

Simplifying Employee

Scheduling Through

Automation

ROSTERREADY
KACPER AGATOWSKI

2025

1

Author: Kacper Agatowski

Student Number: N00212272

Supervisor: John Montayne

Second Reader: Mohammed Cherbatji

Date: 30/04/2025

Frontend Code: https://github.com/KacperA02/rosterready1

Backend Code: https://github.com/KacperA02/RosterReadyBackend

Year 4 2024/25

DL836 BSc (Hons) in Creative Computing

https://github.com/KacperA02/rosterready1
https://github.com/KacperA02/RosterReadyBackend

2

Abstract

The aim of this project was to construct an application which addressed the challenges around

complex scheduling, especially in sectors with high staff turnovers and many part time

workers. Scheduling employees is essential in nearly every industry, which can become

frustrating or time consuming for the employer. An application which automates their

schedules can solve issues around complex scheduling and save time for employers.

The system was developed using a full-stack architecture, incorporating a SQL database, a

FastAPI backend, and React.js frontend. The core functionality resided in the backend which

integrated a constraint satisfaction problem (CSP) solver, which inherited search algorithm

techniques and accepted constraints such as availability of employees. Using the business

data provided it would find a solution by assigning employees to shifts without violating any

rules.

The CSP became challenging when dealing with a lot of variables such as shifts and

employees. Optimisation techniques were introduced to overcome these challenges, reducing

computational time and offering an optimal solution to the employer. Additionally, if the

solution did not satisfy the employer’s needs, the employer could regenerate the solution with

certain assignments locked to match their ideal schedule.

The final application resulted in an efficient, scalable and reliable scheduling system capable

of generating optimal scheduling solutions within seconds, offering a solution to the process

complex scheduling.

3

Acknowledgements

Firstly, I would like to give a big thank you to my supervisor John Montayne for guiding me

through this project. Mr Montayne kept me motivated and positive during the weekly

meetings and was very quick at responding to urgent questions I had with the project. Mr

Montayne also pushed me outside my comfort zone, to try implement features that I thought

were out of my scope. John Montayne believed I can learn more, which became an asset in

gaining more experience in software development.

Secondly, I would like to thank all the lecturers which taught me all the valuable code needed

for creating this project. Two lectures specifically, Tim McNicholas and John Dempsey for

introducing me to python and the fundamentals of the language. I would also like to give a

big thank you to Mohammed Cherbatji for the advanced JavaScript tutorials and lectures,

which he provided throughout the course. Mr. Cherbatji’s teachings led me to become

proficient in JavaScript and frameworks such as React.

4

The incorporation of material without formal and proper acknowledgement (even

with no deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you

should document this in your submitted work and if you have any doubt as to what

level of discussion/collaboration is acceptable, you should consult your lecturer or the

Course Director.

WARNING: Take care when discarding program listings lest they be copied by

someone else, which may well bring you under suspicion. Do not to leave copies of

your own files on a hard disk where they can be accessed by other. Be aware that

removable media, used to transfer work, may also be removed and/or copied by others

if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute

discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute.

Please refer to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course

handbook. Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual

assessment. This would include jointly developed solutions as well as one individual

giving a solution to another who then makes some changes and hands it up as their own

work.

Failure to complete and submit this form may lead to an investigation into your work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is

my own work.

Student : Kacper Agatowski

Signed

5

Table of Contents

1 Introduction ... 11

2 Research .. 12

2.1 Introduction to Research .. 12

2.2 Search Algorithms ... 12

2.2.1 Introduction to Search Algorithms ... 12

2.2.2 Types Of Search Algorithms .. 13

2.3 Constraint Satisfaction Problem Solving (CSPs) .. 19

2.3.1 Introduction to CSPs .. 19

2.3.2 Solving ... 20

2.4 Solving Scheduling challenges with SA and CSP’s .. 24

2.4.1 Understanding Scheduling Problems ... 24

2.4.2 Combinatorial nature of scheduling challenges ... 25

2.4.3 The correct search algorithm for CSP in scheduling .. 26

2.5 Conclusion on research .. 27

3 Requirements .. 28

3.1 Introduction ... 28

3.2 Requirements gathering ... 28

3.2.1 Similar applications .. 29

3.2.2 Survey .. 47

3.2.3 Interviews ... 56

6

3.3 Requirements modelling .. 59

3.3.1 Personas .. 59

3.3.2 User Requirements ... 61

3.3.3 Technical Requirements ... 63

3.3.4 Functional Requirements .. 68

3.3.5 Non-Functional Requirements ... 71

3.3.6 Use Cases ... 71

3.4 Feasibility .. 75

3.4.1 Technical Feasibility .. 75

3.4.2 Operational Feasibility ... 76

3.4.3 Project Management Feasibility ... 76

3.4.4 Economic Feasibility .. 77

3.5 Conclusion ... 77

4 Design ... 79

4.1 Introduction ... 79

4.2 Program Design ... 79

4.2.1 Technologies .. 79

4.2.2 The Structures of the Backend and Frontend ... 80

4.2.3 Design Patterns ... 85

4.2.4 Application architecture Diagram .. 85

4.2.5 Database design .. 86

7

4.2.6 Process design .. 90

4.3 User interface design ... 94

4.3.1 Wireframe .. 94

4.3.2 User Flow Diagram .. 98

4.3.3 Style guide .. 102

4.4 Conclusion ... 103

5 Implementation ... 104

5.1 Introduction ... 104

5.2 Development environment .. 104

5.3 Database .. 105

5.4 Backend ... 106

5.4.1 Overview .. 106

5.4.2 Virtual Environment Setup and Dependency Management 106

5.4.3 Database Configuration .. 107

5.4.4 Database Models and Relationships ... 109

5.4.5 CRUD Operations and Business Logic .. 110

5.4.6 Routes and API Endpoints ... 113

5.4.7 Schema Design with Pydantic .. 116

5.4.8 Association tables and Many-to-Many Relationships 117

5.4.9 Enums Handling for Status .. 120

5.4.10 Authentication and Access Control .. 121

8

5.4.11 WebSocket’s ... 128

5.4.12 Testing and Debugging .. 131

5.5 Constraint Satisfaction Problem Solver ... 134

5.5.1 Overview .. 134

5.5.2 CRUD ... 134

5.5.3 Route .. 136

5.5.4 Solver ... 139

5.5.5 Regeneration Solver ... 147

5.5.6 Storage and Retrieval ... 1

5.6 Frontend ... 6

5.6.1 Overview .. 6

5.6.2 Backend Connection .. 6

5.6.3 Forms ... 7

5.6.4 Contexts .. 9

5.6.5 Hooks ... 14

5.6.6 Views and Routing ... 16

5.6.7 Calendar ... 18

5.6.8 Types .. 22

5.6.9 Design .. 23

5.7 Conclusion ... 25

6 Testing .. 26

9

6.1 Introduction ... 26

6.2 Functional Testing ... 26

6.2.1 Validation of Middleware’s .. 26

6.2.2 CSP Functional Tests ... 28

6.2.3 Discussion of Results ... 30

6.3 User Testing ... 31

6.3.1 Employer Role ... 31

6.3.2 Employee Role ... 33

6.3.3 Discussion of Results ... 33

6.4 Conclusion ... 34

7 Project Management ... 35

7.1 Introduction ... 35

7.2 Project Phases .. 35

7.2.1 Proposal .. 35

7.2.2 Requirements .. 35

7.2.3 Design .. 36

7.2.4 Implementation ... 36

7.2.5 Testing .. 37

7.3 Scrum Methodology .. 37

7.4 Project Management Tools .. 38

7.4.1 GitHub .. 38

10

7.4.2 Miro .. 38

7.4.3 Figma ... 40

7.5 Reflection .. 41

7.5.1 My views of the project .. 41

7.5.2 Working with a supervisor ... 41

7.5.3 Technical skills ... 41

7.5.4 What was missed .. 42

8 Conclusion .. 43

References .. 44

11

1 Introduction

Employers often struggle to create a conflict-free employee schedule for their business. The

project aims to simplify scheduling by generating schedules using an optimised Constraint

Satisfaction Problem (CSP) solver based on employer and employee needs. The project

consists of creating a full stack application to handle this scheduling process, which utilises

MySQL, FastAPI, and React as its technical stack.

The project requires thorough management due to its complexity, therefore, scrum

methodology is applied to divide the project phases into iterative sprints. The research phase

involves the investigation of search algorithms and CSPs to support the proposed scheduling

solution. The requirements section includes gathering data through surveys, interviews and

competitor analysis to model the functional and non-functional requirements. The design

phase contains the program design and user interface design, providing a structured base for

further development. The implementation phase translates the design and requirements into

working code, which is organised according to the technical stack. Finally, the testing phase

evaluates the functionality and user experience through a series of tests to ensure reliability

and usability.

12

2 Research

2.1 Introduction to Research

Scheduling in various industries is a complex and essential task. Efficiently assigning

variables to values without breaking constraints is crucial for finding successful scheduling.

However, challenges may arise if the problem itself is complex.

The following sections explore search algorithms and constraint satisfaction problems solving

(CSPs) to give an understanding of computational techniques and how they can be used to

tackle certain scheduling aspects. By combining search algorithms within the CSP

framework, allows to efficiently navigate through the search space and find a solution.

The approach of understanding search algorithms and CSPs becomes very powerful when

tackling scheduling challenges. Allowing for different approaches, depending on the

scheduling problem that needs to be tackled.

2.2 Search Algorithms

2.2.1 Introduction to Search Algorithms

Search Algorithms (SA) are a type of algorithm used within Artificial Intelligence (AI) to

find the best or most optimal solution by exploring the state space provided from the

problem. A search problem consists of a state space, successor function, start state, goal state

and a solution (Webcast Departmental, 2018, August 28). The algorithm begins its search at

the start state, it has a set of possible states known has the state space. A successor function is

created to generate the next state from the current state (Webcast Departmental, 2018, August

28), using this function the goal state can be found by checking each current state with the

goal state. The solution is the sequence of actions it took from the start state to the goal state;

this is also known as a plan (GeeksforGeeks, n.d).

For example, the puzzle ‘Sudoku’ has the search problem of filling the entire 9x9 grid with

numbers such that each row, column, and box contains only one of the nine numbers. The

state space would be a set of possible configurations of the grid. The start state includes the

configurations of the cells that are already filled within the grid. The successor function

13

generates new states by assigning a number to an empty cell which doesn’t break any of the

search problem rules. The goal state is to have a fully filled grid which satisfies the search

problem. The solution or plan is the actions or steps it costs to complete this puzzle.

2.2.2 Types Of Search Algorithms

SA’s within AI will be categorised into two main types: Uninformed and Informed. Each of

these categories play a significant role in solving the search problem addressed. Choosing a

type of category is important to connect it with the type of problem trying to be solved. In the

following section, the two categories will be discussed in detail, including how they work and

examples of the types.

Common Components of Uninformed and Informed SA

To understand uninformed and informed search, the common components must be first

addressed. Each algorithm will contain a problem graph, which contains the start node (S)

and a goal node (G). A node represents a single state. A solution plan is the sequence of

nodes from S to G. (GeeksforGeeks, n.d.). A strategy, is how the problem graph will be

approached to get to G. A fringe is a set of leaf nodes waiting to be expanded. (Webcast

Departmental, 2018, August 28) A search tree is then created, which shows the generated

path the nodes took. An optimal solution is the solution with the lowest cost among other

solutions within the problem graph. The path cost would generate an integer for each state;

however, some algorithms would have different ways of calculating this cost. (Javatpoint.

n.d.)

2.2.2.1 Uninformed Search

Uninformed Search explores the state space without any guidance towards the goal state. This

type of search is also known as a blind search as it explores all possible states (Pathak, Patel,

& Rami, 2018). It is inefficient in search problems which have a large state space. It falls

under several different ways of searching techniques, Depth First Search (DFS), Breadth First

Search (BFS), and Uniform Cost Search (UCS).

Depth First Search (DFS)

14

This algorithm begins at the root node (S), DFS strategy is to explore the depth of the search

tree first by following a single branch. The fringe within DFS is that any node that is

expanded last is called upon first, meaning that DFS prioritises deep exploration. (Webcast

Departmental, 2018, August 28). In relation to Figure 1, The first solution plan is the one on

the left (A-B-C-G), at each node it would check if the G node was found. However, if the G

node was not found on the left it would use the fringe to then backtrack to the next node in

the stack and continue to do so until the G node is reached.

In relation to Figure 1, A human can see that the fastest route would be (S-D-G). DFS would

not be the best option when the search space is deep and has many nodes as it would be very

time consuming. It would be able to complete or find the solution, but it might not be the

most optimal solution. (GeeksforGeeks, n.d.).

Figure 1, Diagram of Depth First Search (Source: GeeksforGeeks, (n.d))

Breadth First Search (BFS)

BFS begins at the root node (S), BFS strategy takes the shallowest layer first within the

search tree. The fringe within BFS is that it holds all the nodes that have been discovered but

not explored yet, it would queue the fringe in terms of first in, first out (FIFO). (Pathak, Patel,

& Rami, 2018). This would mean the search graph checks each layer before proceeding to

deeper layers. In relation to Figure 2, the most optimal solution would be (S-B-G). However,

15

as ‘A’ is the shallowest it put this node in the queue first and places ‘B’ in the queue after.

Once ‘A’ is explored, ‘D’ then ‘C’ is placed in the queue, which then the strategy backtracks

to ‘B’, due to the FIFO fringe. BFS would have explored all these nodes (S-A-B-D-C-G)

before finding the G node.

In relation to Figure 2, BFS could find the optimal solution but would take more time as it

would have to go layer by layer. However, if the goal node was ‘K’ and optimality was not

the shortest path but the cost of path then BFS would not be seen as optimal. (Webcast

Departmental, 2018, August 28).

Figure 2, Diagram of Breadth First Search (Source: Javatpoint (n.d))

Uniform Cost Search (UCS)

UCS inherits the same strategy as BFS, however in USC instead of finding the shallowest

path, it uses a least cost first strategy (LCF). (Webcast Departmental, 2018, August 28). The

fringe within UCS would be a queue of discovered nodes while prioritising the lowest costing

nodes. The main goal of the UCS is to find a path which has the least cumulative sum of the

cost explored. (GeeksforGeeks, n.d.). In relation to Figure 3, the initial node is ‘A’, and the

goal node is ‘G’. ‘A’ discovered ‘C’ and ‘B’, but the strategy and fringe prioritised the ‘B’

node as it cost less than ‘C’.

16

In relation to Figure 3, The UCS does find the most optimal solution however, a more

complex graph which holds negative cost would explore in every direction as it still has no

information about the goal state. However, UCS is still better than BFS and DFS in terms of

its optimality and completeness under time consumption.

Figure 3, Diagram of Uniform Cost Search (Source: GeeksforGeeks (n.d))

2.2.2.2 Informed Search

An informed search algorithm has information about the goal state, which helps it be more

efficient when searching. These algorithms use a heuristic, which is a function to estimate

how close the current state is from the goal state. (Webcast Departmental, 2018, August 30).

A different heuristic would be used within different informed search algorithm (SA). The

solutions that come back are more optimal than the solutions from uninformed SA. A* search

and Greedy search are two types of informed SA which will be discussed.

Greedy Search

17

In greedy search, the algorithm expands the closest node to the goal node based on the

heuristic function h(n) (GeeksforGeeks, n.d.). The heuristic in greedy search is measured by

how close the distance is from the goal and priorities nodes with the smallest heuristic value,

which is determined by the distance from the goal, also known as Manhattan distance

(Webcast Departmental, 2018, August 30)

In relation to Figure 4, the initial node is ‘S’, and the goal node is ‘G’. From the start the

algorithm has a choice to make between h(A)= 9 and h(D)=5. The algorithm would choose

‘D’ as it cost function is lower than both its current and ‘A’. The solution plan would be (S-

D-B-E-G) and the path cost would be 19, however the algorithm is solely focusing on the

next h(n) and ignores the total cost of the path. Relating to Figure 4, the algorithm might have

found the goal, but it wasn’t the most cost-effective path in total, showing that prioritises

speed for optimality.

Figure 4, Diagram of Greedy Search (Source: GeeksforGeeks (n.d))

A* Search

A* search combines both UCS and Greedy algorithms, orders by the sum of forward cost and

backward cost. In a formula it would look like this: f(n) = g(n) + h(n). (Webcast

Departmental, 2018, August 30). This algorithm would combine both the path cost from UCS

g(n) and the goal distance from greedy h(n). The A* search guarantees optimality if h(n) is

18

admissible, which is done if the heuristic never overestimates the true cost of reaching the G

node from any node. (Webcast Departmental, 2018, August 30). This formula looks like this

h(n) ≤ h*(n), this would mean the heuristic is optimistic as it would never ignore a better

potential path. However, if the search problem is large and the heuristic is admissible, it could

lead to memory issues as all nodes are explored.

In relation to Figure 5, the initial node is ‘S’, and the goal node is ‘G’. Adding the heuristic as

the strategy, it leaves the solution plan to be (S-B-F-G). At the first node it checks g(B=4) +

h(B=2) output is larger than g(A=3) + h(A=12). The algorithm would prioritise B and

proceed to then check if the values are less than or equal to the current value, which is the

admissibility in the heuristic, g(B=4) + h(B=2) ≤ g(E=4) + h(E=2) | g(F=4) + h(F=2).

Figure 5, Diagram of A* Search (Source: Goseeko (n.d))

Efficiency

The efficiency of an algorithm solely depends on the search problem. In the case of

scheduling, the challenge of exploring a wide range of state spaces and dealing with rules or

19

constraints assigned by the schedule such as availability, shifts and other scheduling related

rules. As there are rules or constraints the scheduling search problem becomes more of an

informed search rather than an uninformed search.

Creating heuristics which match the scheduling problem would increase efficiency, while

also using techniques or fringes from uninformed search can benefit the accuracy of the

scheduling search problem. This could be managed with a structured framework like

Constraint Satisfaction Problem Solving (CSPs) to define these constraints and implement

both informed and uninformed search techniques.

2.3 Constraint Satisfaction Problem Solving (CSPs)

2.3.1 Introduction to CSPs

Constraint satisfaction problems solving (CSPs) are unlike search algorithms (SA) but inherit

some of their techniques. In SA the goal state can be any function within the state, however

in CSPs there is structure which defines a set of variables, domains and constraints. (Webcast

Departmental, 2018, September 4). The goal state for CSPs isn’t a single state but it’s

completing the problem by assigning the domains to variables without breaking the

constraints provided, which is also known as a solution. (Barták, Salido, & Rossi, 2010).

Variables and Domains

Variables are the entities within the problem that need to be assigned values. (Webcast

Departmental, 2018, September 4). In terms of scheduling, they can be, time slots, tasks or

employees. Each variable would be assigned a singular domain. There are two types of

variables, discrete and continuous. (Webcast Departmental, 2018, September 4). Discrete

variables can be assigned to finite or infinite domains. Continuous variables can take any

domain within a continuous range.

Domains are a set of possible values for a variable. (Barták, Salido, & Rossi, 2010). In the

case of scheduling, they can be shift times. Domains can be set as any type of value, these

include finite values such as days of the week, and infinite values such as all positive

integers, to store how many minutes the employee worked.

Constraints

20

Constraints are a set of rules given to the variables that cannot be broken. If a variable is

assigned a domain and doesn’t break any constraint it is known as partial instantiation.

(Barták, Salido, & Rossi, 2010) If all the variables are assigned domains that don’t break any

of the constraints indicates that a solution was found, and instantiation is completed. As

discussed in Webcast Departmental, 2018, September 4, there are a variety of constraints

which are broken down into three categories, unary, binary and higher-order constraints.

Unary constraints involve a single variable. In terms of scheduling this could be, ‘employee1’

cannot work ‘Tuesday middle shift’. Indicating that the variable ‘employee1’ cannot be

assigned the domain of ‘Tuesday middle shift’. Binary constraints involve two variables, this

could be that two shifts (variables) cannot overlap each other. Higher order constraints

involve more than two variables, this could involve three different employees (variables)

cannot work together on the same shift (domain).

As constraints are rules created not to be broken. Creating constraints which can be broken

are called soft constraints. (Webcast Departmental, 2018, September 4). In the case of

scheduling, an employee would prefer to have the weekend off. This constraint could be

broken if no solution was found with this constraint fixed. Limiting the number of constraints

is important as if there are too many constraints that cannot be broken also known as hard

constraints, there might not be a solution for the problem.

