
Dungeon Scribbles

1 Samuel Downey

Dungeon Scribbles: A Study of Procedural Generation
and Pathonding in 2D Game Design

Samuel Downey

N00212512

Project Supervisor

Timm Jeschawitz

Year 4 2024-25

Dungeon Scribbles

2 Samuel Downey

DL836 BSc (Hons) in Creative Computing

Declaration of Authorship

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received signiocant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Programme
Chair.

WARNING: Take care when discarding program listings lest they be copied by some- one else,
which may well bring you under suspicion. Do not to leave copies of your own oles on a hard
disk where they can be accessed by others. Be aware that removable media, used to transfer
work, may also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an o昀昀ence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer
to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Computing (Hons) course handbook. Please read
carefully and sign the declaration below.

Collusion may be deoned as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another
who then makes some changes and hands it up as their own work.

Declaration

I am aware of the Institute9s policy on plagiarism and certify that this thesis is my own work.

Signed:

Date:

Failure to complete and submit this form may lead to an investigation into your work.

Dungeon Scribbles

3 Samuel Downey

Abstract

This thesis explores the full development cycle of a top-down 2D roguelike video game built
using the Unity Engine. The project was guided by a strong focus on research-led design,
incorporating both front-end and back-end planning to ensure the onal product was stable,
functional, and visually engaging. Early research played a critical role in shaping the project9s
technical foundations, particularly in the implementation of procedural generation and
pathonding, two key systems that created a dynamic and replayable game environment.

The development followed a modular approach, allowing systems such as player movement,
combat, health, animations and much more to be implemented in isolation and tested
independently. A structured project management process, using Miro boards and management
strategies such as agile sprint tracking and kanban methodology, helped maintain consistent
progress and supported clear documentation throughout development. Manual testing and
player feedback informed several iterations of improvement, enhancing the game9s playability
and overall experience.

The result is playable prototype that meets its original goals while leaving room for future
content expansion. Key technical competencies in Unity, C#, system architecture, and game
design were strengthened, and the project serves as a strong foundation for continued
development portfolio presentation. This thesis provides a detailed overview of how thoughtful
planning, research, and iterative testing can support the creation of a well-rounded
independent game project.

Dungeon Scribbles

4 Samuel Downey

Acknowledgements

I would like to acknowledge and give thanks to my project supervisor Timm who encouraged me
through this project and o昀昀ered me genuine and thoughtful critiques to make sure this project
was going in a good direction.

I would like to give a special thanks to my girlfriend and my family who have been cheering me
on over the duration of this project. Their support means the world to me.

Dungeon Scribbles

5 Samuel Downey

Table of Contents

Dungeon Scribbles: A Study of Procedural Generation and Pathonding in 2D Game Design 1

1 Introduction ... 12

1.1 Overall Aim .. 12

1.2 Application Area ... 12

1.3 Technologies .. 12

1.3.1 Project Management Technologies .. 12

1.3.2 Development Technologies ... 12

1.3.3 Design Technologies ... 12

1.4 Project Management ... 12

1.5 Requirements .. 13

1.5.1 Functional Requirements.. 13

1.5.2 Non-Functional Requirements .. 13

1.6 Design ... 13

1.6.1 Back-End Design .. 13

1.6.2 Front-End Design ... 13

1.7 Implementation.. 13

1.8 User Testing ... 14

2 Research.. 15

2.1 Front-End Research .. 15

2.1.1 The Binding of Isaac.. 15

2.1.2 Vagante ... 18

2.1.3 Hades ... 20

2.1.4 Hollow Knight... 22

2.2 Back-End Research .. 22

2.2.1 Development Engine Research .. 22

2.2.2 Procedural Content Generation Research .. 24

2.2.3 Pathonding Algorithm Research... 26

3 Requirements ... 29

3.1 Introduction ... 29

3.2 Requirements Gathering ... 29

3.3 Requirements Modelling ... 29

3.3.1 Functional Requirements.. 29

3.3.2 Non-Functional Requirements .. 31

3.4 Feasibility .. 33

3.5 Conclusion .. 33

Dungeon Scribbles

6 Samuel Downey

4 Design ... 33

4.1 Introduction ... 33

4.2 Programme Design ... 34

4.2.1 Unity Structure ... 34

4.2.2 Design Pattern ... 37

4.3 User Interface Design ... 37

4.3.1 Wireframes .. 37

4.3.2 User Flow Diagram ... 39

4.3.4 Level Design .. 42

4.4 Conclusion .. 42

5 Implementation .. 42

5.1 Introduction ... 42

5.2 Sprint 1 .. 42

5.2.1 Goals .. 42

5.2.2 Goal 1 3 Functional Research .. 43

5.2.3 Goal 2 3 Back-End System Research .. 43

5.2.4 Goal 3 3 Gathering Applied Research ... 43

5.3 Sprint 2 .. 44

5.3.1 Goals .. 44

5.3.2 Goal 1 3 Front-End Design Breakdown .. 44

5.3.3 Goal 2 3 Wireframe Creation ... 44

5.4 Sprint 3 .. 44

5.4.1 Goals .. 44

5.4.2 Goal 1 3 Creating a Development Area ... 45

5.4.4 Goal 2 3 Camera Transition System .. 48

5.4.5 Goal 3 3 Enemy Pathonding System ... 51

5.4.6 Goal 4 3 Player Combat System ... 54

5.4.7 Goal 5 3 Health and Knockback system .. 57

5.5 Sprint 4 .. 61

5.5.1 Goals .. 61

5.5.2 Goal 1 3 Room Prefab ... 63

5.5.3 Goal 2 3 Procedural Map Generation .. 65

5.5.4 Goal 3 3 Nav Mesh Integration ... 72

5.5.5 Goal 4 3 Updated Camera Transition .. 74

5.5.6 Goal 5 3 Handle Aim Update .. 75

5.5.7 Goal 6 3 Enemy integration .. 76

Dungeon Scribbles

7 Samuel Downey

5.5.9 Goal 7 3 Pause Menu .. 79

5.6 Sprint 5 .. 80

5.6.1 Goals .. 80

5.6.2 Goal 1 3 Loading Screen .. 81

5.6.3 Goal 2 3 Finalise Room ... 83

5.6.5 Goal 3 3 Health bar UI addition .. 89

5.6.6 Goal 4 3 Health Item ... 91

5.6.7 Goal 5 3 Enemy design implementation.. 93

5.6.8 Goal 6 3 Fixing enemy in starting room bug ... 99

5.7 Sprint 6 .. 103

5.7.1 Goals .. 103

5.7.2 Goal 1 3 Add Door Design to Room .. 104

5.7.3 Goal 2 3 Add a Player Design ... 105

5.7.4 Goal 3 3 Update Combat System ... 111

5.7.5 Goal 4 3 Fix Player Clipping Bug ... 114

5.7.6 Goal 5 3 Update User Interface .. 116

5.7.8 Goal 6 3 Updating Pause Menu .. 117

5.7.9 Goal 7 3 Main Menu Implementation .. 122

5.7.10 Goal 8 3 Audio system Implementation .. 128

5.7.11 Goal 9 3 Controller Support ... 139

5.8 Sprint 7 .. 141

5.8.1 Goals .. 141

5.8.2 Goal 1 3 First Draft of Report .. 141

5.8.3 Goal 2 3 Receive Feedback.. 142

6 Testing ... 143

6.1 Introduction ... 143

6.2 Functional Testing .. 143

6.2.1 Menu Navigation .. 143

6.2.2 Player Controls .. 144

6.2.3 Enemy Interaction .. 145

6.2.4 Map Navigation .. 145

6.3 User Testing ... 146

6.3.1 Player Controls .. 146

6.3.2 Enemy Interaction .. 148

6.3.3 Game World .. 149

6.3.4 Menu Interaction .. 150

Dungeon Scribbles

8 Samuel Downey

6.4 Conclusion .. 151

6.4.1 Player Controls .. 151

6.4.2 Enemy Interaction .. 151

6.4.3 Game World .. 151

6.4.4 Menu Interaction .. 151

7 Conclusion .. 152

7.1 Introduction ... 152

7.2 Technologies .. 152

7.2.1 Figma .. 152

7.2.2 Photoshop ... 152

7.2.3 Unity ... 152

7.2.3 Visual Studio Code ... 153

7.2.4 Mirro ... 153

7.2.5 Unity Version Control .. 153

7.2.6 OneDrive ... 153

7.3 Project Phases ... 154

7.3.1 Research ... 154

7.3.2 Requirements .. 154

7.3.3 Design ... 155

7.3.4 Implementation ... 155

7.3.5 User Testing ... 155

7.6 Renection .. 156

7.6.1 Project Management .. 156

7.6.2 Views on The Project .. 157

7.6.3 Working with a Supervisor ... 157

7.6.4 Further Competencies & Skills .. 157

7.6.5 How the Project Could be Developed Further ... 157

7.7 Conclusion .. 158

9 References ... 159

Dungeon Scribbles

9 Samuel Downey

Table of Figures

Figure 1 - Screenshot of The Binding of Issac Main Menu ... 15

Figure 2 - Screenshot of The Binding of Issac Gameplay / User Interface .. 16

Figure 3 - Screenshot of The Binding of Isaac Pause Menu ... 17

Figure 4 - Vagante Main Menu ... 18

Figure 5 - Screenshot of Vagante Gameplay / User Interface .. 19

Figure 6 - Screenshot of Hades Main Menu ... 20

Figure 7 - Screenshot of Hades Gameplay / User Interface .. 20

Figure 8 - Screenshot of Hades Pause Menu ... 21

Figure 9 - Hollow Knight Pause Menu .. 22

Figure 10 - Screenshot of Unity File Explorer.. 34

Figure 11 - Screenshot of Animation File Structure .. 34

Figure 12 - Screenshot of Audio File Structure ... 35

Figure 13 - Screenshot of Prefabs File Structure .. 35

Figure 14 - Screenshot of Scripts File Structure ... 36

Figure 15 - Screenshot of TileSets File Structure .. 36

Figure 16 - Screenshot of Main Menu Wireframe ... 37

Figure 17 - Screenshot of User Interface Wireframe ... 38

Figure 18 - Screenshot of Pause Menu Wireframe ... 38

Figure 19 - Main Menu User Flow Chart ... 39

Figure 20 - Player Controls User Flow Chart .. 40

Figure 21 - Pause Menu User Flow Chart ... 41

Figure 22 - User Interface User Flow Chart .. 41

Figure 23 - Snippet of back-end system research .. 43

Figure 24 - Screenshot of Test Level .. 45

Figure 25 - Code snippet of Player Movement script .. 46

Figure 26 - Code snippet of Input Manager for Player Movement .. 47

Figure 27 - Snippet of trigger points for Camera Transition script .. 48

Figure 28 - Code snippet of camera transition script .. 49

Figure 29 - Code snippet of camera transition script .. 50

Figure 30 - Snippet of test enemy game object .. 51

Figure 31 - Code Snippet of enemy movement AI .. 52

Figure 32- Snippet of nav surface script for baking object detection ... 53

Figure 33 - Script to set collision layer as an object to detect ... 53

Figure 34 - Updated Player Movement script for Player Melee integration ... 54

Figure 35 - Code snippet of Player Melee Script ... 55

Figure 36 - Code snippet of Player Weapon script .. 56

Figure 37 - Code snippet of Player Health Script .. 57

Figure 38 - Updated Enemy script with health integration. ... 58

Figure 39 - Code snippet of updated player movement script for new aim mechanic and knockback
integration. .. 59

Figure 40 - Updated Player movement script for knockback integration. .. 60

Figure 41 - Updated Enemy script for knockback integration. ... 61

Figure 42 - Code Snippet of Room script ... 63

Figure 43 - Screenshot of room prefab. ... 64

Figure 44 - Code snippet one of Room generation script. ... 65

Figure 45 - Code snippet of Room generation script. ... 66

Figure 46 - Code snippet of Room generation script. ... 66

Figure 47 - Code snippet of Room generation script. ... 67

Figure 48 - Code snippet of Room generation script. ... 67

Figure 49 - Code snippet of Room generation script. ... 68

Dungeon Scribbles

10 Samuel Downey

Figure 50 - Code snippet of Room generation script. ... 69

Figure 51 - Code snippet of Room generation script. ... 70

Figure 52 - Snippet of Room design iteration. .. 70

Figure 53 - Room generation script test. .. 71

Figure 54 - Snippet of Enemy nav mesh bug .. 72

Figure 55 - Update to enemy movement script to 昀椀x bug .. 72

Figure 56 - Demonstration of bug 昀椀x in action .. 73

Figure 57 - Updated camera transition logic. ... 74

Figure 58 - Update to player movement script. .. 75

Figure 59 - Snippet of enemy integration into procedural generation. ... 76

Figure 60 - Code snippet of enemy integration. .. 76

Figure 61 - Screenshot of enemy spawning bug. .. 77

Figure 62 - Enemy spawning bug solution. ... 78

Figure 63 - Code Snippet of interface manager script. ... 79

Figure 64 - Snippet of pause menu integration. .. 80

Figure 65 - Loading screen design ... 81

Figure 66 - Code snippet of loading screen logic .. 82

Figure 67 - Finalised room design.. 83

Figure 68 - Code snippet of door logic. .. 84

Figure 69 - Code snippet of door logic. .. 85

Figure 70 - Snippet of room script for smart door logic. .. 86

Figure 71 - Snippet of room script for smart door logic. .. 87

Figure 72 - Snippet of room script for smart door logic ... 87

Figure 73 - Snippet of room script for smart door logic. .. 88

Figure 74 - First version of health bar added to user interface... 89

Figure 75 - First version of dynamically moving health bar. .. 89

Figure 76 - Additions to player health script for health bar functionality. ... 90

Figure 77 - Code snippet of health item. .. 91

Figure 78 - Health item in the game with new enemy designs implemented. .. 92

Figure 79 - Additions to room manager script to implement health items. .. 92

Figure 80 - Enemy walking sprite sheet.. 93

Figure 81 - Enemy animation controller. .. 94

Figure 82 – Animation controller variables added to enemy movement. ... 95

Figure 83 - Animation controller variables added to enemy damage. .. 96

Figure 84 - Enemy designs implemented into game. .. 97

Figure 85 - Addition of death animations to enemy animation controller... 98

Figure 86 - Animation variables being implemented into enemy death logic. ... 99

Figure 87 - Modi昀椀cations to the room manager script. ..100

Figure 88 - Modi昀椀cations to the room manager script. ..100

Figure 89 - Modi昀椀cations to the room manager script. ..101

Figure 90 - Modi昀椀cations to the room manager script. ..102

Figure 91 - Modi昀椀cations to the room manager script. ..103

Figure 92 - Updated room design with door prefabs brought in ..104

Figure 93 - New character design being implemented ..105

Figure 94 - Player animation controller ...106

Figure 95 - Player movement code updated with animator integrations ...107

Figure 96 - Player movement code updated with animator integrations ...108

Figure 97 - Player movement code updated with animator integrations ...109

Figure 98 - Player movement code updated with animator integrations ...110

Figure 99 - Updated handle aim function for easier animation controlling ...111

Figure 100 - Updated player melee script with animation controller integration112

Figure 101 - Updated player melee script with animation controller integration113

Figure 102 - Updated player melee script with animation controller integration114

Dungeon Scribbles

11 Samuel Downey

Figure 103 - Updated enemy script to 昀椀x clipping bug. ..115

Figure 104 - Mini map added to user interface. ...116

Figure 105 - Small code addition for room clearing icon. ...116

Figure 106 - Updated health bar design. ...117

Figure 107 - Updated pause menu design. ...118

Figure 108 - Options menu addition. ...118

Figure 109 - Updated Interface manager. ...119

Figure 110 - Updated Interface manager. ...120

Figure 111 - Updated Interface manager. ...121

Figure 112 - Updated Interface manager. ...122

Figure 113 - Main menu Added. ...123

Figure 114 - Options menu Added. ...124

Figure 115 - Main menu script. ...125

Figure 116 - Main menu script. ...126

Figure 117 - Main menu script. ...127

Figure 118 - Game audio mixer...128

Figure 119 - Volume settings script. ...129

Figure 120 - Volume settings script. ...130

Figure 121 - Audio manager script. ...131

Figure 122 - Audio manager script ..132

Figure 123 - Additions to player movement script for player audio. ..132

Figure 124 - Additions to player movement script for player audio ...133

Figure 125 - Additions to player movement script for player audio. ..134

Figure 126 - Additions to player movement script for player audio. ..134

Figure 127 - Additions to player melee script for player audio..135

Figure 128 - Additions to player melee script for player audio..135

Figure 129 - Additions to enemy script for enemy audio. ...135

Figure 130 - Additions to enemy script for enemy audio. ...136

Figure 131 - Additions to enemy script for enemy audio. ...137

Figure 132 - Additions to enemy script for enemy audio. ...138

Figure 133 - Additions to enemy script for enemy audio. ...138

Figure 134 - New input system additions for controller support. ..139

Figure 135 - Additions to player melee script for controller support ...139

Figure 136 - Additions to player melee script for controller support. ..140

Figure 137 - Additions to interface manager script for controller support. ..140

Figure 138 - Additions to interface manager script for controller support. ..141

Dungeon Scribbles

12 Samuel Downey

1 Introduction

1.1 Overall Aim

The overall aim of this project is to successfully research and develop a 2D game with a similar
gameplay loop to popular dungeon crawler roguelikes in the Unity 6 engine while furthering my
knowledge into procedural generation systems and enemy artiocial intelligence in video games.

1.2 Application Area

This project falls under the Entertainment and Media application area, with a specioc focus on
Game Development. Video games are a form of interactive media designed to entertain and
engage players through immersive gameplay, storytelling, and interactive mechanics. The
project explores the technical and creative aspects of game development, combining software
engineering, digital art, sound design, and user experience design to create a cohesive and
enjoyable game.

1.3 Technologies

1.3.1 Project Management Technologies

Miro will be used as the primary application for tracking the progress and development of this
project. To maintain a clear record of game development updates, screenshots will be uploaded
to a Miro board along with short breakdowns of these updates. This approach will provide a
quick and accessible way to look back on previous versions of the game while also creating an
easier method to collect these screenshots for the upcoming report.

The Unity Version Control System will be the primary version control system due to its ease of
access within the Unity engine as well as its similarities with GitHub. The OneDrive cloud
storage system will also be used for this project to store full project oles after major
implementations in case of a failure with the Unity Version Control System.

1.3.2 Development Technologies

The project will be developed using the Unity 6 Engine paired with Visual Studio Code as the
IDE. This decision is explained in detail in Chapter 2.

1.3.3 Design Technologies

The project will be using Figma as the design application for the menu system wireframes as
well as the user interface wireframes. Photoshop CS6 will be used for asset design or image
editing if necessary. The project will be using many assets found on the Unity Asset Store as
well to save time on design while still having a high quality look.

1.4 Project Management

The project will use a two- week Agile sprint system, with each sprint focused on hitting
specioc implementation goals. Miro will be used to keep everything clear by showing tasks
visually, along with regular sprint reviews with the project supervisor to make sure that the
documentation stays up to date. To stay organized with tasks, a Kanban board will be set up
with columns such as <To Do=, <In Progress=, and <Completed= to make it easier to track
development progress.

