.

• xml2js: This Node.js lightweight XML parser. JavaScript objects are created from

XML data using JS. Structured XML input may be parsed into JSON format so that the

program may process it using xml2js. This facilitates the smooth integration of

external data into the system and makes working with third party data types easier.

50

4.3.1.3 Database Technologies

• MongoDB: MongoDB is a NoSQL database that provides flexible schema design, high

scalability, and fast query performance. It supports document based storage, indexing,

and replication, ensuring efficient data management.

Figure 14 MongoDB

• Mongoose: Mongoose is an Object Data Modelling (ODM) library for MongoDB. It

provides a structured schema definition, built in data validation, and middleware

support, simplifying database interactions.

4.3.1.3 Cloud Technology

A variety of AWS Cloud services will be used in the systems deployment to enable scalability,

performance, and security. Frontend and backend issues are separated by the cloud

infrastructure, which also enhances worldwide content delivery and guarantees secure

communication.

The following services will be used by the architecture:

• Amason Route 53 for custom domain routing

• Amason CloudFront as a global content delivery network

• Amason S3 to host the React frontend

• AWS Certificate Manager (ACM) for managing SSL/TLS certificates

• AWS Web Application Firewall (WAF) for threat mitigation

• AWS Lambda@Edge for applying security headers

• AWS EC2 to host the backend Node.js API

• Application Load Balancer (ALB) for backend traffic routing

• NGINX as a reverse proxy on the EC2 instance

51

• MongoDB Atlas for cloud based database hosting

To maintain the systems security, high availability, and performance across many geographic

locations, these services were chosen.

4.3.2 Design Patterns

Software design patterns are very important tools for developers as they provide proven

solutions to common problems that are encountered during software development. If

developers can apply these patterns to their own project, they can create more robust,

maintainable and scalable software systems.

Design patterns act as reusable solutions for typical software design challenges. Design

patterns provide a standard terminology and are specific to scenarios and problems. They are

not finished code but templates or blueprints. (Geeksforgeeks, 2017)

Key Characteristics of Design Patterns:

• Reusability: The patterns can be applied to various projects and problems, saving time

and effort.

• Standardisation: Provide a shared language and understanding among developers

• Efficiency: Developers can avoid finding the solution to the same recurring problems,

which leads to faster development

• Flexibility: Patterns are abstract solutions/templates that can be adapted to fit the

requirements

Below will go into more detail around my chosen design pattern for this project

4.3.2.1 MRC Design Pattern

The Model Router Controller (MRC) pattern is a variation of the classic Model view controller

(MVC) pattern, specifically tailored for building RESTful APIs as there is no direct UI layer in this

architecture. In this pattern, the view is replaced by the router because the API will server JSON

responses instead of rendering HTML. The MRC pattern helps maintain a structured, modular,

and scalable backend by separating concerns into three layers:

Model (M) – Data Layer

The model represents the data structure and is responsible for interacting with the database. In

this case, MongoDB will be used alongside Mongoose as the ODM to define schemas and

interact with the database efficiently.

Responsibilities:

• Define Schema and data validation

52

• Implement data relationships and indexing

• Provide querying mechanisms (CRUD operations).

• Encrypt or sanitise sensitive data before storing.

Router (R) – Routing Layer

The router acts as the middle layer between client requests and corresponding controller

functions. It defines the API Endpoints and maps them to the right controller function.

Responsibilities:

• Define RESTful HTTP Endpoints (GET, POST, PUT, DELETE)

• Route requests to the appropriate controller function.

• Apply middleware functions (e.g., Authentication, role based access control).

• Ensure modularity and maintainability of the API.

Controller (C) – Business Logic Layer

The controllers need to contain the core logic of the API. It processes the requests, interacts

with the Model, and returns responses.

Responsibilities:

• Implement Business logic (e.g., Data validation, prescription assignment)

• Interact with the Models to perform CRUD Operations.

• Handle errors and validation responses

• Ensure data is formatted properly before sending it back

4.3.2.2 REST API

An API is a secure interface used by computer systems to exchange data over the internet. It
defines rules for communication and acts as a gateway between clients and web resources.
Representational State Transfer (REST) is software architecture that imposes conditions on
APIs, enabling high performing, reliable communication on complex networks. A uniform
interface is crucial for RESTful webservice design, indicating that server information is
transferred in a standard format, known as a representation.

In REST architecture, stateless refers to a communication method in which the server

completes every client request independently of all previous requests. Clients can request

resources in any order, and every request is stateless or isolated from other requests. (AWS,

2024)

53

Figure 15 REST API

4.3.3 Database Design

4.3.3.1 Introduction to Database Design

Database Design is a crucial aspect of developing a secure, scalable, and high performing

application. The database structure determines how the data is stored, retrieved, and managed,

impacting the efficiency and security of the system. In this project, MongoDB Atlas will be used

as a NoSQL database, designed to store structured and semi structured data effectively.

Why MongoDB?

MongoDB is a document-oriented NoSQL database that provides:

• Scalability: Can handle large volumes of data using sharding and replication.

• Flexibility: Supports dynamic Schema to allow changes without breaking the database.

• High Performance: Indexing and embedded documents to improve query speed

• Security: Supports encryption, access control, and IP whitelisting

4.3.3.2 Database Schema Overview

The database is designed using a relational structure within a NoSQL framework. It consists of

the following main collections (tables in SQL terms):

• Users – Stores doctors and pharmacists

• Patients – Stores patient records

• Prescriptions – Stores medical prescriptions

• Medications – contains real distributable medications in Ireland

• Appointments – Contains the patient appointments

Each collection uses references (ObjectIds) to efficiently manage relationships

54

4.3.3.3 Entity Relationship Design

An ERD diagram is a type of flowchart that illustrates how “entities” such as people, objects or

concepts relate to one another. ER diagrams are often used to design or debug relational

databases. Also known as ERDs, they use a defined set of symbols, such as rectangles,

diamonds and ovals. (LucidChart, 2024)

ER diagrams are related to data structure diagrams (DSDs), which focus on the relationships of

elements within entities instead of the relationships between the entities themselves.

Uses:

• Database design: Used to model and design relational databases. In terms of logic and

business rules and in terms of specific technology to be implemented.

• Database troubleshooting: ER diagrams are sued to analyse existing databases to find

and resolve problems in logic or deployment.

• Guiding Implementation: ERDs can act as a blueprint for actual database schemas.

Developers can use this diagram to implement tables/models, fields, and relationships

in the database.

Below in figure 16 is the ERD designed to outline the relationship between the various models.

55

Figure 16 ERD

56

4.3.4 Process Design

Process design is a systematic method in software development that outlines the functionality

and maintenance of software applications. It involves simulating data flow, input output

conversion, and system component interactions. The main objective is to ensure the software

operates effectively and predictably, using tools like flowcharts, sequence diagrams, and

activity diagrams to visualise and record system behaviour and logic (Sommerville, 2016).

4.3.4.1 Sequence Diagrams

Sequence diagrams are a crucial part of Unified Modelling Language (UML) that visualise object

interactions in a sequential order. They help model dynamic behaviour in systems, understand

use cases, design system architecture, and document complex processes. They clarify system

logic, define component responsibilities, and ensure system functionality. They also help

developers identify workflow issues early and serve as documentation for handling complex

processes (GeeksforGeeks, 2023). Below in figure 17 is the sequence diagram created for the

authentication flow.

Figure 17 Sequence Diagram 1

57

Below in figure 18, created this sequence diagram to outline the sequence of events for a

pharmacist working with the prescriptions

Figure 18 Sequence Diagram 2

4.3.4.2 Flow Charts

A flow chart is a visual representation of a process sequence of steps and decisions, illustrating

the operating processes through basic shapes and symbols. Originating from industrial

engineers, flow charts are used in various fields like engineering, education, and science. They

are often used in early development stages for requirement analysis, process design, system

documentation, and debugging. Visualising the process flow can improve communication,

minimise miscommunication, and agree on desired results, making it adaptable for both

developers and non-developers (Lucidchart, 2023).

Below in figure 19, created a flow chart in Lucid chart to show the user flow for a doctor working

with patients.

58

Figure 19 Flow Chart 1

In figure 20, we can see the user flow for a pharmacist working with prescription.

Figure 20 Flow chart 2

4.4 User Interface Design

The application design stage involves user interface design, using wireframes for each screen

and components from the Open Source project Shadcn. Shadcn offers modern design

principles, flexibility with TailwindCSS, and seamless integration with React. It provides

accessible, customisable components built on Radix UI and Tailwind CSS, ensuring compliance

with WCAG standards and making the application usable for a broader audience.

4.4.1 Wireframes

For the authentication wireframes, to present a clean and well structured user flow for logging in

and registering. Here’s a breakdown of the design

59

• Account Creation – Users enter their email, password, license number and select a role

to sign up

• Multifactor Authentication (MFA) Setup – A QR Code is presented for users to scan with

an authenticator app of their choice such as Microsoft authenticator.

• Login Screen – Users enter their email and password to sign in.

• MFA Code Entry – Users input the time based OTP (One Time Password) to complete the

login process

Figure 21 Authentication Designs

The main dashboard that is used for pharmacists and doctors, follows a dark theme with a data

driven UI, showcasing critical patient, prescription or medical information in an organised and

accessible manner. It facilitates quick navigation and decision making

Figure 22 Dashboard designs

4.4.2 Design System

4.4.2.1 Key Components

• Typography

o Features a clear, readable typographic hierarchy, with distinct H1, H2, H3, and

paragraph styles

o Chosen font is modern and minimalistic, ensuring readability.

o Strong emphasis on contrast for accessibility

• Color Palette

o Organised shades of grey, blue, and red, allowing flexibility.

o The contrast in colours follow WCAG accessibility guidelines

• UI Components

60

o A collection of essential ShadCN UI elements is included to ensure consistency:

o Buttons (Primary, Secondary, Destructive, Loading States)

o Radio Groups (Used for selections with clear states)

o Text areas & Inputs (Form elements with proper spacing and labels)

o Dropdowns & Select Menus (Ensuring easy navigation and interactions)

o Tables & Data Lists (For organising large data sets efficiently)

• Navigation & Sidebar

o Dark mode optimised navigation panel for ease of access.

o Streamlined UI for improved efficiency, reducing cognitive load.

Figure 23 Design system

4.5 Conclusion

The PharmaLink design system is designed for doctors and pharmacists to balance usability,

accessibility, and aesthetics. It uses Tailwind CSS, ShadCN, and a well organised component

library for scalability and ease of development. Key design features include dashboards,

structured navigation, and a dark themed interface. It supports seamless workflow for

prescriptions, patient records, and appointments.

61

5 Implementation

5.1 Introduction

The chapter details the implementation of the Secure Prescription System, focusing on

translating database schema, user interface designs, and architectural designs into a functional

application. It covers the development environment, frontend and backend projects, cloud

infrastructure integration, and CI/CD pipelines. The focus is on transforming conceptual models

into actual code, ensuring a secure, scalable, and maintainable application.

5.2 Development Environment

The Secure Prescription System project was developed using a modern, developer friendly

environment, including Visual Studio Code (VS Code), ESLint, Prettier, and VS Code. Git was

used for version control, ensuring code quality and avoiding conflicts. Commitlint and Husky

hooks were integrated into the development pipeline for standardisation. Insomnia was the

primary tool for manual REST API testing, verifying backend endpoints and ensuring the API

followed expected behaviour. The project also utilised Insomnia for data forms for the frontend,

supporting environment variables, authentication headers, and JSON response visualisation.

Below in figure 24, we can see the various API endpoints for testing with the insomnia UI.

62

Figure 24 Insomnia

63

Figure 25 VS Code

5.3 Database

A MongoDB Atlas cluster was established for document storage, including users, patients,

prescriptions, and medications. MongoDBs built in features, including IP whitelisting,

monitoring, and automatic backups, ensured security and reliability. A MongoDB connection

string was created from the Atlas dashboard for backend application communication, which

was securely saved in a .env file under MONGO_URI to avoid credential exposure.

Below in figure 26, we can see the setting up a MongoDB cluster in MongoDB Atlas.

64

Figure 26 MongoDB Atlas

65

5.4 Cloud Infrastructure

5.4.1 Overview

The Secure Prescription Systems cloud infrastructure was built using AWS services and

MongoDB Atlas for a scalable, secure, and high performing deployment. The infrastructure

supports a three tier architecture: frontend, backend, and database. MongoDB Atlas hosts the

database, while EC2 and NGINX handle backend hosting, ALB for load balancing, and Amason

Route 53 for DNS routing. Security measures include SSL/TLS and AWS WAF.

A high level architecture diagram illustrating the integration of each service may be found below

in figure 27:

Figure 27 Cloud Infrastructure

5.4.2 Backend

The Secure Prescription Systems backend API was developed using Node.js and Express and

deployed on an Amason EC2 instance for scalability and control. The architecture is protected

and optimised using NGINX, ALB, ACM, and DNS routing. The backend is hosted on an Ubuntu

powered EC2 instance, with additional software like NGINX installed on the virtual server

(Amason Web Services, 2023).

Amason EC2 (Elastic Compute Cloud)

Configuration Steps:

• Chose a t2.micro instance for the backend

• Created a new security group to only allow SSH (port 22) only from my IP, allow HTTP

(port 80) and HTTPS (Port 443) access only from the ALB (application load balancer), and

to block all other external access.