2.3.2 Solving

Once the variables, domains and constraints are set in the CSP, selecting the right solving

strategy depends on the problem that is being solved. Solving CSPs is done by assigning

values to variables (instantiating them) which doesn’t break constraints. Integrating various

methods and techniques would improve and reduce the search space within the CSP. The

steps involved in solving a CSP will be discussed to understand how to ensure correct

solutions.

2.3.2.1 Backtracking Search

Search is the main algorithmic technique for solving CSPs (Rossi, 2008). Search algorithm

for a CSP can be either complete or incomplete. Complete search algorithm comes with a

guaranteed solution and possible optimal solutions. An incomplete search algorithm would

21

indicate the problem does not have a solution. An algorithm which is seen as complete is

backtracking search.

Backtracking search method also known as chronological backtracking is the backbone of

CSPs (Barták, Salido, & Rossi, 2010). It explores the search space and assigns a value from

the domain to a variable at each state space then checks if a constraint was broken or not. If a

constraint was not broken the search would continue just like Depth-First search and continue

assigning values to variables. If a constraint was broken the algorithm would backtrack to the

previous state space and assign a new value to the variable.

2.3.2.2 Constraint Propagation

Constraint propagation is a key technique within CSPs to reduce the search space by

enforcing consistency between variables in a constraint network. As discussed by Bessiere

(2006), the goal of constraint propagation is to remove any pairs (domains and variables) to

reduce the number of possibilities which are invalid as they would break a constraint in future

states. Techniques such as forward checking, path consistency, and arc consistency are used

depending on the structure and constraint category with the search problem.

Forward Checking

Forward checking is one of the most common techniques used within constraint propagation.

(Barták, Salido, & Rossi, 2010). Forward checking keeps track of domains, once an

assignment is made this technique filters the possible domains for future assignments. It

would filter out the domain that was previously assigned from other neighbours (Webcast

Departmental, 2018, September 4). A neighbour variable refers to a variable which is directly

connected to another variable through a constraint. If the filtered domain list becomes empty,

it would indicate that the assignment was not valid, and the backtracking method would

begin.

Arc Consistency

Arc consistency would generally be enforced during forward checking. Instead of the just

checking the neighbours of the variable like forward checking, it checks all variables at a

global level. An arc is consistent if there is still at least one domain present in all variables

(Barták, Salido, & Rossi, 2010). It does this by checking the pair of variables bidirectionally,

22

checking that X (head) and Y (tail) for every value in the domain of X, there is still value in

the Y that doesn’t break a constraint (Webcast Departmental, 2018, September 4). This

technique can be used during the search process just like forward checking or be used as a

preprocessing technique. This technique works the same as A* search, as it checks all nodes

before the search and reduces the search space.

Path Consistency

Path consistency is like arc consistency but works with higher order constraints rather than

binary constraints. It checks for a set of three variables, the values in their domains don’t

break any constraints between them all. (Barták, Salido, & Rossi, 2010) For example, if there

are three variables X, Y and Z with constraints between each pair. Path consistency checks if

at least one value within all three domains still exists. It would remove any values that don’t

satisfy the constraints on the variables.

2.3.2.3 Heuristics Approaches

Heuristics are methods used to order variables or values to minimize backtracking while

making more informed choices about which variables to assign and which values to consider.

Heuristics would prioritize certain decisions that are likely to lead to a faster solution

(Webcast Departmental, 2018, September 4). They would be applied after a constraint

propagation technique is applied. Heuristics are applied to two different areas, variable

selection and value selection.

Variable Selection

Variable selection determines the order in which variables are chosen for the next

assignment. Minimum remaining values (MRV) chooses the variable with the fewest legal

values left in that variable’s domain (Webcast Departmental, 2018, September 4). Choosing

the most constrained variables first, reduces the depth in the search tree. This approach would

reduce the risk of hitting a dead-end, variable with no values in the domain (Van Beek,

2006). Hitting a dead end would lead to backtracking but this approach deals with the harder

variables to assign first.

Value Selection

23

Value selection determines the order in which values to assign to a chosen variable (Webcast

Departmental, 2018, September 4). Least constraining value (LCV) chooses the values that

have the least amount of effect on the remaining variables. By choosing LCV, it leaves

maximum flexibility for future assignments and reduces the risk of hitting a dead end (Van

Beek, 2006).

2.3.2.4 Local Search Techniques

Local Search Techniques involve a different approach to backtracking. Local Search would

complete the entire state space without looking at any constraints (Webcast Departmental,

2018, September 6). Once the state space is completed, some of the states may not be

breaking any constraints and they would be left alone. The variables which are breaking

would be assigned new values to not break any constraints, essentially working backwards.

However, this approach could run endlessly if no solution is available. There are many

different local search algorithms with different heuristic approaches which are available but

would depend on the problem itself.

Hill Climbing

Hill climbing is a type of local search algorithm, which improves your solution by choosing

the best neighbour value (Webcast Departmental, 2018, September 6). Using an evaluation

function of keeping track of the number of constraints and solving and decreasing till a

solution is found. A common problem in local search algorithms is that a solution could be

found but it might not be the most optimal solution. Using a technique such as random

restarts could help find a more optimal solution. Random restart strategies create multiple

search solutions starting from a different value or variable (Van Beek, 2006). This would find

more solutions and compare solutions to find the most optimal one.

Iterative Search

Iterative search in relation to local search would allow to make small adjustments to a

solution to change the solution to possibly find a more optimal solution. Users being able to

lock a specific assignment which then changes the neighbours in relation to the change, so no

constraints are broken.

24

2.4 Solving Scheduling challenges with SA and CSP’s

Scheduling employees to shifts can be challenging, especially if the problem itself is complex

or involves an imbalance between variables and constraints. Understanding the scheduling

problems and the computational difficulties posed by their combinatorial structure allows to

make a hypothesis about which search algorithm would be most suitable for tackling these

challenges within a CSP framework.

2.4.1 Understanding Scheduling Problems

Scheduling problems come in many different scopes or sizes and as they increase so does the

complexity of the problem. Scheduling problems would consist of a set or multiple sets of

variables, domains and constraints. For example, a set of variables would consist of

employees, and possibly departments, roles, tasks and any other the depending on the

industry. Domains would hold the shift times for each day. A single variable or multiple

variables from one set would be assigned to a domain or multiple domains depending on the

problem itself. A constraint would consist of hard and soft constraints. Hard constraints

would be legal labour laws, employee availability, the number of variables assigned to each

domain, and due dates (Fox, 1990). A soft constraint would consist of shift preferences. As

there are many different types of scheduling problems, understand the vast majority would

allow to create a flexible algorithm.

Creating a shift schedule would be done on a static method meaning the shifts are created in

advance and not in real time (Rossi, 2008). However, with a static method, scheduling

problems seem to arise when a variable, for example employee cannot work the following

day as they are sick. This means a dynamic method would need to be used in real time to

update a part of the current solution and find a new solution to satisfy the new problem, for

example a shift repair method (Renke, 2021). Using only dynamic methods to update any

scheduling problem constantly would use a lot of computational power and increase time

complexity.

A specific method could be assigned to a problem depending on the number of variables,

domains and constraints. For example, within a simple case of coffee shop problem, a

dynamic method can be applied as a coffee shop wouldn’t have as many variables, domains

25

and constraints compared to the nurses scheduling problem (Cheng, 1997). Understanding the

complexity of each problem will be important when assigning a method.

2.4.2 Combinatorial nature of scheduling challenges

In combinatorial scheduling problems would generally have many variables, domains, and

constraints, making the search space large and creating a complex solution space. These

problems are nondeterministic polynomial time hard (NP-Hard) problems. In relation to

Larksuite (n.d), within the computational complexity theory, NP problems are classified

depending on the how quick the problem can be solved. This means that scheduling problems

are classified as hard due to the uncertainty in polynomial time it takes to find a solution.

As each industry is different within the real world, problems can be simpler than others.

Industries might have only one set of variables such as employees. This becomes a single

resource problem, as the algorithm only needs to assign one set of variables over multiple

domains (Fox, 1990). For example, X = Employees and Y = time slots. If X = Y that would

mean, there are exactly Y! (factorial of time slots) possible solutions. If X > Y, it would mean

that there is extra flexibility and X*Y solutions. This would then require optimization to find

the most optimal solution.

In larger or more complex industries they may require multiple resources (Fox, 1990). For

example, there could be three sets of variables, employees, equipment, and locations. This

would mean that a single domain is assigned to three separate variables which could have

constraints between each set of variables. This makes it a highly computational problem as

the search space would be larger and time complexity would be higher, which may result

only with one solution or even none.

Cheng’s research on the nurses scheduling problem (1997) gave valuable insight to multiple

case studies which there were 27 nurses and 13 different shift types. The theoretical

complexity of this search space would be 27 to the power of 13, meaning that the search

space for a solution is quite expediential. Problems like these would require the right

optimization techniques to come up with any solution within the CSP. Within Cheng’s (1997)

first case study, they explore preferences from nurses, 17 out of 27 nurses request a specific

shift. Some of the requests clashed as some shifts would be more popular than others, which

poses difficulty for the model of choosing which employee gets the popular shift.

26

Optimization techniques within scheduling would need to be implemented efficiently. In

cases like the nurses scheduling problem, creating a table to keep track of which employee

should get the next preferred shift would keep fairness within the problem, and implementing

dynamic scheduling methods to patch any changes in real time.

2.4.3 The correct search algorithm for CSP in scheduling

Understanding how each search algorithm works is essential when implementing these

algorithms into a CSP around scheduling. The complexity of the scheduling problem would

influence on the decision of implementing a search algorithm within the CSP. Creating a

flexible algorithm to check the complexity of the problem would allow to implement the right

algorithm for each specific problem.

2.4.3.1 Smaller scheduling problems

As mentioned, there are a many different search algorithms to choose from within the CSP.

Backtracking algorithms could be used within smaller problems to give optimal solutions

using various techniques. Constraint propagation techniques such as forward checking to

reduce the unnecessary exploration in the search space. Arc and path consistency would help

reduce the number of conflicts encountered and improve overall efficiency (Cheng and

Smith, 1997).

2.4.3.2 Larger scheduling problems

For larger and more complex scheduling problems, such as involving multiple variables.

Local search techniques such as hill climbing would fill the problems search space randomly

and change any hard constraint violation relations. This would find any solution, which may

not be the most optimal but still finds a solution which satisfies all hard constraints (Bartak,

2010). By choosing computational time over quality would satisfy the problem but may not

fully satisfy the company. This is where iterative search would become a key technique to

satisfy the company.

2.4.3.3 Implementing iterative search

Implementing iterative search to both smaller and larger scheduling problems would be

beneficial for the user. By locking certain assignments from the solution to create a more

27

beneficial solution for the business. As a solution may be seen as an optimal solution,

however it might not meet the right needs for the business.

2.5 Conclusion on research

The research section was vital in understanding the how to tackle scheduling problems, which

is crucial for the development of an automated scheduling application. Addressing the

challenges through the combined use of Search Algorithms (SA) and Constraint Satisfaction

Problems (CSPs) offers a versatile and scalable approach to both simple and complex

scheduling problems. By defining the structure of the problem with variables, domains and

constraints, allows to break down the problem itself and maximise the efficiency and

effectiveness of the algorithm.

Using search algorithmic techniques, such as backtracking, constraint propagation, and

iterative search within the CSP provides an optimal solution by exploring the search space

systematically and eliminating invalid options early on. The choice of techniques solely

depends on the size of the scheduling problem to provide an optimal solution. Smaller

problems could use complete algorithms such as backtracking then be enhanced by

constraining propagation techniques like iterative search. Larger problems which include a

deeper search space can become computationally expensive, approaching these with local

search techniques like hill climbing or iterative search can offer a more optimal solution in

theory.

The integration between both SA’s and CSP’s enable more structured approach to the

problem being solved, offering efficient scheduling solutions across a wide range of

industries and use cases. By leveraging these techniques dependant on the size of the problem

offers scalability and flexibility in the development. These strategies allow to understand,

how the solutions are being found and what requirements are needed to develop this

automated scheduling application.

28

3 Requirements

3.1 Introduction

The process of requirement gathering, modelling, and feasibility analysis is fundamental in

the development of a software system, ensuring that the final product aligns with the needs

and expectations of the target audience. This chapter details the requirements for the

automated scheduling system, outlining how they were identified, refined, and structured.

To establish a solid understanding of how existing scheduling applications function, an in-

depth analysis of two similar applications, ConnectTeam and HomeBase, was conducted.

These applications were evaluated based on their functional and non-functional aspects,

providing insight into industry standards and usability considerations.

Primary data collection was carried out through interviews and a user survey to gain insights

into the challenges business owners face in scheduling their workforce. Interviews were

conducted with two local business owners to understand their scheduling workflows and the

difficulties they encounter. Additionally, a survey was distributed to business owners across

Wicklow and Dublin Counties, covering topics such as current scheduling techniques,

workforce management, and openness to adopting new scheduling software.

The collected data was analysed to develop personas, user requirements, technical

requirements, functional and non-functional requirements. These requirements formed the

basis for the development of a Use Case diagram, which visually represents user interactions

with the system. Additionally, two use cases were developed, reflecting real-world scenarios

based on the personas.

The chapter concludes with a feasibility analysis, which assesses the project's technical,

operational, economic, and managerial viability. This evaluation ensures that the proposed

system is achievable, identifies potential challenges, and outlines mitigation strategies.

3.2 Requirements gathering

29

3.2.1 Similar applications

This section will cover two popular applications for employee management: ConnectTeam

and HomeBase. Both are designed to simplify scheduling, communication, and task

management. Each application offers unique strengths, with a wide range of functional

features and distinct non-functional advantages.

3.2.1.1 ConnectTeam

ConnectTeam is a comprehensive employee management platform built to streamline

productivity and communication in the workplace. With an intuitive, user-friendly interface,

ConnectTeam makes managing employees easy through features like drag-and-drop

scheduling, real-time chat, and GPS-based attendance tracking. While the dashboard is

feature-rich, its information density may take some time to navigate. Despite this,

ConnectTeam remains a popular choice for managers seeking an all-in-one tool to efficiently

manage and support their workplace.

In the following sections, the app's functional and non-functional aspects will be examined to

get a better understand its features and how they contribute to user experience.

Main Functional Aspects

ConnectTeam provides a wide range of features that support the essential functions of

employee management, including:

Employee Communication

Managers can set up group chats and communicate with their teams in real-time, allowing for

rapid announcements and immediate feedback. This functionality enhances coordination

across various departments, ensuring all team members are well-informed about new

information. In addition, managers can also send global messages, ensuring that urgent

information or changes reach the correct people instantly, we can see this feature in figure 6

below.

30

Figure 6, Employee Communication (ConnectTeam (n.d))

Task Management and Scheduling

Employers can create and assign tasks based on specific roles, ensuring that the right

employees are responsible for the right duties. Once tasks and schedules are set, employees

are notified through the app or email, keeping them informed instantly. The platform also

allows employees to request schedule changes, which are easily managed and updated by the

employer. Automated notifications are sent to remind employees of upcoming shifts,

changes, or new tasks, ensuring employees are notified from the primary source. This

functionality ensures a smooth workflow by delivering timely reminders and promoting clear

communication between managers and employees. We can see these how these schedules are

implemented in Figure 7 and how tasks are implemented in Figure 8.

31

Figure 7, Scheduling (ConnectTeam (n.d))

Figure 8, Task Management (ConnectTeam (n.d))

Tracking Attendance

A GPS-enabled time clock feature allows employees to clock in and out from authorized

locations, this feature can be seen in Figure 9. This data automatically integrates with

timesheets for easy management access. This makes it easy for employers and employees to

32

access and manage attendance records for payroll. This functionality increases the accuracy

by verifying the user’s location when they clock in and out. However, GPS tracking can raise

privacy concerns for employees.

Figure 9, Tracking Attendance (ConnectTeam (n.d)

Training

Managers can create customized training programs that include videos, quizzes, and

assessments, which can be seen in Figure 10. Upon completion, employees receive

certificates to acknowledge their achievement. The functionality also tracks progress,

allowing managers to monitor progress of each program by employees. This feature supports

continuous learning and helps improve employee skills. However, this method of learning

may not fit each employee.

33

Figure 10, Training (ConnectTeam (n.d))

Document sharing

Managers can upload essential documents such as employee handbooks, company policies,

and custom forms, allowing employees to access, complete, and submit them directly through

the app. This feature centralizes important resources, making it easier for employees to find

necessary information and complete required paperwork without needing printed copies. This

feature can be seen in Figure 11.

34

Figure 11, Document Sharing (ConnectTeam (n.d))

Notification API

New employees receive an automated invitation link via email to set up their accounts. This

allows managers to assign roles, teams, and shifts even before the employee's first login,

enabling new hires to access schedules and responsibilities immediately. The view of the

employer and how they send the invitation link can be seen in Figure 12 and the received

email by the employee can be seen in Figure 13.

Figure 12, Notification API Sent (ConnectTeam (n.d))

35

Figure 13, Notification API Received (ConnectTeam (n.d))

HR Tools

ConnectTeam provides a centralized space for storing key employee information, including

contact details, wage data, and other relevant records, which can be easily accessed by

managers and HR staff. The implementation can be seen on Figure 14. This feature simplifies

record-keeping and ensures all critical employee data is up to date and readily available. It

also allows employees to report incidents directly through the app, informing HR or

employers immediately.

36

Figure 14, HR Tools (ConnectTeam (n.d))

Non-Functional Aspects

ConnectTeam provides several non-functional benefits that improve user experience,

scalability, and application reliability. These benefits include:

User-Friendly Interface

ConnectTeam features a visually intuitive layout with drag-and-drop scheduling. Key

functions are organized for quick access, allowing managers to efficiently navigate tasks such

as scheduling, communication, and tracking. While the dashboard may feel crowded due to

the cluster of information displayed, its design prioritizes functionality by placing essential

tools and features within easy reach, helping managers save time and improve productivity.

By offering a customisable dashboard layout would allow businesses to tailor their business

needs within the application.

Cross-Platform Compatibility

The application is accessible on both desktop and mobile devices, allowing users to access

their data anytime and anywhere. Ensuring flexibility on all platforms makes it more

convenient for users to use any functionality and allows for users to stay connected and

coordinated. The full functionality of the desktop version can also be obtained within the

mobile app, which means the user is not punished for using a smaller device.

37

Scalability

ConnectTeam support various business sizes. The application offers a hybrid pricing model,

freemium plan for any small business with limited features. If the business size is increased to

ten employees or more the freemium plan expires, and employers are pushed into purchasing

a monthly plan which prices also depend on the number of users. Once you are a paying a

subscription certain features are included.

Custom Options

The application allows you to view schedules based on a range of factors such as roles,

departments, shifts or users. These custom options all for employers to view their schedules

in relation to their needs by applying their own custom options.

Technical Support

ConnectTeam offer various ways of technical support including, customer support via email

or live chat, tutorials and resources to help users understand and use certain features. This

keeps users satisfied by maximizing productivity and resolving issues quickly. However, in

relation to support via email, ConnectTeam is based in Israel and responses are automated

and it may take a longer time for a response due to the global time difference.

3.2.1.2 HomeBase

HomeBase is an employee management platform within the US that simplifies workforce

management, including scheduling, attendance tracking, payroll, communication, and

training. Designed for both employers and employees, it offers an intuitive interface and

features that enhance efficiency and communication. Suitable for small teams or larger

businesses with multiple locations, HomeBase helps organizations stay organized and comply

with labour regulations.

Main Functional Aspects

Homebase provides a comprehensive set of features designed to support core aspects of

employee management, such as:

Scheduling

38

Homebase’s scheduling feature enables managers to create, edit, and assign shifts on a daily,

weekly, or monthly basis, this can be seen in Figure 15. It includes options for setting

repeating shifts, which saves time when creating rosters. Employees can input their

availability and submit time-off requests directly within the application, and managers can

approve or deny these requests in real-time, which can be seen in Figure 16. After completing

schedules, the platform notifies employees of any updates, minimizing the risk of

miscommunication and ensuring employees have the latest schedule information.