Dungeon Scribbles

13 Samuel Downey

1.5 Requirements

1.5.1 Functional Requirements

The functional requirements of this project will be guided by research into key game systems
commonly found in games of similar genres. Researching how other games implement key
features such as player systems, procedural room generation, and enemy systems will o昀昀er
valuable insights into how these mechanics work and how they can be adapted for this project.

The goal is to understand how these systems operate and to use them as a reference point for
structuring the codebase. Well-structured code is crucial for maintainability and e昀昀icient
debugging, and studying proven examples will help ensure that each system is designed with
these principles in mind.

1.5.2 Non-Functional Requirements

The non-functional requirements of this project will be informed by research into design
principles of games within similar genres. Researching how other games handle menu design,
player and enemy animations, and sound design will help shape the game's overall user
experience and visual consistency.

Understanding how these design principles impact usability and player engagement will play a
key role in guiding the design process. Factors such as menu layout, control scheme, visual
feedback, and audio cues will be carefully considered to ensure the game feels intuitive,
immersive, and enjoyable to play.

1.6 Design

1.6.1 Back-End Design

The back-end software design of this project will be focused on implementing each feature
separately to ensure a well-organized and maintainable codebase. By keeping di昀昀erent
systems, such as player movement, enemy AI, and room generation separated from each other,
it will become easier to ond and ox any bugs that are found. This approach will also improve the
readability of the code, making it easier to understand and update in the future.

1.6.2 Front-End Design

The majority of the assets for the game will come from third-party platforms as well as the Unity
Asset Store which o昀昀er a wide range of high quality sprites, animations and environment assets.
This will make it easier to keep a consistent visual aesthetic across the game. Music and sound
e昀昀ects will be sourced from YouTube primarily as there are many royalty free soundtracks and
sound e昀昀ects available.

1.7 Implementation

The implementation phase will loosely adhere to the Agile sprint system which was explained
previously in the chapter, primarily the purpose of keeping project progress and documentation
organized. If goals are completed ahead of the sprint schedule, that will not be used as an
excuse to not continue working. The implementation phase will be adhering heavily to the
Kanban system that was also explained previously in the chapter. If utilized correctly, the
Kanban system will provide a steady stream of implementation goals the project will need. With

Dungeon Scribbles

14 Samuel Downey

these ideas in mind, there should be a steady stream of constant progress through the entire
duration of the project, and the sprint goals can be rewritten to renect the amount of work that
was actually accomplished over that respective sprint period.

1.8 User Testing

The user testing phase will consist of three separate stages. The orst stage involves manual
testing of every change made to the game, ensuring that both modiocations to existing features
and newly implemented features function as intended. This process will focus on identifying
and resolving errors while ensuring that no existing functionality is compromised. Testing will be
thorough and extensive, especially for overlapping features, continuing until no bugs can be
found.

The second phase involves user testing studies with friends and fellow students from Creative
Computing and other departments. This phase aims to gather perspective and insight into how
users interact with the game, including its menu systems, control scheme, and overall
enjoyment. Feedback from this focus group will be used to implement changes, ox identioed
bugs and adjust features to ensure a fairer experience for the player before moving on to the
onal testing phase.

The third and onal testing phase will involve large-scale user testing at Comic-Con Dublin, held
at the Convention Centre in Dublin City Centre. A small group of students and lecturers has
been invited to attend the event as ambassadors for the new Game Design course, providing an
opportunity to gather extensive user testing data. This event will also o昀昀er the chance to receive
feedback from major studios such as Black Shamrock and Larian Studios on ways to improve
the game. With insights from industry professionals and public opinion, this phase is expected
to be the most signiocant stage of testing.

Dungeon Scribbles

15 Samuel Downey

2 Research

2.1 Front-End Research

2.1.1 The Binding of Isaac

Figure 1 - Screenshot of The Binding of Issac Main Menu.

The Binding of Isaac9s main menu (Seen in Figure 1) has a unique style, but it does not sacrioce
its functionality. It has a basic list style menu, o昀昀ering all the necessary buttons that a menu
would need to provide such as the New Run, Continue and Options buttons. But it also has the
Challenges and Stats buttons which are nice additions. The lack of a Quit button seems like a
bit of an oversight in terms of overall user experience so I will be making sure to add one in my
menu. Other than the lack of a Quit button, the menu does its job displaying the menu options
to the player very well.

Dungeon Scribbles

16 Samuel Downey

Figure 2 - Screenshot of The Binding of Issac Gameplay / User Interface.

When looking at The Binding of Issac9s user interface (Seen in Figure 2), one of the orst
noticeable elements is the highly contrasting red hearts in the top-left corner of the screen,
which, based on common gaming conventions, represents the player9s current health. This is an
e昀昀ective way to communicate the health system without needing direct explanation, clearly
implying that taking damage results in losing a heart.

Beneath the hearts is a simple inventory system, displaying coins, bombs, and keys. This layout
clearly communicates the items that can be found but also removes any sense of mystery when
discovering these items. While the system supports simplicity, it may not suit designs aiming for
more surprise and exploration.

On the far right side of the screen is a mini-map, highlighting the player9s current position while
also displaying available paths and special rooms which are marked with a yellow crown to
signify their importance. This is a simple and e昀昀ective way to design a mini-map, and while the
exact style may not be adopted, the focus on simplicity is a quality worth trying to emulate.

Dungeon Scribbles

17 Samuel Downey

Figure 3 - Screenshot of The Binding of Isaac Pause Menu.

The Binding of Isaac9s pause menu (Seen in Figure 3) shows a very simple and understandable
design. The three main buttons, Resume, Options, and Exit are easy to see, helping users
quickly ond what they need. The options button stands out a little more due to the larger font,
helping guide the user9s attention to important buttons.

The player9s stats are also shown in the pause menu, giving players a safe way to check their
information without worrying about being attacked. The <My Stu昀昀= section clearly lists the items
collected by the user, keeping everything readable.

While the menu design works well and maintains visual consistency, the biggest takeaway is
how it focuses on the most important buttons by simply making them a little bigger. Keeping the
player9s stats out of the pause menu might also be a better idea for the project in case the stats
or upgrade system have to be scrapped.

Dungeon Scribbles

18 Samuel Downey

2.1.2 Vagante

Figure 4 - Vagante Main Menu.

The Vagante main menu (Seen in Figure 4) is very simple and very easy to navigate, the artwork
immediately familiarizes the player with the art style of the game. The marker over the selected
menu button is great for showing what the player is currently selecting and removes any
confusion about what they are doing. The lack of unnecessary buttons is great for keeping the
menu system easy to understand, making it easier for the player to pick up and start playing.

Dungeon Scribbles

19 Samuel Downey

Figure 5 - Screenshot of Vagante Gameplay / User Interface.

One of the orst things to notice when breaking down Vagante9s user interface (Seen in Figure 5)
is the health bar which is positioned in the bottom left corner. It e昀昀ectively shows the player9s
health through a number and bar format, making it easy for players to understand.

Above the health bar is a minimalistic simple inventory system, which gives players more
nexibility in item type discovery, while also leaving more room for items to be added to the game
later. However the alignment of the inventory should be updated to ot the rest of the menu
which follows a left to right design philosophy.

Beneath the health bar is a larger inventory system along with a stats and level section. These UI
features suggest that players can level up or discover better items, adding important context
and keeping players engaged. A good example of a simple yet informative UI.

The mini map in the top left corner shows the player9s current position and where they have
already been. The viewing angle of the map gives the user a better sense of scale of the size of
the level.

The currency display sits neatly in the top-right corner of the screen. It9s out of the way but still
easy to see, showing that currency is an important aspect of the game while not making the UI
feel crowded. Overall the UI includes many smart decisions that could be used as a great point
of reference.

Dungeon Scribbles

20 Samuel Downey

2.1.3 Hades

Figure 6 - Screenshot of Hades Main Menu.

The Hades main menu (Seen in Figure 6) is very simple and easy to understand. The game title is
well placed in the top left corner with good spacing from the edges of the screen, making it feel
well-balanced. The menu buttons are centred on the left side of the screen which works well
because there aren9t many button options, helping to keep the menu clean and straightforward
for the user. One thing that is strange is the large gap between the Patch Notes button and the
Quit button, the space seems too wide but aside from that the menu works well.

Figure 7 - Screenshot of Hades Gameplay / User Interface.

Dungeon Scribbles

21 Samuel Downey

The Hades user interface (Seen in Figure 7) look overly technical can hard to understand without
a tutorial. Without knowing the game, it9s unclear what many of the symbols and items mean,
which is something to avoid.

In the bottom right corner, there seems to be a simple inventory system with currency and
potions, although their exact use isn9t very clear. On the left side of the screen, there seems to
be an ability system, with a health bar underneath and possibly a life counter above. However
this is not explained, which makes the UI harder to use.

Overall, this design creates an unnecessary learning curve. A goal to keep in mind is to keep the
interface simple and clear.

Figure 8 - Screenshot of Hades Pause Menu.

The Hades pause menu (Seen in Figure 8) has a simple design but could be made even cleaner.
The main buttons (Continue, Settings, and Quit) are clearly listed, but menu options like
Controls and Display could have been grouped under the Settings button to make the layout
even simpler.

The design matches the games visual aesthetic, and the buttons are easy to see. Like many
games, the menu is placed in the centre of the screen, which is a good layout choice to keep in
mind for the project.

One nice detail is the small text at the bottom of the pause menu, reminding players about
when their last save point was. This simple feature keeps the save point clear to the player
without being intrusive, and would be a good addition if a save game system is implemented.

Dungeon Scribbles

22 Samuel Downey

2.1.4 Hollow Knight

Figure 9 - Hollow Knight Pause Menu.

The pause menu in Hollow Knight (Seen in Figure 9) is simple, sleek, and well-designed,
requiring no improvements. All major buttons are clearly visible, with a marker indicating the
currently selected option to eliminate any player confusion. The aesthetic aligns perfectly with
the game's theme, making it a strong design reference. A common pattern observed in other
pause menus is the centre alignment, combined with a mid-opacity dark background and high-
contrast menu elements to ensure buttons remain visible against the game backdrop.

2.2 Back-End Research

2.2.1 Development Engine Research

Unity

The Unity engine is a free, open-source game development engine. It uses the C# programming
language and uses Visual Studio Code as its programming IDE but that can be changed if the
user wishes to. It is capable of both 2D and 3D environment rendering and is most known for
being the most accessible game development engine for independent game developers.

The biggest beneot of the Unity engine is how small the barrier to entry can be for new game
developers. There are countless amounts of community forums and YouTube tutorials that can
be freely accessed if you know the key terms to search for. The integration of Visual Studio Code
is also great as it provides a platform that many programmers are familiar with. The number of
third-party libraries that are available to use is also quite large which shortens the time that it
takes to create assets or look for certain coding structures.

The downfalls of the Unity engine are mainly due to the price point behind certain assets or
libraries which really lock some developers out of the creative space. There is also the ole
explorer structure which adds a lot of di昀昀iculty when communicating between di昀昀erent scripts,
throwing many instantiation errors, but those are issues that can be solved.

Dungeon Scribbles

23 Samuel Downey

Unreal
The Unreal engine is a free game engine created by Epic Games in 1998 and is currently on its
5th iteration. It uses the C++ programming language and it is capable of rendering both 2D and
3D environments. It is most known for its stunning rendering capabilities which has led a lot of
AAA game studios such as Halo Studios (Formerly 343) and CDProjektRed to abandon their
home-made engines to use the newest iteration of Unreal Engine.

The biggest beneot that Unreal Engine has is simply how powerful of an engine it is and how the
rendering output is done in such high detail. The Unreal blueprints are a great starting point to
learn how Unreal works and some users have stated that after learning blueprints, the barrier to
entry for learning C++ is much lower due to learning all the fundamental principles through the
blueprint's functionality being explained.

Although Unreal blueprints is a great start to learn Unreal engine. There are also contradictory
statements from other users who report that the Unreal blueprints system is quite restrictive as
it only has a certain number of options for creating game objects. There are also reports that
Unreal blueprints has signiocantly worse performance over its programming counterpart.

The lack of experience with the Unreal engine and the C++ programming language was already
casting doubts on this engine being chosen, but the issues with the Unreal Blueprints system
with performance and lack of creative freedoms has locked in the answer on whether this will
be the chosen engine.

Godot 4

The Godot 4 engine is a free, open-source game development engine. It has the option of being
able to write games in the C# programming language or their own programming language which
the developers of the engine have called GDScript. The layout of the engine is very similar to the
Unity engine as well as its capabilities as an engine. It can render games in both 3D and 2D
environments but seems to be more popular in the 2D pixel art space.

One of the biggest advantages of the Godot 4 engine is its built-in programming language, and
the fact that all the coding is done directly inside the game engine without the use of an IDE.
This setup makes coding much easier, thanks to the simple ole structure that lets scripts and
game objects communicate with each other more smoothy than in other engines. This structure
also removes a lot of the instantiation errors that Unity developers often run into when trying to
get game objects to reference each other.

One of the biggest downsides to Godot is the fact that it is a newer engine with less people using
it and therefore having less resources and libraries to call upon when running into an error or
trying to add a new feature to your game, therefore the learning curve could be considered
much higher than the other engines.

Conclusion

Through comprehensive research into various game development engines and an evaluation of
the resources they provide, it was determined that the Unity engine would be the most suitable
platform for this project. Other engines were considered heavily, however, the lack of extensive
learning and troubleshooting resources presented a signiocant risk in development. This risk is
further compounded by the absence of prior experience with these alternative engines, making
Unity the most practical and reliable choice.

Dungeon Scribbles

24 Samuel Downey

While each engine o昀昀ers unique advantages and disadvantages, as outlined by the above
breakdowns, Unity's beneots clearly outweigh the potential drawbacks of other considered
platforms. The availability of comprehensive documentation, a supportive developer
community, and familiarity with the engine signiocantly reduces the likelihood of encountering
game breaking issues during development. Exploring other engines might have been viable with
prior experience or better independent learning resources, but Unity remains the most e昀昀ective
option for achieving the project's goals.

2.2.2 Procedural Content Generation Research

What is Procedural Content Generation?

<Procedural content generation (PCG) is an increasingly important area of technology within
modern human-computer interaction (HCI) design. Personalization of user experience via
a昀昀ective and cognitive modelling, coupled with real-time adjustment of the content according
to user needs and preferences are important steps toward e昀昀ective and meaningful PCG.
Games, Web 2.0, interface, and software design are among the most popular applications of
automated content generation.= Yannakakis, G. N., & Togelius, J. (2011).

<Procedural content generation (PCG) refers to the practice of generating game content, such
as levels, quests or characters, algorithmically. Motivated by the need to make games
replayable, as well as to reduce authoring burden and enable particular aesthetics, many PCG
methods have been devised. At the same time that researchers are adapting methods from
machine learning (ML) to PCG problems.= Risi, S., & Togelius, J. (2020).

In summary, Procedural Content Generation (PCG) is the practice of using variable based
algorithms to create large amounts of content for multiple di昀昀erent oelds but is most popular in
the software development industry. It provides a more streamlined output of projects by
lessening the time needed for creating content from scratch, and thanks to introduction of
machine learning and artiocial intelligence, procedural generation has evolved even further in
recent years.

Fractal Terrain Generation

<It is obvious that fractal automatic terrain generation can save game developers a lot of time by
reducing the amount of height data and they must generate themselves. During studying this
algorithm, the reason fractals can be used to terrain is apparently. The main reason is that
terrain is self-similar. This statement seems abstract; however, we could imagine that the
magnioed subsets of the objects look like the whole to each other. Taking the mountains as an
example, the horizon of a mountain is not nat, but it is rugged. If we zoomed in on a part of the
hillside, it would also look uneven, just like the surface of the hillside, a single rock or stone that
is part of it. Therefore, using the fractal terrain generation as the article says above, a
crosssection of a rugged mountain is thus produced. One most typical case in today's game is
Terraria, the terrain in Terraria is randomly generated by fractal terrain generation, which creates
di昀昀erent terrain situations, such as mountains, riverbeds, and caves.= Shen, Z. (2022).

In summary, Fractal Terrain Generation is a technique that enables game developers to create
realistic terrain e昀昀iciently by leveraging the self-similar nature of fractals. Natural landscapes,
such as mountains, exhibit self-similar properties where smaller elements like hillsides or rocks
resemble the larger structure. This characteristic makes fractals particularly suitable for
simulating rugged and uneven terrain. By reducing the need for manually generated height data,
this method facilitates the creation of varied and natural-looking environments. A notable

Dungeon Scribbles

25 Samuel Downey

example of this technique is demonstrated in the game Terraria, where fractal terrain generation
is used to produce randomized landscapes, including mountains, riverbeds, and caves.

Bitmap Terrain Generation

<Unlike fractal terrain generation, this is not a completely random technique. There are already
several orst features on the map, and the process uses it to generate detailed data for each
small feature, then the units that make up the map, which means the onal terrain is something
like the zooming terrain from the orst terrain. Because of the unique features of zooming, bitmap
terrain generation is usually the case for massively multiplayer game maps. Because the game
designer may wish to have certain functions in several places, but do not care about the exact
height of each square. Hence, they will indeed be very manually generating data for each
square, which is very time-consuming. Thus, this technique helps to save plenty of time,
otherwise, the game programmers need plenty of time consuming to generate code for each
di昀昀erent terrain situation. Nevertheless, the generated data can be enhanced to make the
terrain looks more exquisite the important thing is that bitmap terrain generation can be used to
generate data other than the height of each tile and each pixel value can correspond to a
specioc terrain type, such as desert or jungle (which means dividing di昀昀erent types of terrain).=
Shen, Z. (2022).

In summary, Bitmap Terrain Generation is a semi-random technique used to create game maps
through predeoned features. Unlike fractal terrain generation, which relies on complete
randomness, this method begins with initial map parameters such as map size, the number of
props, and specioc generation rules. As a result, the generated terrain renects the original map
features while introducing slight variations with each iteration. This approach is particularly
popular in the dungeon crawler genre, where it generates seemingly random rooms that share a
similar structure and properties but rarely appear identical. Bitmap terrain generation
signiocantly reduces development time by automating terrain creation, minimizing the need for
manual coding. It also enhances detail in landscapes and supports the assignment of room or
terrain types (e.g., desert or jungle areas), adding versatility to the method.

Perlin Noise

<It is a common method to use a noise function to generate 2D-terrain, but normally we choose
Perlin noise instead of normal noise. The reason we choose Perlin noise is easy to understand.
Noise is a random number generator, and the random numbers generated by ordinary noise
have no rules at all (Perlin noise is pseudorandom). Therefore, the cascading mountains in
nature, the texture of marble, and the undulating waves on the sea surface seem to be chaotic,
but there are inherent laws to follow. Normal noise cannot simulate these natural e昀昀ects. The
Perlin noise algorithm makes these possible. Therefore, a set of smoothly interpolated random
numbers can be obtained by using the Perlin noise algorithm, which is correlated with each
other and can be used to generate random values close to nature. By seeing the random texture
generated by normal noise and the texture generated by Perlin noise, it can be found that the
texture generated by Perlin noise is more natural and smoother, with obvious transition e昀昀ects
between random values.= Shen, Z. (2022).