66

Figure 28 EC2 Security Groups

• Then connected to the instance via SSH using a generated PEM key which is a container

format used for storing cryptographic keys

Figure 29 SSH PEM Key

• When inside the ubuntu machine, installed various programs and or packages such as

NodeJS, PM2 for process management, NGINX to serve as a reverse proxy and git to

clone the project repo.

• Pulled the backend codebase, used npm install to fetch dependencies, and created a

.env file with secrets and MongoDB credentials

• Could then start the API server using pm2 start server.js and enabled boot persistence

with pm2 startup

NGINX – Reverse Proxy Setup

NGINX was configured as a reverse proxy to receive HTTP traffic from the ALB and forward it

internally to the Node.js application running on the port specified in the .env file (e.g., port

3001). This adds a layer of security and abstraction while also handling tasks like compression

and connection handling more efficiently than Node.js alone.

Configuration:

May edit the NGINX config file with sudo nano /etc/nginx/sites/available/default

67

Figure 30 NGINX Config

Restarted NGINX with sudo systemctl restart nginx. This allowed the EC2 instance to receive

traffic on port 80 and forward it internally to the API via part 3001(.env), keeping the app isolated

and protected.

Application Load Balancer (ALB)

The backend API is protected and routed through an Application Load Balancer (ALB), which is

configured to distribute traffic securely and efficiently to the EC2 instance running the Node.js

server. As shown in Figure X, the ALB named healthserviceapialb is set up as an internet facing

load balancer spanning multiple availability sones for high availability.

68

Figure 31 Application Load Balancer

In the listeners and rules section, two key listeners are configured:

• HTTP (port 80): This listener automatically redirects all unsecured HTTP requests to

HTTPS using a 301 redirect. This ensures that all incoming traffic is encrypted before

reaching the application.

• HTTPS (port 443): This is the main listener that accepts secure traffic. It uses an

SSL/TLS certificate issued through AWS Certificate Manager (ACM) for the domain

healthserviceapi.click. The certificate is attached to this listener, allowing the ALB to

terminate SSL connections, i.e., decrypt HTTPS traffic at the load balancer level.

The decrypted requests are sent internally to the target group, that manages the backend EC2

instance, when the SSL handshake is finished. By removing the encryption workload from the

EC2 instance, this configuration increases security by guaranteeing end to end encryption for

users and boosts speed.

Because the ALB is connected, harmful traffic can be filtered and blocked before it reaches the

backend application. Under various traffic scenarios, the backends scalability, security, and

performance are guaranteed by this multilayered setup. (Amason Web Services, 2023).

AWS Certificate Manager (ACM) – SSL/TLS Certificate Provisioning

Using AWS Certificate Manager (ACM), an SSL/TLS certificate was provisioned to allow users

and the backend API to communicate securely over HTTPS. The Application Load Balancer

(ALB) uses this certificate to manage SSL termination and was set up especially for the domain

healthserviceapi.click.

The certificate has been issued, validated, and is now in use, as seen in Figure Y:

69

Figure 32 API SSL Cert

Amason Route 53 – Domain name management

AWS scalable Domain Name System (DNS) web service, Amason redirect 53, to handle custom

domain names and redirect traffic to the Secure Prescription Systems frontend and backend

endpoints. For dependable and secure domain management, Route 53s low latency and highly

accessible DNS routing is crucial. (Amason Web Services, 2023).

Route 53 to setup two custom domain names:

• Healthserviceapi.click

• Healthservice.click

Figure 33 Domain Names

70

Alias records were used to connect each domain to its resource, enabling interaction with

CloudFront and ALB without requiring IP addresses. The ACM certificate was also validated

using DNS records, allowing for safe, HTTPS based access.

A vital component of the safe, cloud native infrastructure, Route 53 guarantees low latency

routing, intelligent failover, and smooth AWS integration.

5.4.3 Frontend

The Secure Prescription Systems React based frontend was implemented using AWS services

like React with Vite, Amason S3, CloudFront, ACM, WAF, Lambda, and Route 53, ensuring fast

performance, global accessibility, and robust security for a scalable and secure frontend

experience under www.healthservice.click.

Amason S3 – Static hosting of React App

After Vites compiling of the React application, the static files were uploaded to Amason S3,

which is CloudFront origin. Two S3 buckets were built by me:

• healthservicefrontenddev for development

• healthservice.click for production

Each buckets "Properties" tab had static website hosting enabled. All public access was shut

down to ensure security. Rather, set up Origin Access Control (OAC), which restricts item

retrieval from the S3 bucket to CloudFront alone. This stops the files from being accessed

directly from the public internet.

Used an automated workflow to deploy the application, using npm run build and then uploading

the contents of the dist folder. Bucket versioning was also enabled to track deployment history

and facilitate rollbacks. (Amason Web Services, 2023).

Figure 34 S3 Buckets

71

Below in figure 35 we can see the static files last modified date:

Figure 35 S3 Latest Files

Amason CloudFront – Global Content Delivery Network

The Amason CloudFront distribution, with the production S3 bucket as the origin, provides

global performance and minimal latency for the React frontend. CloudFront caches static

assets across AWS edge locations, serving as a Content Delivery Network, reducing user access

time (Amason Web Services, 2023).

To make sure that CloudFront connection is encrypted, added an SSL/TLS certificate from AWS

Certificate Manager and enforced HTTPS only access during setup. Gsip compression and

caching were turned on to minimise file sises and enhance end user load times.

Figure 36 CloudFront Distribution

72

Managing cache invalidations is an essential aspect of using a CDN. CloudFront could keep

serving out of date cached files from edge locations after deploying a new frontend version to

the S3 bucket. Set up CloudFront invalidations to fix this. To guarantee that users receive

updated files right away after deployment, sent invalidation requests, focusing on paths like /*.

Users will always view the most recent version of the program without any delays thanks to this

procedure.

Figure 37 Cloud Invalidations

Security is enforced at the CDN level in addition to performance enhancement. Combined the

CloudFront distribution with AWS WAF (Web Application Firewall) to stop malicious or

suspicious traffic before it even gets to the S3 origin.

AWS WAF Web Application Firewall

The CloudFront distribution and AWS Web Application Firewall (WAF) were combined to protect

the frontend from common web threats like SQL injection, XSS, and bot attacks. Custom rate

based rules and AWS Managed Rules were implemented to restrict excessive requests from a

single IP address, reducing server burden and potential risk (Amason Web Services, 2023).

Figure 38 CloudFront Web Application Firewall

73

Lambda@Edge – Injecting Security Headers

Implemented a Lambda@Edge function that inserts HTTP security headers into each response

to enforce browser level security regulations. After CloudFront retrieves content from S3, but

before sending it to the client, the function is activated during the origin response phase.

Without needing modifications to the S3 files, this method allows for centralised and uniform

security enforcement across all client responses (Amason Web Services, 2023).

To enforce safe browser behaviour without requiring changes to the static files housed in S3, the

functions main goal was to dynamically insert HTTP security headers into each response.

Figure 39 Lambda@edge Security Function

The function added the following headers;

• Content Security Policy: By specifying which sources the browser may load material

from (such as scripts, fonts, and images), the material Security Policy (CSP) prevents

data injection and crosssite scripting (XSS) attacks. Even if malicious scripts are

introduced into the website, it stops them from running (MDN Web Docs, 2023).

• Strict Transport Security (HSTS): By requiring the browser to view the website

exclusively over HTTPS, even if the user manually inputs http://, Strict Transport Security

(HSTS) guards against protocol downgrade and man in the middle (MITM) attacks

(OWASP, 2021). This guarantees always encrypted communication.

74

• XContentTypeOptions: This header stops browsers from trying to guess the file type, a

practice known as MIME type sniffing. A file meant to be plain text could be interpreted

and run as JavaScript if this limitation wasn’t in place. XContentTypeOptions Setting:

Strict MIME type compliance is enforced by no sniff (OWASP, 2021).

AWS Certificate Manager (ACM) – SSL/TLS Encryption

Issued an SSL/TLS certificate for the domain www.healthservice.click using AWS Certificate

Manager (ACM) to safeguard data sent between users and the application. ACM manages the

automatic issue, validation, and renewal of certificates (via DNS in Route 53). After that, the

certificate was added to the CloudFront distribution, allowing all client connections to be

encrypted over HTTPS (Amason Web Services, 2023).

By eliminating the need for manual certificate installation or renewal, ACM streamlines SSL

administration and guarantees encrypted transmission.

5.4.4 Summary

The Secure Prescription System uses Amason Web Services (AWS) for its cloud infrastructure,

ensuring security, scalability, performance, and high availability. The frontend and backend

follow best practices for fault tolerance, security, and deployment. An EC2 instance hosts the

Node.js and Express API, while NGINX serves as a reverse proxy. An Application Load Balancer

manages SSL termination with certificates provided by AWS Certificate Manager (ACM).

Amason Route 53 manages custom domain resolution, and security groups regulate access.

The frontend is stored on Amason S3 and compiled into static files using React and Vite.

Amason CloudFront distributes these files globally, and AWS WAF safeguards the distribution.

ACM enforces SSL/TLS encryption and Route 53 manages domain routing. This architecture

provides a secure, dependable, and responsive application environment that meets current

demands and can grow with future demands.

75

5.5 Continuous Integration & Continuous Deployment

5.5.1 Overview

This project utilises GitHub Actions to create a Continuous Integration and Continuous

Deployment (CI/CD) pipeline to maintain high code quality, security, and dependability while

streamlining the development lifecycle. CI/CD automates testing, code validation, and

deployment, reducing manual work and human error. Code changes sent to a version control

system are automatically built and tested, preventing bugs from production and ensuring

seamless integration with the current codebase. CD automates the release process, only

deploying new code after successful checks. GitHub Actions interface with GitHub allows for

automatic workflows, promoting an agile development process and preserving code integrity.

CI/CD implementation also reduces time to deploy, increases system dependability, and allows

sero downtime improvements through automatic CloudFront cache invalidation and backend

process management with PM2.

5.5.2 Backend

5.5.2.1 Security

A specialised security pipeline was set up using GitHub Actions, combining SonarCloud for

static code analysis and Snyk for dependency vulnerability scanning, to protect the backend

codebase from known vulnerabilities and preserve a high degree of code quality. This pipeline

makes sure security checks are a part of the continuous integration process by running

automatically on all pull requests and on every push to the main or development branches.

76

Figure 40 Security Pipeline

Snyk – Dependecny Vulnerability Scanning

A Snyk scan is a crucial task in the security workflow, comparing dependencies to a regularly

updated vulnerability database. This is essential for Node.js apps, which often depend on third

party packages that could introduce unnoticed security vulnerabilities. Snyk is installed globally

and run using the snyk test command with the severitythreshold=high flag in the GitHub Actions

77

process. This strategy combines rigorous security enforcement with developer flexibility,

allowing teams to gradually resolve noncritical concerns while recording medium and low risks

(Snyk, 2023).

Performance on many builds is enhanced by using a caching method to put the Snyk CLI in the

GitHub runners NPM cache. To authenticate every scan, the Snyk token is safely introduced into

the environment using GitHub Secrets.

Because flaws in packages like authentication libraries, request handlers, or cryptography tools

could compromise critical healthcare data and break industry compliance standards like HIPAA

and GDPR, automated dependency scanning is essential for modern web applications (OWASP,

2021).

Figure 41 Snyk Dashboard

78

SonarCloud – Static Code Analysis

SonarCloud is a tool used for static code analysis and dependency scanning in backend

projects. It examines code for vulnerabilities, code smells, security hotspots, and flaws. It also

ensures code consistency and industry standards compliance. The SonarCloud scan uses Git

history metadata and requires a valid SONAR_TOKEN in GitHub Secrets. The dashboard

provides insights, graphing, and issue tracking.

In conclusion, this integration helps to decrease technical debt and improve long term

maintainability by encouraging the early detection of problems that traditional testing could

miss, such as unused code, unhandled exceptions, and excessively complex routines

(SonarSource, 2023).

Figure 42 SonarCloud Dashboard

Advantages of Automated Security Testing:

There are various advantages to integrating Snyk and SonarCloud into the CI pipeline:

• Shift left security lowers the cost of addressing problems by identifying them early in the

development process.

• Productivity of developers: Without compromising code quality or security, automated

scans free up developers to concentrate on creating features.

• Continuous assurance: The system automatically confirms that new code satisfies

security and quality criteria with each commit and pull request.

• Increased visibility: Progress and project health audits are made simple by the

centralisation of results in GitHub and SonarCloud dashboards.

79

5.5.2.2 Unit Testing & Code Quality

Using GitHub Actions, a code quality and unit testing pipeline was set up to ensure code

reliability, preserve a consistent codebase, and enforce development standards. Every push

and pull request to the main and development branches triggers this pipeline, which automates

several jobs such as formatting validation, linting, standard commit enforcement, and unit

testing.

By identifying problems early in the development cycle and making sure that only thoroughly

tested and formatted code makes it to production, this method complies with Continuous

Integration (CI) best practices.