Figure 15, Shift Scheduling (HomeBase (n.d))

39

Figure 16 Request Filters (HomeBase (n.d))

Attendance Tracking

HomeBase offers a GPS-enabled timeclock that allows employees to clock in and out from

specific locations. This feature helps managers verify employee attendance, including the

time an employee arrives and leaves the location of work (Figure 17). The system also tracks

breaks, allowing for accurate calculation of hours worked. This feature would be more

beneficial for larger businesses to reduce time-theft. However, employees may find this as an

invasion of their privacy.

40

Figure 17, Attendance Tracking (Homebase (n.d))

Payroll Integration

The payroll integration feature calculates employee hours, including any overtime and break

periods. This would relate to the attendance tracking feature; however, the employer can also

manually input any hours. HomeBase integrates with popular payroll providers within the

US, automating wage calculations and reducing the time required to process payroll, (Figure

18). This feature streamlines payroll processing and reduces human error, making it an asset

for companies looking to simplify their payroll processes.

41

Figure 18, Payroll Integration (HomeBase (n.d))

Employee Training

Employers can upload essential documents, such as employee handbooks, safety protocols,

and training materials, to Homebase’s centralized document storage. This function allows

employees to access critical resources at any time and helps managers track employee

certifications and training completion, which can be seen in Figure 19. This feature supports

employee development and compliance with workplace safety standards.

42

Figure 19, Employee Training (HomeBase (n.d))

Communication

HomeBase offers in-app messaging for real-time communication between employees and

managers, Figure 20. Users can create group chats by roles or teams and send company-wide

announcements. Managers can also start one-on-one chats. This centralized communication

fosters a connected workplace and helps ensure important messages aren't missed.

43

Figure 20, Communication (HomeBase (n.d))

Hiring and Job Posting

HomeBase supports hiring by enabling managers to create job posts (Figure 22) and

distribute them to multiple job boards (Figure 21). Employers can review applications within

the platform, facilitating streamlined candidate selection and communication. This

functionality aids in attracting and onboarding new talent.

44

Figure 21, Job Posting (HomeBase (n.d))

Figure 22, Hiring (HomeBase (n.d))

Labour Law Compliance

45

HomeBase keeps managers updated on relevant labour laws, such as minimum wage

requirements and overtime regulations, specific to each U.S. state, this can be seen in Figure

23. This feature is valuable for ensuring businesses remain compliant with evolving

regulations and can avoid potential penalties. However, since the platform primarily targets

U.S.-based businesses, international users may not benefit from this feature, as it lacks

information on non-U.S. labour laws.

Figure 23, Labour Laws (HomeBase (n.d))

Non-Functional Aspects

HomeBase provides several non-functional benefits that enhance user experience, scalability,

and application reliability. These aspects contribute to the platforms overall effectiveness in

supporting businesses across different industries. These key non-functional benefits include:

UX Optimisation

HomeBase is designed with a user-centric approach, prioritising navigation and a clean

layout. The platforms interface is simple, making it easy for employers and employees to

access different features. All the key features are easily accessible, ensuring users can

complete schedule related tasks efficiently. However, the initial sign-up process may require

users o input detailed business and employee information before proceeding, this could push

future customers away. HomeBase could consider implementing a more simplified sign-up

process, such that larger business can pass a preexisting excel sheet with users’ data and

payroll to the system.

Cross-Platform Compatibility

HomeBase offers cross-platform accessibility though both a mobile app and web browsers,

making it beneficial for both desk-based employees and teams on the go. This ensures that

users can stay connected and manage and view schedules regardless of their location. Real-

46

time updates between platforms allows users to make updates and view them on another

device without delay, enhancing productivity and collaboration within the team.

Scalability

HomeBase caters to businesses of various sizes, which can be a small company with ten

employees or a large enterprise with multiple locations. The platform offers flexible pricing

plans which depend on the size of the business and the features you would like to use. If a

business grows, they won’t need to look for a different platform to meet their schedule

solution needs. As the platform can handle such large businesses, they also handle many data

volume without affecting the performance of the application.

Customization

HomeBase provide customisation within scheduling payroll and task management features.

This allows for business to tailor these specific functions to their requirements. Dependant on

where the company is based the scheduling and payroll would be automatically implemented

to meet the legal requirements, this leaves the employer stress free as the application double

checks rules and regulations haven’t been broken.

Security

Given the sensitivity of the data HomeBase handles, payroll information, and personal data.

The platform implements a security framework to protect its users. Features such as data

encryption, secure login protocols such as twostep authentication (TOTP), and regular

security audits are in place against unauthorized access. HomeBase is also compliant with

industry regulations such as GDPR, ensuring that user data is handled in accordance with

global privacy standards.

3.2.1.3 Conclusion

In conclusion, both ConnectTeam and HomeBase offer unique non-functional benefits that

enhance the user experience, ensuring businesses can streamline their operations and improve

efficiency. They provide functional aspects for employee management, each with its own

strengths and features that cater to different business needs.

47

ConnectTeam’s main aspects such as communication, customisable management features,

and GPS-enabled attendance tracking, making it a great choice for businesses seeking an all-

in-one package. Its scalability, cross-platform compatibility, and user-friendly interface make

it suitable for organizations of all sizes. However, the crowded dashboard and occasional

delays in support responses can be areas for potential improvement.

On the other hand, HomeBase focuses on simplifying workforce management, with strong

features in scheduling, payroll integration, and labour law compliance. Its user-friendly

design and cross-platform accessibility make it an excellent choice for businesses. While its

clustered sign-up process might be a not appealing for some users, the platform offers a

scalable solution for businesses that require flexibility and robust features as they grow.

3.2.2 Survey

This section covers the reasoning behind the questions asked within the survey, the responses

received and the future actions to be considering with the development of the application.

The survey was created within Google Forms and was distributed to businesses by email with

the link provided or by physically approaching the business with a QR-code which brings the

user directly to the survey. The survey was mainly sent to businesses where scheduling

becomes a problem, this would include sectors such as hospitality, food service, retail,

healthcare and transportation.

3.2.2.1 Reasoning behind questions

The survey was conducted to gather insights in relation to scheduling practices, challenges

and interests within a business. The following explains the reasoning behind each question:

1. Company Name and General Location?

This question identifies the business and its general location. This allows for

comparison in areas and labelling the business to the future questions asked.

2. What is your Industry?

Each industry would have their own unique scheduling challenges. This question

allows for industry-specific analysis.

3. How many employees do you manage?

This question provided checkboxes with five options to group the business in relation

to their sizes. The complexity of scheduling often correlates with workforce size,

48

larger businesses generally would require more advanced scheduling solutions.

Grouping each business with their specific challenges, allows for understanding the

requirements dependant on the size of business.

4. How do you currently create employee schedules?

Understanding how the business performs their schedules gives an insight into the

level of technological adoption and efficiency within the individual business.

5. If you use a scheduling software, which do you use? Skip if you do not.

If the business currently uses a scheduling software, it provides a new competitor and

allows for further analysis to be conducted.

6. If you use a scheduling software, what are the best features about it? Skip if you do

not.

Understanding why this business uses this scheduling software is important and gives

more valuable insight for features to consider applying to the application.

7. What are the biggest challenges you face in scheduling employees? Multiple

Choice

This question aims to identify the most common struggles businesses encounter when

manging employee schedule. By providing multiple choice options, respondents can

select challenges that relate to them and allows for grouping and sorting the answers

based on trends.

8. What features would be most useful in an automated scheduling system? Multiple

Choice

Identifying the most valuable functionalities that businesses look for in an automated

scheduling system. By providing multiple-choice options, businesses can highlight

feature they consider essential for creating schedules for their business.

9. How often do you need to adjust the schedule after it’s created?

This question helps assess the stability of employee schedules within the respondent’s

business. Understanding the frequency of schedule adjustments allows for designing a

system that minimises disruptions and improves efficiency and employee satisfaction

within the business.

10. Would you be open to trying a new scheduling tool if it saves time?

Assessing the willingness of businesses to adopt a new scheduling solution if it offers

efficiency improvements provides valuable insight into the openness of a business to

change its current scheduling system.

49

11. What pricing model would be most acceptable?

Determining the preferred pricing model businesses would consider when adopting a

new scheduling tool is crucial as the wrong pricing model can push potential

businesses away from change to a new system.

12. Thank you for filling out the survey! If you would like to add any other relevant

details, feel free to do so!

This final open-ended question allows for additional insight that may have not been

covered by the questions. Any additional feedback could be valuable when refining

the systems features.

3.2.2.2 Results

The results from the questionaire were underwhelming and did not provide substantial

feedback. Many businesses weren’t inclined to provide any details on their current schduling

process. However, I received enough feedback to get an understanding of certain businesses

needs and compare industries.

1. Company Name and General Location

In relation to Figure 24, the questionnaire reached Dublin and Wicklow County’s.

Businesses within Dun Laoghaire were more inclined to take the survey.

50

Figure 24, Result Q1 (Response from Questionnaire)

2. What is your Industry?

Within Figure 25, the results show that the “Hospitality and Food Service” industry

was the primary industry which was taking part within the survey. While “Retail &

Customer Service” and “Healthcare & Medical”, were joint second in relation to the

industry type which took the survey.

51

Figure 25, Result Q2 (Response from Questionnaire)

3. How many employees do you manage?

Smaller businesses participated in the survey, as shown in Figure 26. This suggests

that the primary challenges and desired features identified are most relevant to smaller

businesses.

Figure 26, Result Q3 (Response from Questionnaire)

4. How do you currently create employee schedules?

From the results, we understand that 72.7% of the companies use some form of

spreadsheet, such as Excel or Google Sheets, for scheduling. This is illustrated in

Figure 27.

52

Figure 27, Result Q4 (Response from Questionnaire)

5. If you use a scheduling software, which do you use? Skip if you do not.

The survey received one response in this section, which was redundant as the business

inputted “Sheets”, which relates to the previous question. This question could have

been more precise about scheduling software.

6. If you use a scheduling software, what are the best features about it? Skip if you do

not.

In relation to this question, there were zero responses. As we can see in Figure 27,

there were no scheduling software selected. This would result to this section being

empty.

7. What are the biggest challenges you face in scheduling employees? Multiple

Choice

While each challenge received selections, the most reported issues among businesses

were last-minute changes (81.8%), employee availability conflicts (63.6%), and

managing shift swaps (45.5%), as shown in Figure 28. This highlights key areas

where scheduling improvements are most needed.

53

Figure 28, Result Q7 (Response from Questionnaire)

8. What features would be most useful in an automated scheduling system? Multiple

Choice

While all features received selections, the most preferred functionalities in an

automated scheduling system were customisable scheduling rules (e.g., max hours,

shift preferences for employees) (81.8%), shift swap functionality (54.5%), and real-

time updates and notifications for changes and creations (45.5%). As shown in Figure

29, these features highlight the key priorities businesses have for improving their

scheduling processes.

Figure 29, Result Q8 (Response from Questionnaire)

54

9. How often do you need to adjust the schedule after it’s created?

The responses to this question indicate that schedule adjustments are a common

occurrence for many businesses. Most responses reported they occasionally adjust

their schedule. As Shown in Figure 30, these results suggest that businesses have a

relatively stable schedule creation but do experience moderate changes. This

highlights the need for a scheduling system in certain businesses.

Figure 30, Result Q9 (Response from Questionnaire)

10. Would you be open to trying a new scheduling tool if it saves time?

The responses indicate a strong willingness to consider a new scheduling tool to save

the business time. More than half of the respondents selected “Yes” (54.5%), this

shows a clear openness for transition to a more efficient system. 36.4% of respondents

selected “Maybe”, suggesting that while they are not fully committed, they are still

open to the idea if the application demonstrates clear improvements. As shown in

Figure 31, these results highlight the significant opportunity for the adoption of an

automated scheduling tool.

55

Figure 31, Result Q10 (Response from Questionnaire)

11. What pricing model would be most acceptable?

There was an even split between two preferred pricing models. 45.5% of businesses

favoured a freemium model (free with limited features), which suggest that many

would like to try the software before committing to a paid plan. Another 45.5% of

businesses preferred a one-time purchase (life-time access), indicating that some

businesses prefer a long-term cost efficiency over continuous payments. In relation to

Figure 32, these results highlight the importance of offering multiple pricing options

to cater to different business preferences.

Figure 32, Result Q10 (Response from Questionnaire)

12. Thank you for filling out the survey! If you would like to add any other relevant

details, feel free to do so!

56

This question received zero feedback, while it was disappointing no additional

feedback was given, it also suggests that the questions effectively captured the key

concerns and insights from the respondents for each business.

3.2.2.3 Actions to consider

Based on the survey results, several key actions should be considered moving forward in the

development and requirements of the application. These insights provided valuable

information on the challenges businesses face, their preference features and their openness to

adopt a new solution to scheduling. Actions to consider would be:

1. Targeting smaller Businesses

Since smaller businesses were the primary respondents, it would be crucial to develop

the requirements and design around smaller businesses especially within the

hospitality and food service industries. By addressing this target audience, it provides

potential growth for the application in these areas.

2. Addressing these scheduling challenges within the application

The survey gave insight into common challenges especially in last-minute changes,

employee availability conflicts, and shift swaps. These key pain points need to be

prioritised into the development and design of the application. This will result in

better feedback from future users.

3. Implementing the most preferred features

By prioritising the popular features, then implementing them into the functional

requirements and design, it could benefit the applications future growth and satisfy

users’ needs when dealing with scheduling.

3.2.3 Interviews

Two interviews were conducted with two separate business owners. Within both interviews,

the same questions were asked in person. These questions were to understand their current

scheduling process, challenges and potential features they would like to use. Both

interviewees provided that they did NOT want to be recorded and asked to remain

anonymous. In this case we will call the first interviewee Paul and the second, Fred. The

following section includes the questions that were asked, the responses that were given, and

an overall analysis.

57

3.2.3.1 Questions

1. Can you briefly describe your current scheduling process? (e.g. tools)?

2. How much time do you spend on average creating and managing schedules each

week?

3. What do you feel is lacking in your current scheduling process?

4. What specific challenges do you face when scheduling employees?

5. How do you manage situations where employees request last-minute schedule

changes or call in sick?

6. What issues, if any, have you encountered with managing different types of

employees

7. How are you technically? Using computers and applications?

8. Would you consider using an application, which automates your schedules every

week?

9. (If yes): What additional features do you think would help you like to see in this

application?

3.2.3.2 Results interviewees 1 (Paul)

Paul currently is the owner of a very popular pub in Dublin.

1. “I am old fashioned, pen and paper”

2. “Weekly? I create my schedules monthly to give my staff time to base their free time

around their work schedule. Generally, maybe an hour or so. It would really depend

on if someone is going on holiday or has specific requests for some days off”

3. “Staff… If I had more staff the schedule would be easy to make. If I kept all the

information on a whiteboard, I could remember how people can work and not have to

change the schedule after its finished”

4. “Managing availability, but also my staff like to swap shifts often. Which is

frustrating as there are times, I don’t want a certain two people working together”

5. “If someone says they can’t come in, I will generally try find someone else or come in

myself, if I’m not working.”

6. “I have a few full-time staff which is handy, they’re reliable and good at their job. The

part-timers always have some sort of requests, to do with college or its their dogs’

58

birthday. Some would tell me a month before, but some decide to tell me the day

before.”

7. “I’m not the brightest when it comes to computers, I know the basics of certain apps”

8. “I wouldn’t oppose to it; it would save me some time for sure”

9. “As long as it gives back a good schedule and everyone is happy, I’m happy”

3.2.3.3 Results interviewees 2 (Fred)

Fred is the owner a coffee shop in Dublin and is currently opening another in the city centre.

1. “I use excel spreadsheets”

2. “Maybe one hour, an hour and a half”

3. “Lacking better management and information about my staff”

4. “Dealing with specific days off”

5. “I would generally try call someone if its mid-day shift but if its early morning I

would come in myself”

6. “New staff comes in regularly and leaves, which is frustrating. I also have many part-

time staff which are mainly available on weekends”

7. “Good”

8. “Maybe, depending on how it fits with my case”

9. “Tracking attendance for payroll, notifications about relating to the future schedules”

3.2.3.4 Overall Analysis

Both interviews were valuable insights to the requirements section. The responses highlighted

that neither business use a scheduling software, instead to relying on manual methods. A

common pain point shared was the management of employee availability. Paul expressed his

frustration over frequent shift swaps and last-minute request, while Fred highlighted changes

related to a specific day-off requests and a high staff turnover rate. This suggests that both

companies need more management in their current scheduling process.

There was a difference between the two interviewees regarding technical familiarity, Paul

admitted to having basic computer skills, while Fred indicated he was comfortable

technically. This indicates the importance of a user-friendly interface. Both interviewees

showed openness to an automated application, with Fred specifying that features like

attendance tracking for payroll and schedule-related notifications would be highly beneficial.

59

Paul, on the other hand, prioritized a system that generates fair and balanced schedules for

staff satisfaction. These insights can help shape requirements model and boost satisfaction

from similar customers in the future.

3.3 Requirements modelling

3.3.1 Personas

Personas are fictional characters which are created to help differentiate the user types that

might use the application. The personas are based on the feedback from the survey

respondents. There are two personas developed, each within a separate industry with different

goals and motivations. Both personas both relate to a similar struggle or frustration, which is

dealing with scheduling employees.

Below is an illustration of the first persona that was developed, John Murphy (Illustration 1).

From the biography we can see that John owns Pub and Grill in Dublin who faces challenges

in managing employee schedules. As highlighted in the survey response (3.2.3.2), businesses

in the hospitality industry often struggle with last-minute shift changes. John’s persona

reflects these common frustrations. Johns’ motivations include improving operational

efficiency to streamline scheduling. By understanding Johns challenges and goals it helps to

design a scheduling application tailored to his small hospitality business.

60

Illustration 1 (Persona #1)

An illustration of a second persona was developed, Sarah Walsh (illustration 2). Sarah is a

manger of two coffee shops in Wicklow, she is facing similar challenges which are based on

the survey responses (3.2.3.2). However, Sarahs team in the workplace includes part-time

student employees, which creates availability conflicts. As Sarahs manages two coffees

shops, she finds scheduling time-consuming due to the difficult availability problems, her

persona emphasizes the need for a scheduling solution. Understanding Sarahs motivations

and frustrations also helps shape the development of the application focusing on the pain

points faced by small café managers.

61

Illustration 2, (Persona #2)

3.3.2 User Requirements

The system will be role-based, this would mean that user requirements would differ

depending on the role of the user. The two roles in the system will be employer and

employee, each would have their own requirements. However, some requirements would

apply to both roles.

3.3.2.1 All Users

Within this section the requirements are for any role. This would mean that all the users

which use the application should be able to access both requirements, login/registration and

dashboard/notifications.

Login and Registration

Each user should be able to register for an account using a unique email address which is

secured with an encrypted password. Once a user is registered, they should be able to log in

62

securely using their credentials. Each user should be able to reset or recover their password,

in the case that a user has forgotten their password. They should be able to update their

credentials once they are logged in, this could include name, contact information,

preferences, and employment option.

Dashboard and Notifications

Upon login, users should be directed to a dashboard which will hold relevant information

depending on their role. Users should receive real-time notifications about updates such as

schedule creations or changes and requests and response from one user to another relating to

shifts and future schedules.

3.3.2.2 Employer

This section focuses on the user requirements of users which hold the employer role. The

employer role can only be attached once the user has created a team. These user requirements

would look like admin privileges but only within their team.

CRUD functionality of Team, Shifts, Expertise and Schedules

The employer should have create, read, update, and delete rights (CRUD) within the team

they create, this would include shifts, expertise, and schedules. The most important

requirement would be creating new schedules from the Constraint Satisfaction Problem

Solver (CSPs) and editing the automated schedule to meet their needs. The employer will

then be able to publish the finished schedule to let employees view the new schedule.

Managing Employees

Employers should only be able to add users to their team through requests, once the user

accepts the invitation, they are a part of the team. Employers should have full rights to the

users within their team apart from their personal details such as name and contact details. The

employer should be able to assign expertise to a specific user. Employers should be able to

view requests sent by employees about availability within their team and could send back

responses of acceptance and decline.

63

Viewing Sensitive information

Employers should be able to view sensitive information such as other employees’ information

within the team which is relevant to holidays, preferences, and availability. Other information

which should only be seen by the employer are the statistics of employees, such as total hours

worked.

Employee

This section focuses on the user requirements of users which hold the employee role. The

employee role is attached once the user accepts an invitation to a team. This role would now

change the view of the user, giving them some rights to the team and other user requirements.