In summary, Perlin Noise is a widely known and popular method for generating 2D terrain and
simulating textures. Perlin noise produces pseudorandom values that are smoothly interpolated
and correlated, resulting in natural-looking patterns with gradual transitions. This makes it
particularly e昀昀ective for mimicking chaotic natural phenomena within real environments. The
smooth transitions provided by Perlin noise create a more visually appealing result compared to

Dungeon Scribbles

26 Samuel Downey

standard noise, which often lacks structure and transition e昀昀ects. Its versatility and realistic
output have made it a common choice in game development for generating natural terrain and
texture patterns.

Key Findings

The above research explores Procedural Content Generation (PCG) by examining several
prominent methods, including Bitmap Terrain Generation, Perlin Noise, and Fractal Terrain
Generation. The initial focus was on getting an understanding about the theoretical foundations
of these methods, including the underlying formulas and the historical evolution that shaped
their current models. This approach provided a comprehensive understanding of how PCG
operates and highlighted various ways these concepts can be applied in game development.
Additionally, real-world examples were analysed to demonstrate practical application of these
techniques in games, ensuring a deeper understanding of their functionality before exploring
further.

The practical application of PCG methods were then investigated, with a particular emphasis on
Perlin Noise and Bitmap Terrain Generation, as these are widely used and well-integrated
techniques in game development. Unreal Engine 5 was examined for its PCG implementation
due to its prominence among both AAA and independent game developers. The Unreal 5 Tech
Demo in early 2023 showcased advanced PCG integration, demonstrating the extensive
automation capabilities it o昀昀ers to developers.

Further analysis was done on the use of Perlin Noise within the Unity engine, a major competitor
to Unreal, which o昀昀ers its own PCG system. Unity includes a built-in Perlin Noise function that
can be directly linked to terrain generation scripts in both 2D and 3D environments. This
integration is particularly notable for its optimization, as it avoids continuous terrain generation
until memory limits are reached. Instead, Unity9s method ties a single game object, minimizing
memory usage while e昀昀ectively creating randomized open spaces and maintaining
performance.

Building on this research, principles and ideas from Bitmap Terrain Generation will be adapted
and implemented into the project9s procedural dungeon generation script. By applying these
techniques, the project will aim to create a dynamic, e昀昀icient dungeon layouts that renect the
proven beneots of PCG systems, while also maintaining strong performance standards.

2.2.3 Pathonding Algorithm Research

What is a Pathonding Algorithm?

<Pathonding refers to computing an optimal route between the specioed start and goal nodes. It
is an important research topic in the area of Artiocial Intelligence with applications in oelds
such as GPS, Real-Time Strategy Games, Robotics, logistics while implemented in static or
dynamic or real-world scenarios. Recent developments in pathonding lead to more improved,
accurate and faster methods and still captivates the researcher's attention for further
improvement and developing new methods as more complex problems arise or being
developed in AI. A great deal of research work is done in pathonding for generating new
algorithms that are fast and provide optimal path since the publication of the Dijkstra algorithm
in 1959.= Maurya Ananya, Yadav Aayushi, & Baiswar Ashish. (2022).

<Pathonding is the searching technique for onding an optimal path from a starting location to a
onal(given) destination. The shortestpath problem is most studied in computer science.

Dungeon Scribbles

27 Samuel Downey

Generally, to represent the shortest path problem we use graphs. A graph is a visual depiction of
a collection of things in which some objects are linked together by links. The interconnected
objects are represented by points termed vertices and the edges are the ties that connect the
vertices. An optimal shortest path is deoned as the minimum length criteria from a source to a
destination. Pathonding algorithm has become popular with the rise of gaming industries.
Games with genres like survival, action-adventure, role-playing games, and real-time strategy
games often have characters sent on missions from their current location to a predetermined
destination. In these types of games, pathonding algorithms have a dominant role. Some of the
shortest path algorithms are namely as Dijkstra algorithm, Bellman-Ford algorithm, Floyd-
Warshall algorithm, Genetic algorithm, A* pathonding algorithm, etc. Unity-3d is a game engine
that is used by most of the gaming industries and indie game developers. This software is
available for free which is one of the reasons for its high usage in the gaming industry. Unity-3d
is a complete integrated development environment (IDE) with an asset worknow, scripting,
integrated editor networking, scene builder, and more. It also includes a large community and
forum where anyone interested in learning Unity can go and get answers to all of their questions.
In unity-3D we use the c# programming language. Unity is a cross-platform developing software
that is easy to learn for beginners and powerful enough for experts.= Iqbal, M. A., Panwar, H., &
Singh, S. P. (2022).

In summary, pathonding is the process of onding the most e昀昀icient and e昀昀ective route to a
destination. It is a key technique within artiocial intelligence, with application in GPS, navigation
and video games. Pathonding algorithms such as Dijkstra9s, A*, and Bellman-Ford are some of
the most common algorithms when working with pathonding but the A* method is by far the
most popular within game development. The development of faster and more accurate
algorithms continues to be a focus of research, particularly a new challenge in AI and game
development.

Breadth-First Search (BFS):
<Breadth-orst search, in 1959.BFS explores equally in the directions until the goal is reached.
Alternatively, we can say that it starts from a chosen node and examine its neighbour, the node
which has been traversed is marked as visited. Breadth-orst seeks is a graph traversal set of
rules that begins of evolved by traversing the graph from the basis node and exploring all the
neighbouring nodes. Then, it selects the closest node and explores all the unexplored nodes.
While the usage of BFS for traversal, any node within the side of the graph may be taken into
consideration as the basis node. BFS uses a queue (FIFO). BFS guarantees the shortest path.
The data structure used to represent the graph determines BFS's temporal complexity. The time
complexity of the BFS algorithm is O (V+E), where V is the number of vertices, whereas E is the
number of vertices. The space complexity is of BFS can be expressed as O (V).= Iqbal, M. A.,
Panwar, H., & Singh, S. P. (2022).

Greedy Best First Search (Greedy Search):
<The greedy best-orst search algorithm always selects the path that appears to be the most
appealing at the time. It is deoned as the combination of depth-orst and breadth-orst search
algorithms. It uses both heuristics and search functions to perform its operations. We can use
both methods while using the best-orst search.

At each stage, we may use the best-orst search algorithm to select the most promising node
from the graph. We expand the node that is closest to the goal node in the best-orst search

Dungeon Scribbles

28 Samuel Downey

process, and the closest cost is determined using a heuristic function, i.e. For GreedyBFS the
evaluation function f(n) is given as:

Where h(n) is the heuristic function which is deoned as the distance of approximation of how
close we are to the goal from a given node. The time complexity of the algorithm is given as
O(n*logn).= Iqbal, M. A., Panwar, H., & Singh, S. P. (2022).

A* (A-Star):
<Consider a square grid having many obstacles and we are given a starting cell and a target cell.
We want to reach the target cell (if possible) from the starting cell as quickly as possible. Here
A* Search Algorithm comes to the rescue.

What A* Search Algorithm does is that at each step it picks the node according to a value-8f9
which is a parameter equal to the sum of two other parameters 3 8g9 and 8h9. At each step it picks
the node/cell having the lowest 8f9, and process that node/cell.

We deone 8g9 and 8h9 as simply as possible below. g = the movement cost to move from the
starting point to a given square on the grid, following the path generated to get there.

h = the estimated movement cost to move from that given square on the grid to the onal
destination. This is often referred to as the heuristic, which is nothing but a kind of smart guess.
We really don9t know the actual distance until we ond the path, because all sorts of things can
be in the way (walls, water, etc.). There can be many ways to calculate this 8h9 which are
discussed in the later sections.= Belwariar, R. (2018, September 7).

Key Findings:
When researching pathonding algorithms, the initial focus was on popular methods that were
commonly used by game developers to gain a better understanding of how they worked and
they were the preferred methods. This research highlighted methods such as Breadth-First
Search (BFS), Greedy Best-First Search (Greedy Search), and A* (A-Star) as widely used
approaches to pathonding within the game development community. All of these methods are
based on the same core principles, calculating the shortest possible route using directional
nodes and evaluating the cost to reach the target node.

After gaining an understanding of how these algorithms work, further investigation into their
practical application in game engines showed that the functional implementations are limited,
with most engines relying on built-in solutions like NavMeshComponents. The Nav Mesh system
is based on the A* pathonding algorithm, which research conorms as the most popular and
adaptable pathonding method for game development. The A* pathonding algorithm9s strength
lies in its ability to work seamlessly across both 2D and 3D environments without needing large
adjustments, making it highly versatile. It9s integration into most modern game engines
highlights its importance in the industry.

Overall, pathonding algorithms play a critical role in game development, with A* standing out as
the most e昀昀ective option due to its e昀昀iciency and adaptability. While algorithms like BFS and
Greedy Search provide great insights, A*9s usability has made it the industry standard for route
planning. For these reasons, the chosen system will be the A* pathonding algorithm for this
project.

Dungeon Scribbles

29 Samuel Downey

3 Requirements

3.1 Introduction

The requirements phase is an important part of the development process, as it establishes the
foundation for the project. This chapter outlines the key of functionality and performance goals
needed to meet the project9s aims. By researching similar games and considering design and
user experience principles, the requirements were chosen to help make sure they were made to
help make sure the onal product is both technically strong and enjoyable to play, all while
staying within a sizable scope.

3.2 Requirements Gathering

To ensure an in-depth understanding of the requirements needed for this project was gathered,
research into several popular titles within the roguelike genre was conducted, these games
include, The Binding of Isaac, Vagante, and Hades. Through analysing these games, key insights
were gathered into essential gameplay elements, design philosophies, and structural
frameworks commonly used in this genre. Most of the design research into these games was
covered in detail in Chapter 2. Core gameplay elements like procedural generation, enemy
behaviour and player progression systems were broken down to better understand how they
work to create a strong gameplay experience. Based on this research, preliminary code
structures were also planned to help guide the technical side of the project.

3.3 Requirements Modelling

3.3.1 Functional Requirements

Main Menu

A script will be created to control the main menu, Unity9s Canvas Panel will be used for a fast
and responsive menu setup. Switching between panels will be managed using the SetActive()
method from Unity9s UI tools. The script will also use Unity9s Scene Manage system to make the
Play and Exit buttons work. The Options button will switch panels within the same scene,
avoiding unnecessary scene loading and keep the menu performance smooth.

Player

A movement script will be created and will be integrated into the New Unity Input System to
support both keyboard and controller inputs, the input system will make it far easier to create a
control scheme for both input methods. This script will also handle the knockback functionality,
allowing it to be triggered by enemy interactions. The knockback system will apply directional
force based on the enemy's position, ensuring accurate and responsive player knockback.

A dedicated script will be created to manage the player's health, separated from the movement
script to simplify future debugging and improve code maintenance. This health script will
handle interactions with enemies, monitor health values, and remove the player from the scene
when the player9s health reaches zero.

A dedicated script will be created to manage the player's combat functionality. This script will
handle interactions with enemies and will be responsible for removing an enemy from the scene
once its health reaches zero. The combat will be built using a game object with a trigger that
interacts with the enemy.

Dungeon Scribbles

30 Samuel Downey

Enemy

A script will be created to control the enemy's pathonding. This pathonding system must be
capable of detecting obstacles and determining the shortest route to the player. The enemy will
also need to interact with the player9s movement script to trigger the knockback function.
Within the same interaction, the script can also deduct a specioed amount of health from the
player9s health script, allowing both the damage and knockback mechanics to be managed
e昀昀iciently from the enemy9s side.

Room Generation

A script will be developed to control the generation of the game world, with the world being
randomized each time the scene is loaded. The system must be capable of detecting
neighbouring rooms to support door functionality. Integration with Unity9s Tilemap system is
necessary to enable enemy obstruction pathonding and player collisions with closed doors and
walls, ensuring that unplayable areas remain inaccessible.

The random generation system will also require conogurable enemy parameters, including
spawn positions and the number of enemies per room. Additionally, camera functionality will
need to dynamically follow the player through di昀昀erent rooms by using trigger points to adjust
the camera position as the player transitions between di昀昀erent areas.

Player / Enemy Health System

A dedicated health system will be required for both the player and enemies. The player9s health
system must be able to interact with the enemy9s combat system, triggering either deactivation
or destruction of the player object when health reaches zero. Similarly, the enemy health
system should function the same way, removing the enemy from the scene when reaching zero
health, while maintaining compatibility with the player9s combat system.

Player / Enemy Combat System

Two independent scripts will be needed to handle the combat systems for both the player and
enemies. Each script should be capable of interacting with the corresponding health system,
player combat a昀昀ecting enemy health, and enemy combat a昀昀ecting player health. Both
systems must also trigger knockback e昀昀ects for their target. Following a decoupled structure
will help maintain modularity and simplify integration between components.

Player / Enemy Knockback System

The enemy will need a script designed to trigger the knockback function within the player's
movement system. Alternatively, this trigger could be incorporated into the enemy9s combat
script to reduce the overall number of scripts. However, keeping the systems decoupled allows
both the knockback and health systems to activate simultaneously, resulting in smoother
gameplay. Similarly, the player9s combat system must be able to trigger the enemy9s knockback
function. Maintaining consistency across both systems helps ensure a more polished and
reliable gameplay experience.

Pause Menu

A script will be required to manage the status of the pause menu. The Unity Scene Management
library will be used to allow the pause menu to exit to the main menu, creating a loop that can
reset the game level scene. This script will also handle the integration of an options screen by
toggling between the pause and options menus. When either menu is active, the user interface
will be deactivated to prevent overlap between the two interface systems.

Dungeon Scribbles

31 Samuel Downey

User Interface

The user interface will need to include a health bar and a mini map to help the player keep track
of their health and explore potential areas. The health bar will renect the player's current health
by using variables from the player9s health script, adjusting its size based on the player9s
remaining health. The mini map will be created using a render texture and a separate camera
set to a di昀昀erent layer. The user interface will also need an experience level counter and a visual
inventory system if those features get added into the project.

3.3.2 Non-Functional Requirements

Main Menu

A clear and user-friendly main menu layout is essential to ensure players can easily navigate the
interface. The overall visual design should renect the game9s colour palette and aesthetic to
maintain a consistent look and feel across all menus.

To inform the layout and functionality of the menu, research materials from similar games
within the same genre will be gathered to help identify common design patterns and player
expectations. The goal is to create an intuitive menu that requires no additional guidance to use
e昀昀ectively.

Once the main menu design is onalized, it can serve as a template for the options and pause
menus. This approach ensures visual consistency and provides a better user experience
throughout the game.

Player

A sprite sheet will be required for the player which includes idle animations facing all four
cardinal directions. These animations will help indicate the player9s last movement direction,
which is important for determining the correct direction of the next attack.

The player9s sprite sheet will also need to include running animations for all four cardinal
directions. These animations will transition from the idle state to accurately renect the player's
movement direction. Special attention should be given to horizontal movement to avoid
overlapping animation triggers and ensure smooth transitions.

The player9s sprite sheet should also include attack animations for all four cardinal directions.
These animations will work in conjunction with the idle and running animations to clearly
indicate the direction of the player's attack. The attack animations will be triggered using the
Any State feature in the animation controller, allowing them to run independently of the current
animation state, provided their conditions are met. Exit times will be set to ensure each attack
animation fully plays before another begins. Additionally, the player9s attack hitboxes should be
carefully aligned with the swing of each animation to give a clear visual indication of the attack's
e昀昀ective area.

The player character9s sprite sheet should also include damage animations for all four cardinal
directions. These animations can be integrated using the Any State feature in the animation
controller, ensuring they play without overlap if the specioed conditions are met. Including
directional variations helps visually indicate the direction from which the player takes damage,
reinforcing the accuracy of the knockback system. Exit times will be applied to these
animations to ensure they fully complete before transitioning to other states.

Dungeon Scribbles

32 Samuel Downey

The animation controller should be conogured with appropriate Booleans and triggers to allow
seamless integration of animations into the corresponding player scripts.

Enemy

A sprite sheet for the enemy character should include a single idle animation, intended for use
when the player is not present in the room. Although the idle animation may not be strictly
necessary due to the player not seeing it very often, its inclusion ensures smooth and
consistent transitions between animation states across various game components.

The same sprite sheet must also contain movement animations for all four cardinal directions,
as these are essential for when the enemy is actively pursuing the player within a room.

Damage animations in all four directions are also required and should be linked to the enemy's
current movement direction. When triggered, the appropriate damage animation will play based
on the last direction of movement. These animations should be connected via the Any State
node in the animation controller and conogured with exit time to ensure clean transitions
without overlap, allowing the animation to complete before returning to movement.

Death animations for all four cardinal directions should also be included to renect the direction
the enemy was facing at the time of defeat. These will also use the Any State node and be set
with exit time to allow full completion of the animation before the enemy is removed or
deactivated in the scene.

The animation controller must be set up with the necessary Booleans and triggers to enable
integration of all animations into the appropriate enemy behaviour functions.

Room Generation

An appropriate tile map from the Unity Asset Store will be required for the room design. This
Tilemap should include walls from various perspectives, props for both open and closed doors
that can be integrated into the walls, door hole props for wall integration, and obstacle props to
diversify the rooms.

User Interface

The User Interface design should include a portion of the screen dedicated to displaying the
player's health bar, as this is a clear and informative way to communicate the player's current
status. The design should align with the overall aesthetic of the game.

Additionally, a mini map will need to be designed to assist the player in navigating the world.
Since the world is procedurally generated, it is important to ensure that the player can easily see
available rooms, with a clear indication of whether each room has been explored or not.

A player hot bar would be great to add as well to have a visual indication of the player9s inventory
and what is currently selected in their arsenal if there is an inventory system brought into the
project. A dedicated experience bar would also be great to have if there is time to add that to the
game. When designing the user interface, this idea will be kept in mind in case there is time to
make this idea into a reality.

Pause Menu

An appropriate pause menu should be designed to clearly present the available options to the
player while providing an easy and intuitive navigation system. Research will be conducted on

Dungeon Scribbles

33 Samuel Downey

pause menus from popular games within the same genre to better understand how these
systems feel and operate.

3.4 Feasibility

After breaking down all requirements and conducting extensive research, the completion of this
project appears highly feasible, particularly given the larger development time allocated to this
project. A signiocant portion of time will be dedicated to reoning the procedural generation
scripts to ensure the room generation system functions as intended without issues. Once this
foundation is in place, the remaining aspects of the project should come together quickly,
supported by extensive experience in building menu systems, scene navigation systems, and
player mechanics.

A decoupled approach will be used, breaking each implementation into separate components
to streamline development. This strategy not only speeds up progress but also simplioes
debugging, leading to overall improved production. The front-end design process is not
expected to be time-intensive, as many assets will be sourced from third-party suppliers and
the Unity Asset Store. Additionally, integrating back-end systems with the user interface is a
familiar process, further reinforcing conodence in the project's successful execution.