Figure 43 CI Pipeline

80

Code Quality Tools: ESLint, Prettier, and commitLint:

ESLint is a tool used in the pipeline to analyse code for errors, antipatterns, and stylistic issues,

preventing runtime errors and ensuring consistent writing style. Prettier enhances ESLint by

automatically formatting code according to a style guide, allowing developers to focus on logic

rather than formatting details. CommitLint verifies commit messages according to the

Conventional Commits specification, ensuring a clear Git history and making versioning and

changelog generation more reliable.

Unit Testing with Jest

Jest is a JavaScript testing framework that confirms code unit accuracy and ensures

functionality without interference. It runs test suites in the backend, validating business logic,

data manipulation, and API behaviour separately. Jest provides higher test coverage, simpler

debugging, and increased developer confidence. It also ensures cross version compatibility and

lowers risk when updating runtime environments.

Benefits of Automated Code Quality and Unit Testing

Incorporating these quality checks and tests into the CI pipeline offers numerous benefits:

• Early error detection: By identifying problems before code is merged, regressions and

logic errors are kept out of production.

• Enforced consistency: Linting and formatting rules ensure a uniform codebase, making

the project easier to read and maintain.

• Better teamwork: Clear code and structured commit messages facilitate improved team

and external contributor communication.

5.5.2.3 Deployment

A GitHub Actions deployment pipeline was developed to deploy directly to an Amason EC2

instance running the Node.js API to automate the release of backend code to the production

environment. As the last phase of the Continuous Deployment (CD) lifecycle, this procedure

guarantees that new backend versions may be released effectively, reliably, and with the least

amount of downtime.

Pushes to the main or develop branches initiate the deployment pipeline, which is run on an

EC2 instances selfhosted GitHub Actions runner. This eliminates the need for SSH based

81

processes or third party CI runners by enabling direct access to local services like PM2 and

NGINX.

Figure 44 Deployment Pipeline

Breakdown:

1. Checkout Code:

The job begins by pulling the latest code from the GitHub repository using the actions/checkout

action. This ensures the most recent commit from the main or develop branch is available for

deployment.

2. Setup Node.js Environment:

Using actions/setupnode, Node.js version 22.x is installed on the selfhosted runner. This

guarantees that the environment used during deployment matches the one used in

development and testing.

82

3. Install Dependencies:

npm ci installs dependencies exactly as specified in the packagelock.json file. This method is

faster and more reliable than npm install, especially in CI environments where clean,

reproducible builds are essential.

4. Set Environment Variables:

Sensitive credentials and configuration values (e.g., JWT secrets, MongoDB URI, encryption

keys) are injected securely into a .env file using GitHub Secrets. This ensures:

• Credentials never appear in source control.

• The deployed app has access to all runtime environment variables needed for secure

operation.

• Configuration changes can be managed without modifying code.

Managing secrets through GitHub Actions is a secure and centralised method of configuration

management

5. Restart PM2 Service:

Finally, the backend service is restarted using pm2 restart with the updateenv flag to apply the

updated environment variables. PM2 is a Node.js process manager that ensures the API

remains alive, logs errors, and supports sero downtime restarts (PM2 Docs, 2024). Restarting

the service after deployment ensures that the latest code is deployed, and new environments

configurations are loaded.

Benefits of Automated Backend Deployment

• Consistency: Human error is minimised because every deployment follows the same

set of procedures.

• Speed: After being merged, changes can be made public in a matter of seconds.

• Security: GitHub Secrets is used to safely manage secrets and environment variables.

• Traceability: Every deployment has a commit associated with it, allowing for complete

visibility and rollback capabilities.

5.5.3 Frontend

5.5.3.2 End to end Testing

Using Playwright, an opensource testing framework created by Microsoft, an end to end (E2E)

testing pipeline was put in place to make sure the Secure Prescription Systems frontend

functions properly from the users point of view. Every push to the main and development

branches triggers this pipeline, which is integrated with GitHub Actions.

83

By starting real browser instances and verifying the UIs functional and visual behaviour, end to

end testing replicates real user interactions with the application, including navigating pages,

logging in, and submitting forms (Playwright, 2024).

Figure 45 E2E Testing Pipeline

84

Breakdown of the Playwright Test Workflow:

1. Checkout Repository

In order to make the entire project source code available for testing, the pipeline begins by

cloning the code repository using actions/checkout@v4.

2. Node.js

Actions/setupnode is used to install Node.js version 22 on the runner environment. This

provides compatibility with JavaScript/TypeScript test scripts and the frontend build

3. Set Up Dependencies

Based on the packagelock.json file, npm ci is used to install all frontend dependencies,

guaranteeing a clean and repeatable dependency installation. For consistent test

environments, this is crucial.

4. Playwright Browser Cache

The workflow uses the actions/cache action to cache Playwrights browser binaries (Chromium,

Firefox, and WebKit) in order to enhance build efficiency. Test setup times are significantly

reduced because Playwright browsers do not need to be downloaded again in the case of a

cache hit.

5. Install browsers for Playwright

Playwright uses the npx playwright install withdeps command to install the required browser

engines if the cache is out of date or non existent. This guarantees that the most recent

compatible browsers and system prerequisites are present in the test environment (Playwright,

2024).

6. Execute the E2E tests for Playwright

The Playwright test suite is executed by npm run e2e after the environment is prepared. These

tests validate important user journeys like these by simulating actual interactions in a headless

browser:

• Authentication

• Role based access control (RBAC)

• Viewing and managing prescriptions

• UI Accessibility and form handling

7. Upload playwright test report

Lastly, actions/uploadartifact is used to upload the test findings as a downloadable artifact.

Visual traces, error logs, and test summaries are all included in the report. This artifact, which is

kept for 30 days, aids developers in identifying errors and guarantees responsibility in quality

assurance.

85

Benefits of Automated End to End Testing:

The following benefits come from integrating Playwright E2E testing into a CI/CD pipeline:

• Comprehensive Validation: Tests assists identify UI problems that unit tests might

overlook by simulating actual user interactions across several browsers (Microsoft,

2024).

• Early Detection: Defects are found as soon as code is pushed, which lowers the

expense of repairing them later on in the development process.

• Cross Browser Support: Playwright ensures consistent behaviour across platforms by

supporting WebKit, Chromium, and Firefox (Playwright, 2024).

5.5.3.3 Unit Testing & Code Quality

First, a Node.js environment with cached dependencies is set up and the most recent code is

checked out. After that, it uses ESLint to find any possible problems or antipatterns and Prettier

to check the code formatting. These procedures prevent frequent errors during development

and maintain consistency.

This pipeline makes use of Vitest a testing framework made for frontend projects that are quick

and easy to use, for unit testing. Vitest is perfect for projects built with React and Vite because it

provides tight integration with Vite and executes tests in a quick, lightweight development

environment (Vitest, 2024).

86

Figure 46 CI Pipeline

87

5.5.3.4 Deployment

To automate the release of the Secure Prescription Systems, React based frontend, a dedicated

deployment pipeline was created using GitHub Actions. This pipeline builds and deploys the

compiled frontend to an Amason S3 bucket and, if pushed to the production branch, also

triggers a CloudFront invalidation to refresh cached content. It ensures fast, secure, and reliable

updates to both the development and production environments without any manual

intervention.

Figure 47 Deployment Pipeline

88

Breakdown of the Frontend Deployment Workflow

1. Checkout code

The pipeline starts by using the actions/checkout action to pull the most recent version of the

code from the repository, providing the runner with access to the frontends complete source

code.

2. Configure Amason credentials

The pipeline makes use of the awsactions/configureawscredentials action to communicate

securely with AWS services. In order to guarantee that credentials are never hardcoded in the

workflow and are encrypted both in transit and at rest, it authenticates using access keys kept in

GitHub Secrets.

3. Install dependencies

Using npm ci, the projects dependencies are installed cleanly, guaranteeing that the same

versions listed in packagelock.json are used. This lowers the possibility of environmentspecific

problems and facilitates deterministic builds.

4. Build Frontend

Using Vite, the application is built by running npm run build, which creates static HTML, CSS,

and JavaScript files in the dist directory from the React codebase. These are prepared for online

deployment and have been performanceoptimised (Vite, 2024).

5. Determine Environment

Whether the push was made to the main branch, or the development branch is verified using a

specially written conditional script. Depending on the outcome:

• If the branch is main, it signifies the pipeline to cause a CloudFront invalidation and sets

the environment variables to deploy to the production S3 bucket (healthservice.click).

• If the branch is develop, it deploys to the development bucket (devhealthserviceapp)

without triggering a CDN refresh. This supports proper staging workflows and minimises

unnecessary cache busting.

6. Deploy to Amason S3

The AWS CLI command aws s3 sync./dist/ s3://$BUCKET_ID delete is used to upload the

compiled frontend assets to the relevant S3 bucket. By replacing or deleting files in the

destination bucket to match the local dist/ subdirectory, this operation completes a full

synchronisation. For hosting static webpages, Amason S3 provides a dependable, scalable, and

highly accessible object storage solution.

7. CloudFront Invalidation (Production Only)

89

AWS CloudFront createinvalidation is used to send an invalidation request to the CloudFront

distribution if the push was to the main branch. In order to force the most recent frontend build

to be served to visitors worldwide, this makes sure that all edge locations clear their cached

content (/* path).

Benefits of Automated Frontend Deployment:

• Efficiency: Changes are distributed quickly following a push, removing the need for

manual uploads or intervention.

• Consistency: Because of automation, the build and deployment procedures are

repeatable and errorfree.

• Scalability and Speed: When combined, S3 and CloudFront provide static assets with

low latency and high availability on a global scale.

5.6 Development

5.6.1 Backend

5.6.1.1 Project Structure and Initial Setup

Using a modular architecture to promote scalability, separation of concerns, and

maintainability, the Secure Prescription Systems backend was developed with Node.js and

Express. The applications code is arranged into important directories under src/, along with

several configurations at the root level, as seen in the project structure figure 48.

90

Figure 48 Backend Folder Structure

Folder Structure and Modular Design

• .github/: contains the testing, security and deployment pipelines that were outlined

above.

• .husky/: contains the git hooks such as the precommit hook for running lintstaged

which in turn will run the linters, formatter etc. Also, the prepush hook resonates

here with the ability to run the tests before pushing the code. If any of these hooks

fail the checks, they will stop the code from being pushed.

• The core of the backend logic is the src/ directory, which has subfolders with various

functions:

• Controllers/: Includes all of the business logic needed to respond to incoming API

requests. This covers tasks including updating patients records, registering users,

and filling prescriptions.

• Routes/: Ensures a clear separation between functionality and routing by mapping

HTTP endpoints to controller methods while adhering to RESTful API standards.

• Models/: Mongoose schema definitions are stored under models/ . Core entities

including User, Patient, Prescription, Medication, and Appointment are included

91

here. The format and constraints on the data stored in MongoDB are specified by

each schema.

• Middleware/: Logging, error handling, authorisation, and security related tasks like

role permissions and JWT validation are all handled via reusable middleware.

• Config/: Reusable configuration logic, including CORS settings and allowed origins,

database connection logic (db.js), and email sending features, are contained here.

• Utils/: Contains utility functions like encryption for patients and prescriptions,

validators to ensure the data follows the correct format before sending requests,

and a prescription seeder to populate the prescriptions model with realistic data.

• Scripts/: These are used for onetime actions like seeding medicinal products data

from external, approved sources into the database.

• medicationData/: Contains the original xml file with all the medicines that have been

assessed by the Health Products Regulatory Authority (HPRA) (Data.gov.ie, 2018).

• Modules/: Hold the reusable authentication functions for hashing passwords and

license numbers, creating JWTs, and ensuring users are authenticated to request a

certain resource.

By organising functions and allowing independent testing or updates for specific components,

this structure enhances development workflow.

Database Model example: Prescription

The most important models are the prescription and item model which have a one to many

relationship as in a prescription may have many items associated with it. It defines relationships

to other core entities such as Doctor, Pharmacist, and Patient. Notably, it includes custom

fields for prescription status, automatically generated IDs, and encryption.

92

Figure 49 Prescription Model

93

Figure 50 Item Model

Any notes and items that are added to a prescription are encrypted at the time of saving and

immediately decrypted upon retrieval using bespoke getter and setter functions. By utilising

AES256 encryption integrated into a utility function through Nodes crypto module, this provides

compliance to data protection regulations by rendering sensitive data in the database

unidentifiable.

94

Server Configuration and Entry Point

The Express server is started on an assigned port by server.js, which loads environment

variables using dotenv. Index.js manages the primary server logic, including middleware setup,

route configuration, realtime notifications initialisation, and running the connectDb function.

Figure 51 Database Connection Function

95

Figure 52 Application Starting Point

96

Figure 53 Server.js

Additionally, it registers all API routes including endpoints for patients, users, prescriptions,

under a single /api namespace. A connectedUsers map is used to monitor active sessions, and

Socket.io is initially configured to facilitate realtime notifications between doctors and

pharmacists.

Lastly, the credentials specified in the .env file are used by the connectDB() function to create a

connection to the MongoDB database. To confirm server availability during deployment or

continuous integration checks, a basic /api/health endpoint is also offered.

For secure and effective request handling, realtime communication, and database integration,

this structure offers a clear and modular structure.