Viewing Schedules

Employees should see their work schedule clearly and in an organised format. The schedule

should be easily accessible through the dashboard. Employees should also receive

notifications whenever a new schedule is created or updated. His will allows users to be

informed of their shifts and reducing conflicts and improving overall communication between

the management and staff.

Submitting requests and receiving responses

Employees should have the ability to submit requests related to availability, holidays, and

other work-related matters through the application. These requests should be logged and

easily accessible for both the employee and employer. Employers should be able to review

and respond to requests, with employees receiving real-time updates on the status of their

request.

3.3.3 Technical Requirements

This section outlines technical requirements required to develop and maintain the application.

This section will include the system architecture, which explains how components

communicate between one another, and the technology stack, which outlines the frameworks,

libraries and services which need to be used to build the system.

64

3.3.3.1 System Architecture

The system architecture defines the structural design and how the system interacts and

communicates together. This will include the figure of the system architecture for visual

explanation, how WebSocket’s will encounter the front and backend, how the constraint

satisfaction problem solver (CSPs) requests and sends data, the authentication needed into the

application, and the communication between the front and backend.

Illustration of the system architecture

Illustration 3, System Architecture

65

WebSocket’s

WebSocket’s is a protocol which allows for real-time interaction between the client and

server by keeping the connection open and allowing for continuous updates without making

multiple requests. The client will initialise a connection to the backend using WebSocket, the

backend must accept the WebSocket connection. Requests and responses will run

asynchronously once the connection is established between both the frontend and backend.

This makes it possible to have real time interaction between the employer and employee,

which can be through requests and responses about availability or receiving important

announcements from employer to all team users. Using WebSocket’s allows for other

features to be brought in such as real-time chat between the employer and employee, this

would keep the team connected.

Constraint Satisfaction Problem (CSP) Solver

The CSP must be established with the FastAPI backend, this will allow for quick a request

and response from the database. The CSP needs all the variables, domains and constraints

which will be established within the backend and stored within the SQL database. The

response from the CSP will be sent directly to the database to store all solutions. This would

allow for the solutions to be accessed by the frontend through backend routes.

Authentication

Authentication is crucial as it ensures only authorised users can access protected routes with

unique functionality and protects users’ sensitive information. Authentication must be done

using token-based authentication, this is when a user receives a unique token upon login and

can use this token to make protected requests. JSON Web Tokens (JWT) will be used to

implement this stateless authentication. The JWT token would be created within the server,

which requires specific libraries to be used such as ‘python-Jose’. The token would be sent

within the response after login, then the token must be collected and stored in the client side

within HTTP Only cookies. Adding a token expiry would refresh the token after a certain

amount of time to prevent from the token to be tampered with.

Communication between front and back end

66

The communication between the frontend (React) and backend (FastAPI) must be done using

RESTful API endpoints over the HTTP protocol. They would interact through a series of

HTTP GET, POST, PUT, DELETE requests, while ensuring the data is authenticated and

validated within the middleware. The routes would be set up within the backend with a series

of middleware, the frontend would send a request and if the request is successful, the backend

would respond with a successful status code and additional data. If the request is invalid, the

backend responds with an unsuccessful status code in the ranges 400 and provides a response

to the frontend.

3.3.3.2 Technology Stack

This section will outline the key technologies selected for the development of the application,

including the backend framework, database, frontend technologies, version control methods,

real-time update strategy, and hosting solutions.

Backend

The backend of the application will be developed using FastAPI, which is a modern web

framework for building APIs within Python. FastAPI provides high performance due to its

asynchronous operations, offering Starlette for the web part and Pydantic for data validation.

In addition, it uses Swagger and ReDoc which generates documentation in real-time and

allows for viewing and testing of routes within the browser.

The backend will handle the business logic such as authentication and serving the API

endpoints. The core functionality within the backend will be the Constraint Satisfaction

Problem (CSP) Solver. The solver will process requests by taking in a set of variables,

domains and constraints and then return solutions effectively in relation to the specific

business scheduling problem.

Database

The application will need to use a relational SQL database, specifically MySQL, to store and

manage data. MySQL would need to be implemented as the applications database will need

to handle structured data, which is crucial for relational use cases such as storing team data.

The backend will interact with the database using SQL Alchemy, an Object-Relational

Mapping (ORM) tool that takes SQL queries and converts them into Python objects. This

67

would make it beneficial as it simplifies interactions between the database and backend.

During the development process, MySQL Workbench must be used to visualise and manage

the database schema and run any database management tasks.

Frontend

The frontend of the application must be developed using React.js, which is a JavaScript

library used for designing reliable and fast web applications. The React frontend will be

designed using Shadcn UI which is a customizable component library which offers a range of

components, themes and typography. Other packages will be installed to allow for other

requirements to be accomplished, these include, React-big-Callendar, React-DnD and, React-

Router. These libraries will help streamline the complexity of the user requirements and

enhance usability of the application.

Code Management and Version Control

Version control is essential for maintaining code and showing the progression of work. The

project will use Git for version control, with GitHub serving as the central repository for code

hosting. GitHub would be essential especially when tracking any errors or issues and marking

them down after deploys.

Real-time Updates

As discussed in the WebSocket section, real-time updates will be implemented using

WebSocket’s, allowing for continuous communication between the frontend and backend

without needing to repeat a singular HTTP request. To enable features like notifications and

chat to work in real-time, built in libraries are available within FastAPI, where Socket.IO will

be used within React. Importing and handling WebSocket’s will be crucial for these real-time

updates to work. The state of the connection can be handled using context within the frontend

to determine if the current connection of the WebSocket is closed or open.

Hosting

Deploying the application for other users to use will be crucial after the development is

complete. Hosting the application within Amazon Web Services (AWS) or Microsoft Azure,

allows for the whole stack to be hosted within a single service. The application can also be

68

hosted individually by having different services to host the stack. Hosting will be dependent

on the progress of the application and the funding received to host.

Hosting with AWS, the frontend can be deployed with S3 and CloudFront for Global Content

Delivery (CDN), the backend can be deployed using EC2 instances and the WebSocket’s can

be managed directly on EC2, then using Amazon RDS to fully manage the MySQL instance.

This path could be more rewarding for the applications growth due to its scalability and

reliability however, it could become very expensive to hold.

Hosting the application using multiple services can be beneficial for short term but can

become a problem as the application grows. The frontend can be deployed using Vercel,

which deploys on change with GitHub, the backend can be deployed with Render as it quick

to set up with FastAPI and supports WebSocket’s, the database can be hosted on PlanetScale

which offer free offers dependant on the scale of the database.

3.3.4 Functional Requirements

This section covers the functional requirements of what features and functions the user can do

within the application. The functional requirements were developed based on responses of the

survey (3.2.3), responses from the interviews (3.2.2), and the research on competitors with

similar applications (3.2.1). The functional requirements are not displayed in order of

importance but are all crucial for the deployment of the application.

3.3.4.1 User Management

User management focuses on what the user can do with their own account. A user should be

able to register an account within the application once the requirements within the register

form are successful. A user can log in with the correct credentials and if the credentials are

incorrect, they should be notified with an error. If the user has forgotten their credentials, for

example a password, user should be able to reset their password. Once the user is

authenticated and logged in, they should be able to change their details. These details include,

name, password, email address, mobile number and availability. In relation to the user

requirements (3.3.2), the system should enforce role-based access control (RBAC) to provide

different functionality and features to the two different roles (Employer and Employee).

69

3.3.4.2 Team and Shift Management

Upon login, user’s functionality and view depends on their role. Users with the employer role

have full access and rights to all the data in relation to the team. This would mean that

employers can Create, Read, Update and Delete, Users and their availability from the team,

except for their personal information, the shifts within the team, the expertise within the

team, the schedules within the team. The employees only have read rights within the team to

tables such as shifts, approved schedules, and have full rights to their own availability.

3.3.4.3 Requests and Approvals

Employees have specific requests within the team, which then needs to be approved by the

employer. These requests from the employee can be regarding to holidays, availability and

shift swaps. These requests must be approved by the employer for the solver to consider them

as constraints. These request and approvals must be passed through WebSocket’s to allow

real-time updates and notifications between the employer and employee.

3.3.4.4 Scheduling System

Once the RBAC is implemented only the employer should be able Create, Read, Update and

Publish Schedules. The system will use a Constraint Satisfaction Problem (CSP) Solver to

generate schedules based on the variables given from the team and can be generated only by

the employer. Employers when updating a generated schedule must be provided with all the

statics on users and be able to use features to change the view of the schedule and use the

drag and drop to remove and add users to generated shift assignments. The Employer should

be able to lock specific assignments on the generated schedule such as a specific employee on

a shift and regenerate the rest of the schedule around that locked assignment. The employer

should be able to publish the finished schedule, this allows for both employees and employers

to view the published schedule. The employees should be notified through real-time updates

about any changes or creations of schedules.

3.3.4.5 Notifications and Alerts

The system should send real-time notifications to all users within the team about new or

updated schedules and approved or rejected requests regarding availability. The employer can

also send out alerts to the employees of the team about any important announcements. Any

70

notifications should be sent in-app and via email service library, this will decrease the

chances of any confusion.

3.3.4.6 Reports

Employers should be able to download previous schedule week reports. The report would

contain employee work hours, shift statistics, employee request history and other relevant

information. This report can be then downloaded as PDF or Excel file.

71

3.3.5 Non-Functional Requirements

This section defines how the system should perform, focusing on aspects such as

performance, usability, availability and security. Meeting these requirements would lead to

positive user experience and cost-effective application.

3.3.5.1 Performance and Scalability

The system should handle several operations, the key operation would be the Constraint

Satisfaction Problem (CSP) Solver. The CSP should be capable to handle up to one-hundred

employees and provide several solutions if available. The CSP should generate a set number

of solutions and be stored in the database. A solution which is not chosen should be deleted

automatically to keep the database cleaned from any unnecessary data.

3.3.5.2 Usability and Accessibility

The application should prioritise the user experience by providing a responsive application on

all breakpoints, specifically on mobile and computer. Creating a user-friendly dashboard

which is easy to navigate must be responsive to the change of breakpoint to increase user

experience. Creating an application which is accessible on all browsers would increase the

accessibility of the application. By implementing WCAG 2.1 accessibility standards can

ensure the platform is accessible for users with disabilities.

3.3.5.3 Security and Access Control

Security and access control is a fundamental requirement to protect the user’s data and ensure

trustworthiness of the application. The application must use JSON Web Tokens (JWT) for

user authentication. Users’ passwords, mobile numbers and email addresses must be

encrypted using a strong hashing algorithm such as bcrypt. Users will receive specific roles

depending on the team they’re in. This ensures that only users with a specific role can see

certain features and pages.

3.3.6 Use Cases

This section will include a use case diagram which is based on personas which were

developed. This use case diagram represents the different types of users’ interaction with the

system and the different functions they can access. Two use cases were developed to capture

72

different scenarios the user might interact with the software. They originate from the use case

diagram, placing personas in common scenarios where they would interact with the

application.

73

3.3.6.1 Use Case Diagram

74

3.3.6.2 Use Case 1

Description: New User – Creating the skeleton of the schedule

Actor: Sarah Walsh

Scenario: Sarah is finally going home after an eleven-hour shift. Sarah was meant to work a

seven-hour shift but made a mistake in this week’s work schedule. She had scheduled an

employee which has informed her in the past that they cannot work that specific day due to

college. The employee did not show up and therefore left Sarah working a double shift alone.

Sarah being tired and frustrated, she searches on Google for a schedule helper and come

across RosterReady. She reads the description of the application on the home page, she

anticipates she must create an account before using any features to help her with her

schedule.

Flow of events:

1. Navigate to Register Page, fill the form correctly and submit.

2. Create shifts dependant on current schedule.

3. Attach the shifts to the necessary days to be repeated.

4. Navigate to Callender Page, double check the view of the schedule is correct.

5. Invite users to the team.

6. Create expertise’s.

7. Attach Expertise to shifts (if required).

8. Wait for users to join the team then apply created expertise to users (if required).

3.3.6.3 Use Case 2

Description: Registered Employer – Generating next week’s schedule

Actor: John Murphy

75

Scenario: It is just after midnight on a Friday night. John has just finished work and has been

getting texts from his employees about next week’s roster. John opens his RosterReady

application on his laptop and needs to generate a schedule for his employees to be satisfied.

Flow of events:

1. Login.

2. View requests regarding availability within the inbox.

3. Try accepting all requests and decline the ones that provide you an error.

4. Navigate to Callender and view the week the roster needs to be generated for.

5. Press Generate.

6. Lock certain assignments which are suited.

7. Regenerate a roster around the locked assignments.

8. Review and Accept Solution.

9. Navigate to Callender and view the results for the chosen week.

3.4 Feasibility

The feasibility analysis section will evaluate the practicality of implementing the proposed

system through multiple perspectives, these include technical, operational, management,

economic and legal considerations. Addressing potential challenges and strategies will ensure

the project will be cost effective, efficient and successful.

3.4.1 Technical Feasibility

In relation to the technical requirements section (3.3.3), the system will be developed using a

FastAPI backend, a React frontend and a SQL database. WebSocket’s will be implemented to

create open connections for real-time updates and authentication will be managed through

JWT security. The technologies are well-suited but certain challenges could arise such as

computational performance of the CSP solver, Server overload due to WebSocket’s, and risks

with the interaction between the technology stack.

Computational performance of the CSP solver:

In relation to the research section, specifically CSPs (2.3). CSPs can be computationally

expensive, due to factors such as, input size and problem dependant. To mitigate this, a

76

caching strategy will need to be implemented to keep input local. However, this may lead to

data exposure if the data is not encrypted.

Server overload due to WebSocket’s:

Maintaining real-time requests for multiple users at once could increase the server load,

leading to a server overload. Using an additional tool such as Redis Pub/Sub can help scale

the WebSocket’s and reduce the chances of a server overload.

Risks with the interaction between the technology stack:

To keep a seamless connection between the stack, additional tests and debugging must take

place to ensure that every vital interaction is tested and debugged before hosting.

3.4.2 Operational Feasibility

The system is designed to simplify scheduling for both employers and employees while

eliminating mistakes and keeping both up to date with information. Issues may arise if users

are new or have limited technical skills. To mitigate these issues, user adoption and usability

strategies must be implemented.

New User Adoption:

Employers and Employees may require onboarding to understand how to navigate and use

the system. This can be addressed by implementing tutorials or adding user guides such as

tooltips and popups to help users create and generate a schedule.

Usability Concerns:

The dashboard and general interface need to be clear to help users with limited technical

skills to use the application functionality and navigate freely.

3.4.3 Project Management Feasibility

The project must follow a structured approach such as the agile development approach. This

will keep clear goals for each sprint and keeps time management successful. Complex issues

may arise during development such as the CSPs, WebSocket’s, and unexpected bugs and

delays.

77

CSPs Development:

As the CSP is the main functional feature within the application and has many different

complexities, issues may arise during development with inputting correct data and sending

back optimal solutions. By starting with a basic CSP and implementing features one by one,

rather than building a fully optimised CSP. This would reduce time in debugging and missing

any important features that needed.

WebSocket’s Integration:

WebSocket’s will be implemented in specific routes. By testing each route before starting a

new route can reduce debugging and build a stronger understanding of each component.

Unexpected Bugs and Delays:

Unexpected bugs and delays may be present during the development of the application. By

leaving buffer time in each sprint will allow for any fixes or delays to be made up for, rather

than cutting into the next sprints time.

3.4.4 Economic Feasibility

The cost analysis of the application would include the development, hosting and maintenance

expenses. As the application uses open-source technologies, it helps reduce the initial

expenses. However, Hosting the application will depend on the scalability. With the initial

host, choosing free hosting providers would be beneficial and as the application grows

choosing a flexible and scalable hosting providers could be implemented. The layout of the

application currently keeps the economic feasibility positive as long as the project remains

scaled.

3.5 Conclusion

This chapter has detailed the process of requirement analysis and specification for the

development of the automated employee scheduling application. By evaluating industry-

standard applications such as ConnectTeam and HomeBase, gathering primary data through

surveys and interviews with local business owners, and developing detailed personas and use

cases, the research has identified essential features and highlighted gaps in the market.

78

The resulting user, technical, functional, and non-functional requirements establish a

structured foundation for system design, while the feasibility analysis assesses the project’s

viability and outlines potential challenges and mitigations. With this framework in place, the

next phase will focus on system design and user experience enhancements, ensuring that the

application is both robust and user centric.

79

4 Design

4.1 Introduction

This section is divided into two key areas: Program Design and User Interface Design. Each

area addresses critical aspects of the development of this automated scheduling application.

The main purpose of this section is to transform the requirements, which were outlined in the

previous section (3.3). This process allows for the application to not only be technically

efficient but also user-friendly.

4.2 Program Design

The program design section focuses on the technology stack chosen for the project and which

technologies are considered. The backend and frontend file structures are chosen based on

design pattern, which outlines benefits for the current design pattern. A more detailed

diagram provides the application architecture, then dives deeper into the relationships within

the database design. The section then concludes with the process design of how the

application will communicate for certain tasks.

4.2.1 Technologies

This section includes a list of technologies used within the application. More information

about each technology and how they interact with each other can be found within the

technical requirements section above (3.3.3).

• FastAPI – Python framework for building APIs

• React.js – JavaScript library for building user interfaces

• Vite – Frontend build tool for fast development and optimized production builds

• React Router – Library for handling client-side routing in React applications

• Shadcn – Prebuilt UI components for React, based on Radix UI and Tailwind

• React Big Calendar – A React component for displaying and managing calendar

events

• MySQL – Relational database management system

• MySQL Workbench – Database design and administration tool for MySQL

80

• Insomnia – API testing and development tool

Other technologies were considered but were not suited for various reasons. These

technologies are listed below with reasoning why they were not chosen.

Express.js – While it is a popular backend framework, it was not chosen as I had recently

developed a backend project using this technology and wanted to learn building an API

using Python

OR-Tools (Google's Optimization Tools) – Considered for constraint satisfaction

problems (CSP) as it has powerful and easy to use features with built in components, but

it was found to be incompatible with FastAPI.

React Native – While useful for cross-platform mobile development, it was not chosen

because the primary users of the application rely on laptops rather than mobile devices.

4.2.2 The Structures of the Backend and Frontend

4.2.2.1 Backend Structure

Figure 33 holds the visual representation of the folder structure for the FastAPI back-end,

which uses MySQL as the database and SQL Alchemy as the ORM (Object-Relational

Mapping) for database interactions. The project follows an MVC-inspired architecture, where

the Models, CRUD operations (acting as Controllers), and Routes are clearly separated.

Unlike traditional MVC, the Schemas define the data validation and serialization layer, and

the "Views" are handled entirely by the React frontend.

The main components of the backend are:

• Schemas – Defines Pydantic models for request validation and response serialization.

• CRUD (Controllers) – Handles business logic and interacts with the database through

SQL Alchemy models.

• Routes – Defines the FastAPI endpoints that interact with the CRUD layer.

81

• Models – Contains SQL Alchemy ORM models representing the database tables.

• Dependencies – Holds essential modules such as:

o auth.py – Manages authentication and authorization.

o db_config.py – Handles the database connection setup using SQL Alchemy.

• CSPs – A dedicated folder containing implementations and configurations for

Constraint Satisfaction Problem solvers.

• Association.py – Defines the linking tables.

• Main.py – The entry point of the application, which initialises the app and includes all

router imports.

Each folder includes an init .py file to ensure proper modularization, allowing smooth

imports across the project.

82

Figure 33, Backend File Structure

4.2.2.2 Frontend Structure

Figure 34 holds the visual representation of the React front-end, which was built with

TypeScript and using modern tools such as Vite, React Router and Shadcn. The architecture

of the frontend demonstrates the modularity and scalability.

The main components of the frontend are:

83

• Components – handles the global reusable UI elements across multiple pages, with

subfolders within.

• Config – Holds the configuration files such as the API connection setup.

• Contexts – Different contexts which implement the global state management using

Context API

• Hooks – Which contains the custom React hooks for sharing logic

• Pages – Which contains all the application view with sub folders for each model

created and containing unique components.

• Types – Contains Typescript type definitions which are used across the app.