3.5 Conclusion

This chapter provided a clear breakdown of the project9s requirements, covering both functional
and non-functional needs. Research into existing games and design principles helped identify
and plan key gameplay mechanics, UI elements, and system structures. A decoupled design
approach was chosen to make development, testing and integration easier for the project. The
feasibility breakdown showed that this project realistic, supported by a clear development
timeline that was outlined in the project9s proposal. The use of external assets will also help to
speed up the work. With these requirements in place, development will be able to move forward
with a strong technical foundation.

4 Design

4.1 Introduction

This chapter outlines the design process used to develop the project. It covers two main areas,
user interface design and programme design. The orst section will look at the back-end9s
architecture through the project9s ole structure to show what design patterns were used to keep
the code maintainable. The second section will discuss the UI research conducted in Chapter 2
and how it guided the creation of the UI wireframes.

Dungeon Scribbles

34 Samuel Downey

4.2 Programme Design

4.2.1 Unity Structure

Figure 10 - Screenshot of Unity File Explorer.

This overall setup of folders (Seen in Figure 10) was made to ensure that everything created in,
or imported into the project could be stored away but also found and accessed with ease.
Having everything in dedicated folders was very beneocial, especially in later stages of
development when the project was at its peak amount of assets.

Figure 11 - Screenshot of Animation File Structure.

The structure of the Animation Files (Seen in Figure 11) is organized in a simple and logical way.
All animation-related oles are stored within a main <Animations= folder, which is then divided
into categories based on the game objects they belong to. For example, the Player and the
Enemy each have their own subfolders. Inside these folders, animations are further separated
into specioc actions, alongside the corresponding sprite sheets used to create them. This setup
keeps the animation assets easy to manage and locate.

Dungeon Scribbles

35 Samuel Downey

Figure 12 - Screenshot of Audio File Structure.

The structure of the Audio Files (Seen in Figure 12) is very similar to the structure of the
Animations oles. Every audio related ole is placed within the Audio Folder, these oles are then
categorized into their respective subfolders. If the audio ole is to do with the player9s sound
e昀昀ects, then they will be placed in the Player category. This ole structure made it very easy to
di昀昀erentiate between di昀昀erent sounds and what they were set to be dedicated to when doing
the audio design for the game. Having the game mixer and the Audio Manager script in the
overall audio ole made sense as well as they were made to control all of the audio settings
within the game.

Figure 13 - Screenshot of Prefabs File Structure.

The structure of the Prefabs oles (Seen in Figure 13) kept the same philosophy that was built
with the Audio and Animations oles. Everything prefab related gets brought into the Prefab
folder and is then categorized into their respective subfolder. Everything related to the room
prefab and how it operates is brought into the RoomFabs Folder. This is the same with the
EnemyFabs and PlayerFabs folder. This ole structure philosophy made it very easy to navigate,
having everything neatly placed away into categories was very beneocial in later stages of
development.

Dungeon Scribbles

36 Samuel Downey

Figure 14 - Screenshot of Scripts File Structure.

The structure of the Scripts oles (Seen in Figure 14) keeps the same structure philosophy as the
ole paths that have been previously mentioned. There is a main Scripts ole which is home to the
categories of which each script can be placed into, we have Player scripts, Enemy scripts, Map
scripts a few others. This ole structure gives the orst glimpse of the decoupled back-end game
design that was mentioned in Chapter 1. This ole structure was particularly important for the
scripts as there were so many written, onding where to modify functions would have taken far
longer if the oles were not organized this way.

Figure 15 - Screenshot of TileSets File Structure

The structure of the TileSets folder (Seen in Figure 15) is very similar to the previously discussed
ole structures, which all follow the same structure philosophy. Each tile set that was brought
into the project was brought into the TileSet folder and then categorized into each tile set they
were for. Some of these TileSets include GroundPalette, and WallPalette which contain the
ground tiles and wall tiles which were used to design the game. These folders were great for the
creation of tile prefabs, being able to ond the specioc tile I need by number without losing them
in a sea of irrelevant tiles. This ole structure proved extremely useful for the duration of the
project as there wasn9t many tile sets brought in after the original batch.

Other oles such as the NavMeshComponents oles and Cainos oles were brought in with other
3rd party assets and were kept to make sure that I wasn9t removing important materials or scripts

Dungeon Scribbles

37 Samuel Downey

for these 3rd party assets. These oles don9t renect the structure philosophy I was going for when
managing these oles.

4.2.2 Design Pattern

The back-end development of the project followed a slow and methodical approach, with a
strong focus on maintainability. Small, meaningful changes were introduced incrementally to
ensure each addition was properly integrated and tested. Scripts and features were consistently
separated to make debugging easier. For example, the Player was built using individual scripts
for movement, combat, and health, allowing for a more focused development and quicker
troubleshooting. This structure was maintained throughout the project, making onal code
adjustments easier as the game moved toward the build stage. Overall, this approach helped
keep the codebase clear and improved the stability of the onal product.

4.3 User Interface Design

4.3.1 Wireframes

Figure 16 - Screenshot of Main Menu Wireframe.

The project9s main menu wireframe (Seen in Figure 16) takes heavy inspiration from Vagante
(Seen in Figure 4), particularly in how it positions the game title and menu components in a
unique and well-executed manner. The selected hover e昀昀ect e昀昀ectively highlights the currently
selected option, enhancing usability. This menu design strikes a balance between uniqueness
and simplicity by avoiding unnecessary functionality. To maintain design consistency across
di昀昀erent parts of the game, the container concept used in the gameplay user interface has also
been incorporated. This approach was not necessary for the pause menu, as its centred
alignment already provides ample space.

Dungeon Scribbles

38 Samuel Downey

Figure 17 - Screenshot of User Interface Wireframe.

The user interface wireframe (Seen in Figure 17) was heavily inspired by Vagante9s user interface
(Seen in Figure 5). Vagante was chosen as a reference due to its extensive user interface
mechanics, many of which align with the features which are planned to be implemented. Its
design principles prioritize clarity, ensuring that all menu components are well-labelled and
easy to understand, minimizing player confusion. These principles are being followed as closely
as possible to create an intuitive experience for new players. Additionally, interface components
are positioned along the outskirts of the screen, keeping the central gameplay area clear for
better visibility of enemies. The container for the user interface takes inspiration from web
design principles, maintaining a slight distance from the screen edges to enhance overall
aesthetics and create a more polished, stylish layout.

Figure 18 - Screenshot of Pause Menu Wireframe.

The pause menu wireframe (Seen in Figure 18) takes heavy inspiration from the Hollow Knight
and Hades pause menu (Seen in Figure 8). Their pause menu layout maintains a simple, easy-
to-understand structure while incorporating enough visual design to remain appealing. The low-

Dungeon Scribbles

39 Samuel Downey

opacity background helps distinguish the menu from the gameplay, clearly indicating a change
in game status. Additionally, placing the "Paused" title at the top centre of the screen eliminates
any confusion about the player's action. The three main menu components are easily readable
due to their large font size, while the hover e昀昀ect enhances clarity by highlighting the currently
selected option. To further improve readability, the pause container provides a contrasting
background for the text, preventing it from blending into the semi-transparent game screen. This
container approach is being explored based on previous experiences where pause menu text
became di昀昀icult to read against the background.

4.3.2 User Flow Diagram

Figure 19 - Main Menu User Flow Chart

Dungeon Scribbles

40 Samuel Downey

Figure 20 - Player Controls User Flow Chart

Dungeon Scribbles

41 Samuel Downey

Figure 21 - Pause Menu User Flow Chart

Figure 22 - User Interface User Flow Chart

Dungeon Scribbles

42 Samuel Downey

4.3.4 Level Design

The level design for this project is heavily inspired by The Binding of Isaac (Seen in Figure 2). It
uses a repeating room structure, where the contents and door positions are randomized each
time the game is played. This keeps the experience fresh and makes each room feel di昀昀erent.
The starting room is the only room that is generated the same way, giving the player a calm and
familiar entry point. This design is easy to iterate on, allowing for a dynamic experience while
also reusing assets to save time and focus more on development.

4.4 Conclusion

This chapter outlined the structured approach used to design both the system architecture and
the user interface of the project. A well-organized ole structure and clear separation of scripts
helped streamline the development, improving the maintainability and debugging e昀昀iciency.
The chosen design patterns also supported a modular approach, allowing nexibility for future
updates.

Research into the user interface design across similar games provided valuable insights into the
best design practices for improving the user experience. By analysing menus and interface
elements, the user interface was crafted to balance clarity, usability, and visual appeal. The
wireframing process reinforced these design decisions, ensuring the user interface aligned with
the specioc needs of the project.

Overall, the design choices made in this chapter created a strong foundation for a structured,
intuitive, and a visually appealing game experience. Combining solid technical architecture with
user-centred design principles ensures that the onal product is both functional and engaging.

5 Implementation

5.1 Introduction

This chapter provides a comprehensive breakdown of the project9s development process,
detailing the implementation of all major systems across each sprint. It covers the full range of
technical work undertaken, including feature development, feature modiocation, bug discovery
and resolution, animation integration, audio system implementation and much more. Each
section highlights the goals set and the challenges encountered during development and how
each challenge was overcome, o昀昀ering a clear view of how the project evolved from initial
concepts to the functional onal product.

5.2 Sprint 1

5.2.1 Goals

• Have a full breakdown of game requirements.

• Organize previous project research.

• Begin collecting design research materials.

• Begin collecting system tutorial breakdowns for back end.

Dungeon Scribbles

43 Samuel Downey

5.2.2 Goal 1 3 Functional Research

During this phase of the project, research was conducted on popular games within the same
genre to identify both functional and non-functional requirements. These are discussed in detail
in Chapter 3.

5.2.3 Goal 2 3 Back-End System Research

Following the requirements breakdown, further research was conducted into game engines,
procedural generation, and pathonding algorithms to determine the most suitable technologies
for the project. This research is explored in detail in Chapter 3.

5.2.4 Goal 3 3 Gathering Applied Research

Figure 23 - Snippet of back-end system research.

Following the research into procedural generation and pathonding algorithms, examples of
applied systems were gathered to understand how they have can be implemented in games
(Seen in Figure 23). Both simple and complex systems were explored to evaluate the feasibility
of building and integrating them cohesively. This included foundational elements such as top-
down 2D movement, as well as more advanced systems like stage-based camera tracking and
basic random room generation.

Once the back-end systems researched was gathered, an initial design document was created.
This included collecting and analysing references of user interfaces from games within the

Dungeon Scribbles

44 Samuel Downey

same genre to inform the development of a cohesive design language for the project. Front-end
research and breakdowns are discussed in detail in Chapter 3.

5.3 Sprint 2

5.3.1 Goals

• Begin to break down the design languages

• Start putting together a wireframe based on the breakdown

5.3.2 Goal 1 3 Front-End Design Breakdown

During this stage of the project, the front-end research and breakdowns were conducted to
better understand user interface design patterns within the genre. These breakdowns are
spoken about in detail in Chapter 2.

5.3.3 Goal 2 3 Wireframe Creation

The initial wireframes for the game were developed during this development phase. Using
assets from the Unity Asset Store, I created a basic test environment to visualise interface
layout and functionality. Screenshots from this environment were imported into Figma to begin
designing the orst iterations of the user interface and pause menu. A comprehensive breakdown
of these wireframes and their design rationale is provided in Chapter 4.

5.4 Sprint 3

5.4.1 Goals

• Create a test level with a moveable player.

• Create a camera system that can follow the player through di昀昀erent stages.

• Create a basic enemy that follows the player.

• Create a basic player attack script.

• Create a basic knock back script.

• Create a basic player and enemy health script.

Dungeon Scribbles

45 Samuel Downey

5.4.2 Goal 1 3 Creating a Development Area

Figure 24 - Screenshot of Test Level.

The test level (Seen in Figure 24) was created using Unity9s Tilemap functionality, supported by a
2D asset pack sourced from the Unity Asset Store. As this was the orst time working with the
Grid and Tilemap system, care was taken to build a strong understanding of the basics,
including importing tile palettes and setting up a grid with multiple sorting layers. Particular
attention was given to creating separate player and collision layers, ensuring they were stacked
correctly so the player could interact with the environment properly rather than walking through
the noors or walls. Applied research into Unity9s Tilemap system proved highly valuable in
gaining a solid understanding of its functionality.

Dungeon Scribbles

46 Samuel Downey

Figure 25 - Code snippet of Player Movement script.

The Player Movement script (Seen in Figure 25) provides a basic 2D movement mechanic using
Unity's physics system. The movement direction is determined by input values which are stored
in the Unity Input Manager as a Vector2. This vector is multiplied by the _moveSpeed variable,
and the result directly sets the Rigidbody2D's linearVelocity. This approach instantly moves the
player in the desired direction at a consistent speed, with all movement handled by the physics
engine.

Dungeon Scribbles

47 Samuel Downey

Figure 26 - Code snippet of Input Manager for Player Movement.

The Input Manager script (Seen in Figure 26) converts WASD key inputs into a normalized
Vector2 value via Unity9s input system, storying the direction in a static Movement variable. The
Player Movement script accesses this value each frame, multiplying it by a speed parameter
and applying the result to the player9s Rigidbody. linearVelocity, creating immediate, physics
driven movement.

Initial testing of the player movement script demonstrated quick and responsive control, thanks
to the integration of the Unity Input System. Following the player testing, was testing the player9s
integration into the Tilemap that was previously added to the scene. The integration process was
successful, thanks to the prior research and setup conducted during the Tilemap conoguration
phase.

Dungeon Scribbles

48 Samuel Downey

5.4.4 Goal 2 3 Camera Transition System

Figure 27 - Snippet of trigger points for Camera Transition script.

A camera transition system (Seen in Figure 27) was required to adjust camera bounds based on
the player's location within the level. Implementing this system at this stage of development
would help to prevent potential complications during later stages of development, notably
when developing procedurally generated environments. Unity9s extensive community resources
were instrumental in onding a suitable solution, which was brought into the test scene to gain a
clearer understanding of its functionality.

As shown in Figure 27, the system was constructed using two polygon colliders, each serving as
a camera boundary. These boundaries constrain the camera to follow the player only when
within their respective zones. Additionally, two trigger points were placed, one in each boundary
area, to signal the camera to switch its cononing boundary. At the same time, the player9s
position was adjusted slightly during the transition to prevent repeated triggering or overlap
between zones.

Dungeon Scribbles

49 Samuel Downey

Figure 28 - Code snippet of camera transition script.

Dungeon Scribbles

50 Samuel Downey

Figure 29 - Code snippet of camera transition script.

The Map Transition script (Seen in Figure 28 and Figure 29) manages camera boundary
transitions using Cinemachine's Cononer2D system. When the player enters a trigger zone, the
script updates the camera's bounding shape to a new PolygonCollider2D boundary
(mapBoundry), seamlessly transitioning the camera's constrained view area. This prevents the
camera from showing out-of-bounds areas while maintaining smooth movement. The script
also slightly adjusts the player's position after transition (via UpdatePlayerPosition) to prevent
accidental re-triggering of the zone, ensuring stable camera behavior. An enum deones
transition directions (Up, Down, Left, Right) for organized level design. The system leverages
Unity's trigger colliders and Cinemachine's dynamic cononer modiocation to create polished
scene transitions.

Dungeon Scribbles

51 Samuel Downey

Through testing it was found that this system would need some modiocations as the trigger
points that changed the camera bounds were not as reliable as originally desired, sometimes
leading the player to be hidden from the camera in the wrong zone or sometimes ignoring trigger
points completely and causing the camera to be stuck in the previous zone.

5.4.5 Goal 3 3 Enemy Pathonding System

Figure 30 - Snippet of test enemy game object.

Dungeon Scribbles

52 Samuel Downey

Figure 31 - Code Snippet of enemy movement AI

The Enemy script (Seen in Figure 31) implements pathonding using Unity's NavMesh navigation
with support from the NavMeshPlus GitHub repository. This solution enables nav mesh to be
baked directly onto the Tilemap9s collision layer, creating walkable surfaces for pathonding
calculations. The Enemy script identioes the player's transform as the target destination, while
the NavMeshAgent component handles movement by continuously recalculating paths along
the baked mesh. The enemy's rigidbody follows these calculated paths toward the player
position, automatically navigating around obstacles. Essential 2D conoguration includes
disabling updateRotation and updateUpAxis to maintain proper movement alignment. This
approach provides e昀昀icient pathonding through pre-baked navigation data without requiring
manual waypoint systems.

The NavMeshPlus GitHub repository was discovered while gathering the applied research
during the orst sprint. Through investigation into how this works it looks as though this
repository works using the A* (A-Star) pathonding algorithm which was discussed at length in
Chapter 2. Upon further investigation it was also found that the Nav Mesh component built into
the Unity engine was also powered by the A* pathonding algorithm.

Dungeon Scribbles

53 Samuel Downey

Figure 32- Snippet of nav surface script for baking object detection.

Figure 33 - Script to set collision layer as an object to detect.

Dungeon Scribbles

54 Samuel Downey

5.4.6 Goal 4 3 Player Combat System

Figure 34 - Updated Player Movement script for Player Melee integration.

The Player Movement script (Seen in Figure 34) was updated to now include aiming functionality
to create a melee combat system. A new public Transform reference (_aim) tracks the weapon
object requiring directional rotation. When movement input exceeds a minimal threshold, the
script calculates a target angle using Mathf.Atan2 with the movement vector's Y/X components,
converting the result from radians to degrees. This calculated rotation is then applied to the aim
object using Quaternion.Euler, creating smooth directional facing aiming mechanic that
matches the player's movement input.

Dungeon Scribbles

55 Samuel Downey

Figure 35 - Code snippet of Player Melee Script.

The Player Melee script (Seen in Figure 35) implements timed melee attacks through a child
GameObject (Melee) that's parented to the Aim GameObject which is controlled inside the

Dungeon Scribbles

56 Samuel Downey

Player Movement script, ensuring proper directional alignment. The system uses three key
variables: a boolean _isAttacking, a 0.3 second _attackDuration, and a cumulative
_attackCooldown timer. When the mouse button is pressed, the OnAttack() function activates
the Melee GameObject which contains the player9s attack box and sets the attacking state to
true, while CheckMeleeTimer() automatically deactivates the GameObject after the attack
duration expires. This creates a self-contained attack system where the melee hitbox follows
the player's aim direction through its hierarchy placement, with built-in cooldown prevention
through the attacking state boolean.

Figure 36 - Code snippet of Player Weapon script.

The Weapon script (Seen in Figure 36) serves as the damage-dealing component attached to
the Melee GameObject. When active, it detects collisions through Unity's trigger system and
applies damage to any encountered Enemy objects. The script features a modioable _damage
value that gets passed to enemies via their TakeDamage() method. Using OnTriggerEnter2D, it
e昀昀iciently checks for Enemy components on colliding objects before executing damage calls,
preventing unnecessary operations on non-enemy collisions. This creates a lightweight damage
system that leverages Unity's physics callbacks, where the weapon's activation/deactivation is
controlled by the Player Melee script's timing system. The script's placement on the Melee
GameObject ensures damage only occurs during active attack frames while maintaining proper
directional alignment through the aim system.

Dungeon Scribbles

57 Samuel Downey

5.4.7 Goal 5 3 Health and Knockback system

Figure 37 - Code snippet of Player Health Script.