Environment Configuration and Secrets Management

Figure 54 env Example

• MONGO_URI – MongoDB Atlas connection string

• ENCRYPTION_KEY – AES key used for field level encryption

• JWT_SECRET – Used for signing access tokens

• ADMIN_EMAIL and ADMIN_EMAIL_PASSWORD – For sending notifications via

Nodemailer

97

5.6.1.2 Database Models and Relationships

The Secure Prescription Systems backend makes use of Mongoose, an Object Data Modelling

(ODM) module for MongoDB, to manage data persistence. Mongoose is perfect for keeping an

organised prescription database system since it enables the establishment of tightly typed

schemas with validation rules, default values, timestamps, and relationships between

documents.

User Model:

Figure 55 User Model

Specifically, "Doctor" and "Pharmacist" are supported by the User schema by an enum field.

Also, it supports multifactor authentication (MFA) with parameters like mfaEnabled and

mfaSecret. Email verification and secure account setup are handled by additional parameters

like isVerified, verificationToken, and verificationTokenExpires. Since both doctors and

pharmacists stem from this core structure, the schema is essential to the system.

98

Patient Model:

Figure 56 Patient Model

99

Personal information including name, gender, date of birth, medical history, and emergency

contact are all included in the patient schema. A doctorId references each patient to a doctor,

creating a onetomany relationship (one doctor → many patients). This guarantees that doctors

can only see and treat the patients they have been allocated.

Prescription Model:

Figure 57 Prescription Model

100

ObjectId references (doctorId, pharmacistId, and patientId) link prescriptions to three parties:

the patient, the doctor, and the pharmacist. Prescriptions have embedded item references for

medications prescribed as well as a status field with an enum structure (e.g., Assigned,

Pending, Processed). AES256 encryption is used in this models notes field to secure sensitive

data.

Using the Mongoose middleware (pre(save)), a prescriptionId is automatically generated as a

distinct string identification that is distinct from MongoDBs native _id.

Medication Model:

Figure 58 Medication Model

Name, activeSubstance, authorisationNumber, and routeOfAdministration are among the

structured medical data fields in the Medication schema that are extracted from HPRA verified

API. When creating prescriptions, this dataset which is read only within the system is utilised for

searching medications.

101

Item Model:

Figure 59 Item Model

Multiple items (medication entries) with fields for dosage, amount, repeats, and

pharmacistNote may be included in a single prescription. Every item is associated with a

specific prescription (prescriptionId) and refers to a medication. A single prescription can have

multiple independently trackable items due to this structure.

102

Appointment Model:

Figure 60 Appointment Model

Doctors schedule appointments. Along with a date, status, and optional notes field, the model

refers to both parties (doctorId, patientId). This makes it possible to keep track of user follow

ups, consultations, and scheduled appointments.

103

5.6.1.3 Controllers and Route Definitions

A separate controller handles prescriptions, ensuring secure interactions between doctors and

pharmacists over role based HTTP endpoints. Layered middleware and validators protect

routes, enabling access control and strong request validation. Prescription.js controller file

defines CRUD actions and pharmacist specific modifications, defining a document with related

medication items and metadata.

Creating Prescriptions:

CRUD actions and pharmacist specific modifications for prescriptions are defined in the

prescription.js controller file. A prescription is essentially a document made up of related

medication items and metadata (doctor, patient, and pharmacist).

Creating Prescriptions: Only authorised doctors are able to fill prescriptions. Using doctorId, the

controller first confirms that the patient is the patient of the requesting doctor. After that, it

generates the prescription and related item data, each of which refers to a distinct medication.

To protect sensitive medical data while it is at rest, the prescription is encrypted using a getter

setter pair that is specified in the schema.

Figure 61 Create Prescription Function

104

Item Creation Logic:

Every prescription has several items that correspond to different drugs. Promise.all() is used to

insert them into the database, allowing asynchronous reference generation and collection.

These item IDs are associated with the Prescription document after they are created.

Retrieval & Population:

The populate () method is widely used to incorporate relevant user and medication data in the

same query when retrieving prescriptions (getAllPrescriptions and getPrescriptionById). This

removes the need for extra fetches, improving frontend rendering. To enable rich data in user

interface displays, for instance, prescription.items.medicationId is filled with the names of

medications and their active ingredients.

Figure 62 Get Prescriptions

105

Pharmacists Status Updates:

Pharmacists Status Updates: Pharmacists can update the status and optional remarks on

individual items via the PATCH mechanism. The controller verifies their position and makes sure

that only allowed statuses (such as Processed and Completed) can be set. It modifies the

prescription and related items appropriately if it is valid. Additionally, the schemas getter setter

is used to safely store and retrieve encrypted data, such as notes.

Figure 63 Pharmacist Update Function

106

Figure 64 Pharmacist Update Item Note

107

Prescription Route Definitions:

The middleware layers and endpoint structure for every prescription operation are specified in

the routes/prescription.js file.

Figure 65 Prescription Route

108

Authenticated middleware guarantees that these routes are only accessible by logged in users.

Figure 66 Ensure Authenticated Middleware

RBAC is enforced by authoriseRoles(...), which limits access according to user roles (e.g.,

pharmacist or doctor).

Figure 67 Access Control Middleware

verifyOwnership(Prescription) verifies that the person logged in is, in fact, associated with the

resource being accessed (e.g., the pharmacist assigned to the prescription or the doctor who

owns it). By doing this, horisontal privilege escalation is avoided.

109

Figure 68 Verify Ownership Middleware

Incoming data is guaranteed to follow expected formats via validation middlewares such as

validateCreatePrescription and validatePatchPrescription. These enforce criteria like required

enum, and correct object ID references and check nested arrays (like items) using tools like

expressvalidator and custom logic.

110

Figure 69 Validation Middleware

Before reaching the controller code, handleInputErrors gathers validation errors and provides

the correct error responses.

Figure 70 Error Middleware

The routing structure ensures clean RESTful design. HTTP methods align with operations:

• POST /prescriptions – Create

• PUT /prescription/:id – Update

• DELETE /prescription/:id – Delete

• GET /prescriptions – List all (filtered by role)

• GET /prescription/:id – View one

• PATCH /prescription/:id/status – Update status and item notes (pharmacist only)

111

This design ensures granular access control, strict input validation, encrypted data handling,

and secure role-based data flow throughout the lifecycle of a prescription.

5.6.1.4 Authentication and Authorisation

The system uses industry standard procedures to guarantee that users can only carry out tasks

relevant to their responsibilities and that only verified users have access to protected

endpoints.

Passwords and Sessions for Authentication:

Session based login with JWTs and hashed passwords are used to securely handle user

credentials

Figure 71 Create JWT Function

Password Hashing: Bcrypt with salting is used to hash user passwords and license numbers

during registration (hashField). This reduces the possibility of data breaches and stops

unencrypted storage.

Figure 72 Hashing Functions

Login Procedure: The users email address and password are verified during the login process. If

successful, the users ID is saved in a secure, HTTP only cookie (mfa_session) to start a brief

session in preparation for multifactor authentication. This is the beginning of a secure login flow,

even though MFA is covered later.

112

Figure 73 Login Function

113

Using JWTs to Manage Sessions:

Every protected route uses the ensureAuthenticated middleware to verify that the access token

is legitimate. This middleware takes the token out of the cookies,

• uses the verifyToken() function to confirm it (based on jsonwebtoken),

• Adds to req.user the decoded user data (role and ID).

Access is instantly refused with a 401 Unauthorised response if the token is lost, expired, or

altered. This method preserves a safe, stateless authentication process while doing away with

the requirement for serverside session storage.

Authorisation: RoleBased Access Control (RBAC):

Once a user is authenticated, their role governs which resources they can access. Role

enforcement is handled using the custom authoriseRoles middleware, which:

• Accepts one or more allowed roles (e.g., doctor, pharmacist)

• Checks if req.user.role matches

• Blocks access if unauthorised

5.6.1.5 Multifactor Authentication (MFA)

The Secure Prescription System uses Time based One Time Passwords (TOTP) in conjunction

with Multifactor Authentication (MFA) to improve security beyond password based login.

Unauthorised access is avoided even if a users login credentials are compromised thanks to

this extra verification step.

MFA Setup During Registration

Figure 74 MFA Variables

The authenticator.generateSecret() function of the otplib package is used by the backend to

create a distinct secret key for every user during user registration. This key is used to generate a

TOTP URI, which the qrcode library then transforms into a QR code. The client receives the

114

generated QR code back, enabling the user to scan it with an authenticator app such as Authy

or Google Authenticator.

Along with other registration information, the secret is kept in the User models mfaSecret field.

MFA Flow During Login

The server validates the users email address and password when they log in. If this is the case,

the users ID is stored in a temporary cookie (mfa_session) that is created by the server and

expires after five minutes. This cookie indicates that the user is now prepared for MFA after the

first factor (password) has been validated.

Figure 75 Session Cookie

The client is then prompted to enter their 6digit code generated by the authenticator app.

Verifying the TOTP

In the mfaLogin() controller, the server retrieves the users mfaSecret and verifies the onetime

code submitted by the user using:

Figure 76 Verify TOTP Function

If it is valid, the system issues a secure JWT access token, which is saved in the accessToken

httpOnly cookie. To prevent its reuse, the mfa_session cookie is deleted.

The risk of unwanted access is greatly decreased by this twostep login process, particularly in a

medical setting where the application handles private patient and prescription data.

115

Security and Compliance Considerations

TOTP is time based and each code is only valid for a brief period of time, it is resilient to replay

attacks.

• MFA bypasses are blocked: The login is refused if the session has ended or the TOTP is

not accurate.

• The management of sessions is safe: Secure cookies (HTTP Only, Secure, and

SameSite=None) are used to store both temporary and permanent tokens.

By using MFA, the application complies with security standards in contemporary web systems

and best practices for protecting medical data (OWASP, 2023).

5.6.1.6 Field Level Data Encryption

Securing sensitive data when it’s at rest is crucial for any system involving healthcare. The

backend uses AES256GCM encryption, which is implemented via a custom utility module using

Node.js native crypto library, to protect sensitive data like prescriptions, patient information,

and pharmacist instructions.

Mongooses getters and setters make it easy to deploy secure encryption and decryption across

several models because this encryption code is abstracted into a reusable utility module

(utils/encryption.js).

116

Figure 77 Patient Model 2

The module uses the AES256GCM algorithm, a secure and efficient symmetric encryption mode

that offers both confidentiality and data integrity. The encryption key is securely loaded from an

environment variable (ENCRYPTION_KEY) and parsed as a buffer:

Figure 78 Encryption Key

117

Figure 79 Encrypt function

Every time data is encrypted, crypto.randomBytes() is used to create an unique Initialisation

Vector (IV). By preventing the ciphertext from being reused or altered, the IV and an

authentication tag (authTag) produced by GCM help to prevent common attacks like replay and

padding oracle attacks.

A JSON string with the following structure makes up the encrypted output:

• iv: the initialisation vector generated at random

• authTag: used to confirm that the encrypted message is intact

• encryptData: the data that has been encrypted

Using the Mongoose schema set() methods, this is returned and saved straight into the

database.

The Decryption Logic

The decryptData() function reverses the process when data is read from the database.

• parses the encrypted JSON that is stored.

• uses the original IV and auth tag to reconstruct the cipher.

• returns the plaintext string after decrypting it.

118

The developer never has to explicitly decrypt fields because Mongooses get() method in schema

definitions transparently handles this procedure.

Figure 80 Decrypt Function

Why AES256GCM?

• Authenticated encryption: AESGCM protects against tampering by ensuring that data

hasn’t been changed while in transit or storage.

• Performance: Modern CPUs natively implement AESGCM, which is efficient.

• Consistent and reusable: By centralising the logic into a utility module, code duplication

is avoided, and consistent encryption standards are enforced across the codebase.

AESGCM offers authenticated encryption and strong security guarantees, being a NIST

approved standard widely used across critical sectors like healthcare and finance (National

Institute of Standards and Technology, 2001).

5.6.1.7 Realtime Notifications & Email Integration

Realtime notifications and administrative email processes are critical for ensuring

responsiveness, reduced delays, and improving the user experience in a prescription system

where doctors and pharmacists must communicate quickly. To accomplish this, the projects

backend implementation combines email processes with Nodemailer and WebSocket based

realtime communication with Socket.io.

RealTime Notifications with Socket.io

119

The backend server establishes a Socket.io connection via index.js, enabling bidirectional

communication between connected users. When a user connects, their userId is mapped to

their socket session using a global connectedUsers map. This enables the backend to directly

push updates or alerts to a specific user by their ID.

Figure 81 Socket.io Connection

When a pharmacist updates the prescription status (e.g., to “Processed” or “Completed”), the

system identifies the relevant doctor and emits a prescriptionupdated event:

Figure 82 Doctor Notification

120

Benefits:

• Allows for immediate notifications when new or updated prescriptions are made.

• Minimises the need for manual refreshes or polling.

• Enhances collaboration between pharmacists and doctors.

Socket based notification systems are widely used in healthtech and fintech platforms to

minimise delays and ensure immediate feedback loops (Socket.io, n.d.).

Email Verification with Nodemailer

To manage user registrations and enforce administrative approval, the system includes a

verification email flow powered by Nodemailer. When a new user registers, the system

generates a unique token and expiration timestamp. An email is sent to the admin containing a

secure verification link, like:

https://api.healthservice.click/api/admin/verify/:userId/:token

This is handled by the sendEmail() function in the config/email.js file as seen in in figure 83.