• Other Core files are placed in SRC folder

o App.tsx – holds the client-side routing using React Router and wraps the

routes in a layout.

o App.css – Contains the global style sheet

o Main.tsx – This is the entry point file of the application and mounts the react

app to the DOM and wraps it with essential providers.

84

Figure 34, Frontend File Structure

85

4.2.3 Design Patterns

This project follows a Model-View-Controller (MVC) inspired architecture, which is very

popular in modern web application development. While this project doesn’t follow the

traditional MVC structure exactly, the core principles are still applied between the front end

and back end.

Within the FastAPI backend, the Model and Controller are defined. The Model represents the

database schema which uses SQL Alchemy ORM models. The Controller layer is identified

as the CRUD layer in my application. The Controller would handle any business logic and

the access to the database. The View is not directly handed in my backend, like generic MVC

architecture. It gives the Frontend this responsibility.

Within the React frontend, the View structure is broken into separate concerns making it

easier to read and manage, these concerns are components, pages, and state management. The

controller layer which is passed is manage through state management such as context and

hooks, which interact with the API endpoints. The components manage the structure of the

how the data is being shown. The pages use the state management to request the data and

pass the refined data to the components.

4.2.4 Application architecture Diagram

86

Figure 35, Application Architecture Diagram

4.2.5 Database design

This section includes a detailed overview of the database design. Figure 36 includes the

Entity Relationship Diagram (ERD), which provides a general description of the relationships

and tables with the application. Building upon this ERD, the Database Schema (DS) dives

deeper into the breakdown of each entities columns, data types and the connectors between

each entity which can be seen in Figure 37. Given the complexity of the applications

relationships, it provides reasoning behind choosing a relational database like MySQL.

One of the central entities in this design is Team, which is intentionally connected to many

other entities such as Users, Shifts, Schedules, and Availability. This reflects the real-world

structure of the application, where most actions and associations occur within the context of a

team. By anchoring many relationships to the Team entity, the application ensures that data

remains scoped and organized logically, enabling features like role-based access, team-

specific scheduling, and filtered views based on team affiliation.

87

4.2.5.1 ERD

Figure 36, Entity Relationship Diagram

Relationships

Team:

• Team has Many Assignments

• Team has Many Solutions

• Team has Many Shifts

• Team has Many Expertise’s

• Team has Many Users

• Team has One owner (User)

• Team has Many Availabilities

• Team has Many Invitations

User:

• User has Many Roles

• User has One Team

• A Creator (User) has One Team

88

• User has Many Invitations

• User has Many Availabilities

• User has Many Assignments

Shift:

• Shift has Many Days

• Shift has Many Assignments

• Shift has Many Expertise’s

• A Shift has One Team

Role:

• Role has Many Users

Expertise:

• Expertise has One Team

• Expertise has Many Shifts

Invitation:

• Invitation has One User

• Invitation has One Team

Availability:

• Availability has One Team

• Availability has One User

Assignment:

• Assignment has One Shift

• Assignment has One Team

• Assignment has One User

• Assignment has One Day

• Assignment has One Solution

89

Solution:

• Solution has One Week

• Solution has One Team

• Solution has Many Assignments

Day:

• Day has Many Assignments

• Day has Many Shifts

Week:

• Week has Many Solutions

90

4.2.5.2 Database Schema

Figure 37, Database Schema

4.2.6 Process design

This section provides diagramming techniques such as sequence diagrams, to show the

interaction between components in specific tasks, and flowcharts to outline different decision

trees and workflows within the application.

Sequence Diagrams 1: Login/ Authentication

Figure 38 provides the sequence of events which occur once a previous user attempts to

login.

91

Figure 38, Login Sequence Diagram

Sequence Diagrams 2: CSP Solver being Triggered

Figure 39 provides the sequence of events which occur once the generate button is pressed.

Figure 39, CSP solver being triggered Sequence Diagram

Flowcharts 1: CSP Flow

92

Figure 40 illustrates the process an employer follows when creating a schedule for an

upcoming week.

Figure 40, CSP Flow

Flowcharts 2: Role-Based Access Control

93

Figure 41 illustrates the process a user with a specific role follows to navigate the system.

Figure 41, Role-Based Access Control Flow

94

4.3 User interface design

This section describes the progression of the applications user interface design. The UI design

had iterative process, beginning with building low-fidelity wireframes within Figma. These

wireframes mapped out the core functionality and layout of the key pages. The low-fidelity

wireframes had soon evolved into high-fidelity wireframes. The structure of the wireframes

allowed for visualising the user flow within the application. Once the user flow was fluid and

met the non-functional requirements (3.3.5), the style guide was chosen in relation to Shadcn

typography and colours, which was shortly implemented to the finished wireframes.

4.3.1 Wireframe

The low-fidelity wireframes acted as blueprint and evolved over time. Once the blueprints

were implemented, the process of building high-fidelity wireframes using prebuilt

components from Shadcn Figma had begun. This allowed to pass consistent patterns across

the application and add a cleaner and more modern look.

The primary focus of the UI was the calendar page, which would use the interactive prebuilt

calendar, React-Big-Callender. Building this was tricky as there was no template available

within Figma. I created each component separately and created variants for each component

to change in different flows or iterations.

The Figures below ranging from Figure 42 to Figure 45, shows the development of the

wireframes beginning with the low fidelity to high-fidelity. This provides the iterative

process of the user-interface design.

95

Figure 42, Chosen Wireframes 1

96

Figure 43, Chosen Wireframes 2

97

Figure 44, Iterations of Month Callendar

98

Figure 45, Iterations of Week Callendar

4.3.2 User Flow Diagram

99

This section shows the flow of navigation for a popular task within the page. This task would

be viewing the schedule for the following week. The flow is visualised for both roles,

Employee and Admin. This allows to get a deeper understanding of the difference of flow

between each role type. In relation to the Figures below, each user has the same navigation

process, but they become restricted to certain features and aspects due to their role.

Employer:

100

Start

AwUabiuty

GeooruteRosler

Figure 46, User Flow 1

Employee:

NO

End

101

AwUabiuty

Doesnt E)(ist

Figure 47, User Flow 2

Start

NO

T@mplat@ with shifts. unl@ss published

102

4.3.3 Style guide

The style guide focuses on the selection of a colour palette and typography for the

application. The colour choices were influenced by the palettes of similar applications,

ConnectTeam and HomeBase (3.2.1), which used vibrant colour types of blues or purples.

Alternatively, a green palette was selected to symbolize success and growth, contributing to a

positive user experience. The typography was chosen to provide readability and a modern

look. The typography and colour palette selection can be seen in the Figure 48 below.

Figure 48, Style Guide

103

4.4 Conclusion

The design phase of the project’s development is crucial, this section outlined how the

requirements of the application will transform to build a successful, reliable and user-friendly

automated scheduling application. By carefully selecting the combination of modern

technologies such as FastAPI, React and MySQL, the application shown potential in creating

a successful application. The adoption of the MVC-inspired architecture allowed for a vision

of structured and organised folder structure. The database design had provided proof for the

choice of database, due to the number of relationships, especially with the core entity.

The program design was crucial especially due to the complexity of the backend and main

focuses around the CSP. Understanding the complexity of the program design, it provided a

guided approach to the user interface (UI) design. By providing different levels of fidelity, it

showed the iterations of the UI development. The completion of the wireframes allowed for a

clear view of how a specific user would navigate throughout this automated scheduling

application. By adding in vibrant colours into the colour palette and choosing a clear and

modern typography, the application now had some structure to match the requirements

needed. This visual of both, program design and UI design, gave a clear vision of how this

automated scheduling application will work and how it should look during implementation

phase.

104

5 Implementation

5.1 Introduction

The Implementation section details the development environment, highlighting the Integrated

Development Environment (IDE) used, which was essential for managing and maintaining

the implementation process. The section dives deeper into the implementation of the system

architecture, which consisted of four core components, database, back-end, Constraint

Satisfaction Problem (CSP) solver, and front-end. Each subsection provides a detailed

description of the steps taken to match the requirements.

The projects implementation phase was developed using Scrum methodology, which

provided a flexible and structured ideology to manage the development across nine unique

sprints. Each sprint included goals and the deliverables to ensure continuous progress for both

the front end and back end.

5.2 Development environment

The structure of this application was carried out in a structured and efficient environment to

ensure smooth and reliable progress. The primary Integrated Development Environment

(IDE) was Visual Studio Code (VS Code) for the development of this automated scheduling

application. VS Code was lightweight and allowed for support of both Python and JavaScript.

This IDE also provided various extensions for formatting, management and error checking,

which ensure smooth and clear development. The terminal within VS Code was used for

frequently running commands for FastAPI, React and Git.

Git was used to handle Version control, with the project hosted on GitHub for backups and

version history. Git played a huge role in the implementation of this application as it allowed

for commits with messaging, document changes or issues at the end of each day. Git also has

issue tracking which keeps track of bugs, which is useful for future development. “.

gitignore” file removed any files or folders which including any sensitive data to being

passed to GitHub, such as the .env file which stored all the environment variables.

To host the development of the backend, FastAPI was used in combination with Uvicorn, an

ASGI server that allowed the application to run locally with high performance and

105

asynchronously. FastAPI also provided an interactive API documentation interface through

Swagger UI, which was extremely useful for testing and exploring the defined routes during

development. The frontend was hosted using Vite, a fast build tool and development server.

Vite enabled hot reloading, allowing for instant updates during the development of the

frontend.

In addition, Insomnia was used for managing and testing API requests. Insomnia helped

streamline communication between frontend and backend by allowing repeated testing of

endpoints with different payloads and headers. Routes were organised into folders based on

functionality, making it easier to maintain a clean and logical structure throughout the

development process.

5.3 Database

MySQL, an open-source relational database management system (RDBMS) was used as my

database in my automated scheduling application. The database stored and managed all the

data, which provided a structured data storage using tables and utilised in SQL queries for

data manipulation and retrieval. MySQL came with a powerful graphical interface, MySQL

Workbench. Workbench provided tools for creating and visualising the database schema,

running SQL queries and managing tables and relationships.

In a broader view, a relation database model was chosen for this application due to its

structure and ability to handle complex relationships between entities. This model was suited

for the needs of this automated scheduling application, where multiple entities such as users,

schedules, availability, shifts, and expertise needed to be interconnected. In relation to the

database schema at Figure 37, the team served as a core entity, linking to most other tables

through foreign key relationships. This allowed for a simplified data retrieval of related

information. Specifically, when executing the Constraint Satisfaction Problem Solver (CSPs)

to retrieve all relevant data associated with a specific team. Passing the correct data quickly

was essential as this was the main focus around the automated scheduling application.

106

Figure 49, MySQL workbench

5.4 Backend

5.4.1 Overview

In relation to the program design section (4.2), the backend was developed based on the

chosen architecture, which incorporates an MVC-inspired pattern. The backend was built

using the FastAPI Python framework, selected for its asynchronous performance and high-

speed capabilities, allowing the system to efficiently handle multiple requests concurrently.

The backend leverages SQL Alchemy for easy interaction with the MySQL database. The

combination of FastAPI and SQL Alchemy enabled the creation of RESTful APIs that the

frontend can interact with. The backend structure was designed and developed to be modular,

consisting of models, CRUD operations (controller), routes, and schemas.

5.4.2 Virtual Environment Setup and Dependency Management

After the initial setup of FastAPI, the projects virtual environment needed to be setup to keep

the dependencies isolated to avoid conflicts with global environments from other projects. A

107

virtual environment was created using Venv. Using Venv it isolated the dependencies in a

clean and controlled environment.

To create a virtual environment, this command was used within Bash terminal.

Python -m venv env

After Running this command, it would create a folder which stores the dependencies. Before

installing any dependencies, the activation of the virtual environment is essential.

./env/Scripts/activate

Once the activation was made the necessary dependencies can now be installed, such as

FastAPI, SQL alchemy and unicorn, which was done through pip installations. The

successful activation of the virtual environment can be seen when the terminal prompt is

slightly changed depending on the terminal. In terms of Bash, it presents two stars at the start

of the prompt.

The application required dependencies could now be managed by freezing the dependencies

installed into a requirements.txt. Allowing for future installation on a new device based on

the requirements.txt file.

pip freeze > requirements.txt

5.4.3 Database Configuration

To configure the database for this application, SQL Alchemy was used as the ORM tool to

manage the interactions with the database. To establish the connection to the database,

db_config.py file was created. Concepts from SQL Alchemy were imported to create this

functioning database file.

• Create engine function concept was to define the connection to the database. The

engine serves as the interface essentially for interacting with the database, managing

connections and executing SQL queries.

• Declarative base function is the base class that all the other models will inherit. These

models will represent the tables in my database.

108

• The session maker function is used to create a session factory, which then can create

an argument between the engine and the session, which associates the engine with the

session.

Figure 50, Database Config

109

From the Figure above we can see that database URL is being passed through dotenv, using a

python-dotenv library. This was to hide any sensitive information from the public,

especially once the application is hosted. Creating a .env file and applying this file in the

gitignore, provided that this file would not be push on git and displayed on GitHub. The

figure Below shows a copy of how this .env file is viewed.

Figure 51, ENV example

5.4.4 Database Models and Relationships

Database models were created using SQL Alchemy to match the structure and relationships

of the database schema and pass it through to the MySQL database. Each model corresponds

to a table within the database, relationships within the model is how the model can interact

with each other.

Figure 52, Team Model

110

The figure above shows the Team model, which represents the team’s table. This model holds

all necessary columns that must be passed to the table and all the relationships that need to be

declared based on the database schema. Each model which is created, inherits from Base,

which maps the model class to its corresponding database table. Models that define

relationships must import both Foreign Key and relationship from SQL Alchemy.

The relationship function typically takes in two or more parameters. The first is the model’s

name as a string that it's linking to, and the second is back_populates, which sets up a

two-way connection with the specified model. It can also take optional arguments like

cascade, which defines how changes on a parent object affect related objects, and secondary,

which specifies the linking table used for many-to-many relationships. Tables involved in

one-to-one (1:1) or one-to-many (1:M) relationships, act as the parent, typically include a

Foreign Key column to associate themselves with another table. In the Team model's case,

the creator_id represents a one-to-one relationship with a User.

5.4.5 CRUD Operations and Business Logic

This section explains how the CRUD (Create, Read, Update, Delete) requests and business

logic was implemented. Each model which was created had corresponding set of CRUD

requests. Each of these requests was defined as a function, which took multiple parameters. A

reoccurring necessary parameter, db with a type annotation of Session which was provided by

SQL alchemy. Db allows for access to the database session to interact with the database. The

other parameters would be data we are passing through, e.g. id, or data we are receiving, e.g.

Specific Team. Each of these parameters had types to explicitly say what data is expected.

The business logic took place within these functions, which would vary depending on the

table and request type. This logic helps maintain data consistency and enforcing the intended

permissions. The Figure below shows the create team function.

This function handled the creation of new teams into the database. The logic began at line 3,

initialising a new variable by querying the database to filter through the user table to match

the id to the current users id. If the id was not found in the database from the current user, it

would provide an error message “Creator not found”. The second part of the logic was to find

the role name under employer, which then had a condition to check if the name exists and if

the user didn’t already have this role. The third condition was to double check that the user

111

was not already a creator of another team. If all the conditions passed it would create a new

team instance passing the team’s name provided and the id of the current user. This was then

added and committed to the database, which then got the created teams id and passed it to the

user, which was then stored in the foreign key under team_id. This new team was then

returned with errors specified as none.

Figure 53, Create Team Function

These functions became more complex when dealing with linking tables. The

attach_days_to_shift function within shift_crud.py file, required multiple

conditions and loops. The figure below displays the various conditions to check if the shift

exists, if it belongs to the user’s team, and if the creator is the current user trying to attach.

Once all these user dependent conditions pass, the days variable will be initialised by

querying the Day table and getting all the ids which match to the request. If at least one day

id doesn’t exist it will throw an error. Using a try-except statement to handle any errors that

may occur during the execution. It loops through each day and inserting the value of the

team_id, shift_id and the day_id foreach day present. Creating X number of tables

112

dependent of X length of days.

Figure 54, Attach Days Function

Another unique function, create_user found within user_crud.py file is displayed in

the figure below. This function has several conditions and unique logic which attaches a

specific role to a new user, Customer. The function uses an imported function which was

created within auth.py, the purpose of this function is to encrypt the password given by the

new user to ensure password is not exposed in plain text in the database. This encryption

function will be seen in Authentication and Access Control section (5.5.10).

113

Figure 55, Create User Function

5.4.6 Routes and API Endpoints

This section explains how the routes were created, and the corresponding API endpoints were

defined in the main.py file. In each route the API Router function would be called to group a

set of routes, allowing the application to be modular. The route would handle HTTP requests

using FastAPI @router.post decorator to register the function under the current router.

The decorator would be followed with two sets of parameters, the relative route path, and the

response model, which tells FastAPI to return and validate the response in a structured

114

format. Each route is defined using async to allow asynchronous execution, with included

parameters which need to be passed to the CRUD function afterwards. These parameters

specify the schema for the request or response body and use dependency injections to call

specific functions in the background using Depends and stores them in a variable.

Dependency injections wait for the current function to be called before executing the route.

These variables are passed to the CRUD function with all the variables needed, which then

the return from the CRUD function is stored in variable to return.

In the Figure below, an example of the team creation route is shown. This route handles a

POST request, which is set to the URL of “/” and uses the Team Response schema as the

response model. The function create_team_route accepts three parameters, the team,

which is of type Team Create, the current user, which is of type User Response and uses

FastAPI dependency injection to get the current user through a function. Db, the most

important parameter, which is of type Session and injects the get_db function. These

variables are passed to the create_team function, where the team creation logic is

handled. The response from the function is then stored in new_team variable which is then

returned in the route.

Figure 56, Create Team Route

The main.py file acts as the central entry point for the application, which is responsible for

managing application lifecycle events, configuring middleware, initialising the FastAPI

instance and including all the route modules under a specific prefix.

115

Figure 57, Central Entry Point

In relation to the figure below, all the route files are imported and included using app.

include_router by passing the specific router and the prefix I want to use. Each route

also includes a tag which was to categories the routes in the swagger UI

116

5.4.7 Schema Design with Pydantic

This section focuses on how Pydantic was used for data validation and serialisation. Each

model created had an associated Pydantic schema file to define the structure of the data that is

expected in every case. Using Pydantic made life easier as there didn’t need to be conditions

to check specific response or requests, if certain data was passed wrong such as data type

expecting a string was passed a number, Pydantic would raise an error with a detailed

response.

In the figure below, each new class inherits from the Pydantic base model which activates the

validation and serialisation of data input and output. Certain fields can be made optional

meaning that data can be assigned to specific type if they exist. Certain fields might inherit

from another schema such as user_id expects a list which is of type UserI. The config

class with the attribute from_attributes = true, indicates to Pydantic that it can

extract from objects rather than plain dictionaries.

117

Figure 58, Schema for Team

5.4.8 Association tables and Many-to-Many Relationships

As the application included many to many relationships, association tables had to be created

specifically within association.py file. The relationship within the model had to specify

the secondary table it was linking, to allow a connection between one table and the many to

many tables.

The figures below show how the association tables were created and what relationships were

needed to associate to the linking table. The relationship between user and role are shown

how they both are linking to a secondary table called user_roles.

118

Figure 59, Association Tables

Figure 60, Relationship for Association

119

Figure 61, Relationship for Association 2

These many to many tables’ columns would be imported or removed during specific

functions such as, when user accepts a team invite, the role and user is appended to the many

to many. The figure below represents the accept_inviation function within

team_inviation_crud.py to show how this append is implemented.

Figure 62, Editing Association tables

120

5.4.9 Enums Handling for Status

Enumerations (Enums) are used to define a set of predefined values for a specific variable.

This would improve data integrity and maintainability. These Enums were used specifically

for managing status of various fields such as, solution status and invitation status. They were

created within enums.py file and imported in schema and the model for the related field.

In the figure below we can see how these Enums were created within the enum.py file and

how they were used to specify default values within the model, schema and CRUD.

Figure 63, Enum Schema

Figure 64, Enum Put Request

Figure 65, Enum Within Model

Figure 66, Enum Schema Child Called

121

5.4.10 Authentication and Access Control

Authentication and Access Control were vital to ensure security and implement RBAC into

the application. All related information with authentication and access control was stored

within auth.py in the dependencies folder. Inside auth.py, numerous functions were

implemented such as, access token creation, encrypting the password, verifying the password,

getting the current user through the access token, and checking the current users’ roles. The

following explains how each function was created and how the function was called within the

route.