The Player Health script (Seen in Figure 37) manages the player's survival state through a
damage system and death check. Attached directly to the player prefab, it maintains a
serialized health value that gets reduced by ten points whenever the player collides with objects
tagged "Enemy". The script continuously monitors health in Update(), deactivating the player
GameObject. The collision system uses Unity's physics callbacks for e昀昀icient damage
detection without per-frame checks, creating a straightforward health management solution
that integrates with enemy interactions.

Dungeon Scribbles

58 Samuel Downey

Figure 38 - Updated Enemy script with health integration.

The updated Enemy script (Seen in Figure 38) now includes a health system that interacts
directly with the player's Weapon script. A _health variable tracks the enemy's vitality, while the
TakeDamage() method processes incoming damage from the Weapon script. When the
weapon's hitbox contacts the enemy, it calls TakeDamage() with its _damage value,
decrementing the enemy's health. If health reaches zero, the enemy GameObject is
immediately removed from the scene via the Destroy() method. This creates a clean interaction
where the Weapon script detects collisions and calls the damage function, and the Enemy

Dungeon Scribbles

59 Samuel Downey

script handles its own health state and destruction with no additional communication needed
between the systems beyond the initial damage call.

Figure 39 - Code snippet of updated player movement script for new aim mechanic and knockback integration.

The refactored Player Movement script (Seen in Figure 39) now implements three key systems in
a state-driven architecture. When in the UnKnocked state, the script processes movement
through the existing physics-based velocity system while introducing a new mouse-driven
aiming mechanic. This aiming system converts screen coordinates into game world space,

Dungeon Scribbles

60 Samuel Downey

calculating the closest appropriate cardinal direction by comparing the axis dominance,
prioritizing horizontal or vertical based on closest input direction, and applies proper 2D
rotation with a 90-degree o昀昀set.

Figure 40 - Updated Player movement script for knockback integration.

When knockback is triggered, the script switches to the _knocked state where movement input
is disabled and physics take over, applying force away from the impact source at a conogured
velocity, then smoothly decelerating using the Vector2.Lerp method until the timed recovery
period ends with the UnKnocked() coroutine. The state management ensures clean transitions
between these modes, with the _knocked boolean preventing movement/aiming during
recovery while maintaining all existing physics interactions. This creates responsive combat
feedback while preserving the original movement feel, with the cardinal-direction aiming
complementing melee systems by providing clear directional intent. All of this can be seen in
Figure 40.

Dungeon Scribbles

61 Samuel Downey

Figure 41 - Updated Enemy script for knockback integration.

The enemy and player both use a knockback system that activates when they collide. When the
player weapon hitbox collides with an enemy, the enemy's Knockback() method ogures out the
direction from the player9s centre, then pushes the enemy back using that direction and a force
value. It also turns o昀昀 the enemy9s pathonding for a short time so the knockback works properly.
After a short delay, the enemy goes back to normal behavior. The enemy knockback function
can be seen in Figure 41.

In the same way, when an enemy hits the player, it triggers the player's Knockback() method,
which works in a similar way. Both systems use the same idea. Knockback based on direction, a
short delay, and temporary changes to how they move. The player9s knockback works with their
movement system, while the enemy9s knockback pauses their pathonding. This makes the
combat feel fair and reactive on both sides.

5.5 Sprint 4

5.5.1 Goals

• Create a room prefab.

• Add a design to the room.

• Create a procedural generation script.

• Update enemy nav mesh to work with map generation.

• Update camera transition script to work with dynamically generated map.

Dungeon Scribbles

62 Samuel Downey

• Add a pause menu.

Dungeon Scribbles

63 Samuel Downey

5.5.2 Goal 1 3 Room Prefab

Figure 42 - Code Snippet of Room script.

Dungeon Scribbles

64 Samuel Downey

The Room script (Seen in Figure 42) serves as a modular door control system for the procedural
room generation scripts, attached to each room prefab. It contains four serialized GameObject
references representing each cardinal exit point. The public OpenDoor() method accepts a
Vector2Int direction parameter and activates the corresponding door GameObject when called.
This activation system integrates with the Room Manager script which determines neighbouring
rooms, only doors leading to valid adjacent rooms will be triggered via this method. The script
also includes a Vector2Int Room Index property for grid-based room tracking in the map
generation system. This creates a clean system where the Room Manager script handles level
generation logic and each Room instance manages its own door states.

Figure 43 - Screenshot of room prefab.

Dungeon Scribbles

65 Samuel Downey

5.5.3 Goal 2 3 Procedural Map Generation

Figure 44 - Code snippet one of Room generation script.

The Room Manager9s Start() function in the (Seen in Figure 44) sets up the main systems needed
for procedural generation. It orst creates a 2D grid called _roomGrid to keep track of where
rooms are placed. Then, it sets up a queue called _roomQueue to manage the order in which
rooms are generated. The starting room9s position is calculated and placed in the centre of the
grid. Finally, it calls StartRoomGenerationFromRoom() to begin generating the dungeon, making
sure it always starts from a consistent and expected location.

Dungeon Scribbles

66 Samuel Downey

Figure 45 - Code snippet of Room generation script.

The Room Manager9s Update() function (Seen in Figure 45) runs the room generation process
every frame. It checks the queue of room indices and tries to spawn new rooms in all four
cardinal directions. If the number of rooms drops below the minimum limit (_minRooms), it
calls the RegenerateRooms() function to restart the process. When the maximum number of
rooms (_maxRooms) is reached, the generation ends and a message is logged to show it's
complete.

Figure 46 - Code snippet of Room generation script.

The Room Manager9s StartRoomGenerationFromRoom() function (Seen in Figure 46) begins the
generation process by placing the orst room into the queue and marking its spot on the grid as
taken. It then creates the starting room, gives it a unique name and index number, and stores it
in the _roomObjects array to keep track of it. This sets up a clear starting point for the rest of the
dungeon to build from.

Dungeon Scribbles

67 Samuel Downey

Figure 47 - Code snippet of Room generation script.

The Room Manager9s TryGenerateRoom()function (Seen in Figure 47) handles procedural room
generation by validating potential new rooms through four checks. The maximum room limit,
random 50% chance, adjacent room density, and grid availability. If valid all of these checks are
valid, it updates the grid/queue, instantiates the prefab with proper positioning/naming, and
connects doors to neighbours via the OpenDoors() function. This ensures balanced dungeon
layouts while maintaining generation rules.

Figure 48 - Code snippet of Room generation script.

The Room Manager9s RegenerateRooms() functions (Seen in Figure 48) acts as a safeguard in
case of room generation failure, such as when not enough rooms are placed. It clears everything
by deleting all existing rooms, resetting the grid and queue, and setting all counters back to zero.
It them starts the generation again from the centre point. This ensures that the game always
creates a working dungeon layout, even if something goes wrong with the orst attempt.

Dungeon Scribbles

68 Samuel Downey

Figure 49 - Code snippet of Room generation script.

The Room Manager9s OpenDoors() function (Seen in Figure 49) is used to connect rooms
together. It checks each cardinal direction to see if there is a neighbouring room in the
_roomGrid. If there is, it calls the OpenDoor() function for both rooms, making sure that the
doors line up properly. For example, one room9s right door connects to the neighbour9s left door.
This keeps the layout easy to move through and follows the rules set by the procedural
generation system.

Dungeon Scribbles

69 Samuel Downey

Figure 50 - Code snippet of Room generation script.

The Room Manager9s GetRoomScriptAt() function (Seen in Figure 50) is a helpful tool that onds a
room9s Room script by looking through _roomObjects for a matching room index. It9s mainly
used by the OpenDoors() function to let rooms communicate with each other4such as keeping
door states in sync.

The CountAdjacentRooms() function (Seen in Figure 50) checks how many rooms are directly
next to the current one (up, down, left, or right) by looking at _roomGrid. This is important for the
TryGenerateRoom() method, as it helps avoid placing too many rooms too close together and
keeps the dungeon layout clear and balanced.

The GetPositionFromGridIndex() (Seen in Figure 50) function takes grid coordinates like [3,2]
and turns them into actual world-space positions using the set room width and height
(_roomWidth and _roomHeight). It also centres the whole dungeon by adjusting the positions
based on the middle of the grid.

Dungeon Scribbles

70 Samuel Downey

Figure 51 - Code snippet of Room generation script.

The OnDrawGizmos() function (Seen in Figure 51) is a helpful debug tool used in the Unity Editor.
It shows the generation grid by drawing see-through cyan cubes at each possible room location.
This makes it easier to check the grid size and room placement while building and testing the
game.

Figure 52 - Snippet of Room design iteration.

Integrating designs into the procedural generation environment required a few di昀昀erent
iterations. Initial attempts involved layering designs over the grid system (Seen in Figure 52), but
this approach proved ine昀昀icient due to the constantly regenerating map layout. The dynamic
nature of door GameObjects also presented additional challenges with this approach, as pre-
made designs couldn't accommodate their changing positions. This idea was ultimately
scrapped, but can be seen demonstrated by the results shown in Figure 52.

Dungeon Scribbles

71 Samuel Downey

Figure 53 - Room generation script test.

The onal approach adopted a more streamlined solution by designing directly within the room
prefab (Seen in Figure 53). This method signiocantly reduced design time, as a single template
could be replicated across all room instances while maintaining consistency. Testing conormed
that the Tilemap collision system continued to function correctly with this implementation. The
dynamic door system challenge was addressed through a neighbour-state detection
mechanism, where door GameObjects would be activated or deactivated based on adjacent
room connections. However, full implementation and testing of this door system occurred
during later stages of project development.

Dungeon Scribbles

72 Samuel Downey

5.5.4 Goal 3 3 Nav Mesh Integration

Figure 54 - Snippet of Enemy nav mesh bug.

Figure 55 - Update to enemy movement script to 昀椀x bug.

Dungeon Scribbles

73 Samuel Downey

The enemy script (Seen in Figure 55) was updated with a NavMesh validation mechanic to
address pathonding issues that occurred when enemies tracked players across rooms the
player wasn9t in. The key addition was the IsPlayerOnSameNavMesh() method which performs
three critical checks.

Firstly, it verioes that the target exists. Secondly, It calculates a potential path using the
CalculatePath() method, and onally, it conorms the path is fully traversable. This validation
stops the SetDestination() call in the Update() if these conditions aren9t met, preventing
movement attempts when the player is in disconnected rooms.

Figure 56 - Demonstration of bug 昀椀x in action.

The system now automatically resets the current path when either the player becomes
unreachable or the enemy is in a knocked-back state. These changes directly address the
original issue where enemies would cluster near room transitions, blocking player movement,
while maintaining the existing knockback system's functionality. The solution pairs with the
prefab modiocation where rooms now bake their NavMesh before generation, ensuring proper
pathonding segmentation between rooms. Results can be seen in Figure 56.

Dungeon Scribbles

74 Samuel Downey

5.5.5 Goal 4 3 Updated Camera Transition

Figure 57 - Updated camera transition logic.

The reworked Map Transition script (Seen in Figure 57) implements a dynamic camera boundary
system that automatically adapts to procedurally generated game world. Each room prefab now
contains its own PolygonCollider2D boundary, eliminating the need for static trigger points.
When the player enters any room area, the OnTriggerStay2D callback continuously checks if the
CinemachineCononer's bounding shape needs updating. Upon detection, it immediately
switches to the new room's boundary and invalidates the camera's cache to ensure smooth
transitions. This solution provides several key improvements, orstly, it reduces scene complexity
by removing dedicated trigger objects, instead using the room colliders themselves as
activation zones. Secondly, it maintains performance e昀昀iciency by only executing boundary
checks when the player is actively crossing room thresholds. Finally, the system now works
seamlessly with procedurally generated layouts since each room instance carries its own
preconogured boundary data. The cache invalidation ensures proper camera recalculation
when switching between di昀昀erently shaped rooms, preventing visual glitches during transitions.

Dungeon Scribbles

75 Samuel Downey

5.5.6 Goal 5 3 Handle Aim Update

Figure 58 - Update to player movement script.

The Player Movement script was updated to integrate with the melee combat system by adding
an aiming restriction during the player9s attack (Seen in Figure 58). The modiocation introduces
a reference to the Player Melee script in Awake(), then checks the _cooldownTimer value within
the Player Melee script before processing aim updates. This prevents the HandleAim() function
from executing while an attack is in progress, e昀昀ectively locking the attack direction throughout
the entire melee animation cycle. The change addresses two key issues, orstly, it maintains
combat consistency by preventing mid-attack direction changes that could create visual or
gameplay discrepancies. Secondly, it establishes proper animation system integration by
ensuring attack directions remain stable throughout the animation timeline. The knockback
system remains una昀昀ected, as it operates independently of both the aiming and melee
cooldown systems.

Dungeon Scribbles

76 Samuel Downey

5.5.7 Goal 6 3 Enemy integration

Figure 59 - Snippet of enemy integration into procedural generation.

Figure 60 - Code snippet of enemy integration.

Dungeon Scribbles

77 Samuel Downey

The Room Manager script (Seen in Figure 60) was extended with three functions to manage
procedural enemy placement. The GetEnemyCountForRoom() method implements a
progressive di昀昀iculty curve by varying spawn counts based on room generation order, starting
with 0 enemies in the orst room, scaling up to 3 enemies in later rooms. The SpawnEnemies()
function handles instantiation, creating each enemy at randomized positions within room
boundaries while parenting them to their respective rooms for organizational clarity. It includes
validation for the enemy prefab reference and automatically conogures sprite rendering settings
to ensure proper visual layering. Position randomization is managed by
GetRandomPositionInRoom(), which calculates spawn points within the central area of each
room using the predeoned room dimensions. This system creates controlled enemy distribution
that maintains gameplay balance while working seamlessly with the procedural generation
pipeline.

A bug was then identioed in the room regeneration system where enemies would incorrectly
spawn in the starting room during regeneration cycles. The issue stemmed from the original
implementation only enforcing the "no enemies" rule during initial generation. During
regeneration, the system would recreate all rooms, including the starting room, without
reapplying this rule. This inconsistency meant the starting room remained enemy-free only on
the orst generation attempt, disrupting the intended di昀昀iculty progression where early rooms
should be safer. The bug was particularly noticeable during failed generation attempts when the
system automatically regenerated rooms below the _minRooms threshold.

Figure 61 - Screenshot of enemy spawning bug.

To address this, a two-part system was introduced (Seen in Figure 61 and Figure 62). First, the
script now tracks the starting room persistently by storing it in a _orstRoom variable during initial
generation, while explicitly calling SpawnEnemies(initialRoom, 0) to enforce the enemy-free
state. Second, the RegenerateRooms() function was modioed to preserve this room: it destroys
all rooms except _orstRoom, clears the generation queue, resets the room grid while re-
registering the starting room's position, and restarts generation from this preserved room. This
ensured the starting room maintained its correct state across regeneration cycles while
allowing other rooms to follow standard spawning rules.

Dungeon Scribbles

78 Samuel Downey

Figure 62 - Enemy spawning bug solution.

While this solution oxed the immediate issue of enemies spawning in the starting room, testing
revealed unresolved cases where enemies would still appear. Connected rooms occasionally
inherited incorrect spawn counts during regeneration, and the system didn9t account for post-
generation modiocations to _orstRoom . The partial ox highlighted the need for a more robust
spawning rule system that would consistently apply room-specioc logic during both initial
generation and regeneration. These reonements were deferred for later development to
prioritize core gameplay testing, with the understanding that the current implementation
provided a stable foundation for further iteration. The solution successfully prevented starting-
room enemy spawns but would require additional work to fully harmonize the procedural
generation and enemy placement systems.

Dungeon Scribbles

79 Samuel Downey

5.5.9 Goal 7 3 Pause Menu

Figure 63 - Code Snippet of interface manager script.

The Interface Manager script (Seen in Figure 63) adds pause functionality through a Canvas-
based UI pause menu panel that toggles visibility in response to player input. The system
initializes by deactivating the pause menu panel in Start(), then monitors for ESC key presses in
Update(). When triggered, TogglePauseMenu() switches the isPaused state to the opposite of its

Dungeon Scribbles

80 Samuel Downey

current state to activate/deactivate the pause menu GameObject accordingly. The script
controls game time using Time.timeScale, setting it to 0 when paused which freezes the
gameplay and restoring it to 1, unfreezing the gameplay when resumed. A dedicated
ResumeGame() method allows button-triggered unpausing, ensuring consistency between key
and UI interactions. The pause menu reference is serialized for easy assignment in the Unity
Editor, linking to a Canvas panel containing pause menu elements like buttons and text. This
implementation creates a lightweight but functional pause system that can be extended with
additional menu features while maintaining clear state management through the isPaused nag.

Figure 64 - Snippet of pause menu integration.

5.6 Sprint 5

5.6.1 Goals

• Add a loading screen.

• Finalize room design.

• Add door logic to the rooms.

• Add a visible health bar.

• Add a health item.

• Add an enemy design and animator.

• Fix enemy spawning in starter room bug.

• Add player into room generation.

Dungeon Scribbles

81 Samuel Downey

5.6.2 Goal 1 3 Loading Screen

Figure 65 - Loading screen design.

Dungeon Scribbles

82 Samuel Downey

Figure 66 - Code snippet of loading screen logic.

The Interface Manager was extended to include a loading screen system that masks procedural
generation processes (Seen in Figure 66). A new GameObject named <loadingScreen= was
added, controlled by the Room Manager's generationComplete boolean. During scene
initialization, the script has a new reference to the Room Manager and implements error
handling if missing. In the Update() loop, the loading screen's active state directly mirrors the
inverse of generationComplete boolean, remaining visible while rooms are generating and
hiding when complete. This addresses the visual issue where players could see rooms being
deleted and regenerated during failed generation attempts. The system operates independently
from the existing pause functionality, with both features coexisting through separate
GameObject controls. The loading screen consists of a full-screen Canvas element with static
text and is activated during these key moments: initial dungeon generation, failed generation
recovery, and any future scene regenerations.

Dungeon Scribbles

83 Samuel Downey

5.6.3 Goal 2 3 Finalise Room

Figure 67 - Finalised room design.

The onal room design (Seen in Figure 67) took a handful of iterations and failed versions before
getting to this stage. There were many issues with the room baking incorrectly or the tile palette
not being set up correctly which led to issues with designing proportions. Thankfully the issues
were able to be rectioed and a onal design was created. The spaces at the four cardinal exit
points is for the implementation of the smart door system where game objects will be
conditionally swapped out depending on if the room has a neighbouring room or if there are
enemies in the room with the player. This system should provide dynamic visual cues for the
player to be able to understand what directional options they have available to them at di昀昀erent
states of the game.

Dungeon Scribbles

84 Samuel Downey

Figure 68 - Code snippet of door logic.

The OpenDoor() method has been modioed to implement a new paired door/wall system,
creating more dynamic room transitions (Seen in Figure 68). For each cardinal direction, the
function now manages two related GameObjects: a door and a wall. This creates proper spatial
awareness where doorways become physically passable only when open. The system uses
simple boolean activation states, setting doors active while disabling their corresponding walls,
which provides immediate visual and collision feedback. This implementation serves as the orst
step for smarter door management.