Once the admin clicks the link, the backend marks the user as isVerified = true if the token is

valid and has not expired.

Figure 83 Send Email Function

https://api.health-service.click/api/admin/verify/:userId/:token

121

Together, this dual system of realtime alerts and email based workflow control strengthens both

user interactivity and administrative oversight. These features are particularly vital in medical

software, where secure, timely, and traceable communication can have a real impact on patient

safety and system reliability.

5.6.1.8 Data Seeding with HPRA verified Medication API

Put in place a data seeding process that imports authorised medications from a reliable source

and fills the medications model database for testing and development in order to guarantee that

the Secure Prescription System is based on structured, authentic, and healthcare compliant

data.

Importing HPRA Verified Medications

Used an open data XML file provided by the Health Products Regulatory Authority (HPRA)

through Irelands data.gov.ie website as the primary source of data [HPRA, 2024]. A complete list

of approved or transfer pending medicinal products for human use is included in this collection.

To integrate the data, downloaded the XML file and placed it inside the medicationData/ folder.

Wrote a script using xml2js to parser and extract the XML data into usable JSON. Each product

was transformed to extract the following fields:

• ProductName (stored as name)

• Active Substances

• Drug IDPK (used as the products unique ID)

• ATC codes and RouteOfAdministration

122

Figure 84 Medication Seeding

Once transformed, this data was saved to the MongoDB collection via the Medication model

using insertMany().This approach ensures that all medications available to doctors and

pharmacists during development are real, traceable products approved by national healthcare

authorities.

5.6.2 Frontend

5.6.2.1 Project Structure and Initial Setup

The frontend of the project comprises of Vite, a fast modern build tool optimised for

performance. The tech stack includes React for building the user interface, TypeScript for static

typing, shadcn/ui, Tanstack query for efficient data fetching and Tanstack router for client-side

routing.

123

Figure 85 Frontend Project Structure

Project Structure

To simplify code and separate concerns, the project uses modular and scalable folders.

Important folders and files:

• src/: Main source folder containing the application's logic.

o app/: Contains global providers and layout-related configuration.

o components/: Reusable UI components.

o columns/: Configuration for data tables (e.g., patient lists, prescriptions).

o contexts/: React context providers for shared state.

124

o helpers/: Utility functions used across the app.

o hooks/: Custom React hooks.

o lib/: Shared libraries such as API clients.

o routes/: Route definitions and page components, aligned with TanStack Router.

o types/: TypeScript type definitions and interfaces.

o validations/: Zod schemas for form validation.

o App.tsx: The root component where the app is initialized.

o main.tsx: Entry point where the app is mounted to the DOM.

• public/: Static files like favicon and index.html.

• tests/: End-to-end and unit tests, including Playwright test results.

• vite-env.d.ts: Type definitions for Vite's environment variables.

Code Quality

• Prettier: .prettierrc formats code automatically.

• ESLint: Custom setup (eslint.config.js) ensures code meets linting standards and

conventions.

• Husky: Git hook manager in .husky/. Linting and formatting are automated via pre-

commit hooks.

• Lint-Staged: Improved commit efficiency by only linting and formatting staged files with

Husky.

• Playwright-report/ stores end-to-end testing findings.

• Commitlint: monitors commit messages for consistency and significance.

• SonarQube Integration: Sonar-project.properties sets up continuous code quality

analysis.

125

5.6.2.2 Component based Architecture

PharmaLink's frontend uses Reacts component-based architecture. Modularity improves

reusability, maintainability, and concern separation. Each component handles its own logic and

presentation, making scaling and updating straightforward.

Figure 86 UI Components

UI Components and Shared Structure

The components/ directory has subfolders for ui/, forms/, and navigation (nav-main.tsx, nav-

user.tsx). These contained buttons, inputs, modals, dropdowns, tooltips, and layout containers.

126

Most UI primitives use the shadcn/ui component system, which includes Radix UI for

accessibility and allows Tailwind CSS changes. The app uses reusable components such as

<Button />, <Dialog />, <Select />, and <Table /> to maintain a consistent design language.

Layout Architecture and Sidebar Navigation

PharmaLink's persistent layout has a responsive sidebar for doctors and pharmacists. The

layout in __root.tsx conditionally renders navigation based on the current route:

The sidebar itself (app-sidebar.tsx) is composed using structured layout primitives

(SidebarHeader, SidebarContent, SidebarFooter) and integrates contextual role-checks via

AuthContext:

Figure 87 Conditional Rendering

This modular architecture shows pharmacists and doctors only workflow-relevant UI. Doctors

are also conditionally offered a Quick Prescription button for fast prescription creation.

Data table component

PharmaLink's robust DataTable component, designed with TanStack Table v8 is reusable. This

component powers most tabular views:

• Prescription lists

• Appointment schedules

• Patient directories

Features Include:

• Sorting, pagination, filtering.

• Select row, edit and delete inline.

• Mobile-responsive layout and controls.

127

Figure 88 Inline Row Actions

5.6.2.3 Routing and Navigation

The modern, file-based routing system at PharmaLink uses TanStack Router, a type-safe and

versatile React routing solution. Separated concerns, role-based access control, and deep

linking for prescriptions, patients, and appointments are built into the routing architecture.

Routing Structure

The src/routes/ directory contains frontend routing configuration. The folder structure matches

the application URL, improving maintainability and developer experience.

Figure 89 Routes

128

This structure leverages dynamic route segments (e.g., $prescriptionId) to handle CRUD

operations for specific resources.

Root Layout and Conditional Rendering

__root.tsx is the application's top layout. It renders child routes using TanStack Router's Outlet

component and dynamically decides whether to present the dashboard layout based on the

URL.

Figure 90 __root Layout

If the user is in the /dashboard route it will render

• AppSidebar: role-based navigation sidebar

• SiteHeader: header with controls for the user

• SidebarInset: Main content container for the dashboard routes

Or else it will render the public pages like Login, Register, and MFA Setup with a simpler layout.

129

Figure 91 Public Login Page

Dashboard Overview Page

The dashboard home page (/dashboard/index.tsx) serves as the main landing page for

authenticated users. It is highly dynamic and role aware.

• Fetches all prescriptions using a custom hook usePrescriptions powered by TanStack

Query for server state management.

• Filters prescriptions based on the logged-in user's role (Doctor or Pharmacist) using

AuthContext.

• Renders a reusable DataTable component with column sorting, filtering by patient

name, row selection, and row action buttons for prescriptions.

• Deletes prescriptions with optimistic UI feedback using useMutation.

130

Figure 92 Dashboard Delete Mutation

5.6.2.4 Form Handling and Validation

Form handling is crucial to PharmaLink, especially for prescription creation and editing. The

frontend uses two strong libraries to provide a smooth, user-friendly, and robust form

experience:

• Manage form state with react-hook-form.

• Zod for schema-based validation.

This solution manages complicated forms with dynamic fields at high scale with good

performance and validation accuracy.

Form Management with React Hook Form:

React Hook Form is utilized widely throughout the application to efficiently handle form state

with minimal re-renders. It offers:

• Integration with controlled components is simple.

• Built-in error handling.

• Enhanced performance for large or dynamic forms.

Figure 93 React Hook Form Usage

Features include:

• Field Registration.

• Controlled Inputs for custom components like Select.

131

• Dynamic fields using useFieldArray for adding/removing prescription items.

Schema Validation using Zod

Zod defines strict form data schemas to check user input against established rules.

Prescription item validation example:

Figure 94 Zod Validation Schema

Dynamic Prescription Form Design

The CreatePrescriptionForm is a reusable form component that allows doctors to create

prescriptions. Its key features include:

• Patient and pharmacist selection with the Select component with controlled values

• Dynamic prescription items with useFieldArray for adding/removing items

• AsyncMedicationSearch component for fetching medications dynamically

• Error handling using inline error messages via the errors from react hook form.

AsyncMedicationSelect Component

• Allow users to search for medications from the backend using an async API call

• Integrated react-hook-form using Controller for form state management

• Debounced search to prevent API spamming

• Only starts searching when 2+ characters have been entered

• Uses custom useMedicationSearch hook to fetch medication from the backend

• Automatically shows pre-filled selected medication which is useful for the edit

prescription form or duplicate prescription

132

Figure 95 Async Medication Select

5.6.2.5 State Management and Data Fetching

PharmaLink manages state and retrieves data using:

• TanStack React Query

• React Context API

• Built-in React hooks: useState, useEffect, useContext

133

This architecture enforces user role-based data access and keeps the frontend reactive,

efficient, and in sync with backend data.

React Query – Server State Management

PharmaLink manages server state across the app with React Query. React Query offers:

• Caching: Reduces unnecessary API calls.

• Background Refetching: Keeps data fresh automatically.

• Mutation handling: Easily handle create, delete and edit operations

• Query Invalidation: Automatically refetch data after a mutation

UsePrescriptions Hook:

Figure 96 usePrescriptions Hook

• Fetches all the prescriptions from the backend

• Query is only enabled if the suer is logged in

• Data is cached dynamically

• The query can be invalidated using queryClient.invalidateQueries to refresh data after

changes such as create or edit

134

Mutations – Creating, Editing and Deleting Data

For data mutations, useMutation is used:

Figure 97 useMutation

• Call API function – deletePrescription

• On success: show a notification and invalidate the prescriptions query so React Query

refetches the latest data.

• On error: Show an error toast

API Layer – Axios Integration

Api.ts defines all API functions utilizing Axios:

• A central baseURL and withCredentials configuration.

• Use handleApiError() for consistent logging.

A sample API function:

Figure 98 OTP API Function

React Hooks – Local State Management

React’s built-in hooks are used for:

• useState: Manage local UI state (e.g., search input, form fields).
• useEffect: Handle side effects (e.g., reset form on prefill change, fetch data on mount).

135

• useContext: Access global user state via AuthContext

5.6.2.6 Authentication and Role based Access Control

PharmaLink enforces a secure and role-aware frontend experience through a custom

authentication context and React Query-based user session management. This system ensures

only authorized users can access protected routes and features — tailored to either doctors or

pharmacists.

Authentication Flow

Axios withCredentials authenticates API requests using session cookies maintained by the

backend.

Frontend user session data is fetched:

Figure 99 useQuery Auth

The fetchUser function:

• Sends a GET /auth/me request.
• Returns the currently logged-in user's _id, email, and role.
• Stores this data in React Query's cache for global access.

AuthContext – Global User Access

Custom AuthContexts provide user data and session state to the entire application.

Figure 100 AuthContext

• Wraps the entire application in main.tsx.

• Blocks the app rendering with a loading screen while the user session is being fetched

136

useAuth Hook

Figure 101 useAuth Hook

Allows components to easily access user data:

Figure 102 useAuth Usage

Role Based Access Control

The user's role (doctor or pharmacist) is used throughout the app to control:

• Sidebar Navigation: renders different menu items based on the users role.

• Data filtering: filters prescriptions by doctor or pharmacist id.

• Page Access: Protected routes if the user is authenticated.

• Quick Prescription button: only shows if the role is doctor.

Figure 103 Quick Prescription Button

Summary of Authentication System

• AuthProvider: fetches the user session and provides a global context

• useAuth: A custom hook to access user and session utilities.

• AuthContext: Stores the user, isLoading, and refetchUser.

• fetchUser API: Feteches the user data from secure backend.

• React Query: Manages the user session caching and loading state.

• Role checks: Used in the UI and route logic to enforce access control.

137

This authentication and role-based access system ensures that only verified users can use

PharmaLink — and that their experience is personalized based on their medical role. It also

establishes a secure foundation for protecting sensitive healthcare data on the frontend.

5.6.2.7 RealTime Notifications

PharmaLink uses Socket.IO for real-time prescription updates for doctors and pharmacists.

Clinical process efficiency and responsiveness are improved by this.

Overview of Architecture

The real-time notification system is built with the following key pieces:

• Socket.ts: Initialises and configures the Socket.IO client.

• SocketProvider: Manages socket connection and event subscriptions.

• useSocket: Custom hook to access the socket context.

• NotificationBell: UI component showing unread notifications.

Socket Initalisation

Figure 104 Socket Initialisation

• The socket is configured to connect using WebSocket transport.

• Credentials (cookies) are sent for secure session validation.

• Connection is manually initiated when a user is authenticated.

Socket Provider – Connection Lifecycle

Socket Provider is a global context that connects the socket once a user is available from the

authContext. It will register the user on the server using socket.emit(‘register’, user._id).

Subscribes to events based on the user’s role such as pharmacists listening for new-

prescriptions and doctors listening for prescription-updated.

138

Figure 105 Socket User Roles

These events update the local notifications state. unreadCount is incremented to show the

badge in the UI.

Figure 106 Socket State

Figure 107 New Prescription Notification Function

useSocket – Custom Hook

Figure 108 useSocket Hook

Provides safe access to the socket context throughout the app.

NotificationBell Component

• Displays a red dot when there are unread notifications.

• Opens a popover showing a scrollable list of messages.

• Each notification is clickable and navigates to a relevant prescription.

• Users can "Mark all as read" to clear the unread count.