The figure below shows how the create_access_token function was implemented to

create a token using JWT and store it as a cookie. This function took two parameters, data;

which is a dictionary about the user’s information which will be encoded into JWT and

expires_delta; which allows to set an expiration time for the token. The function begins

with copying the data dictionary to add expiry and ensure the original data isn’t tampered

with. The JWT token is then encoded with using a JWT function called encode which takes

the data, secret key and specified algorithm. This function is enabled during login function

within auth_route.py. Once the user passes conditions, it sets the cookie to the access token

created, ensures the cookie is inaccessible to JavaScript, ensures the cookie is sent only

through a HTTPS connection, and how the cookie is sent with cross-site requests, which will

be changed after development.

122

Figure 67, Access token Set up

Figure 68, Function To create Access Token

123

Figure 69, Access Token function called with relevant data passed

The access token is now stored. The current_user function can access the token and

implement it to specific routes to ensure that routes need to be authenticated before access.

This function specifies that it expects a cookie named access_token. The function

includes, try-except for exception handling of various conditions. These conditions to check

if there is no email, if the token is expired, if its invalid or if the token is missing. If all

conditions are passed, its tries decode the JWT to verify the users and retrieves information

on that user. This function can be used to authenticate routes and stop users who aren’t

logged in from accessing specific routes. This function would generally be called during

dependency injections to run asynchronously. The following figures provide the

current_user function and how it is used.

124

Figure 70, Decrypting Token

125

Figure 71, Decrypting Token in Route to Validate

A function was created to implement the RBAC for the application. Require_role

function would use a dependency injection of current_user which would check if the

current users’ roles match any of the roles which are provided in the required_roles parameter

with the function. The required roles would be defined and dependant on the route. If the

user didn’t match any of the roles, then it would pass an error of status 403, forbidden. The

figures below demonstrate how this function was created and implemented in a shift create

route where only the Employer could use this route.

Figure 72, Require Role Function

126

Figure 73, Role function called passing role to be validated

The final functions with auth.py, managed the password encryption and decryption. The

hash_password function was responsible for encrypting using CryptContext which was a

class from passlib library. CryptContext took to parameters, the scheme which was the

hashing algorithm (schemes=[“bcrypt”]) and depreciated=” auto”, will automatically mark

any future algorithms as deprecated, ensuring that the password hashing uses up-to-date

algorithms. This context created can now hash the password using the method provided by

the instance of CryptContext. To Verify the password at login the verify_password

function is used, which uses method provided by CryptContext called verify. This takes the

hashed password from the database and the plain password provided in the login form.

Figures of both functions are found below, with the use of verify in login and hash in

create_user routes.

127

Figure 74, Functions to encrypt and verify the password

Figure 75, Verify password Function in use

128

Figure 76, Hash Password Function used before posting to database

5.4.11 WebSocket’s

As mentioned in the system architecture section (3.3.3.1), WebSocket’s were implemented

within the backend to maintain a connection between the server and the client, allowing real-

time notifications with changes. A file called websocket_manager.py was created to

hold a class with multiple functions handling connection, disconnection and targeted message

delivery. The class stored all active connections within a dictionary, using the ids from the

user as the key and the list of WebSocket instances as values.

Once a user connected through the connect method, their id was stored in the connections

dictionary. Once the connection is disconnected using the Disconnect method, the user’s id

is removed from the dictionary. The send_to_user method allowed the backend to send

the connected user a message directly over the WebSocket channel. A global instance was

created which ensured that the WebSocket manager class could be accessed from any file in

the back end.

129

Figure 77, WebSocket Manager

To initiate this communication, a WebSocket route was registered within the main.py file,

app.include_router(websocket_router, tags=[“WebSocket”]). This

enabled users to establish a WebSocket connection with the server. The router for

WebSocket’s was created within the websocket_route.py file. This route began with

decoding the access_token to retrieve the users id. Using the retrieved id, a condition

was implemented to check the dictionary of users to double check the user wasn’t already

connected, this prevented duplicate entries. If the condition was passed it would try

130

connecting the user to the WebSocket server.

Figure 78, WebSocket Route

The Figure below illustrates how the messages were sent upon change to the database. Once a

user with the role of Employee creates their availability, send_to_user function is

initiated by placing the employer_id into the parameters, as the target user. The second

parameter is the message that is being sent to this target user. In relation to Figure 79, the

message is indicating that the user which created the availability has updated their

availability. This ensures the team is connected with any urgent requests.

131

Figure 79, WebSocket Availability Message

5.4.12 Testing and Debugging

During development the testing and debugging of the application was important. This

ensured that if there were any issues upon creation, they can be tackled right away.

Debugging the API was done using Swagger UI documentation provided by FastAPI. Testing

endpoints and checking validation for each route created. As Swagger UI was updated in real

time it decreased time consumption of restarting the server. Insomnia was also used for

debugging; the implementation of insomnia allowed to store and export the routes and

organise the collections based on model. The following figures show the structure of both,

Swagger UI and Insomnia Collection.

132

Figure 80, Insomnia Modularisation

Figure 81, Insomnia Environments

133

Figure 82, Insomnia Request and Response

Figure 83, Swagger UI endpoints

134

5.5 Constraint Satisfaction Problem Solver

5.5.1 Overview

The Constraint Satisfaction Problem (CSP) Solver was the core functionality of the

application which was implemented within the FastAPI backend. This solver needed to be

implemented by using all relevant data from the team. This data included users, shift details,

availability, shift expertise and user expertise. The CSP solver would be triggered through an

API call which would get all data which is filtered by the team_id given. The solver would

provide a solution or number of solutions based on the data and pass it back to display it

within the return.

5.5.2 CRUD

The create_schedule function prepared and returned the structured scheduling data including

all relevant data by querying each table to the team_id. This structured data was now

prepared to be sent to the CSP solver.

Some data had to be modified to support the python constraint library, such as the users were

converted from a list to a tuple as the CSP required immutable types to function correctly.

The concept of expanded shifts added slot field to the existing shift details, as some shifts

required more than one user, adding the two variables to a single domain it would raise an

error within the CSP. This is because within CSPs a domain cannot be added to two

variables. By implementing slots, it essentially multiplied the shift by the number of users

and assigned it a slot of the index of the loop. Once the issues were solved, the updated

requests were returned to the CSP. The implementation of the crud can be seen below.

135

Figure 84, CRUD CSP 1

136

Figure 85, CRUD CSP 2

5.5.3 Route

The assign_shifts function handles the logic of generating and storing the return from

the CSP. The route is responsible for passing the formatted data from the

create_schedule function and stores the result from the solver into the solutions table

and loops through each assignment returned, then stores each to the assignments table.

The route takes two parameters, the team_id which is passed from the current user team_id

and the week_id which needs to be specified as the solution will be created dependant on

the week. Conditions are placed to check the user and retrieve the user’s information, while

checking if the user has the required role of Employer. The create_schedule function is

initiated by passing the team_id, week_id and the database, which is stored in a variable

called request_data.

137

Figure 86, CSP Route #1

The solver is initialised by passing all relevant details from request_data to the CSP

constructor, which is stored in the solver instance. The CSP logic is summarised in the solve

method within the solver, which is called within the route. The result from the solve method

is stored in the result instance, this instance has conditions to check if the solver has no

assignments to then return a message response, “no valid assignment found”.

138

Figure 87, CSP Route #2

If there are no errors, the results which are stored in the result instance are formatted to

populate the solution table with relevant data. The assignments are placed within a loop to

pass the relevant details for each into the assignments table, which then displays the return of

the result.

139

Figure 88, CSP Route #3

5.5.4 Solver

5.5.4.1 Init function

The ShiftAssignmentSolver class encapsulates the core logic for assigning users to shifts. The

class uses the python constraint library to define variables, domains and constraints. The

library also offers various methods which allow to develop the CSP.

140

As shown in the figure below, the solver is initialised within the init function. This

function takes in various parameters which is passed from the route within its constructor,

such as shifts, users, and user_availability. Some of the lists which are passed

are converted into dictionaries to enable more efficient access during constraint checking, this

is done for user_expertise and shift_expertise.

Figure 89, Init Function #1

The problem is than initialised using the problem method which is provided by python

constraint. A list is defined called shift_combinations to store the unique shift

combinations then a list is defined called possible_users to define the domain of each

141

shift. The list of possible users is specified by the user’s availability which was defined in the

constructor. If a user is available for a shift, the python constraint addVariable method is

called with the shift and the user. The function is then closed with the addConstraints

function, which is adds all constraints which are created to the variables.

Figure 90, Init Function #2

5.5.4.2 Constraints Function

The solvers main responsibility was to assign shifts to users without breaking any constraints.

Some constraints were created from the data that was passed such as expertise. However,

some global constraints needed to be added to prevent a single user being assigned all shifts.

142

The constraints are all defined within the _add_constraints function, which takes the

self-parameter specifying the current data. The first constraint checks if there is expertise

relationship between the shift and expertise, if there is an expertise attached to the shift then it

does the same with the user. It uses the python constraint method, addConstraint, to

match the expertise’s between shift and user. Any assignments that don’t match are removed

from the assignments list selection. Global constraints were implemented to ensure fair and

logical shift distribution across users, which were applied for the whole problem space.

Figure 91, Constraint function #1

The no_conflict and max_day_constraint functions enforced mandatory rest

period for users between shifts. The no_conflict was responsible for checking which

shifts were compatible with each other. The max_day_constraint checked how many

days each user has worked, ensuring no single user is assigned all the shifts.

Checking which shifts were compatible could become very computational especially for

larger problems. Optimisation was implemented to make sure that the checks were only made

with relevant shifts. Relevant shifts were seen as shifts that are the next day from the current

shift in the loop and used a condition to check if the shifts have a gap of eleven hours

between one another, eleven hours is legal rest requirement within Ireland. A nested loop was

143

implemented to take the start and end time of both shifts only if the second shift is a day

ahead. These shifts are placed into the no conflict function, where it checks the two shifts’

users and if they don’t match then it can continue. If the user is the same on both shifts it

checks if the time gap is more eleven hours.

Figure 92, No Conflict Function

Additionally, another function was called using the data, which was gathered from the loop.

This function put each shift into a separate dictionary depending on the day. This would place

constraints against each shift which have share the same day, ensuring that a user is not

placed on two shifts on a single day.

144

The max_day_constraint takes the assignments from each user and the length of

assignments each user has. It conditions to make sure the user doesn’t have more then five

assignments. This was hardcoded to ensure no user works more than five days a week. For

future implementation this can be set within the team table, so each user has their own max

days they can work or implement it using hours.

Figure 93, Max Day Constraint

Additionally, a function was implemented to rank solutions based on the fairness of shift

distribution. The score_solution method looped through each solution and tracks how

many times a user is assigned to the same shift_id. If a user appears multiple times for the

same shift across multiple days, a penalty point is assigned for each repetition. The lower the

score, the less unfair the roster becomes in theory. The solutions return within the solve

method are sorted by the best score solution, scored_solutions = sorted

(solutions, key=self. score_solution. The Figure below illustrates how

this function was created. This function had to be removed as it was too computational within

generate and was only implemented within the regeneration solver.

145

Figure 94, Scoring Solutions Function

5.5.4.3 Solving Function

The solve method gathered the specific problems constraints and assignments which were

defined. The solve method initialised by using the python constraint method called

getsolutions to gather all existing solutions. If solutions existed, they would be

formatted and filtered by day_id to show the assignments in order of each solution

beginning with Monday or the first day shifts beginning with. The response also provides the

number of solutions which are available and if no solutions are available the method provides

an error that no solutions were found and why. The figure below illustrates how it was

implemented within the code.

146

Figure 95, Solve Method

147

5.5.5 Regeneration Solver

The regeneration solver is a separate CSP solver class, which focuses on using existing

solutions and changing certain assignments dependent on additional constraints. This solver

allows the employer to have more flexibility when choosing their schedule, by locking certain

assignments and regenerating them. The following sections provide an understanding of how

this regeneration roster was implemented and the difference between the two CSPs.

5.5.5.1 CRUD

This CSPs logic was dependent on the solution provided. As each table within the database is

connected to the id of the team, it becomes easy to gather all the correct data in relation to the

solution and the team connected to the solution.

148

Figure 96, Regenerate Crud #1

Unlike the previous CSP, it allows gathers data about each assignment specific to the

solution, dividing the assignments into groups of locked and unlocked. This simplifies

prefiling the solution within CSP and only changing the assignments which are unlocked.

149

Figure 97, Regenerate Crud #2

5.5.5.2 Route

The route holds the solution id parameter which specifies which solution will be regenerated.

This solution is passed to the generate_solution function which was created in the

crud file. The response from this function is then stored in a variable called

150

request_data, this data is then passed to the regenerate CSP. The solve function is then

called to activate the CSP solver.

Figure 98, Regenerate Route #1

Using this result variable, a condition is placed to check if there were any solutions found.

If there was a solution, this solution is now placed now updated with the new solution data

and each assignment corresponding with that previous solution is deleted and new

assignments are assigned.

151

Figure 99, Regenerate Route #2

5.5.5.3 Solver

The regenerate solver is like the generation solver, it takes in the same variables within the

constructor with additional locked and original assignment variables. Once the variables that

were passed into the constructor are initialized, there are a few adjustments which are made

to these variables. The user and shift expertise data are converted into dictionaries to allow

the CSP to access these variables properly. The shift details are also changed to a dictionary

152

to access easier. An instance of the problem is created, and the two main functions are added

to the problem.

Figure 100, Regenerate solver #1

A new method has been created to add variables to the problem instance. This was done

differently compared to the other CSP. _initialize_variables began with looping

though the shifts which were already locked. If a shift was locked with would pass this

assignment through to the solution and add a new variable. If an assignment was not locked it

would clear the assignment and add the shift with a list of the possible users which are

available.

153

Figure 101, Regenerate solver #2

The constraints method adds various constraints to the problem, the constraints are identical

to the previous CSP and can be seen on Constraints function, (5.6.4.2). However, an

additional constraint is added to make sure that the previous solutions assignments are not

repeated. It loops through the original assignments and the current assignments and checks if

they are identical.

Figure 102, Regenerate Solver #3

The solve method gets three valid solutions if they are available. It has conditions to check

if no solutions are available, it provides a message indicating why no new solutions were

available. In the response, it also provides the changed_count which is the number of

assignments which were changed in relation to the first solution.

154

Figure 103, Regenerate Solver #4

1

5.5.6 Storage and Retrieval

As mentioned within Route section (5.6.3), all assignments and solutions are stored directly

into the database. Each solution and assignment within the database match the database

schema, which was designed, as we can see from the figure below, each assignment is linking

to a solution through a foreign key called solution_id. The week_id also provided that

the user can view multiple solutions at once for a specific week, comparing the solutions,

then choosing the solution which was most suitable for the employer.

Solutions:

Figure 104, Solutions SQL table

Assignments:

2

Figure 105, Assignments SQL Table

The logic behind the retrieval of solutions and related assignments are done within

assignment_crud.py file, the routes assigned to each of these functions are stored

within the assignment_route.py file. The figures below show how an employer can

access their solutions, whether they are status draft or complete, and how they can update

specific assignments to toggle their locked Boolean and prepare the solution for reassignment

if needed.

3

Figure 106, Routes for solutions and assignments

4

5

Figure 107, Crud File functions for solutions and assignments

Figure 108, Locking Assignments Route

6

5.6 Frontend

5.6.1 Overview

In relation to the program design section (4.2), the frontend was developed using React, a

popular JavaScript library known for its efficient rendering and development of single-page

applications (SPAs). Vite was selected as the build tool due to its fast development server

which offered a smoother development experience through efficient rebuilds in relation to

changes in code.

React also offered access to a wide variety of libraries such as React Router and React Big

Callendar. React Router was used for implementing client-side routing, offering dynamic

navigation between pages. React Big Calendar was integrated to provide an interactive

calendar, which was used for the core functionality of the application.

To enhance the user interface (UI), the Shadcn component library was implemented,

providing a consistent design. Its integration with Tailwind CSS allowed for customisation of

these components including the colour palette, typography and layout. This ensured the

interface aligned with the user interface design (4.3).

5.6.2 Backend Connection

To enable communication between the frontend and backend, an axios instance was created

within Api.tsx file. Axios is an asynchronous HTTP client that simplifies making requests

from the frontend to a backend server. The figure below displays how this configuration sets

the base URL as the backend server ensuring credentials is set to true, credentials make sure

that the cookies are passed with the request. The hosted sites URL would be set in .env and

called upon this file, this allows for immediate transfer after the development.

7

Figure 109, Api.tsx file

To keep a clean and modular architecture, the backend routes are organised into separate files

within services folder. Each file corresponds to a specific set of routes and contains relevant

functions for interacting with those routes. Keeping all these routes in a service file allows for

easy import and reuse of these functions in various pages. The figure below displays a

function from the shift service file, containing a variety of asynchronous functions that ensure

the application is not blocked while making the HTTP request. Each function takes specific

parameters, such as an ID, and returns a promise with a defined response type, this ensures

the request will eventually return data. The functions use the axios instance as the base of the

URL followed with the rest of URL endpoint with the appropriate HTTP method.

Figure 110, Shift Service

5.6.3 Forms

The application included various forms to manage the CRUD operations for entities like

users, teams, shifts, expertise, and more. These forms were wrapped in either a dialog or a

sheet, which was provided by the Shadcn component library, ensuring that all related data

8

was organized on a single page. The implementation of Reacts, useState hook was to manage

the visibility of these forms, which made the application appear seamless. The figure below

illustrates how the edit sheet was displayed.

Figure 111, Shift Edit Sheet

The core form was the login form, which handled the authentication for the application. It

validated users and granted access to all other protected routes and features. The figure below

displays how this form was implemented. The form collects users input for email and

password; the input is stored in a useState called form. The handle click function is called

once the submit button is pressed, this sends a post request using the axios instance. If the

response is successful, the JWT access token is stored in a cookie using the js-cookie

library. The token is decoded and stored in the applications authentication context, for future

retrieval of other routes.

9

Figure 112, Login Form Code

5.6.4 Contexts

Contexts were fundamentals for managing and sharing a state across the entire application,

rather than passing props manually between each component. Context is a method provided

by React to implement these global states efficiently. There are four distinct contexts within

the application which are responsible for specific set of global states, authentication, global

refresh, inbox count and theme management. These contexts were wrapped around the

application within the Main.tsx file. The figure below illustrates the contexts being

10

wrapped around the children, which is the App.tsx file.

Figure 113, Context Wrapping Children

5.6.4.1 Theme Management Context

Theme management context is responsible for managing the state of the visual theme of the

application. The state is set within the application page which is passed to all the children

pages of the application. This theme is then stored within local storage, this ensures that if the

user refreshes the page their theme is still set to chosen theme. There are two themes

available, dark and light. Each theme utilises the colour palette mentioned in user interface

design section (4.3.3). Figures 114 and 115, display both themes on the account page.

11

Figure 114, Light Theme

Figure 115, Dark Theme

5.6.4.2 Inbox Count Context

Inbox count context is responsible for managing the state of the integer within the sidebar

beside the inbox. This stores the length of the invites and availabilities in a state which is set

within the inbox file. Any changes made to the inbox such as accepting an invitation will

dynamically update and reduce the count, providing real-time feedback to the user. Figure

116 illustrates how this inbox count was displayed with the inbox page.

12

Figure 116, Inbox Count Visual

5.6.4.3 Global Refresh Context

The global refresh context was responsible for refreshing specific pages which were

dependant on a variety of factors. Its prime connection was with the WebSocket server, it

would listen for a message activity. If the message displayed information about availability or

invitations, the global refresh state would be set to this text. Other children, such as pages

would wait for these state key words and refresh specific functions in relation to the state.

Figures 117 illustrates how this state was set upon a WebSocket message delivery, the global

state is now set to “Notifications”, figure 118 displays a condition which checks if the state is

“Notifications” then it runs the function and sets the state to another function which needs to

be refreshed. This made the application reload with WebSocket messages and data in real-

13

time in relation to the database.