Dungeon Scribbles

85 Samuel Downey

Figure 69 - Code snippet of door logic.

The InstantiateWall() function works in parallel with the existing OpenDoor() method by
implementing conditional wall activation logic (Seen in Figure 69). This new function only
activates walls in directions where no door currently exists, creating a fail-safe mechanism that
prevents walls and doors from occupying the same space. The system maintains four
directional checks, mirroring the door system's structure, ensuring consistent behaviour across
all room boundaries. When called by the Room Manager during generation, it automatically
creates sealed boundaries in unconnected directions while preserving open pathways where
doors exist. This creates a complete doorway management system where doors open or close
pathways when connecting rooms and walls automatically oll gaps where no connections exist.
The function's conditional activation ensures it works harmoniously with the procedural
generation process without overwriting manually placed doors.

Dungeon Scribbles

86 Samuel Downey

Figure 70 - Snippet of room script for smart door logic.

The Room script now implements dynamic door management system that responds to enemy
presence, creating risk-reward exploration mechanics (Seen in Figure 70). An _enemyCount
variable tracks enemies entering through OnTriggerEnter2D , incrementing when enemies
spawn inside the room's collider. When the player enters which is detected via tag comparison,
the system evaluates this count. If the enemy count is higher than zero, it triggers the
CloseDoors() method to temporarily seal the room, forcing combat encounters. In cleared
rooms where the enemy count is equal to zero, it requests the Room Manager to open all doors
to neighbouring rooms, maintaining progression now. This creates a gameplay loop where the
player must clear rooms to advance, enemy encounters become mandatory challenges, and
the environment actively responds to combat states.

Dungeon Scribbles

87 Samuel Downey

Figure 71 - Snippet of room script for smart door logic.

The OnTriggerExit2D method (Seen in Figure 71) completes the dynamic door management
system on the Room side of things by handling two scenarios. When enemies exit the room
when being destroyed, the enemy counter decreases, and upon reaching zero it automatically
triggers the Room Manager to reopen all available doors, creating a satisfying gameplay loop of
clearing rooms and exploring more of the game. Simultaneously, the system monitors player
exits as a safeguard, if the player leaves an empty room, it reconorms the door states with the
Room Manager to prevent accidental lockdowns. This two-way tracking system ensures rooms
maintain accurate enemy counts while providing appropriate accessibility, with the Room
Manager serving as the central coordinator for all door state changes. This implementation
creates robust room behaviour where doors only remain locked during active combat
encounters, automatically resolving their states when either all enemies are eliminated.

Figure 72 - Snippet of room script for smart door logic

Dungeon Scribbles

88 Samuel Downey

Figure 73 - Snippet of room script for smart door logic.

The updated OpenDoors() method in Room Manager script (Seen in Figure 73) now implements
a coordinated door management system that works in tandem with the Room script's enemy
tracking functionality. The method begins by verifying the requesting room has no remaining
enemies before proceeding with any door operations, creating a critical dependency between
the two systems. When safe to proceed, it identioes all valid neighbouring rooms through grid
position checks and null validation, then executes bidirectional door opening, simultaneously
activating doors in both the current room and connected neighbours. This creates symmetrical
pathways where doors only open when the initiating room is cleared of enemies and adjacent
rooms exist in the generated layout. The system handles all four cardinal directions
independently, with each check verifying grid boundaries, room existence in the generation
matrix, and successful component retrieval. The implementation speciocally corrects
directional matching to maintain proper pathing logic. This enhanced of the method directly
supports the Room script's combat-driven door states by ensuring automatic reopening of
cleared rooms while respecting the procedural generation constraints. The tight integration
between these systems creates emergent gameplay where players must strategically clear
rooms to progress, with the environment dynamically responding to their combat performance
through coordinated door states across the entire dungeon layout.

Dungeon Scribbles

89 Samuel Downey

5.6.5 Goal 3 3 Health bar UI addition

Figure 74 - First version of health bar added to user interface.

Figure 75 - First version of dynamically moving health bar.

The modioed Update() method inside the Player Health script (Seen in Figure 75) implements
health visualization through a numeric and graphical display, though initial implementation
caused a bug that caused strange height behaviour in the health bar. The TextMeshPro
component reliably displays the current health value of the player, while the UI Image
experienced an unexpected issue where its height would nuctuate despite being explicitly set to
a constant health bar height. This occurred because the sizeDelta property was modifying both
dimensions when only the width should have been adjusted. The health bar system calculates a
clamped health percentage to prevent visual overnow, but the original implementation
accidentally scaled the full Vector2 dimensions rather than just the x-component for width. The
death check properly enforces health minimums and handles player deactivation, while the
health bar now correctly maintains its height by only modifying the x-value in the sizeDelta
Vector2.

Dungeon Scribbles

90 Samuel Downey

Figure 76 - Additions to player health script for health bar functionality.

The updated health bar implementation (Seen in Figure 76) introduces several key
RectTransform adjustments to reone the health bar's visual behaviour. The anchor points are
now dynamically controlled, with anchorMin oxed at (0,0) and anchorMax's x-value scaling with
health percentage while maintaining a y-value of 1 - this creates smooth left-anchored
shrinking. A new pivot point setting (0,0.5f) ensures the bar contracts from the left edge while
staying vertically centred. The sizeDelta modiocations now explicitly separate width and height
adjustments, with the y-value permanently locked to 25f to prevent any height nuctuations. The
width calculation uses a oxed base value multiplied by healthPercent, maintaining proper
aspect ratio. These changes collectively create more polished visual feedback where the health
bar now smoothly decreases from left to right while maintaining perfect dimensional stability.

Dungeon Scribbles

91 Samuel Downey

5.6.6 Goal 4 3 Health Item

Figure 77 - Code snippet of health item.

The Health Potion script (Seen in Figure 77) implements a basic health restoration system
through 2D collision detection. When a GameObject with a Collider2D enters the potion's
trigger area, the script attempts to get the Player Health component from the colliding object. If
successful and the player's health is below 100, it increments the player's health by 10 points
before destroying the potion GameObject. This creates a straightforward pickup system with
built-in validation that only a昀昀ects the player and respects maximum health limits while
minimizing confusion about used potions by removing used potions from the game world. The
implementation provides immediate gameplay impact while maintaining balance through its
conditional healing check.

Dungeon Scribbles

92 Samuel Downey

Figure 78 - Health item in the game with new enemy designs implemented.

The design of the health potion (Seen in Figure 78) was very simple to ond and to implement.
There is a sprite pack for potions available on the Unity Asset store which contained the red
potion sprite. After importing the pack and replacing the current sprite of the health potion with
the new red potion sprite. I brought the prefab into the game world and tested it through a
couple of use cases and found no issues with its implementation.

Figure 79 - Additions to room manager script to implement health items.

After testing the functionality of the health item it was integrated into the Room Manager to
create dynamic spawning throughout the dungeon (Seen in Figure 79). The implementation
spawns health potions in every 3rd room and the onal room, using a modulo operation for the
recurring pattern. The SpawnHealthPotion() method handles instantiation with several

Dungeon Scribbles

93 Samuel Downey

safeguards. First, it validates the prefab reference exists, then calculates a random position
within the central area of the room with help from the enemy spawning functionality. Each
potion is parented to its room for organizational clarity and automatically conogured to use the
"Player" sorting layer, ensuring proper visual rendering above environmental elements and
proper collision logic. This creates balanced distribution where players can anticipate healing
points, potions avoid edge placement near doors, and the onal room guarantees a health boost
before completion.

5.6.7 Goal 5 3 Enemy design implementation

Figure 80 - Enemy walking sprite sheet.

The implementation of the enemy design began with the selection of a suitable sprite sheet
(seen in Figure 80), which was sourced from a third-party asset library. The chosen sprite sheet
was selected based on two critical factors, its comprehensive animation frames covering all
necessary enemy states (idle, attack, and damage animations), and its consistent visual style
that matched the game's already established pixel art aesthetic. This careful selection process
ensured the sprite sheet could be integrated into the project with no modiocations to the style
while maintaining visual coherence across all game elements.

Dungeon Scribbles

94 Samuel Downey

Figure 81 - Enemy animation controller.

After importing the slime sprite sheets, time was spent slicing each of the sheets into each
animation sequences to then work on transitions within the animation controller (Seen in Figure
81). When building the animation controller, it was made apparent that starting small and really
focusing on each animation sequence respective of each other was the only way to make sure
that the transition system was built to a standard that the game deserved. This method also
made it easier to make sure that every animation node had a logical transition for every use
case scenario that could have happened with the use of specioc booleans and triggers.

Dungeon Scribbles

95 Samuel Downey

Figure 82 – Animation controller variables added to enemy movement.

The Enemy script was modioed to implement the directional movement animations by
comparing position changes between frames (Seen in Figure 82). It calculates movement deltas
by tracking the enemy's current position against its previous frame position. A small sensitivity
threshold prevents animation triggers during minimal movement which in turn increases the
accuracy of the animation transitions. The system prioritizes vertical animations when vertical
movement values exceed horizontal movement values, otherwise defaulting to horizontal
animations. Four boolean parameters (Up/Down/Left/Right) are selectively activated in the
Animator Controller based on these calculations, ensuring only one directional animation plays
at a time. After evaluation, the current position is stored as _previousPosition for the next
frame's comparison. This creates responsive animation transitions that match actual
movement direction and prevent animation connicts while maintaining smooth visual feedback.

Dungeon Scribbles

96 Samuel Downey

Figure 83 - Animation controller variables added to enemy damage.

The Enemy Knockback() method was modioed to integrate directional hurt animations
alongside the existing physics system (Seen in Figure 83). When triggered, the method orst
calculates the knockback direction away from the knockback trigger and sets the hurt state to
true. The system then starts three key actions. First it stops the NavMeshAgent's pathonding
temporarily to avoid pathonding errors from occurring, it then applies the knockback physics,
and onally it activates animation responses through a two-layer system. The base "Hurt"
boolean enables the hurt state in the Animator Controller, while specioc directional triggers are
ored based on the enemy's current movement direction which was handled by the movement
system. This ensures the knockback animation matches the correct direction when hit. If no
directional movement bools are active, it defaults to the "HurtDown" animation as a safeguard.
The knockback state is automatically cleared after a set duration via the UnKnocked coroutine.

Dungeon Scribbles

97 Samuel Downey

Figure 84 - Enemy designs implemented into game.

After conoguring the animation controller and the code implementation for the enemy
animations, it was time to test the current state of the enemy animations (Seen in Figure 84).
There were some minor issues with transitions at the beginning of testing, much on the side of
the animation controller but after some quick oxes, it all became much smoother and much
more consistent. The only key animation sequence we were missing was the death animations
for the enemies as it would require to add more logic to the enemy script to be able to control
the death state.

Dungeon Scribbles

98 Samuel Downey

Figure 85 - Addition of death animations to enemy animation controller.

When implementing the death animations, orstly time was spent on slicing and bringing
animation sequences into the existing animation controller (Seen in Figure 85), the death
animations were connected to the <AnyState= node. Further transitions were not needed seeing
as the enemy GameObject would be destroyed after the death animations occurred, making
this implementation into the animation controller very simple.

Dungeon Scribbles

99 Samuel Downey

Figure 86 - Animation variables being implemented into enemy death logic.

The implementation of the death animations into the Enemy script (Seen in Figure 86) used a
two-phase approach that makes sure the existing gameplay logic works as intended while
seamlessly bringing in the animations. The IsDead() method creates an easy way to enable the
dead state within the enemy9s animation controller, which then works the same way as the
knockback animations handling which worked closely with the enemy movement system. The
Die() coroutine handles the timing to make sure that the knockback physics and the death
animation are not cancelled out before the enemy is destroyed from the scene. This created a
visually appealing death sequence where nothing important to the sequence gets interrupted.

5.6.8 Goal 6 3 Fixing Enemy in Starting Room bug

When tacking this bug during a previous sprint, it was mentioned that the bug wasn9t completely
oxed although it was occurring less frequently. This task was dedicated to eradicating this bug
from the game entirely.

During testing, each part of the room management system was inspected and tested for its
intended purpose. When testing the room regeneration systems, it was noticed that not all
rooms were generating but there was also no error being thrown. It was discovered that every
room was being generated but due to the regeneration not recognising the orst room in the
queue, a room was being generated on top of the orst room, which brought the enemy inside the
player9s spawn area. This was not seen in the game due to the sorting layers being so well
organized.

Dungeon Scribbles

100 Samuel Downey

Figure 87 - Modi昀椀cations to the room manager script.

The RegenerateAllRooms() method was completely restructured (Seen in Figure 87). Instead of
destroying all rooms, it now preserves the orst room, then resets all generation variables such
as _roomGrid and _roomQueue, before restarting the regeneration process. This restructuring
allows the same functionality as before but without ignoring the orst room. The
MovePlayerToFirstRoom() function works as a safeguard in case of an issue with the orst rooms
coordinates on the grid to ensure proper positioning after regeneration.

Figure 88 - Modi昀椀cations to the room manager script.

The StartRoomGenerationFromRoom() method was modioed to improve room tracking from the
orst generation (Seen in Figure 88). It now consistently places the orst room in the centre of the
grid and registers its position with the _roomGrid array and the _roomObjects list. The function
explicitly tags the orst room, ensuring that no enemies spawn inside of it during any generation
attempt.

Dungeon Scribbles

101 Samuel Downey

Figure 89 - Modi昀椀cations to the room manager script.

The TryGenerateRoom() method was improved with additional validation checks to prevent
incorrect room placement (Seen in Figure 89). Now it verioes four conditions before spawning a
room, these conditions include the maximum room count, random generation chance, adjacent
room count, and a grid position check. The grid position check is the most important change for
this bug, making sure the position is not occupied before spawning a room inside. Only
successful validation of these conditions enqueues the room to be instantiated.

Dungeon Scribbles

102 Samuel Downey

Figure 90 - Modi昀椀cations to the room manager script.

The MovePlayerToFirstRoom() was added (Seen in Figure 90) as a coordination function which
handles the player9s position in conjunction with the reworked generation system. It either
spawns a player or moves an existing player to the orst room, guaranteeing that the player starts
in the orst room.

Dungeon Scribbles

103 Samuel Downey

Figure 91 - Modi昀椀cations to the room manager script.

The OpenDoors() function was improved (Seen in Figure 91) with neighbour validation which
cross-references the _roomGrid array, preventing doors from opening in invalid directions. The
function now only activates when the current room has no enemies. The script also uses the
GetRoomScriptAt() method to communicate with other rooms, ensuring that doors open
between neighbouring rooms.

5.7 Sprint 6

5.7.1 Goals

• Add side door design.

• Add a fully designed player character.

• Update melee system.

• Fix enemy clipping bug.

• Add mini map to user interface.

• Update health bar design.

Dungeon Scribbles

104 Samuel Downey

• Update menu designs.

• Add options menu.

• Add a main menu design.

• Add audio system.

• Add controller support.

5.7.2 Goal 1 3 Add Door Design to Room

Figure 92 - Updated room design with door prefabs brought in

The onal stage of the room design process involved creating the doors (seen in Figure 92). Each
door required two distinct sprite variations to function within the smart door system, one for the
closed state and one for the open state. Designing the top and bottom doors proved
straightforward, despite relying on an unfamiliar prefab creation technique with no prior
research.

The door prefabs in both the closed and open state were assembled using four 2D game objects
each, equipped with Sprite Renderer components. Suitable door and wall sprites were selected
from the chosen tile palette and assigned to the corresponding game objects. A Box Collider 2D
was added to the closed state prefabs to ensure it behaved the same as the previous
placeholder models. Careful alignment minimized visual clipping and ensured the components
ot seamlessly within the environment, followed by functionality testing to conorm behaviour
consistency with the previous model.

Attention then turned to the left and right doors, which presented a challenge. The tile palette
that was chosen lacked appropriate sprites for side-facing doors. Several approaches were
attempted, such as rotating existing door models on the Z-axis to simulate the desired e昀昀ect,

Dungeon Scribbles

105 Samuel Downey

but the results were unconvincing and felt sloppy. A breakthrough came when a photography
student suggested using stairs instead of doors for the room's sides. A rough prototype based
on this idea was assembled and integrated. A blocked version of the stairs, featuring a rock
obstruction, was also created to serve as the closed-door variation. These designs replaced the
original placeholders and passed testing without issues.

5.7.3 Goal 2 3 Add a Player Design

Figure 93 - New character design being implemented

The implementation of a player design (seen in Figure 93) began with onding a suitable sprite
sheet that would suit the needs of the game. The sprite sheet was sourced from the same third-
party website as the enemy slime sprite sheet. Both asset packs aligned well with the existing
game environment, maintaining the visual aesthetic that was established early in development.
The player sprite sheet included a wide range of animations which made it an easy choice,
although not all animations were implemented, such as all four direction based idle animations,
to ensure that the essential animations were functional and ready in time for the major user
testing phase as at this stage of development it was rapidly approaching.

Dungeon Scribbles

106 Samuel Downey

Figure 94 - Player animation controller

Each sprite sheet was sliced into its respective animations before being conogured in the player
animation controller (Seen in Figure 94). Transitions for each animation state were conogured in
the controller, using the experience gained with the enemy animation controller to create a
more reoned controller straight away, without needing modiocations later. The process began
with the player's movement animations, focusing on transitions between directional states.

A short timer was then added to reset the animation back to an idle state, preventing any
unintended crossover between transitions. Once the movement animations were in place, the
hurt animations were implemented using a similar approach, followed by the addition of the
attack animations. As the animation controller expanded, a lot of care was taken to ensure each
transition felt logical.

Dungeon Scribbles

107 Samuel Downey

Figure 95 - Player movement code updated with animator integrations.

The HandleMovement() function within the player movement script (Seen in Figure 95) was
updated to interact with the player's animation controller, this was largely based on the same
system that was developed for the enemy animations. Directional booleans were set based on
movement along the X or Y axis, triggering the corresponding movement animations. While the
player is in motion, the idle timer resets, once movement stops, the timer begins counting down
and onally transitioning to the idle state after a short time. This straightforward system functions
e昀昀ectively, and thanks to careful setup of the animation controller transitions, no directional
overlap occurs during horizontal or vertical movement. The code evaluates the dominant
movement direction and activates the appropriate animation accordingly.

Dungeon Scribbles

108 Samuel Downey

Figure 96 - Player movement code updated with animator integrations.

The SetIdleState() function (Seen in Figure 96) is triggered when the idle timer has reached zero.
It is a very simple function that sets every non-idle state to false and sets the idle state to true.
When the idle state is set to true the idle animation plays and begins looping for as long as the
player is standing still. There is no exit time set on the idle animation so it transitions quickly and
smoothly to whatever movement or attack animation gets triggered.

Dungeon Scribbles

109 Samuel Downey

Figure 97 - Player movement code updated with animator integrations.

The hurt animations for the player were integrated within the Knockback() function in the Player
Movement script (Seen in Figure 97), as this placement made the most sense, allowing the hurt
state to be activated during knockback and reset within the UnKnocked() coroutine.