139

Figure 109 Displaying Notification

Summary of Real-Time Notification System

• Real-time updates: Socket.IO with role-based events.

• Secure User connection: Registered with backend after login.

• Global State: Stored inside the SocketProvider.

• Contextual Navigation: Clicking notifications routes to the details.

PharmaLink's real-time architecture lets users react quickly, streamline process, and avoid

missing prescription updates while retaining secure, role-based control.

140

6 Testing

6.1 Introduction

The software development lifecycle includes testing to ensure that the PharmaLink system

works reliably, meets functional requirements, and delivers an intuitive user interface for

doctors and pharmacists.

Automated and real user testing were used to validate the system from backend logic to

frontend interface in this project.

Used various tools and methodologies such as:

• Playwright: For end-to-end (E2E) testing of the frontend, simulating real user flows such

as login, prescription creation, and access control.

• Vitest: Frontend unit testing and component-level testing to ensure separated logic

works.

• Jest: For API endpoint, service, and utility function backend unit testing.

• User Testing: Conducted with real users (e.g. pharmacists and doctors) to gather

feedback on usability, functionality, and role-based workflows.

This chapter outlines the testing strategy used throughout PharmaLink.

6.2 Pharmacist Testing

6.2.1 Pharmacist Feedback

During user testing, a practicing pharmacist provided a detailed assessment of Healthmail and

PharmaLink's improvements. Professional perspective supplied real-world context to assess

the system's practicality and usability beyond technical performance.

Healthmail has limited search functionality, inconsistent prescription formatting, unclear

prescriber details, and disorganized communication procedures, according to the pharmacist.

Case-sensitive search behavior, manual archiving, lack of visibility across systems (e.g.,

hospitals, private practices), and transcription errors due to vague or misinterpreted dosage

instructions all showed an inefficient and error-prone system for pharmacy staff.

PharmaLink immediately addresses several of these issues. The pharmacist praised the

system's secure, centralized patient interface, date-ordered prescription view, and clear,

traceable prescriber-pharmacist communication. The feedback highlighted how PharmaLink

decreased patient misidentification, eliminated manual archive dependence, and quicker

prescription validation using improved prescriber notes and organized input fields.

141

The pharmacist considered a query system to be innovative even in its basic form. A built-in

doctor-to-pharmacist communication module would replace email, physical notes, and patient

discussions with a single, traceable channel which improves clarity, accountability, and

treatment speed.

This response clearly confirmed PharmaLink solves clinical problems. It showed that the

system's usability and design match pharmacy operations and suggested ways to improve

medical prescribing productivity and safety.

Below in figure 110, is the feedback document provided for the pharmacist.

142

Figure 110 Pharmacist Feedback

143

6.2.2 Analysis & Future Improvements

PharmaLink is a secure, user-centered prescription management solution that solves several of

Healthmail's problems. The platform improves security, usability, and prescription workflow

efficiency by systematic requirements gathering, deliberate system design, and broad user

validation.

An experienced pharmacist confirmed that PharmaLink overcomes major operational concerns

such patient misidentification, ineffective archiving, confusing prescriber instructions, and

slow, fragmented communication. The platform's unified patient dashboard, secure

communication paths, mandatory field validation, and auditability improve current processes.

Further enhancements may increase PharmaLink's value and impact. A secure, traceable

doctor-to-pharmacist query process would be a major improvement. Pharmacists could

request prescription clarifications such dosage instructions, medication clarification, and

administrative details directly from the platform without using email or human interventions.

This would improve professional communication, prescription filling, and healthcare team

administration.

Other improvements may include:

• Prescription Analytics Dashboard: Showing doctors and pharmacists prescribing trends,

common errors, and patient drug histories should improve clinical decision-making.

• Extension of User Roles: Adding administrative staff for non-clinical prescription

management could improve flexibility for larger healthcare providers.

• Mobile Access: Creating a PharmaLink app for doctors and pharmacists to handle

prescriptions on the go.

• Patient Notifications: Notifying patients when a prescription is dispatched, queried, or

ready for collection could improve transparency and minimize pharmacy workload.

Below in figure 111, is the problems solved by the PharmaLink application as per the

pharmacist.

144

Figure 111 Pharmacist Issues Solved

6.3 Front End Testing

Frontend testing verifies that a web application's user interface (UI) works properly, looks well,

and provides a consistent experience across devices and browsers. In BrowserStack (2023),

"frontend testing ensures that all parts of the user interface work properly and that the

application provides a seamless experience for users, from functionality to responsiveness and

visual consistency".

Frontend testing was necessary for doctors and pharmacists to use PharmaLink efficiently and

intuitively. Two main frontend testing methods were used:

• E2E Testing: Logging in, writing a prescription, and confirming role-based access

restriction were automated with Playwright. E2E testing validated frontend and backend

procedures to ensure end-user behaviour.

• Unit Testing: Vitest was used for isolated component testing. Verifying that form inputs,

buttons, and modals worked independently was required. Unit tests provided fast

frontend logic feedback without application installations.

145

6.3.1 End-to-End Testing

E2E testing checks an application's workflow from the user's perspective. Microsoft (2023)

states that E2E tests imitate real-world usage to ensure that "all pieces of an application work

together properly in real-life scenarios" across many components and layers.

Each E2E test mimicked real user experiences to ensure authentication, dashboard navigation,

and prescription management worked. Tests showed that pharmacists could only see their

prescriptions, whereas doctors could see all patient and prescription records.

Below in figure 101, a screen capture of the end-to-end tests can be seen passing

Figure 112 E2E Tests Passing

146

Below in figure 111, is an image of the tests passing for both firefox and chrome browsers:

Figure 113 Firefox & Chrome Tests

147

Below is an example of end-to-end test code in figure 112:

Figure 114 Navigation Test

Challenges Managing Authentication Credentials

Secure authentication for automated testing was a major difficulty during End-to-End testing.

PharmaLink uses two-factor authentication (TOTP) in addition to email and password access,

complicating login automation.

Using environment variables, a dedicated test user's email and password were safely loaded

from a.env.development file. TOTP input automation was not possible within the project

timeline.

During the first login, the user must manually enter the TOTP code within a 30-second timeout.

To simplify testing, Playwright's storageState feature saved the authenticated session (cookies

and localStorage) to a storageState.json file.

Reusing this cached information in subsequent E2E tests bypassed login and improved test

speed and reliability.

The testing process focused on securely managing environment variables and preventing

version control credential disclosure.

148

Below is a code sample of the login setup for testing in figure 113:

Figure 115 Login Testing Setup

6.3.2 Vitest Unit testing

Unit testing checks that functions, API calls, and React hooks work separately. Testing Library

(2024) states that unit testing guarantees "small, focused parts of an application behave as

expected and support building reliable, maintainable systems"1.

Vitest was the major frontend logic unit testing framework for PharmaLink. Vitest makes

developing tests in Vite-powered apps fast, modern, and lightweight. Testing consisted of API

call and React hook testing.

Authentication, patient, and prescription API functions were evaluated separately. API

operations like api.get, api.post, api.put, and api.delete were mocked using vi.spyOn to

simulate server responses without a live backend.

149

Key examples include:

• Authentication: Testing fetchUser, registerUser, login, verifyOTP, and logout API calls for

valid payloads and answers.

• Patients API: Checking that getPatients, getPatientById, createPatient, deletePatient,

and updatePatient returned proper patient data and interacted with API endpoints.

• Test Prescriptions API functions getPrescriptions, getPrescriptionById,

createPrescription, and updatePrescriptionStatus for accurate behavior and request

structure.

These tests verified that the frontend could interface with the backend and understand API

responses.

Below is a code sample of a prescription unit test in figure114:

Figure 116 Prescription Unit Test

React Query's QueryClientProvider and @testing-library/react's renderHook utility were used to

unit test custom React hooks like useAuth, usePatients, usePatientById, and usePrescriptions.

Highlights are:

• Ensured useAuth provided user authentication and loading status.

• Verifying usePatients and usePrescriptions correctly retrieved patient and prescription

lists, loaded states, and replied to backend data.

• Verifying mutation hooks like useUpdatePrescription and useUpdatePrescriptionStatus

trigger API updates.

• More mocks were utilized to represent authenticated users and backend data without

active external systems, speeding up and stabilizing tests.

150

Below is a code sample of a react hook unit test in figure 115:

Figure 117 React Hook Unit Test

Below is a screenshot of all frontend unit tests passing in figure 116:

Figure 118 Unit Tests Passing

151

6.4 Backend Testing

6.4.1 Unit Testing with Jest

PharmaLink tested backend logic, utilities, and API endpoints with Jest. Supertest was used to

verify registration, login, and multi-factor authentication replies for /api/auth/register,

/api/auth/login, and /api/auth/login/mfa. Tests confirmed that unauthenticated users could not

access /api/prescriptions.

Utility functions were also thoroughly tested:

• Hashing: hashField and compareField correctly hashed and compared passwords.

• JWT Creation: createJWT generated valid JSON Web Tokens.

• Encryption/Decryption: encryptData and decryptData secured sensitive data and
safely handled invalid inputs.

Below is a screenshot of the backend unit tests passing in figure 117:

Figure 119 Jest Unit Tests Passing

152

Below are code samples of testing JWTs and hashing utilities in figure 118:

Figure 120 JWT & Hashing Tests

6.5 Conclusion

PharmaLink was reliable, secure, and tailored to real healthcare users thanks to testing.

Validated the system at every level using unit testing, integration testing, end-to-end testing,

and user input. Vitest and Jest unit tests ensured that components, APIs, and business logic

worked properly in isolation, whereas Playwright end-to-end testing verified user workflows

from authentication to prescription administration.

Real-world users like pharmacists confirmed that PharmaLink solved Healthmail's problems.

This user-centered evaluation showed that PharmaLink increased clinical workflow-aligned

usability, security, and dependability.

The testing phase proved PharmaLink’s technical stability and demonstrated its healthcare

prescription management improvements. The system's quality, usability, and efficiency

improved with thorough testing.

153

7 Project Management

7.1 Introduction

For this software Project to be planned, developed, and delivered successfully, effective project

management was essential. This chapter describes the projects lifecycle in all its major stages,

from the first proposal and requirement collection to design, implementation, and testing. It

also emphasises the technologies that facilitate task tracking, version control, and

communication during the development process.

This part also examines the projects general management, including communication with the

project supervisor, difficulties encountered, and abilities developed. To give an in-depth

overview of the experience obtained from overseeing a real world software development

project, both technical and professional development are covered.

7.2 Project Phases

7.2.1 Proposal

The projects proposal phase outlined the fundamental goals, technological scope, and

rationale for developing a secure, modern prescriptions transmission system between doctors

and pharmacists. The "Pharmacist–Doctor Secure Prescriptions System" the proposal

acknowledged the significant disadvantages of the healthcare industry current email-based

communication systems, including Health mail, including problems with administrative burden,

phishing threats, delays, and mis delivery.

A platform centered around a REST API was proposed as the solution, allowing doctors to assign

prescriptions straight to pharmacists via a secure, real time digital system. This system would

solve important issues with scalability, security, and efficiency and provide advantages like:

• End to end encrypted prescription transmission and storage.

• Realtime notifications for pharmacists.

• Role based access control (RBAC).

• Multifactor Authentication (MFA).

• Automated workflows that reduce manual overhead and improve reliability.

The proposal outlined an extensive list of objectives for the frontend and backend. GitHub

Actions and AWS were used to set up the infrastructure, ESLint, Prettier, and Commitlint were

used to enforce code quality, while Snyk and SonarQube were used for security tooling.

154

Additionally, it highlighted the necessity of employing strong testing techniques with Jest,

Playwright, and Vitest.

The project suggested a React based online application with a UI driven by ShadCN

components, TypeScript, and modern state management technologies. A Figma prototype

would be used to create the frontends user friendly user flows, responsive user interface, and

strict access control based on user roles.

7.2.2 Requirements

The requirements phase was important for determining the projects limits and direction. I was

able to determine the advantages and disadvantages of the current prescription management

systems by examining PioneerRx and WellSky. This information helped to shape the creation of

a more specialised and user friendly solution.

Creating user personas for doctors and pharmacists assisted in focusing the design process on

actual user requirements, directing features like prescription processes, patient management,

and authentication. Frontend behaviour and API structure were directly influenced by the use

case diagrams, which highlighted key system interactions.

The system was made sure to be feature complete, secure, scalable, and performance driven by

separating needs into user, functional, technical, and nonfunctional categories. Architectural

choices were directly driven by requirements such as role based access control, multifactor

authentication, encryption, and the use of prescription data.

To make sure the system could satisfy user and industry requirements, the technical feasibility

study further evaluated the stack and tools selected, ranging from CI/CD and testing

frameworks to MERN and AWS.

With everything considered, this phase created a clear roadmap that eliminated uncertainty

and set the way for efficient, user entered development.

7.2.3 Design

The PharmaLink systems design phase had a vital part in translating user requirements into a

scalable and useful architecture. concentrated on developing a solution that could satisfy the

functional goals while maintaining high performance, security, and user experience throughout

the entire stack after determining what was necessary.