Figure 117, Setting the state upon notification

Figure 118, Using the state to run a function

5.6.4.4 Authentication Context

The authentication context was responsible for setting the state of the current user. The state

was set upon login, which held multiple different states which would be reused throughout

the application. This context would get the access token which was returned as a cookie

14

through the login response. If the cookie existed, it would store the user information in a state

called user and would set authenticated to true. Additionally, the token from the cookie was

stored. Storing the cookie within a state had to be implemented for the WebSocket route, as

the WebSocket route could not access the cookie due to a bug. These states were used across

the whole application, sending user information within routes or checking if the user is

authenticated to view certain pages. Implementing authentication as context simplified role-

based access control and authentication control across the application. Figure 119 displays

the file structure of this context.

Figure 119, File structure of Authentication Context

5.6.5 Hooks

Hooks were implemented to encapsulate logic that can be reused across the application, this

made code more modular and eliminated any repeating code. Two hooks were implemented,

15

useRoles and useWebSocket. Each hook was responsible to manage a specific

functionality.

The useRoles.tsx file was responsible for checking a specific role using the

authentication context user state, ensuring that the role required for certain pages and

functionality were correctly validated across the application. Figure 120 illustrates how this

hook was implemented and how each arrow function represented a role within the database.

Figure 121 displays how this hook was used as condition in relation to view routes in the

App.tsx file.

Figure 120, UseRoles hook

Figure 121, UseRoles hook being used

The useWebSocket.tsx file was responsible for managing the WebSocket connection,

including connecting, handling messages, monitoring status and disconnection. This hook

utilised useEffect hook to initiate the WebSocket connection immediately when the

application is mounted and when the login is made. The development URL was initialised in

16

a variable passing the access token with the URL as a query parameter. Using this URL a

new WebSocket instance was created using new WebSocket. The hook maintained a

connection status state of isConnected to pass it to other components, this allowed the

user interface to provide real-time feedback to the users regarding their connection status.

Figure 122 displays how this code was implemented.

Figure 122, WebSocket Hook

5.6.6 Views and Routing

17

The implementation of each view was modularised into separate folders, following a clear

structure that included a components folder for UI components, a services folder for the API

interactions and additional files for handling the CRUD operations, this layout can be found

in figure 123.

Figure 123, Structure of pages folder

These view files such as Show.tsx from figure 123 was imported and initialised as a route

in the App.tsx file. In relation to figure 124, each Route created was wrapped inside the

Routes component provided by react-router-dom, which acted as a container for

each Route. A route component needed a path and the page to present on this chosen path.

18

Figure 124, Routing

Protected routes were all the routes which need authentication, if unauthenticated tried to

access it would redirect to the page not found component. This was done separately for the

sidebar component protectedSide, as the sidebar needed to be outside the route’s

container. This modular layout ensured that the routing structure to be scalable and easily

managed with authentication.

5.6.7 Calendar

The calendar was the core page within the application, serving as the main component for

user interaction. It utilised React-Big-Calendar to provide basic structure and functionality.

Keeping the calendar page modular was important to separate each detail which was

displayed on the calendar. The calendar page was broken into two folders components and

services folder and a central file, CalenderPage.tsx. Figure 125 illustrates this

calendar page.

19

Figure 125, Callender Page Display

5.6.7.1 Calendar main page

The calendarPage component serves as the primary interface for managing and

displaying the correct shifts or solutions on the correct dates. An asynchronous function

called loadEvents is placed inside a useEffect hook. This function is composed of

three separate requests, to retrieve the solutions available, the assignments of each solution

and shifts, where solutions are not found.

The function begins with retrieving all the solutions and storing them in variable, a loop is

placed to extract the start date and end date of each solution from the week_id provided.

The assignments of each solution are stored in an assignments variable, which is then

looped to group each assignment by shift and day. Once the assignments are sorted correctly,

extraction of the keys is to take relevant data from the assignments and create events for each.

One the solutions are finished; the shift request is called. This function loops through each

shift and takes all necessary data to populate the event with the shift data. This function

creates shifts for the next six months, this would mean that users can create schedules for the

next six months. The solution and shift events are then combined using the spread operator

and stored in a state called viewEvents. The events are then passed as a prop to the

calendar component.

20

Figure 126, Solutions being pushed to events

Figure 127, Layout of shifts being pushed to events

21

5.6.7.2 Calendar Component

Once the events are passed to the calendar component, the component formats these events in

relation to the date and the start and end time of the event. Additional features were added

which rendered conditionally. If a shift was being displayed on a week view, the calendar

would display a generate button. However, if a solution is present for that current week, it

would provide three buttons, regenerating the solution, accept and decline. Additionally, the

events were also passed the event component. The figure below displays how these events

and other variables were passed to react-big-calendar component.

Figure 128, Calendar Component

5.6.7.3 Event Component

The event component took these events and formatted them to make them more user friendly.

These events displayed the name of the shift, the employees on the shift, the time of the shift

and a button which is rendered conditionally. This button only appeared on generated

solutions which have a status of “Draft”, the button would be used for locking a specific

assignment. Once the button was pressed it would send a request to the backend locking that

specific assignment and changing the event card visual display. Once these assignments are

locked the user can press regenerate solution to build a new schedule around these locked

assignments. Figure 128 illustrates how these solutions looked once generated with locked

assignments and figure 129 displays how this lock assignment code was implemented.

22

Figure 129, View of locked assignments

Figure 130, Locked Code Implementation

5.6.8 Types

Throughout the development of the application, TypeScript was implemented to provide

clarity and maintainability of the code. All the types and interfaces were stored within the

“types” folder, each page had their own dedicated file for types and interfaces. This structure

allowed for types to be reused and updated easily. Figure 131 illustrates a part of the team file

which included all relevant interfaces.

23

Figure 131, Team Type File

5.6.9 Design

The design components were implemented during the implementation of each component and

page. The colour palette, typography and animations were implemented once the application

had all routes and functional requirements implemented. Shadcn offered a very easy transfer

of the colours and typography, by modifying the index.css file to have the appropriate colour

palette displaying using HSL colour format and typography was imported from google fonts.

Figure 132 illustrates how these base colours were imported to the application using HSL

colour format.

24

Figure 132, Colour imports to CSS file

25

5.7 Conclusion

The implementation section resulted in a successful development of the full-stack automated

scheduling application. The backend was carefully structured with the necessary routes,

models and business logic, while an optimal and flexible constraint satisfaction problem

(CSP) solver was developed to efficiently process and retrieve relational data from the SQL

database created. The optimalisation of the CSP provided an optimal solution within seconds.

The backend routes were tested using Insomnia and Swagger UI which was provided by Fast

API, this provided instant feedback on routes and functionality within each route. Once all

routes and functionality were implemented successfully the frontend development had

commenced.

The implementation of the authentication and regular CRUD operations went smoothly

especially when the code structure was modular. Technical challenges did arise in the

development of the frontend in relation to the CSP. The use of Scrum methodology with its

emphasis on iterative development and flexibility, provided space to accommodate and

overcome challenges like these. The implementation phase remained highly manageable,

while leaving enough time for evaluation of code and testing the application.

26

6 Testing

6.1 Introduction

Testing was crucial to ensure the application met the functional requirements (3.3.4) and

provided a seamless user experience which matched the non-functional requirements (3.3.5).

This section explores the two types of testing methods which were applied, functional testing

and user testing. Both testing approaches were essential in validating the application, with

functional testing focusing on the technical perspective and user testing focusing on a user’s

perspective.

Functional testing ensured that the application responds correctly in relation to specification

and requirements of the user. This project utilised white-box tests for the backend routes and

methods. The use of Insomnia provided a structured environment for simulating requests to

various endpoints while analysing the responses.

User testing ensured that each tester was able to achieve the defined goal. The testers’ actions

were closely monitored by tracking several metrics, including the number of misclicks, time

taken to reach the goal and whether the goal was successfully completed. Feedback from

each tester was given at the end of the session, which provided insights on what components

needed to be refined.

6.2 Functional Testing

Functional testing was applied during the implementation of the backend. Each route was

organised into modular folders, containing each method and function which were

implemented within the route. This iterative process of testing allowed for instant feedback

on the creation of each route and function, which eliminated any bugs or errors immediately.

6.2.1 Validation of Middleware’s

The testing process involved simulating various user scenarios to ensure that the backend

correctly handled validation of these middleware’s with different types of requests. These

users were divided into categories based on the middleware functions applied, including

authentication, creator identification, user roles and team associations. This ensured that each

27

route was tested under each middleware function, verifying the control logic of the route was

as intended.

The application contained 47 implemented methods, of which 43 required testing the

validation middleware functionality. Certain methods in specific routes required every

middleware validation. To illustrate this testing process, three structured tables were created,

each demonstrating the same methods with different types of users. Each table displays the

route name, URL, expected output and the actual output, providing the middleware validation

outcomes.

6.2.1.1 User 1

User 1 details; {id: 1, team_id:1, Roles: “Employer”}

Route URL Expected

Output
Authentication Team

Association
Creator Required

Roles

Actual

Output

Create

Shift
. POST /shifts 201

Created
PASS PASS PASS PASS 201

Created

Edit Team .
PUT/teams/2/edit

400 Bad

Request
PASS FAIL FAIL PASS 400 Bad

Request

Create

Availability
. POST

/available
201

Created
PASS SKIP SKIP SKIP 201

Created

Generate

Schedule

. POST

/schedule/assign-

shifts/1/1

201

Generated

PASS PASS PASS PASS 201

Generated

6.2.1.2 User 2

User 2 details; {id: 2, team_id:2, Roles: “Employer”}

Route URL Expected

Output
Authentication Team

Association
Creator Required

Roles

Actual

Output

Create

Shift
. POST /shifts 201

Created
PASS PASS PASS PASS 201

Created

Edit Team .
PUT/teams/2/edit

201
Updated

PASS PASS PASS PASS 201
Updated

Create

Availability
. POST

/available
201

Created
PASS SKIP SKIP SKIP 201

Created

28

Generate

Schedule

. POST

/schedule/assign-

shifts/1/1

403

Forbidden

PASS FAIL FAIL PASS 403

Forbidden

6.2.1.3 User 3

User 3 details; {id: 3, team_id:2, Roles: “Employee”}

Route URL Expected

Output
Authentication Team

Association
Creator Required

Roles

Actual

Output

Create

Shift
. POST /shifts 403

Forbidden
PASS PASS FAIL FAIL 403

Forbidden

Edit Team .
PUT/teams/2/edit

400 Bad

Request
PASS PASS FAIL FAIL 400 Bad

Request

Create

Availability
. POST

/available
201

Created
PASS SKIP SKIP SKIP 201

Created

Generate

Schedule

. POST

/schedule/assign-

shifts/1/1

403

Forbidden

PASS FAIL FAIL FAIL 403

Forbidden

6.2.2 CSP Functional Tests

The constraint satisfaction problem (CSP) solver was vital to the functional testing process,

as the application was built around this algorithm. Each part of the CSP had to be tested

including, verification of the data imported, data processed, and ensuring a valid solution was

returned by this algorithm. This testing approach was critical to evaluate the accuracy and

computational performance of the CSP.

6.2.2.1 Data Imported and Processed

The data that was imported and passed to the CSP was in relation to the team_id which

was passed in the URL of the route. This was done by filtering within the

schedule_crud.py file, the data received was then passed to the solver. The data that

was being passed to the CSP class was firstly printed in the terminal to review the structure of

the data. This was done by running a built-in python function called print,

print(request_data).

29

Once the imported data satisfied the representation of the database records, this data that was

being processed within the CSP had to be tested. The testing was done by using the print

function within each function in the CSP to identify the steps the algorithm is taking. This

was to see what optimisation could be done to further improve accuracy and decrease

computational complexity.

6.2.2.2 Valid Solutions

To test the validity of the CSPs generated schedule was accomplished by manual inspection

of the database tables. Each individual assignment was reviewed to ensure that none of the

enforced constraints were violated. This cross-checking test provided that the CSP was

creating solutions successfully.

Additionally, two schedules were created using the same variables, domains and constraints

at the same time. The first schedule was created within the application by passing the data to

the CSP, the second schedule was created by a tester which regularly creates schedules for

their business. Both schedules were measured by the time it took to complete, while

comparing the results and checking if no constraints were broken through manual inspection

of both schedules. The Information about the business and the constraints can be found in the

figure 133 below.

Figure 133, Information for comparative test

CSP Schedule

The setup of the environment to generate the schedule took 3 minutes and 24 seconds, the

generation of a schedule which didn’t break constraints took 1.3 seconds. The figure below

illustrates the schedule created by the CSP. The CSP schedule was transferred to excel for

clearer comparison.

30

Figure 134, CSP Schedule Test

Excel Spreadsheet Schedule

The setup of the environment was not included within the manual schedule. To create a

schedule which didn’t break any constraints using excel took 8 minutes and 43 seconds. The

user’s manual schedule didn’t break any constraints. The figure to illustrate the schedule

created by the user is seen below.

Figure 135, Manual Schedule Test

6.2.3 Discussion of Results

The results of the functional testing demonstrated that the middleware validation of routes

was correctly enforced across each route. The structured tables provided users were either

31

granted or denied access based on their details. The documented core routes provided proof

that this consistency was spread across other routes within the application.

Testing the CSP solver further validated the reliability of the core scheduling functionality.

Manual inspection of the data being imported and processed provided feedback on preventing

unnecessary data being passed and optimise the data being processed to reduce computational

power and provide faster results.

The testing on the comparative evaluation of the CSP schedule and manual schedule provided

valuable insights on future considerations to make to the CSP. Both schedules looked nearly

identical, with a minor change on certain assignments. The generated schedule was superior

in terms of speed, however, in relation to optimality it could have provided more of a

balanced distribution between users as seen within the manual schedule. Optimality becomes

questioned, where additional optimisation techniques could be explored to improve balance

without significantly sacrificing computational performance.

6.3 User Testing

User testing was conducted once the implementation of the system architecture was

completed. User testing was carried out locally providing in-person feedback collected

immediately regarding the usability of the application. Two user types were tested, employers

and employees, each with specific goals designed to assess different functionality of the

application. Both users were from the same workplace, which meant they could simulate their

own schedule. The current schedule is complex with nine employees and various shifts which

either have one or two users per shift, dependant on the day of the week.

6.3.1 Employer Role

The user participant was currently working in a management role, dealing with scheduling

frequently within their workplace. To provide realistic conditions, the employer provided

details on current employees, which enabled seeding the database with mock users before

beginning the initial test goal. The user was given two goals to complete. The first goal was

to create a team, this involved registering, creating a team and inviting employees. The

second goal was to generate a schedule for the next week. The second included sub-goals

within such as creating a shift, adding expertise, and accepting any availability within the

32

inbox page, then generating a schedule. A table below is displayed to summarize the

outcomes of the users’ completed goals.

Goal

Number

Goal

Description

Steps

Taken

Time

Taken

Errors/

Misclicks
Outcome

1 Registration Filled form,

pressed

register

32 seconds 0 Success

1 Create a team Navigated

to sidebar,

found

teams,

clicked

create

22 seconds 0 Success

1 Invite users

x7

Navigated

to
employees,

clicked add

1 minute 47

seconds

2, misspelled

email

Success

2 Create Shifts

x6

Navigated

to shifts,

clicked add,

filled form

1 minute 53

seconds

Did not add

days

Failure

2 Create

Expertise x3

and add to

required

Navigated

to expertise,

clicked

create, fill

form, added

users, added

shifts

46 seconds 0 Success

2 Accept

Availability

x8

Navigated

to inbox,

clicked

accept on all

17 seconds 0 Success

2 Generate a

schedule for

next week

Navigated

to team,

navigated to

calendar,

clicked next

month,

clicked

week,

clicked

1 minute 3

seconds

2 Success

33

 generate,

clicked

accept

6.3.2 Employee Role

The user was currently working as a part-time employee, working as a cashier in their

workplace. This employee user had two goals, which were must basic in relation to the

employer goals. The first goal was to accept the invitation received from the employer, for

this test the user was presented with login details. The second goal was to create availability

requests based on their current situation. A table below is displayed to summarize the

outcomes of the users’ completed goals.

Goal

Number

Goal

Description
Steps Taken Time Taken Errors/

Misclicks
Outcome

1 Login Filled form,

clicked

enter,

clicked

submit

20 seconds 1, clicked

enter but that

does not

trigger the

submit

Success

1 Accept

Invitation

Navigated to

Inbox,

clicked

Accept

15 seconds 0 Success

2 Create

Availability

Navigated

my

availability,

clicked on

create

availability

30 seconds 0 Success

6.3.3 Discussion of Results

The results of the user testing demonstrated that the applications core functionalities are

successful by both user types, employers, and employees, with minimal errors. The employer

didn’t complete a goal fully, which indicates that the design of how the days are added is

34

poor and will need to be solved. The employee did provide a misclick in the login, indicating

that an additional function to check if “Enter” key is pressed, to submit the form. Overall,

both users remained calm while navigating through the application providing positive

feedback on the structure of the sidebar.

6.4 Conclusion

The testing phase was essential in validating both the functionalities and users’ experiences

with the application. Functional testing confirmed that the backend routes were correctly

implemented with different types of middleware and the CSP solver operated reliably while

avoiding passing redundant data to the solver and decreasing the computational complexity

during data processing. The comparative evaluation test between the generated schedule and

manual schedule supported the solvers efficiency through speed and correctness, while also

identifying opportunities for improving optimality with balancing distributions between

users.

User testing successfully demonstrated that both user flows were natural with minimal

guidance. Positive feedback was received upon the navigation and structure of the UI design.

However, minor usability issues did arise during the testing, such as the process of adding

days to shifts and login form adjustments. This provided clear areas for future improvements.

Overall, the results from both, functional and user testing builds confidence in the

deployment of the application within the near future.

35

7 Project Management

7.1 Introduction

This section outlines the development cycle of the automated scheduling application,

detailing each major project phase and the project management tools, and methodology

utilised. It begins with exploring the core phases which include, the initial proposal,

requirements, design, implementation, and testing. Each phase highlights the deliverables and

objectives of each. Scrum methodology provides how it was applied throughout the project.

The section concluded with an overview of the project management tools used, outlining

GitHub, Miro and Figma and their roles within the project.

7.2 Project Phases

7.2.1 Proposal

The projects proposal phase outlined the problem statement, proposed solution, target

audience, core functionalities and potential technical stack. It identified a common issue

faced by organisations; the complexity and inefficiency of manually managing employee

schedules. A proposed solution was addressed to develop a full-stack application which

generates schedules for business, which would be powered by a constraint satisfaction

problem solver (CSP) algorithm.

The proposal defined a clear set of objectives, detailing functionalities within the backend

and frontend that had to be met to fulfil the proposed solution. Initialising with the proposal

phase structured the application of the aims to accomplish, and offering an initial strategy of

how it could be successfully implemented.

7.2.2 Requirements

The requirements phase determined the essential needs of the application through a

combination of methods. This included analysing similar applications and their

functionalities, conducting a survey to understand users’ needs and expectations, and carrying

out informal interviews with potential users to gain deeper insight into how they manage their

36

current scheduling operations and their biggest challenges. The gathered information

provided detailed modeling for user, technical, functional and non-functional requirements.

This phase was crucial in establishing a detailed structure for the capabilities expected from

the finished application. It presented a clearer understanding of how the application should be

designed in terms of architecture and user experience.

7.2.3 Design

The design phase was dependant on the requirements phase. The design section focussed on

two key areas, the program design, and user interface design. The program design included a

detailed description of the technologies, including diagrams such as system architecture,

database schemas, and process flows. The diagrams provided visual aids of how each

technology works independently and as an integrated application. The user interface design

concentrated on the visual representation of the application. This included wireframes, style

guides, and user flow diagrams to visually describe the navigation each user would have for

specific functionality.

The design phase translated the requirements phase to a more detailed and visual

understanding. It ensured that both functionality and user experience were addressed before

implementation began.

7.2.4 Implementation

The design and requirements phased acted as a blueprint for the implementation phase. This

phase included a structured process of implementing certain technologies before others. The

implantation began with translating the program design and functional requirements within

the FastAPI backend. Once the implementation of the backend was complete the solving

algorithm was created within the backend applying optimisation techniques from the research

phase. The frontend was implemented once all functionality within the backend was tested

and correctly working. This ensured that no back tracking was done when creating the

frontend, which allowed for applying the user interface design to the frontend.

37

The implementation phase couldn’t have been executed without the foundation of design and

requirements phase. This phase demonstrated clear success in translating previous phases into

a full-stack application which handled generating schedules.