Within the HandleMovement() function, an if statement tracks and stores the player9s previous
movement direction using an Enum variable. This value is then referenced to ensure the correct
hurt animation is triggered. When the knockback function is called, the hurt boolean is set to
true, and the corresponding directional trigger is activated based on the stored movement
direction. With both the boolean and trigger conditions met, the animation controller9s <Any
State= logic identioes the appropriate transition and plays the correct hurt animation.

Dungeon Scribbles

110 Samuel Downey

Figure 98 - Player movement code updated with animator integrations.

The UnKnocked() coroutine (Seen in Figure 98) is responsible for resetting both the hurt
animation state and the knocked player state after a specioed duration of time. Initially, there
were timing discrepancies between the knockback e昀昀ect and the length of the hurt animation.
To resolve this, the coroutine was adjusted to wait for the longer of the two durations, either the
knockback time or the current hurt animation length. This change addressed the issue without
introducing any noticeable delay to the knockback e昀昀ect. Once the wait time concludes, both
the knocked and hurt states are set to false, allowing the HandleMovement() function to resume
normal operation and enabling movement and attack animations to play as needed.

Dungeon Scribbles

111 Samuel Downey

5.7.4 Goal 3 3 Update Combat System

Figure 99 - Updated handle aim function for easier animation controlling

The aiming system (Seen in Figure 99) was updated to determine and return an attack direction
based on the most dominant cardinal direction of the mouse position when the player is
attacking. This directional information is passed to the Weapon script, which manages the
remainder of the attack logic. This approach allows the attack animations to be selected in a
manner similar to the player9s hurt animations, ensuring consistency across animation states.

Dungeon Scribbles

112 Samuel Downey

Figure 100 - Updated player melee script with animation controller integration

At the top of the updated Player Melee script (seen in Figure 100), both the animator and Player
Movement script are referenced to integrate the new aim mechanic into the combat system.
This setup allows the aim direction, calculated by the Handle Aim function, to be accessed and
passed to the Animator. The Melee script serves as a mediator between these two components,
ensuring the correct directional animation is triggered during attacks.

Dungeon Scribbles

113 Samuel Downey

Figure 101 - Updated player melee script with animation controller integration.

The Attack() function (Seen in Figure 101) was updated to add an animation system like the one
used in the player9s Knockback() function. It begins by triggering the attack and resetting the
cooldown timer to prevent attacks from being triggered too quickly. The aim direction is then
retrieved from the Player Movement script, and all melee hitboxes are initially deactivated to
prepare for the attack. A series of conditional statements follow, each corresponding to a
specioc attack direction, enabling the player to perform directional attacks as needed. Finally,
the EndAttack() coroutine is called to disable the attack state and reset the necessary variables.

Dungeon Scribbles

114 Samuel Downey

Figure 102 - Updated player melee script with animation controller integration.

The EndAttack() coroutine (seen in Figure 102) is fully executed only after the attack duration
timer has completed. Once triggered, it resets the attack state and the _attackTriggered
boolean. All melee objects are then deactivated to prevent connicts during the next attack
sequence. This system has performed reliably during testing, with no issues observed.

5.7.5 Goal 4 3 Fix Player Clipping Bug

During combat testing, an issue was found where enemies could push the player inside the wall
boundaries due to improper interaction with the player knockback system. When the player
received damage, knockback would be applied as intended, however if the player was cornered,
they could be pushed into and through walls, becoming stuck within the wall. After extensive
testing, the cause was traced to the enemy's Rigidbody conoguration. The enemy9s Rigidbody
had been set to Kinematic to ox a previous bug involving the AI pathonding system during player
knockback, but this inadvertently allowed enemies to ignore level boundaries and push the
player into inaccessible areas.

Dungeon Scribbles

115 Samuel Downey

Figure 103 - Updated enemy script to 昀椀x clipping bug.

To ox this issue, the Rigidbody was changed back to a Dynamic state, though this initially
reintroduced pathonding issues and then dynamically switching the enemy9s Rigidbody to
Kinematic for a brief period, speciocally half a second, when player triggers the enemy9s
knockback system. This allowed the enemy AI to remain una昀昀ected during knockback
interactions, while still respecting level boundaries. Updates can be seen in Figure 103.

Dungeon Scribbles

116 Samuel Downey

5.7.6 Goal 5 3 Update User Interface

Figure 104 - Mini map added to user interface.

Based on the research that was done on user interfaces in chapter 2, it felt appropriate to
implement a mini-map feature to the game9s UI (Seen in Figure 104) Some basic research into
tutorials and forum posts was conducted to ond the best way to implement this idea. The
method of using a secondary CineMachine paired with a new render texture and a new render
layer was the decided to be the best way this implementation would work with the rest of the
game9s systems. A minimap icon was added to each item that would have been required to be
seen on the map that was only able to be seen by the secondary CineMachine. This
implementation worked perfectly.

Figure 105 - Small code addition for room clearing icon.

There was a small code update to the Room Manager (Seen in Figure 105) for the map to have
better visual communication. When a room was cleared, a second icon would appear over the
room to identify the room as being cleared to let players know that they have already been down
that path, this was an attempt to improve the sense of direction which felt lacking in the smaller
testing groups.

Dungeon Scribbles

117 Samuel Downey

Figure 106 - Updated health bar design.

The next task to tackle was updating the health bar design to make it ot the visual aesthetic that
the game had developed. After searching, a template was found that had two di昀昀erent sprite
version available for a health bar and a mana bar. A prototype design was put together using
photoshop before being imported into unity. The pre-existing health bar was then otted into the
new design template, the number of health was then removed as it was deemed as
unnecessary screen clutter. The background of the health bar was taken from the mana bar
template and worked very well visually. This can be seen in Figure 106.

5.7.8 Goal 6 3 Updating Pause Menu

Updating the pause menu design was the next logical step after updating the user interface.
Thanks to the wireframing that was mentioned previously, the layout and functionality for the
pause menu was already made. All that had to be done was to update the font and the
background to ot the design language that was being built within the game. The background for
the pause menu was found using a third-party website and was slightly edited with the help of
photoshop to make space for the pause menu text and buttons.

Dungeon Scribbles

118 Samuel Downey

Figure 107 - Updated pause menu design.

The font was found on a website called DaFont which is known for its wide array of text fonts in
many di昀昀erent styles. After onding the font and the background, they were imported into Unity
and brought straight into the game scene, simply swapping out and game objects that stood
there originally. The pause menu was tested after the game object designs were swapped and
there were no issues found.

Figure 108 - Options menu addition.

A new panel was added to the user interface canvas to ot the options menu. This also required a
new button to be added to the pause menu to be able to swap canvas items to access the
options menu. The design philosophy was set when updating the pause menu so the options

Dungeon Scribbles

119 Samuel Downey

menu followed the same philosophy. Sliders were added to the options menu to be able to
control the volume of the game which is a feature that would be added later during this sprint.
The save and exit button was added with functionality to close the options panel and re-open
the pause menu panel, giving the player proper menu navigation. The updated designs can be
seen in Figure 107 and Figure 108.

Figure 109 - Updated Interface manager.

The updated Interface Manager script (Seen in Figure 109) has a reformatted organizational
structure to make better use of the header functionality within the Unity VsCode library. New
serialized oelds have been added to set the required game objects into their respective sections
to make sure each object is getting the functionality it needs. There is also addition to some
audio system game objects which will be explained in a later goal. Additional serialized oelds
were added, including a CinemachineCamera for the minimap camera handling and
an InputAction controller support.

Dungeon Scribbles

120 Samuel Downey

Figure 110 - Updated Interface manager.

The updated Start() method (Seen in Figure 110) has a variable set to the room manager which
will be used in a function to work with the minimap functionality. It also locates the secondary
Cinemachine camera which is used to handle the minimap. It then gets the player and uses the
Cinemachine brain to follow the player, creating an accurate minimap that follows the player.
The OnEnable() function is added to activate the _pauseButton InputAction, making sure that
the controller support is added to the script.

Dungeon Scribbles

121 Samuel Downey

Figure 111 - Updated Interface manager.

The OnDisable() function (Seen in Figure 111) makes sure that if the Interface Manager script
becomes inactive, the _pauseButton will be disabled, this is more of safeguard to have in case
of an issue with compiling. The update loop has been updated to look for the InputAction button
as well as the escape key to toggle the pause menu, as well as continuously checking the state
of the loading screen and pause menu to set the User Interface state accordingly. The
TogglePauseMenu() function has been updated to integrate some of the audio functionality
along with an additional setter for the user interface state to lessen the possibility of the system
being confused.

Dungeon Scribbles

122 Samuel Downey

Figure 112 - Updated Interface manager.

The newly added ToggleOptionsMenu() function (Seen in Figure 112) handles the opening and
closing of the options menu, much like the TogglePauseMenu() function. This function also
makes sure that the event system is conogured to enable controller support for menu
navigation, it does this by making sure the Resume button or the Music Slider are selected when
the menu is opened, using that as a start point for navigation. The ToggleOptionsMenu()
function makes sure to close the pause menu before opening the options menu with a clever
use of booleans, setting one to the opposite of the other.

5.7.9 Goal 7 3 Main Menu Implementation

After implementing the new pause menu design and option menu functionality, it was time to
move onto the Main Menu implementation. The game needed a way for the room generation
scene to be reset after the player had died, so creating a main menu to switch into before
loading back into the room generation scene made the most logical sense. Thanks to the

Dungeon Scribbles

123 Samuel Downey

wireframing that was done previously along with the design philosophy that is being realised,
creating the design for the menu was far easier.

Figure 113 - Main menu added.

The background art for the main menu was sourced from a third-party website which
specialised in copyright free, ai generated artworks, this specioc piece of art was prompted by
another user and available on the website. This specioc piece of art was taken as it ot very well
with the visual aesthetic of the game, along with the colours that had been used, it was simply
too perfect not to use.

The scroll asset for the updated pause menu design was reused as it ot well as a background for
the title of the game. The buttons for the menu were made without a template in mind, but
instead were made just adhering to the visual style of the menu, making sure the colours
chosen would renect the style appropriately while still having enough contrast to be legible.

When collecting screenshots of the pause menu and main menu, a visual glitch with the unity
engine occurred which reverted the chosen font (seen in Figure 107) back to the default font
provided by the engine (seen in Figure 113). This glitch was not visible in the onal build of the
game and only occurred after the major testing phase.

Dungeon Scribbles

124 Samuel Downey

Figure 114 - Options menu added.

When adding the options menu (Seen in Figure 114), the same background game object was
used for the options menu, along with the same slider components that we created for the
Music and SFX sliders in the options menu available in the pause menu, and the button
components that were designed for the main menu, this created a consistent design between
the options menu and the main menu.

Dungeon Scribbles

125 Samuel Downey

Figure 115 - Main menu script.

The newly created Main Menu script (Seen in Figure 115) handles all the functionality for the
main menu, being heavily innuenced by the pre-existing Interface Manager script which is used
heavily within the Room Generation scene, which can be seen in the way the code is structured
in Figure 115.

Dungeon Scribbles

126 Samuel Downey

Figure 116 - Main menu script.

The LoadRoomGeneration() function (Seen in Figure 116) handles the scene transition from the
main menu to the Room Generation scene using Unity9s scene management library, which is
used as the gameplay centre for the game. This method works very well and did not need any
modiocations during testing.

The OpenOptions() function handles the transition between the main menu panel and the
options menu panel. When activated the function deactivates the main menu panel while
simultaneously activating the options menu panel, also setting the selected button to the music
slider to make sure controller menu navigation was supported.

Dungeon Scribbles

127 Samuel Downey

The CloseOptions() function works in parallel to the OpenOptions() function, reactivating the
main menu panel and setting the selected button as the new game button to ensure that the
controller navigation wasn9t nullioed when transitioning through the panels.

The ExitGame() function is quite simple and self-explanatory, shutting down the application.
This function doesn9t work within editing mode so this was not tested until the major testing
phase.

The SetTextColors() function was written to ox a bug that was occurring with the TextMeshPro
components where either every text element in the game would change or they wouldn9t change
at tall, but this was resolved by brute forcing the colour change with the implementation of this
function.

Figure 117 - Main menu script.

The ChangeTextColor() function (Seen in Figure 117) is written to work in conjunction with the
SetTextColors() function. This function conogures the TextMeshPro components my creating a

Dungeon Scribbles

128 Samuel Downey

new material and applying it to the chosen text components to negate any material connicts
and successfully changing the text colours.

The PlayMenuMusic() functions work with the audio system, handling the background music for
the main menu while making sure it loops in case the player is at the menu for a longer period of
time, while also providing null checks as a safeguard.

The SetSelectedButton() function is the most crucial function in making sure that controller
support is available for menu navigation, making sure that there is a starting point for the
controller navigation system so that the user can navigate at their pleasure. Without this
function, the controller would not have a starting point and therefore would not be able to
navigate the menus at all.

5.7.10 Goal 8 3 Audio system Implementation

The implementation was the next step in the development process. With the major testing
phase rapidly approaching, it was necessary to get the sound system implemented at this stage.
All the sound e昀昀ects and background music were selected at this stage, all that had to be done
is set up the mixer and the correlating scripts.

Figure 118 - Game audio mixer.

Setting up the audio mixer was very simple. The only modiocation to the audio mixer that was
needed was to split the Master volume group into two sections that would be able to handle the
sound e昀昀ects and the background music dynamically. This can be seen in Figure 118.

Dungeon Scribbles

129 Samuel Downey

Figure 119 - Volume settings script.

The creation of the Volume Settings script (Seen in Figure 119) was quite simple as it followed
the same steps that were taken for a previous project. Starting with gaining access to the audio
mixer that was created by creating a serialized variable for it to be placed in, along with the
sliders for each version of the option menus. Firstly, the script checks the PlayerPrefs for saved
volume settings, loading these values in if they exist, and setting these values to default if they
do not.

The SetMusicVolume() converts the music sliders from a linear value to a decibel-based mixer
attenuation logarithmically, allowing the slider to interface with the audio mixer9s decibel
system all while PlayerPrefs saves the raw slider value. This same system is introduced in the
SetSFXVolume() function just being saved under di昀昀erent PlayerPrefs to make sure that the
systems are consistent yet di昀昀erent.

Dungeon Scribbles

130 Samuel Downey

Figure 120 - Volume settings script.

The Load Volume() function (Seen in Figure 120) retrieves the saved volume settings for both the
music and the sound e昀昀ects and applies them to the sliders in the options menu. It then calls
the set music and set sound e昀昀ects functions to set them to the saved values, creating a
cohesive sound settings system.

Dungeon Scribbles

131 Samuel Downey

Figure 121 - Audio manager script.

The Audio Manager script (Seen in Figure 121) is primarily in charge of the background music for
the gameplay and main menu scenes. As is evident by the scene-specioc handling for the
background music. The music clip that is chosen for either of the two available scenes is
chosen based on the scene name that is currently chosen.

Dungeon Scribbles

132 Samuel Downey

Figure 122 - Audio manager script.

The PlayLoopingSFX() function (Seen in Figure 122) provides a controlled playback of chosen
sound e昀昀ects. It is a very simple function that verioes if the clip exists and isn9t already looping
before making sure that it is set to loop before playing the audio clip. The StopLoopingSFX()
exists to stop the loop of anything that is currently looping by nullifying the clip and setting the
loop to false.

Figure 123 - Additions to player movement script for player audio.

The Player Movement was updated (Seen in Figures 123 until 128) to integrate the newly made
audio system, adding new audio sources and clips that the player movement system needs.

Dungeon Scribbles

133 Samuel Downey

Figure 124 - Additions to player movement script for player audio.

The player walk source and walk clip are controlled inside the HandleMovement() function,
playing the walking sound e昀昀ect from the walk source only when the walking state is set to true.
This proximity to the animation state handling creates an accurate system, making sure that
when the player is visually moving across the screen, the correct sound e昀昀ect is playing as well.
Each important sound e昀昀ect getting its own source makes sure that di昀昀erent sounds can play at
the same time without cancelling each other out which creates a more immersive gameplay
experience.

Dungeon Scribbles

134 Samuel Downey

Figure 125 - Additions to player movement script for player audio.

The SetIdleState() function has also been updated to add stop the walking sound e昀昀ects when
the player has stopped moving. This script works the same way as the HandleMovement(),
handling the animation state and the sound at the same time, creating a consistent visual and
audio experience for the player.

Figure 126 - Additions to player movement script for player audio.

The PlayHurtSound() function is placed inside the player9s knockback function, playing the hurt
sound brieny. The placement of this function follows the same idea as the SetIdleState() and
HandleMovement() functions, keeping the visual and audio responses of the game consistent.

Dungeon Scribbles

135 Samuel Downey

Figure 127 - Additions to player melee script for player audio.

After implementing and testing the walk and damage noises, it was time to move onto
implementing the attack noises for the player inside the Player Melee script. The setup for this
audio integration had the same approach as previous audio integrations where the necessary
audio source and clip were added to the script with the use of serialized oelds.

Figure 128 - Additions to player melee script for player audio.

The PlayAttackSound() function was constructed and implemented the same way as the
PlayHurtSound() function, where the attack sound is played for a brief period and the function is
placed in the same area of the script which handles the animation states to continue to create a
consistent visual and audio experience.

Figure 129 - Additions to enemy script for enemy audio.

The audio integration for the enemy (Seen in Figures 129 until 133) was the last game object that
needed to be added. This implementation process took a little bit longer as the enemy script
had all its functionality inside of one script, so more time and care had to be taken to make sure
every sound e昀昀ect was being placed in the right section.

The process started by creating serialized oelds for every necessary audio source and audio clip
that the enemy would need and then beginning to move these clips into their required sections.

Dungeon Scribbles

136 Samuel Downey

Figure 130 - Additions to enemy script for enemy audio.

The walking animation sound e昀昀ect was set up the same way as the player9s walking sound
e昀昀ect where the enemy walking sound e昀昀ect would play when the enemy animations began to
play and then would stop when the idle animation state was activated. This method was used
again due to how well it worked when implementing the player9s sound e昀昀ects.

Dungeon Scribbles

137 Samuel Downey

Figure 131 - Additions to enemy script for enemy audio.

The death sound was placed in the damage handling section of the script as this is also where
the enemy death logic is held, so this section was the most appropriate, and during testing
proved to work as intended.

Dungeon Scribbles

138 Samuel Downey

Figure 132 - Additions to enemy script for enemy audio.

The hurt sound was set to be played when the enemy is knocked back which also triggers the
hurt animation, creating a consistent response from the enemy when they are damaged.

Figure 133 - Additions to enemy script for enemy audio.

Dungeon Scribbles

139 Samuel Downey

The hurt and death sound functions were built the same way as the sound functions from the
player9s sound implementation due to how well this system worked the orst time, simply
checking if the sound sources and clips are not null and then brieny playing the chosen sound
clip.

5.7.11 Goal 9 3 Controller Support

The onal step before getting ready for the major user testing phase was to implement controller
support for the game. This was done after some advice was given by a lecturer about making it
easier for testers to be able to just pick up and the play the game and to have less of a learning
curve with the controls.

Figure 134 - New input system additions for controller support.