The three tier system architecture, which allowed for a clear separation of concerns between

the frontend, backend, and data layers, was a significant result of this phase. This framework

imposed secure access and communication between levels and significantly increased

155

scalability and maintainability. Utilising AWS cloud infrastructure together with technologies

like React, Express, and MongoDB provided an approach that was both production ready and

futureproof.

Usability and accessibility became the basis for frontend design decisions. A modular reliable

client experience was established with the aid of ShadCN UI, Tailwind CSS, and technologies

like TanStack Router and TanStack Query. While Sod and React Hook Form provided solid form

validation, Figma was critical in building wireframes and visual hierarchy.

The Model Router Controller (MRC) design pattern was used to ensure structure and clarity for

the backend. This pattern allowed me to build a maintainable and testable API while keeping

business logic cleanly separated. Additionally, JWT, encryption using Nodes native crypto

module, Helmet, and express validator were integrated to emphasise the secure architecture.

During this phase, workflows and relationships were clearly modelled using a variety of UML

diagrams, including flowcharts, sequence diagrams, and ERDs. These tools acted as

documentation for upcoming development and assisted in evaluating system logic before

implementation.

Overall, this phase laid the foundation for building a robust, secure, and user friendly

application, aligning tightly with the technical goals and user needs.

7.2.4 Implementation

Implementation turned architectural and design plans into a working PharmaLink system. A

safe, scalable, and user-centered prescription management solution was my goal after the

requirements and design phases.

With Node.js, Express, MongoDB, and React, full-stack development proved efficient. Good

database schema design created clean relationships between users, patients, and

prescriptions, supporting business logic and role-based workflows.

AWS deployment and secure environment variable management kept the application

production ready. The frontend's modular architecture utilizing React and TanStack Router

enabled dynamic and intuitive navigation, while the backends’ Express and Model-Router-

Controller (MRC) paradigm created a clean, maintainable API.

Security was crucial during implementation. Multifactor authentication (MFA), HTTP-only cookie

session management, and field-level data encryption secured sensitive medical data. To ensure

security, frontend and backend role-based access control was consistent.

Notification handling improved real-time updates and improved pharmacist and doctor

processes. Comprehensive Jest, Vitest, and Playwright testing verified API endpoints, frontend

components, and user journeys.

156

The Implementation phase turned PharmaLink from a technical design into a safe, production-

ready prescription management system with careful planning and implementation.

7.2.5 Testing

PharmaLink's functionality, performance, and security have to be tested to meet project

requirements.

Unit testing, end-to-end testing, and real user testing covered frontend and backend systems.

Vitest executed rapid, isolated unit tests on frontend components, React hooks, and API utility

functions. This detected logic problems early in development.

Jest and Supertest tested authentication routes, encryption utilities, and session management

operations on the backend to ensure system security and stability.

Playwright end-to-end testing verified login flows, role-based navigation, and prescription

management across user roles.

Real pharmacist user testing revealed workflow efficiency improvements, particularly in

navigation and role-based permissions.

PharmaLink ensured system stability, user experience, and security before deployment by

combining automated and manual testing.

7.3 Project Management Tools

7.3.1 GitHub

GitHub was important to the PharmaLink systems development lifecycle and project

management. GitHub functioned as a platform for task organisation, workflow automation, and

progress monitoring during the whole development process, in addition to its primary function

as a version control system.

157

Figure 121 GitHub Repository

The Gitbased version control system from GitHub made it easy to track changes, and rollbacks.

With a main branch for code that was ready for production and a develop branch for testing

features prior to merging, a clear branching strategy was put into place. The creation of feature

specific branches improved focus and decreased merge conflicts by isolating functionality.

GitHub Actions, one of GitHubs powerful features, was used in this project. These automated

processes handled the following tasks based on push events:

• Unit testing, linting, formatting, and commit message checks are all examples of

continuous integration (CI).

• Security scanning: Using programs like Snyk and SonarCloud to automatically find

vulnerabilities.

• Executing Playwright test suites to guarantee UI dependability is known as end to end

(E2E) testing.

• Deployment Pipelines: Upon successful builds, the frontend is automatically deployed

to S3/CloudFront and the backend is automatically deployed to EC2.

158

Figure 122 GitHub Actions Workflows

Overall, GitHub served as a complete project management platform in addition to a code

repository, enabling quality control, automation, and open project lifecycle documentation. It

was essential to sustaining a workflow for professional development because of its connection

with testing frameworks, security analysis tools, and CI/CD technologies.

7.3.2 Notion

For analysing the projects daily and weekly progress, Notion was a crucial tool. It was perfect for

monitoring development work, setting priorities, and keeping focus at every project phase

because of its adaptability and user-friendly design.

Used a weekly tracker to write out important goals and deliverables at the beginning of each

week. Could better prioritise activities and manage my time from looking back at the previous

weeks’ successes and deliverables.

Despite being the only developer on this project, being able to have the accountability and

structure of a larger team by using Notion. In a single workspace, it replicated agile

development techniques like sprint planning, progress monitoring, and retrospectives.

159

Figure 123 Notion Tasks

7.4 Reflection

7.4.1 Personal Overview

thinking back on this projects journey, I can state with confidence that it has been the most

ambitious and fulfilling software development experience I’ve worked on. I faced challenges in

every aspect of building PharmaLink, a full stack, security focused prescription management

system, from architectural design and technical problem solving to time management and

making decisions under pressure.

This project involved more than just developing code; it involved resolving practical issues in an

area where usability, security, and reliability are essential. I had to develop a security first

mentality while working with sensitive data, such as patient information and medications, and

consider carefully how to appropriately and correctly apply features like encryption, multifactor

authentication, and access restriction.

The importance of process and planning was one of the main lessons learned. I had to

approach development methodically because I had to oversee cloud infrastructure, CI/CD

pipelines, backend APIs, and a dynamic frontend. Utilising platforms such as GitHub Actions,

Synk, AWS, SonarCloud etc taught me how to work in a more polished, production ready

setting.

There were numerous frustrating times, such as bugs, failing pipelines, or deployment

problems. However, each challenge turned into a chance to gain new knowledge, whether it was

160

how to set up a reverse proxy server, write more scalable and effective code, or gain a deeper

understanding of Node.js internals.

7.4.2 Project Development

This project was developed in an adaptable and iterative manner. I was aware of the scope and

complexity of what I wanted to create from the beginning, but as development went on, I

realised how much organisation, preparation, and discipline are needed to create a secure full

stack application.

Flexibility was essential, but I started with clearly defined phases: planning, infrastructure

setup, backend first, then frontend. Features like security or testing occasionally took longer

than anticipated, and other times, design or user interface elements had to adapt in response to

backend modifications. I had to constantly make little decisions, such as whether to push

forward to fulfil a deadline or restructure code for maintainability. I learned from this how

crucial it is to strike a balance between engineering best practices and efficiency.

The way I included technologies like Socket.IO for real time communication, AWS services for

deployment, and MFA using OTPs was a significant highlight of the development phase. These

were not little features; they required testing, trial and error, and study, but in the end, they

improved the systems realism and professionalism.

In terms of technical growth, I learned far more than just writing APIs or React components. I

learned about encryption strategies, proper model relationships in MongoDB, advanced routing

with TanStack, Data fetching, and deployment workflows. Most importantly, I learned to think

end to end from architecture to user experience to long term maintenance.

7.4.3 Project Oversight and Supervisor Communication

PharmaLink succeeded because to good communication and oversight. Weekly one-on-one

meetings with my supervisor, John, kept momentum and priorities clear throughout

development.

Each meeting checked the project's direction to avoid feature creep and technical diversions.

John's problem-solving and critical thinking skills inspired me to think strategically about

doctors' and pharmacists' real-world use cases rather than just coding features. I was

challenged to consider whether each system design decision made sense from a user-centered

rather than technical or engineering standpoint throughout our discussions.

A shift in mindset greatly affected the project's outcome. I prioritized workflows and interactions

that fit with clinical practice, such as streamlining prescription creation for doctors and

restricting pharmacists to relevant prescriptions.

161

John also advised on database model structure and relationships. Early conversations revealed

where the initial data models needed improved normalization and where key interactions (such

as patients, prescriptions, and assigned pharmacists) needed strict enforcement to preserve

security and consistency. He encouraged solid database architecture from the start to avoid

problems in the future.

Consistent supervisor communication turned the project from a technical project to a

meaningful, real-world solution. The weekly 1:1 sessions meant that crucial decisions were

made intentionally with user needs in mind, improving system functionality and credibility.

7.4.4 Technical Skills

I learned a lot about frontend, backend, cloud infrastructure, and modern development

practices while developing PharmaLink.

On the frontend, I learned TanStack Router and TanStack Query for dynamic client-side routing

and advanced server-state caching. I also got stronger at form validation, API integration, and

developing clean, reusable components that worked well with the backend in React and

TypeScript.

Clean code was prioritized during implementation. Wrote improved modular, well-organized

code, followed single-responsibility principles, and made the project easier to scale and

maintain.

Acquired knowledge of EC2, S3, Route 53, and CloudFront to manage deployment, storage,

DNS, and global content delivery on the cloud and backend. Creating an AWS environment

helped me understand scalable infrastructure and production deployment procedures.

Growth also took place during testing. Vitest, Playwright, Jest, and Supertest showed me how to

build efficient unit tests, broad user flow tests, and backend API tests. Adding these testing

frameworks to the development cycle helped me create more reliable and production-ready

software.

Security principles were crucial to the project. MFA, RBAC, data encryption, and cookie-based

web application session security were my practical experiences. Investigated web sockets for

real-time features to improve pharmacist and doctor system interaction.

In development, set up CI/CD pipelines with GitHub Actions and used Husky, ESLint, Prettier,

and lint-staged to ensure consistent, high-quality code before merging changes.

Also, learned to parse XML into JSON for prescription data imports, improving my data

transformation and backend API integration skills.

162

This project helped me learn modern technologies, scalable system architecture, secure

authentication, and cloud deployment best practices, accelerating my full-stack development

experience.

7.4.5 Further Competencies and Professional Skills

PharmaLink taught me several professional skills beyond technical coding. Planning

development phases, prioritizing security and access control, and maintaining weekly progress

increased project management abilities. Splitting the project into milestones and reviewing

priorities during supervisor meetings kept it focused and prevented scope creep.

Regular reviews of system design decisions, including database modelling, role-based access

control, and real-world user workflows, improved critical thinking and problem-solving.

Enhanced the project's usability and relevancy by thinking strategically about how doctors and

pharmacists would use the system.

Multifactor authentication, cookie-based session management, and encrypted data processing

raised security awareness. Knowing that security is a need for every component of the system

changed how I approached backend, frontend, and deployment responsibilities.

Finally, PharmaLink deployed to AWS, setting up EC2, S3, Route 53, and CloudFront, and

developing a CI/CD pipeline with GitHub Actions improved my cloud infrastructure and DevOps

skills. Integrating code quality tools like Husky, ESLint, Prettier, and lint-staged helped maintain

professional development standards throughout the project.

7.5 Conclusion

PharmaLink's success depended on project management. During requirements and design,

careful planning created a path for development that met user needs and industry standards.

Supervisor meetings kept the project on track and encouraged realistic, user-centered decision

making throughout.

Continuous communication, planned milestones, and critical technical assessment lowered

risks, managed complexity, and maintained momentum. This approach enables the project to

adapt to new technical obstacles and possibilities without losing sight of key aims.

PharmaLink was feature complete, resilient, secure, and scalable due to project management

practices.

163

8 Conclusion

The PharmaLink project was difficult, gratifying, and transforming technically and

professionally. From the start of requirements gathering and planning, an organized, careful

approach was required to deliver a system that truly met doctors' and pharmacists' needs.

Deeply understanding user stories, workflows, and security needs shaped every design and

development decision.

The design process was essential also. Early design of system architecture, data models, and

user experience flows streamlined development and prevented severe architectural challenges.

Careful upfront design allowed role-based access control, multifactor authentication, and real-

time notifications to be implemented cleanly and uniformly throughout the program.

The plan emphasised problem-solving. Practical, critical thinking was needed to improve

database relationships, enforce security at every level, and modify frontend logic to fit real-

world user behaviors. Weekly communication with my supervisor, John Montayne, was key to

success. His strategic guidance and encouragement for including technical and real-world

considerations improved my decision-making and kept the project practical.

My technical skills improved across the stack. On the backend, I gained knowledge to design

secure APIs with Node.js and Express, manage sessions with secure cookies, and set up strong

authentication and authorization.

My React, TypeScript, TanStack Router, and TanStack Query skills improved, allowing me to

develop a modular, scalable, and dynamic user interface.

Deploying the system using AWS services like EC2, S3, Route 53, and CloudFront gave me

hands-on experience with cloud infrastructure, deployment pipelines, and production

environments, which will be significant in my career.

In the future, I would like to add a doctor-pharmacy query system. Pharmacists might easily

request prescription clarifications using the application, increasing communication, delays,

and patient safety.

Overall, I am satisfied with the final PharmaLink application. It delivers the key functionality

envisioned at the beginning of the project while prioritising security, usability, and scalability.

164

This project improved my coding, architectural thinking, security awareness, cloud deployment,

and professional communication, along with technical achievements.

165

References

• Assal, H., & Chiasson, S. (2018). Open access to the Proceedings of the Fourteenth

• Symposium on Usable Privacy and Security is sponsored by USENIX. Security in the

• Software Development Lifecycle Security in the Software Development Lifecycle.