7.2.5 Testing

The testing phase was carried out concurrently with the implementation phase. This allowed

for immediate feedback and action with any issues. Two types of tests were conducted,

functional and user tests. Functional testing involved white box testing of backend routes,

middleware and authentication. Additionally, a comparative evaluation was performed to

assess the speed and accuracy of the CSP and a schedule created manually by a user. User

testing was conducted after the frontend was implemented. The two testers had a unique roles

and goals to complete. This provided insight into the user flow and any feedback on each

goal.

This phase was crucial for ensuring the user requirements and functional requirements were

met from the requirements phase. This provided additional insights for future implementation

within the backend and frontend.

7.3 Scrum Methodology

Scrum is an Agile project management framework that is used to develop software through

iterative process. (Al-Saqqa, 2020). Scrum method is based up of events which include sprint

planning, sprint reviews and a weekly scrum meeting. The implementation of the Scrum

method for this application is crucial as it follows a structured process for the next nine

sprints.

This structured process is organised into nine sprints, with each sprint following a consistent

and structured approach. The entire Scrum process is visually planned and documented using

Miro, a collaborative whiteboard tool. Miro will serve as a central hub to outline sprint goals,

sub-goals, and tasks, while also providing a Kanban board to monitor sprint backlog items

and the progression of the sprint.

At the end of every sprint, a sprint review is conducted to review the progress and backlog.

Any goal within the backlogs which are incomplete for that sprint, are passed to the following

38

sprint, ensuring that nothing is missed. In addition, weekly meetups between myself and the

project supervisor are enforced to maintain communication, review the progression and

highlight any potential concerns within the development of the automated scheduling

application.

Backlogs did occur within the implementation section due to the optimisation techniques

which were applied to the CSP. Using a high volume of variables, domains and constraints

seemed to be computational for the CSP. This issue was revealed in the testing of the CSP,

which pushed the goals behind within that sprint.

7.4 Project Management Tools

7.4.1 GitHub

GitHub was used as the version control tool to manage and track changes across both the

frontend and backend codebases throughout the implementation phase. It provided code

storage within the cloud, allowing to pull and push the repository when working on another

device. Additionally, each repository provides history of commits, messages and errors, this

provides proof of iterative process. Figure 136 displays the Backend codebase within GitHub.

Figure 136, GitHub Backend Codebase

7.4.2 Miro

Miro is an online collaborative whiteboard platform designed for visual planning and project

management. It provides a variety of pre-built templates and components, which were used

39

for simplifying project management. These components and components were Scrum

methodology frames, kanban boards and architecture elements. The scrum methodology

within included goals to complete, goals completed and goals which were not completed.

Each sprint came with a kanban board to track the backlog of each of these goals, which

simplified project management. Additionally, Miro was used for creating a variety of

architectural designs with its prebuilt components, this includes the system architectural

diagram. Figure 137 illustrates the view of sprint nine.

Figure 137, Miro SS of Sprint 9

40

7.4.3 Figma

Figma is a tool which used for user interface and user experience designing, including

wireframes, prototypes and design iterations. Figma was used throughout the design phase

and played a crucial role in managing this iterative design process. Typography, colour

palettes and component layouts were continuously refined based on feedback. The platform

also offers prebuilt templates within their community, this made it possible to import pre-

made UI components to match Shadcn components. Using these prebuilt components

accelerated the interface design process. Figure 138 provides an overview of the whole figma

file.

Figure 138, Figma File

41

7.5 Reflection

7.5.1 My views of the project

Overall, I believe the project was a success. It addressed the complex scheduling problem

through a full stack application with its core functionality within the CSP algorithm.

However, the scope of the project was quite ambitious, especially considering the challenges

of learning an entirely new programming language and framework during the early stages of

development. Additionally implementing features such as WebSocket’s added to the

complexity and required a lot of time to understand and implement the logic.

Developing an entire full stack application independently within a fixed timeframe presented

periods of high pressure, particularly during the implementation phase. Despite all the

challenges, the project met its core requirements and delivered a solution to the complex

scheduling problem. In addition, the project was rewarding as it introduced me to new

technical skills and soft skills.

7.5.2 Working with a supervisor

Working with a supervisor brough both challenges and value. At times, finding a time slot

was difficult due to my heavy schedule, this presented delays in receiving feedback.

However, when our meetings did take place, they were highly productive. Being able to

reason with a developer with experience regarding design or technical decisions provided

clarity and direction.

7.5.3 Technical skills

From a technical perspective, this project significantly broadened my technical knowledge. I

became proficient in Python, despite only beginning to learn the language in September.

Using the official FastAPI documentations, I developed a deep understanding of the

framework and backend development practices in Python.

I also explored WebSocket’s for real-time updates within my application, this required

learning new asynchronous programming concepts. The most substantial skill I gained was

through research of search algorithms and integrating a constraint satisfaction problem (CSP)

42

solver. Implementing and optimising this algorithm within the backend taught me how to

place these theoretical concepts into a functional class.

7.5.4 What was missed

The projects main goals were achieved; however, some features were unable to be fully

implemented due to a lack of time. The drag and drop functionality within the frontend

calendar component needed to be implemented, alongside breakpoints also weren’t fully

implemented within each component. Although planned, an issue did arise within the CSP

with its optimality, this way I prioritised the core functionality which needed instant

attention.

43

8 Conclusion

The issue around the complexity and time consumption in employee scheduling was

successfully solved within a single application, RosterReady. The application provided

authentication, role-based access control, real-time updates with WebSocket’s, an interactive

calendar, and the CSP solver in the backend for scheduling employees to shifts without

breaking constraints. The applications logic was handled using the Python framework,

FastAPI, with relational data stored in MySQL database, and the frontend was developed

using the JavaScript library React.

Managing the project through Scrum methodology allowed for an iterative and structured

development process, allowing for feedback at each sprint across all phases. Each phase was

essential for developing this full-stack application. The research phase deepened

understanding of search algorithms and CSP techniques. The requirements phase gathered

valuable input from users and competitors to shape the applications functional and non-

functional requirements. The design phase used the requirements to translate this information

into a program design and user interface design, resulting with detailed plan. This plan was

then transformed into code within the implementation phase, which provided a clear

understanding of the code and decision making at each element of the stack. Near the end of

the implementation phase, tests were conducted on functionalities and users which provided

deficiencies in the application.

The process of each phase and the successful implementation provided many different skills

and knowledge. The main skills which I acquired were the technical skills, which include

developing algorithmic techniques, understanding and implementing WebSocket’s, and

learning a new programming language to build the backend effectively.

The application has potential to grow substantially and has many different areas to develop in

the future. The main areas which would be considered to develop further would include, the

design of the user interface, additional optimisation to the CSP, more control of the CSP by

the employer, and transitioning the application from browser-based to a standalone desktop

application, as well as extending the application to be available on iOS and android stores.

44

References

Al-Saqqa, S., Sawalha, S., & AbdelNabi, H. (2020). Agile software development:

Methodologies and trends. International Journal of Interactive Mobile Technologies, 14(11).

Barták, R., Salido, M. A., & Rossi, F. (2010). Constraint satisfaction techniques in planning

and scheduling. Journal of Intelligent Manufacturing, 21, 5-15.

Bessiere, C. (2006). Constraint propagation. In Foundations of Artificial Intelligence (Vol. 2,

pp. 29-83). Elsevier.

Connecteam. (n.d.). Connecteam: The World's #1 Employee App. Connecteam.

https://connecteam.com/

Cheng, B. M. W., Lee, J. H. M., & Wu, J. C. K. (1997). A nurse rostering system using

constraint programming and redundant modeling. IEEE Transactions on information

technology in biomedicine, 1(1), 44-54.

Cheng, C. C., & Smith, S. F. (1997). Applying constraint satisfaction techniques to job shop

scheduling. Annals of Operations Research, 70(0), 327-357.

Fox, M. S., & Sadeh, N. M. (1990, August). Why is Scheduling Difficult? A CSP

Perspective. In ECAI (pp. 754-767).

GeeksforGeeks. (n.d.). Search algorithms in AI. GeeksforGeeks.

https://www.geeksforgeeks.org/search-algorithms-in-ai/

Homebase. (n.d.). All-in-one Employee Scheduling, Time Clocks, Payroll. Homebase.

https://www.joinhomebase.com/

Javatpoint. (n.d.). Search algorithms in AI. Javatpoint. https://www.javatpoint.com/search-

algorithms-in-ai

Larksuite. (n.d.). NP-hard: Definition of NP-hardness. Retrieved December 27, 2024, from

https://www.larksuite.com/en_us/topics/ai-glossary/np-hard-definition-of-np-hardness

https://connecteam.com/
https://www.geeksforgeeks.org/search-algorithms-in-ai/
https://www.joinhomebase.com/
https://www.javatpoint.com/search-algorithms-in-ai
https://www.javatpoint.com/search-algorithms-in-ai
https://www.larksuite.com/en_us/topics/ai-glossary/np-hard-definition-of-np-hardness

45

Pathak, M. J., Patel, R. L., & Rami, S. P. (2018). Comparative analysis of search

algorithms. International Journal of Computer Applications, 179(50), 40-43

Renke, L., Piplani, R., & Toro, C. (2021). A review of dynamic scheduling: context,

techniques and prospects. Implementing Industry 4.0: The Model Factory as the Key Enabler

for the Future of Manufacturing, 229-258.

Rossi, F., Van Beek, P., & Walsh, T. (2008). Constraint programming. Foundations of

Artificial Intelligence, 3, 181-211.

Van Beek, P. (2006). Backtracking search algorithms. In Foundations of artificial

intelligence (Vol. 2, pp. 85-134). Elsevier.

Webcast Departmental []. (28/08/2018). COMPSCI 188 - 2018-08-28 - Uninformed Search

YouTube. https://www.youtube.com/watch?v=-Xx0QSFYfIQ

Webcast Departmental. (30/08/2018). COMPSCI 188 - 2018-08-30 - A* Search and

Heuristics YouTube. https://www.youtube.com/watch?v=Mlwrx7hbKPs

Webcast Departmental. (04/09/2018). COMPSCI 188 - 2018-09-04 – Constraint Satisfaction

Problems (CSPs) Part 1/2 YouTube. https://www.youtube.com/watch?v=81z2ANjQcH4

Webcast Departmental. (06/09/2018). COMPSCI 188 - 2018-09-06 – Constraint Satisfaction

Problems (CSPs) Part 2/2 YouTube. https://www.youtube.com/watch?v=_DXf6oaknHw

https://www.youtube.com/watch?v=-Xx0QSFYfIQ
https://www.youtube.com/watch?v=Mlwrx7hbKPs
https://www.youtube.com/watch?v=81z2ANjQcH4
https://www.youtube.com/watch?v=_DXf6oaknHw

	The incorporation of material without formal and proper acknowledgement (even with no deliberate intent to cheat) can constitute plagiarism.
	The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook. Please read carefully and sign the declaration below
	Table of Contents
	1 Introduction
	2 Research
	2.1 Introduction to Research
	2.2 Search Algorithms
	2.2.1 Introduction to Search Algorithms
	2.2.2 Types Of Search Algorithms
	2.2.2.1 Uninformed Search
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Uniform Cost Search (UCS)
	2.2.2.2 Informed Search
	Greedy Search
	A* Search
	Efficiency

	2.3 Constraint Satisfaction Problem Solving (CSPs)
	2.3.1 Introduction to CSPs
	Variables and Domains
	Constraints

	2.3.2 Solving
	2.3.2.1 Backtracking Search
	2.3.2.2 Constraint Propagation
	Forward Checking
	Arc Consistency
	Path Consistency
	2.3.2.3 Heuristics Approaches
	Variable Selection
	Value Selection
	2.3.2.4 Local Search Techniques
	Hill Climbing
	Iterative Search

	2.4 Solving Scheduling challenges with SA and CSP’s
	2.4.1 Understanding Scheduling Problems
	2.4.2 Combinatorial nature of scheduling challenges
	2.4.3 The correct search algorithm for CSP in scheduling
	2.4.3.1 Smaller scheduling problems
	2.4.3.2 Larger scheduling problems
	2.4.3.3 Implementing iterative search

	2.5 Conclusion on research

	3 Requirements
	3.1 Introduction
	3.2 Requirements gathering
	3.2.1 Similar applications
	3.2.1.1 ConnectTeam
	Main Functional Aspects
	Employee Communication
	Task Management and Scheduling
	Tracking Attendance
	Training
	Document sharing
	Notification API
	HR Tools
	Non-Functional Aspects

	User-Friendly Interface
	Cross-Platform Compatibility
	Scalability
	Custom Options
	Technical Support
	3.2.1.2 HomeBase
	Main Functional Aspects

	Scheduling
	Attendance Tracking
	Payroll Integration
	Employee Training
	Communication
	Hiring and Job Posting
	Labour Law Compliance
	Non-Functional Aspects

	UX Optimisation
	Cross-Platform Compatibility
	Scalability
	Customization
	Security
	3.2.1.3 Conclusion

	3.2.2 Survey
	3.2.2.1 Reasoning behind questions
	1. Company Name and General Location?
	2. What is your Industry?
	3. How many employees do you manage?
	4. How do you currently create employee schedules?
	5. If you use a scheduling software, which do you use? Skip if you do not.
	6. If you use a scheduling software, what are the best features about it? Skip if you do not.
	7. What are the biggest challenges you face in scheduling employees? Multiple Choice
	8. What features would be most useful in an automated scheduling system? Multiple Choice
	9. How often do you need to adjust the schedule after it’s created?
	10. Would you be open to trying a new scheduling tool if it saves time?
	11. What pricing model would be most acceptable?
	12. Thank you for filling out the survey! If you would like to add any other relevant details, feel free to do so!
	3.2.2.2 Results
	1. Company Name and General Location

	2. What is your Industry?
	3. How many employees do you manage?
	4. How do you currently create employee schedules?
	5. If you use a scheduling software, which do you use? Skip if you do not.
	6. If you use a scheduling software, what are the best features about it? Skip if you do not.
	7. What are the biggest challenges you face in scheduling employees? Multiple Choice
	8. What features would be most useful in an automated scheduling system? Multiple Choice
	9. How often do you need to adjust the schedule after it’s created?
	10. Would you be open to trying a new scheduling tool if it saves time?
	11. What pricing model would be most acceptable?
	12. Thank you for filling out the survey! If you would like to add any other relevant details, feel free to do so!
	3.2.2.3 Actions to consider
	1. Targeting smaller Businesses
	2. Addressing these scheduling challenges within the application
	3. Implementing the most preferred features

	3.2.3 Interviews
	3.2.3.1 Questions
	3.2.3.2 Results interviewees 1 (Paul)
	3.2.3.3 Results interviewees 2 (Fred)
	3.2.3.4 Overall Analysis

	3.3 Requirements modelling
	3.3.1 Personas
	3.3.2 User Requirements
	3.3.2.1 All Users
	Login and Registration
	Dashboard and Notifications
	3.3.2.2 Employer
	CRUD functionality of Team, Shifts, Expertise and Schedules
	Managing Employees
	Viewing Sensitive information
	Employee
	Viewing Schedules
	Submitting requests and receiving responses

	3.3.3 Technical Requirements
	3.3.3.1 System Architecture
	Illustration of the system architecture
	WebSocket’s
	Constraint Satisfaction Problem (CSP) Solver
	Authentication
	Communication between front and back end
	3.3.3.2 Technology Stack
	Backend
	Database
	Frontend
	Code Management and Version Control
	Real-time Updates
	Hosting

	3.3.4 Functional Requirements
	3.3.4.1 User Management
	3.3.4.2 Team and Shift Management
	3.3.4.3 Requests and Approvals
	3.3.4.4 Scheduling System
	3.3.4.5 Notifications and Alerts
	3.3.4.6 Reports

	3.3.5 Non-Functional Requirements
	3.3.5.1 Performance and Scalability
	3.3.5.2 Usability and Accessibility
	3.3.5.3 Security and Access Control

	3.3.6 Use Cases
	3.3.6.1 Use Case Diagram
	Flow of events:
	3.3.6.3 Use Case 2

	Flow of events:

	3.4 Feasibility
	3.4.1 Technical Feasibility
	Computational performance of the CSP solver:
	Server overload due to WebSocket’s:
	Risks with the interaction between the technology stack:

	3.4.2 Operational Feasibility
	New User Adoption:
	Usability Concerns:

	3.4.3 Project Management Feasibility
	CSPs Development:
	WebSocket’s Integration:
	Unexpected Bugs and Delays:

	3.4.4 Economic Feasibility

	3.5 Conclusion

	4 Design
	4.1 Introduction
	4.2 Program Design
	4.2.1 Technologies
	4.2.2 The Structures of the Backend and Frontend
	4.2.2.1 Backend Structure
	4.2.2.2 Frontend Structure

	4.2.3 Design Patterns
	4.2.4 Application architecture Diagram
	4.2.5 Database design
	4.2.5.1 ERD
	Relationships Team:
	User:
	Shift:
	Role:
	Expertise:
	Invitation:
	Availability:
	Assignment:
	Solution:
	Day:
	Week:
	4.2.5.2 Database Schema

	4.2.6 Process design
	Sequence Diagrams 1: Login/ Authentication
	Sequence Diagrams 2: CSP Solver being Triggered
	Flowcharts 1: CSP Flow
	Flowcharts 2: Role-Based Access Control

	4.3 User interface design
	4.3.1 Wireframe
	4.3.2 User Flow Diagram
	Employer:
	Employee:

	4.3.3 Style guide

	4.4 Conclusion

	5 Implementation
	5.1 Introduction
	5.2 Development environment
	5.3 Database
	5.4 Backend
	5.4.1 Overview
	5.4.2 Virtual Environment Setup and Dependency Management
	5.4.3 Database Configuration
	5.4.4 Database Models and Relationships
	5.4.5 CRUD Operations and Business Logic
	5.4.6 Routes and API Endpoints
	5.4.7 Schema Design with Pydantic
	5.4.8 Association tables and Many-to-Many Relationships
	5.4.9 Enums Handling for Status
	5.4.10 Authentication and Access Control
	5.4.11 WebSocket’s
	5.4.12 Testing and Debugging

	5.5 Constraint Satisfaction Problem Solver
	5.5.1 Overview
	5.5.2 CRUD
	5.5.3 Route
	5.5.4 Solver
	5.5.4.1 Init function
	5.5.4.2 Constraints Function
	5.5.4.3 Solving Function

	5.5.5 Regeneration Solver
	5.5.5.1 CRUD
	5.5.5.2 Route
	5.5.5.3 Solver

	5.5.6 Storage and Retrieval
	Solutions:
	Assignments:

	5.6 Frontend
	5.6.1 Overview
	5.6.2 Backend Connection
	5.6.3 Forms
	5.6.4 Contexts
	5.6.4.1 Theme Management Context
	5.6.4.2 Inbox Count Context
	5.6.4.3 Global Refresh Context
	5.6.4.4 Authentication Context

	5.6.5 Hooks
	5.6.6 Views and Routing
	5.6.7 Calendar
	5.6.7.1 Calendar main page
	5.6.7.2 Calendar Component
	5.6.7.3 Event Component

	5.6.8 Types
	5.6.9 Design

	5.7 Conclusion

	6 Testing
	6.1 Introduction
	6.2 Functional Testing
	6.2.1 Validation of Middleware’s
	User 1 details; {id: 1, team_id:1, Roles: “Employer”}
	User 2 details; {id: 2, team_id:2, Roles: “Employer”}

	6.2.2 CSP Functional Tests
	6.2.2.1 Data Imported and Processed
	6.2.2.2 Valid Solutions
	CSP Schedule
	Excel Spreadsheet Schedule

	6.2.3 Discussion of Results

	6.3 User Testing
	6.3.1 Employer Role
	6.3.2 Employee Role
	6.3.3 Discussion of Results

	6.4 Conclusion

	7 Project Management
	7.1 Introduction
	7.2 Project Phases
	7.2.1 Proposal
	7.2.2 Requirements
	7.2.3 Design
	7.2.4 Implementation
	7.2.5 Testing

	7.3 Scrum Methodology
	7.4 Project Management Tools
	7.4.1 GitHub
	7.4.2 Miro
	7.4.3 Figma

	7.5 Reflection
	7.5.1 My views of the project
	7.5.2 Working with a supervisor
	7.5.3 Technical skills
	7.5.4 What was missed

	8 Conclusion
	References