• https://www.usenix.org/system/files/conference/soups2018/soups2018assal.pdf

• Balancing Code Quality and Security: A Practical Guide. (2024, August). Java Tech Blog.

• https://javanexus.com/blog/balancingcodequalitysecurityguide

• Franke, L., Liang, H., Farsanehpour, S., Brantly, A., Davis, J. C., & Brown, C. (2024). An

• Exploratory MixedMethods Study on General Data Protection Regulation (GDPR)

• Compliance in OpenSource Software. ArXiv.org. https://arxiv.org/abs/2406.14724

• Kantarcioglu, M., & Ferrari, E. (2019). Research Challenges at the Intersection of Big

• Data, Security and Privacy. Frontiers in Big Data, 2.

• https://doi.org/10.3389/fdata.2019.00001

• Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M. (2022). Systematic Literature Review on

• Security Risks and its Practices in Secure Software Development. IEEE Access, 10,

• 5456–5481. https://doi.org/10.1109/ACCESS.2022.3140181

• Md Abul Khair. SecurityCentric Software Development: Integrating Secure Coding

• Practices into the Software Development Lifecycle. Technology & Management Review,

• 2018, 3 (1), pp.1226. hal04565385

Koo, J., Kang, G., & Kim, Y.G. (2020). Security and Privacy in Big Data Life Cycle: A Survey

• and Open Challenges. Sustainability, 12(24), 10571. MDPI.

• https://doi.org/10.3390/su122410571

• Mastering Code Quality and Application Security: A Comprehensive Guide for

• Developers to Secure Coding Practices. (2024). Aptori.dev; Aptori.

• https://aptori.dev/guide/masteringcodequalityandapplicationsecurity

• Moscher, M. (2017). Continuous Compliance Testing. (Masters thesis). RWTH Aachen

• University, Aachen, Germany. https://swc.rwthaachen.de/theses/continuous

• compliancetesting/2017_Moscher_ContinuousComplianceTesting__FINAL.pdf

• NegriRibalta, C., Marius LombardPlatet, & Salinesi, C. (2024). Understanding the

• GDPR from a requirements engineering perspective a systematic mapping study on

• regulatory data protection requirements. Requirements Engineering.

• https://doi.org/10.1007/s00766024004234

https://www.usenix.org/system/files/conference/soups2018/soups2018-assal.pdf
https://javanexus.com/blog/balancing-code-quality-security-guide
https://arxiv.org/abs/2406.14724
https://doi.org/10.3389/fdata.2019.00001
https://doi.org/10.1109/ACCESS.2022.3140181
https://doi.org/10.3390/su122410571
https://aptori.dev/guide/mastering-code-quality-and-application-security
https://doi.org/10.1007/s00766-024-00423-4

166

• Potter, B., & McGraw, G. (2004). Software Security Testing. IEEE Security & Privacy, 2(5),

• 81–85. https://doi.org/10.1109/MSP.2004.84

• Securing CI/CD Pipeline: Automating the Detection of Misconfigurations and Integrating

Security Tools. (n.d.). Retrieved January 9, 2024, from

• https://norma.ncirl.ie/6529/1/muskanmangla.pdf

• Theurich, P., Witt, J., & Richter, S. (2023). Practices and Challenges of Threat Modelling in

Agile Environments. Informatik Spektrum, 46(4), 220–229.

• https://doi.org/10.1007/s00287023015495

• ValdésRodrígues, Y., HochstetterDies, J., DíasArancibia, J., & CadenaMartínes, R.

• (2023). Towards the Integration of Security Practices in Agile Software Development: A

• Systematic Mapping Review. Applied Sciences, 13(7), 4578.

• https://doi.org/10.3390/app13074578

• View of SecurityFirst Approaches to CI/CD in CloudComputing Platforms: Enhancing

• DevSecOps Practices. (2024). Sydneyacademics.com.

• https://sydneyacademics.com/index.php/ajmlra/article/view/131/126

• GeeksforGeeks. (2023, November 24). Use Case Diagram. GeeksforGeeks.

https://www.geeksforgeeks.org/usecasediagram/

• Altexsoft. (2023, November 30). Functional and Nonfunctional Requirements:

Specification an. AltexSoft.

https://www.altexsoft.com/blog/functionalandnonfunctionalrequirementsspecification

andtypes/

• Gupta, R. (2024, February 23). Software Architecture Patterns: What Are the Types and

Which Is the Best One for Your Project. Www.turing.com.

https://www.turing.com/blog/softwarearchitecturepatternstypes

• Sommerville, I. (2015). Software Engineering (10th ed.). Pearson. Discusses the role of

requirements engineering in successful software development and project

management.

• Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles, and Techniques.

Springer. Provides an indepth understanding of the requirements gathering process,

including elicitation, validation, and management.

• Wiegers, K. E., & Beatty, J. (2013). Software Requirements (3rd ed.). Microsoft Press.

Covers best practices for gathering and managing software requirements in different

project environments.

https://doi.org/10.1109/MSP.2004.84
https://norma.ncirl.ie/6529/1/muskanmangla.pdf
https://doi.org/10.1007/s00287-023-01549-5
https://doi.org/10.3390/app13074578
https://sydneyacademics.com/index.php/ajmlra/article/view/131/126
https://www.geeksforgeeks.org/use-case-diagram/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.turing.com/blog/software-architecture-patterns-types

167

• Chu, M. (2023, December 1). Why Personas are Important in Software Development.

Techblocks.

https://tblocks.com/articles/whypersonasareimportantinsoftwaredevelopment/

• geeksforgeeks. (2017). Software Design Patterns GeeksforGeeks. GeeksforGeeks.

https://www.geeksforgeeks.org/softwaredesignpatterns/

• Amason Web Services. (n.d.). What is RESTful API? RESTful API Beginners Guide AWS.

Amason Web Services, Inc. https://aws.amason.com/whatis/restfulapi/

• GeeksforGeeks. (2017, October 27). Unified Modeling Language (UML) | Sequence

Diagrams. GeeksforGeeks.

https://www.geeksforgeeks.org/unifiedmodelinglanguageumlsequencediagrams/

• Flowcharts in Programming Applications & Best Practices. (n.d.).

Www.senflowchart.com.

https://www.senflowchart.com/guides/flowchartsinprogramming

• https://medium.com/@amanuelabraham0202/flowchartsforprogrammers2aff6a6d8f63

• LucidChart. (2024). What is an Entity Relationship Diagram (ERD)? Lucidchart.

https://www.lucidchart.com/pages/erdiagrams

• Amason Web Services. (2023a). Lambda@Edge – Run your code closer to your users.

Retrieved from https://docs.aws.amason.com/lambda/latest/dg/lambdaedge.html

• Amason Web Services. (2023b). Using Lambda@Edge to add HTTP security headers.

Retrieved from:

https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityhead

ersusinglambdaedgeandcloudfront/

• MDN Web Docs. (2023). Content Security Policy (CSP). Retrieved from

https://developer.mosilla.org/enUS/docs/Web/HTTP/CSP

• Mosilla Developer Network. (2023). XFrameOptions. Retrieved from

https://developer.mosilla.org/enUS/docs/Web/HTTP/Headers/XFrameOptions

• OWASP. (2021). HTTP Headers – A guide to securing your web application. Retrieved

from https://owasp.org/wwwprojectsecureheaders/

• Sommerville, I. (2016). Software engineering (10th ed.). Harlow, England: Pearson

Education.

• GeeksforGeeks. (2023). UML Sequence Diagram. Retrieved from

https://www.geeksforgeeks.org/umlsequencediagram/

• Lucidchart. (2023). What is a flowchart? Process flow diagram explained. Retrieved from

https://www.lucidchart.com/pages/whatisaflowchart

https://tblocks.com/articles/why-personas-are-important-in-software-development/
https://www.geeksforgeeks.org/software-design-patterns/
https://aws.amazon.com/what-is/restful-api/
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams/
https://www.zenflowchart.com/guides/flowcharts-in-programming
https://medium.com/@amanuelabraham0202/flowcharts-for-programmers-2aff6a6d8f63
https://www.lucidchart.com/pages/er-diagrams
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityheadersusinglambdaedgeandcloudfront/
https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityheadersusinglambdaedgeandcloudfront/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://owasp.org/www-project-secure-headers/
https://www.geeksforgeeks.org/uml-sequence-diagram/
https://www.lucidchart.com/pages/what-is-a-flowchart

168

• Amason Web Services. (2023). What is Amason EC2? Retrieved from

https://aws.amason.com/ec2/

• Amason Web Services. (2023). Elastic Load Balancing features. Retrieved from

https://aws.amason.com/elasticloadbalancing/features/

• Amason Web Services. (2023). Amason Route 53 – Scalable Domain Name System.

Retrieved from https://aws.amason.com/route53/

• Amason Web Services. (2023). AWS Certificate Manager. Retrieved from

https://aws.amason.com/certificatemanager/

• Amason Web Services. (2023). Amason S3: Object storage built to retrieve any amount

of data. Retrieved from https://aws.amason.com/s3/

• Amason Web Services. (2023). What is Amason CloudFront? Retrieved from

https://aws.amason.com/cloudfront/

• Amason Web Services. (2023). AWS WAF – Web Application Firewall. Retrieved from

https://aws.amason.com/waf/

• Amason Web Services. (2023). Using Lambda@Edge to add HTTP security headers.

Retrieved from

https://aws.amason.com/blogs/networkingandcontentdelivery/addinghttpsecurityhead

ersusinglambdaedgeandcloudfront/

• Fowler, M. (2006). Continuous Integration. Retrieved from

https://martinfowler.com/articles/continuousIntegration.html

• GitHub Docs. (2024). Understanding GitHub Actions. Retrieved from

https://docs.github.com/en/actions/learngithubactions/understandinggithubactions

• Snyk. (2023). Find and fix vulnerabilities in open source dependencies. Retrieved from

https://snyk.io/

• SonarSource. (2023). SonarCloud documentation. Retrieved from

https://docs.sonarcloud.io/

• GitHub Docs. (2024). GitHub Actions – Security automation. Retrieved from

https://docs.github.com/en/actions/securityguides/securityhardeningforgithubactions

• ESLint. (2024). Find and fix problems in your JavaScript code. Retrieved from

https://eslint.org/

• Playwright. (2024). Playwright for endtoend testing. Retrieved from

https://playwright.dev/

• Microsoft. (2024). Playwright Testing Framework Overview. Retrieved from

https://playwright.dev/

https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticloadbalancing/features/
https://aws.amazon.com/route53/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/waf/
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-cloudfront/
https://aws.amazon.com/blogs/networking-and-content-delivery/adding-http-security-headers-using-lambdaedge-and-cloudfront/
https://martinfowler.com/articles/continuousIntegration.html
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://snyk.io/
https://docs.sonarcloud.io/
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions
https://eslint.org/
https://playwright.dev/
https://playwright.dev/

169

• Vitest. (2024). A blasing fast unit test framework powered by Vite. Retrieved from

https://vitest.dev/

• Vite. (2024). Vite – Next Generation Frontend Tooling. Retrieved from https://vitejs.dev/

• Human Medicines Authorised Products Latest list of Authorised or Transfer Pending

Products data.gov.ie. (2018). Data.gov.ie.

https://data.gov.ie/dataset/medicinesauthorisedortransferpendingproducts/resource/6

987c2af0c4048da820776b5da141266

• National Institute of Standards and Technology. (2001). Announcing the Advanced

Encryption Standard (AES) (FIPS PUB 197). U.S. Department of Commerce. Retrieved

from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

• Socket.io. (n.d.). Socket.IO Documentation. Retrieved from https://socket.io/docs

• Nodemailer. (n.d.). Nodemailer – Easy as cake email sending from Node.js. Retrieved

from https://nodemailer.com

• Health Products Regulatory Authority. (2024). Medicines: authorised or transfer pending

products [XML dataset]. Retrieved from

https://data.gov.ie/dataset/medicinesauthorisedortransferpendingproducts

• Harley, A. (2015, February 16). Personas Make Users Memorable for Product Team

Members. Nielsen Norman Group. https://www.nngroup.com/articles/persona/

• BrowserStack. (2023). Frontend Testing: What is it & How to Perform it? Retrieved from

https://www.browserstack.com/guide/frontend-testing

• Microsoft Learn. (2023). End-to-end testing overview. https://learn.microsoft.com/en-

us/azure/devops/pipelines/test/end-to-end-testing

• Testing Library. (2024). What is unit testing? Retrieved from https://testing-

library.com/docs/guiding-principles/

https://vitest.dev/
https://vitejs.dev/
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products/resource/6987c2af-0c40-48da-8207-76b5da141266
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products/resource/6987c2af-0c40-48da-8207-76b5da141266
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://socket.io/docs
https://nodemailer.com/
https://data.gov.ie/dataset/medicines-authorised-or-transfer-pending-products
https://www.nngroup.com/articles/persona/
https://www.browserstack.com/guide/frontend-testing
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/end-to-end-testing
https://learn.microsoft.com/en-us/azure/devops/pipelines/test/end-to-end-testing
https://testing-library.com/docs/guiding-principles/
https://testing-library.com/docs/guiding-principles/