The player movement was very simple to integrate thanks to the New Input System in the unity
engine (Seen in Figure 134). A secondary input was created for the move action with the cardinal
directions of the left joystick and thanks to the input manager script and the fact that the values
for both keyboard and controller were of the same type, this was the only addition that had to be
made for the player movement to have controller support. There was some slight modiocations
to the animation transition sensitivity threshold to make sure that the correct animations were
playing when the player was moving horizontally but it was a very minor update.

Figure 135 - Additions to player melee script for controller support.

The implementation of controller support for the player combat was nearly just as simple as the
player movement (Seen in Figures 135 and 136). A new input action variable was added to the
script which can be set to any button value thanks to the listen feature that this variable has.
This variable is how controller support was added for the player melee script.

Dungeon Scribbles

140 Samuel Downey

Figure 136 - Additions to player melee script for controller support.

The input condition for the player attack was also updated to adhere to the new change which
was quite simple thanks to the implementation of the unity input action variable. Now the script
is checking for both keyboard and controller inputs, allowing players to choose the controller
method they feel most comfortable with and being able to change the controller scheme at a
moment9s notice.

Figure 137 - Additions to interface manager script for controller support.

The interface manager was updated (Seen in Figures 137 and 138) the same way with the
implementation of the input action component for controller support. This time being set to a
di昀昀erent button towards the centre of the controller to make sure that there was no input
confusion.

Dungeon Scribbles

141 Samuel Downey

Figure 138 - Additions to interface manager script for controller support.

The Update() loop was updated in a similar way to the player melee script where the input
condition to open the pause menu is now looking for the original keyboard input method or the
new pause button that would have been set in the Unity engine inspector. Keeping both
keyboard and controller input options available to the player at all times.

5.8 Sprint 7

5.8.1 Goals

• Complete a orst draft thesis report before Easter break.
• Receive and apply feedback given by thesis supervisor.

5.8.2 Goal 1 3 First Draft of Report

The orst draft of this report was not written in order from chapter 1 to 8. Instead, chapters were
written out of sequence to help ogure out how they would connect and now together. Writing
started with a chapter that had a lot of content and didn9t rely heavily on the others, which
ended up being chapter 6, which focused on user testing. This chapter was written orst because
the testing had just been completed, so the information was fresh and easy to write about.

After chapter 6, work moved to chapter 1, the introduction. One section in the introduction
needed a short overview of user testing, so content from chapter 6 was used and adjusted to ot.
This same approach continued throughout the report, with some sections left unonished until
feedback was received on structure and layout.

Chapter 5 was the only chapter postponed on purpose because it was longer and more time-
consuming. Finishing the shorter chapters orst meant getting quicker feedback, which helped
improve the rest of the report. Even though chapter 5 didn9t get much feedback directly, the
feedback from other chapters helped shape its onal version. Overall, this writing method turned
out to be the most e昀昀ective way to develop the orst draft.

Dungeon Scribbles

142 Samuel Downey

5.8.3 Goal 2 3 Receive Feedback

Valuable feedback was received from the thesis supervisor regarding the orst draft of the report.
While much of the content was well-received, several recommendations were provided to
improve the overall now and reduce the repetitive text within the report. Suggestions included
reformatting sections of the design and research chapters and referencing ogures from other
chapters where relevant to the current discussion. Additional advice focused on smaller
improvements to enhance the reader's experience, such as adopting a di昀昀erent style for ogure
titles, including a ogure table beneath the table of contents, and slightly adjusting the APA
referencing style to better accommodate sources such as YouTube videos. Guidance was also
given on restructuring parts of chapter 5 to improve readability and reduce content congestion.
Each piece of feedback was highly relevant and directly contributed to strengthening the clarity
and impact of the report.

Dungeon Scribbles

143 Samuel Downey

6 Testing

6.1 Introduction

This chapter presents the full testing process carried out during the project9s development,
beginning with functional testing where each game mechanic and feature was manually tested
to ensure it behaved as intended. It then moves into the user testing phase, which combines
feedback and observations from both small focus group sessions and a larger round of testing.
Player input was collected through surveys, gameplay feedback, and direct observation,
o昀昀ering valuable insight into how users interacted with the game's systems, controls, and
overall experience. The chapter concludes with a breakdown of this data and the key
suggestions received, highlighting what was learned from the testing process and how it helped
shape the onal outcome of the game.

6.2 Functional Testing

6.2.1 Menu Navigation

Test
No

Description of test case Expected Output Actual Output Comment

1 From the Main Menu.
Start a new game.

When the new game
button is pressed,
the game scene is
loaded.

The game scene is
loaded.

This mechanic works
correctly.

2 From the Main Menu.
Exit the game.

When the exit button
is pressed, the
application would
quit.

The game did not
quit.

There is a bug in the main
menu script, but the game
can still be exited with the
Alt+F4 command.

3 From the Main Menu.
Enter the Options Menu.

When the Options
button is pressed,
the options panel is
activated.

The options panel is
activated.

This mechanic works
correctly.

4 From the Options Menu.
Change the Music
volume.

For the music slider
to adjust the music
volume.

The music is
adjusted when the
slider moves.

This mechanic works
correctly.

5 From the Options Menu,
change the SFX volume.

For the SFX slider to
adjust the volume.

The SFX is adjusted
when the slider
moves.

This mechanic works
correctly.

6 From the Options Menu.
Exit to the Main Menu.

For the Main Menu
panel to be
activated.

The Main Menu
Panel is activated.

This mechanic works
correctly.

7 Enter the Pause Menu. The Pause Menu
panel is activated

The Pause Menu
panel is activated.

This mechanic works
correctly.

Dungeon Scribbles

144 Samuel Downey

when pause button
is pushed.

8 From the Pause Menu.
Resume the game.

When the Resume
button is pressed,
time continues.

The game time
continues.

This mechanic works
correctly.

9 From the Pause Menu.
Exit the game.

The scene changes
to the Main Menu
when the Exit game
button is pressed.

The scene changes
to the main menu.

This mechanic works
correctly.

10 From the Pause Menu.
Enter the Options Menu.

Switch to the
options panel when
the options button is
pressed.

The panel switches
when the button is
pressed.

This mechanic works
correctly.

11 From the Options Menu.
Change the Music
Volume.

When the slider
moves the music
volume changes.

When the slider
moves the music
volume changes.

This mechanic works
correctly.

12 From the Options Menu.
Change the SFX Volume.

When the slider
moves the SFX
volume changes.

When the slider
moves the SFX
volume changes.

This mechanic works
correctly.

13 From the Options Menu.
Exit to the Pause Menu.

The panel changes
to when the Save &
Exit button is
pressed.

The panel changes
to the pause menu
when the Exit button
is pressed.

This mechanic works
correctly.

6.2.2 Player Controls

Test
No

Description of test case Expected Output Actual Output Comment

1 Player Movement. For the player to
move based on the
directional button.

The player moved
the character
around the screen.

This mechanic works
correctly.

2 Player Combat. For the player to
attack based on their
direction.

The player attacked
in direction of the
last movement.

This mechanic works
correctly.

3 Attack an Enemy. For the enemy to be
attacked and then
die.

The enemy died
after multiple hits.

This mechanic works
correctly.

Dungeon Scribbles

145 Samuel Downey

6.2.3 Enemy Interaction

Test
No

Description of test case Expected Output Actual Output Comment

1 Enemy pathonding test. When player enters
the room, the enemy
follows the player,
calculating the
shortest path.

The enemy
successfully follows
the player.

The enemy has obstacle
detection implemented but
the rooms do not have
obstacles, making testing
harder.

2 The enemy attacks the
player.

When the enemy
touches the player
collider, the player
loses health.

The player loses
health when the
enemy touches
them.

This mechanic works
perfectly.

3 Enemy death. When the enemy9s
health hits zero, the
enemy is destroyed
from the scene.

The enemy was
removed from the
scene when their
health hit zero.

This mechanic works
perfectly.

6.2.4 Map Navigation

Test
No

Description of test case Expected Output Actual Output Comment

1 Wall Collider test When the player or
enemy run into a
wall, they will be
stopped.

 The player and
enemy cannot get
past the wall.

This mechanic works
perfectly.

2 Room Neighbour Test When the room
generates, doors will
only open when
there are rooms on
the other side.

The doors only open
when there is a
room on the other
side of them.

This mechanic works
perfectly.

3 Door Open Test When the room
enemy count has hit
0, the doors to
neighbour rooms will
open.

When the room
enemy count has hit
0, the doors to
neighbour rooms
will open.

This mechanic works
perfectly.

4 Regeneration Test When the total
enemy count has hit
0, the world will
regenerate, and the
player will be back in
the start room.

The world
regenerates when
the enemy count
hits 0.

This mechanic works
perfectly.

Dungeon Scribbles

146 Samuel Downey

6.3 User Testing

6.3.1 Player Controls

Movement
When testing with mouse and keyboard controls, results varied depending on the user's
experience with PC gaming. Those with prior experience had a much easier time understanding
the control scheme, with some needing no instructions at all. Users without PC gaming
experience faced a higher learning curve but were still able to understand the controls after
minimal guidance.

When testing with a gamepad, the results were more consistent. Most players quickly
understood that the joystick controlled movement. A small number of users with no gaming
experience at all needed brief instructions, but once given, they were able to continue without
further help.

Figure 139 - Survey Rating on Player Movement

Figure 140 - Survey Suggestions on Player Movement

Dungeon Scribbles

147 Samuel Downey

Combat

Figure 141 - Survey Rating on Player Combat.

When testing with keyboard and mouse, many users were able to ogure out the combat system
before receiving any instructions, regardless of their previous PC gaming experience. The
simplicity of clicking on the screen to attack helped remove any potential learning barriers.

During gamepad testing, most users also identioed the combat button without instruction.
Some needed a bit of guidance after experimenting with di昀昀erent buttons, but there was a clear
understanding that a combat system was present in the game.

Figure 142 - Survey Suggestions on Player Combat.

There was some confusion around where the player9s hitbox would appear during attacks. Most
players picked it up quickly, but a few struggled to understand the exact damage area.

Confusion around attack direction also came up due to the lack of directional idle animations.
This issue was noticeable during both keyboard and mouse testing, as well as with gamepad
use. When the player was moving and attacking, there was clear conodence in the direction of
the hit. However, when attacking from an idle position, players were less sure4even though the
game saved the last movement direction to determine the attack. The idle animation facing a
di昀昀erent direction often caused misunderstanding. Once the system was explained, players
understood it better, but the initial confusion highlights that the system lacks intuitive clarity.

Dungeon Scribbles

148 Samuel Downey

6.3.2 Enemy Interaction

Pathonding

Figure 143 - Survey Rating on Enemy Movement.

User testing results revealed both strengths and weaknesses in the enemy pathonding system.
In one-on-one encounters, the system performed well. However, as more enemies were added
to the room, issues became more noticeable.

It was common for the enemies to follow the same path and block each other instead of onding
ways around. Another issue occurred when the player became cornered, there was no way to
escape, causing a stun lock e昀昀ect until the player9s health ran out. Additionally, a bug was found
where an enemy would spawn too close to the door, preventing the player from entering the
room. This will need to be adjusted to avoid the issue in future versions.

Figure 144 - Survey Improvements on Enemy Movement.

There was some great feedback on the enemy pathonding system, including the idea of adding
speed variance between enemies. This would help reduce enemies grouping together and
would also add more variety to each room. A programmer from Desk Rage also suggested using
dedicated spawn points instead of random ones, a very helpful recommendation.

Dungeon Scribbles

149 Samuel Downey

Combat

User testing results for enemy combat were generally positive. Both the enemy and player
knockback systems functioned as intended, and the player9s health decreased correctly when
colliding with the enemy9s hitbox. Feedback on enemy combat was minimal, with other
developers noting that the enemy9s combat style made sense and felt natural. The most
common suggestion involved the length of time the player was stunned after hitting an enemy.
Some felt it was too long and made the survival more frustrating than fun. As a result, the
knockback duration may be slightly reduced to see if it improves gameplay. This suggestion
came from one of ofty players.

6.3.3 Game World

Map Navigation

Some useful feedback was gathered during testing for map navigation, and several ideas came
up by watching how players interacted with the game world. The main suggestions included
adding more content to rooms, introducing unique objects to help tell rooms apart, designing
new room layouts, and creating a key-and-door system that lets players choose their path
instead of following a set one.

It was also observed that some players assumed all doors were interactive and often ran into
closed ones while ignoring the open ones. To address this, the design of the open and closed
doors will be adjusted to make them easier to tell apart.

Figure 145 - Survey Rating of Game World.

Dungeon Scribbles

150 Samuel Downey

Figure 146 - Survey Suggestions of Game World.

Minimap

The minimap feature received very little feedback during testing. However, most players seemed
to understand what the minimap was showing without any explanation. When asked during
gameplay, users were able to correctly identify what the icons and symbols represented on the
map, showing that the feature was intuitive and had reached the standard that it needed to. A
helpful suggestion from a developer at Larian involved expanding the minimap into a full-screen
map, similar to a pause menu, allowing players to see more of the explored area and
understand their current position and needed direction. This idea has strong potential and
could be developed further by adding a map legend to reduce possible confusion for players.

Health Potions

Very minimal feedback was received about the health potions. Every user understood what they
were and how they worked right away. Some early feedback suggested increasing the amount of
health restored, which was adjusted before the second round of testing and received positive
results. No users mentioned the spawn rate or the health value of the potions after the change.
Overall, this can be considered a successful implementation.

6.3.4 Menu Interaction

A lot was learned about the menu system during the major user testing phase. The main menu
worked well overall, with players understanding the button functions easily. However, the
navigation was not as intuitive. Many users had trouble noticing which button they were
currently hovering over until they moved through more of the menu options. While they
eventually ogured it out, the process took longer than expected. This issue appeared
consistently across di昀昀erent age groups and gaming experience levels, showing a clear design
naw that needs improvement. Similar issues were also found in the main options menu and the
pause options menu.

Interestingly, this problem did not occur in the Pause Menu. The strong hover e昀昀ect used there
likely helped the player easily see what option they were selecting, making navigation smoother.

Dungeon Scribbles

151 Samuel Downey

6.4 Conclusion

6.4.1 Player Controls

User testing for movement and combat mechanics revealed clear strengths and weaknesses in
the current system. The learning curve for player movement and combat mechanics was found
to be quite low for both keyboard and gamepad users.

However, some confusion around the player9s attack direction highlighted the need for some
improvements. Adding more idle animations would help show what the player9s last movement
direction, making it clearer where their next attack will land. Reoning the attack hitbox could
also help players better understand the reach and width of their attacks.

A dash or dodge mechanic was another suggestion from testers. This feature like this could add
more variety and excitement to the gameplay and would be a strong addition in future updates.

6.4.2 Enemy Interaction

User testing showed that some of the enemy interaction systems need improvement. The
pathonding system should be updated so enemies can detect and move around each other.
Giving enemies di昀昀erent movement speeds would add variety and make each room feel more
challenging as the game progresses. Adding more enemy types with di昀昀erent behaviours was a
common suggestion from testers. There are many ways the enemy systems could be improved
to make the gameplay even more interesting and dynamic.

6.4.3 Game World

User testing also highlighted how players interacted with the game world. While the game9s
mechanics were easy to understand, the visual similarity between rooms caused some
confusion about where to go next. The minimap helped reduce confusion, but didn9t fully solve
the issue. A common suggestion was to make a full-sized map screen and to include more
content in each room, such as obstacles and landmarks, to make navigation easier and make
the game world more engaging.

6.4.4 Menu Interaction

Based on user testing with the main menu and the pause menu systems, it is evident that the
hover e昀昀ect plays a critical role in guiding player understanding and navigation. The tests
consistently showed that players struggled with identifying which button or slider they were
interacting with when the hover e昀昀ect was subtle or insu昀昀iciently noticeable. This was
particularly evident in the main menu and options menu, where players often scrolled past
buttons or sliders before realizing their selection. However, in the pause menu, where the hover
e昀昀ect was more exaggerated, players demonstrated quicker and more accurate navigation,
conorming that a stronger visual indicator signiocantly improves usability.

Dungeon Scribbles

152 Samuel Downey

7 Conclusion

7.1 Introduction

This chapter provides a comprehensive summary of the project9s development journey, o昀昀ering
a renection on the progress made across each phase of the project, from initial research to
implementation and testing. It revisits the original objectives, evaluates how e昀昀ectively they
were met, and outlines key achievements and challenges encountered throughout the process.
In addition to renecting on the overall design, this chapter also includes a summary of the
technologies used and how they contributed to the project9s goals. The onal section presents
personal renections and insights gained, o昀昀ering a clear perspective on the project9s success
and opportunities for future improvement.

7.2 Technologies

7.2.1 Figma

Figma was used as the primary design application for most of this project where the original
wireframes, iterations of menus, and user interfaces were designed. Figma also held references
to the design research that had been done to better inform the wireframes that were being made
for the project. Overall, Figma was a large part of the project with its design capabilities.

7.2.2 Photoshop

Photoshop CS6 was used very little over the course of this project, only being called into action
when designing assets for the user interface, speciocally when designing the player9s health bar,
the updated pause menu design, and the mini map.

Photoshop was also used when designing stickers for the project which was requested by the
college as part of the student ambassador opportunity at Dublin Comic-Con 2025.

Overall, Photoshop did play an integral role in the development of the user interface, without it
the game would have been lacking a lot of smaller details that added a lot to visual aspect and
the enjoyment of the game.

7.2.3 Unity

The choice to use the Unity engine was one of the most important decisions for this project. This
decision faced a lot of careful consideration and research (research in Chapter 2). Ultimately,
the decision to work with the Unity engine came down to the simple fact that it had more
learning resources and assets available to it which would directly impact the scope of the
project. This decision was absolutely the correct one, staying inside the Unity engine to work on
new game development techniques provided a much more straightforward and stress-free
environment thanks to having previous experience with the engine. The help from the
community was also a huge beneot to this project, having access to resources and people that
can teach you di昀昀erent techniques was a large reason the project went as smoothly as it did.

Overall, Unity provided everything that was needed to be able to create this project, whether it
was an intuitive input system or the ability to import third party or homemade assets through
the package management system the engine has.

Dungeon Scribbles

153 Samuel Downey

7.2.3 Visual Studio Code

Visual Studio Code was used as the IDE (Integrated Development Environment) for this project,
being used to access, modify, and create game scripts. Although the version of Visual Studio
Code was not the same version that it used regularly. Due to the fact that the IDE is booting
through a di昀昀erent application, any plugins or saved user preferences do not carry over unless
you manually log back into the IDE every time you wish to write a piece of code. This did make
the experience a bit more challenging with the lack of code snippets and auto correction tools.

Overall, Visual Studio Code provided as a solid IDE to work with thanks to previous experience,
it9s integration with the Unity engine felt almost seamless at certain stages of the project and
pushed the principles of double-checking work and syntax spelling through the lack of any help
from plugins, which has improved my skills as a programmer.

7.2.4 Mirro

Miro was used as the project management and documentation application for this project,
using a template provided by the college to be able to break down the work in sprint sections.
Using Miro, each stage and goal of the project was properly planned and documented, this
helped when needing to look back on previous version of the project when writing out the
project report. Whenever there was a successful change made to the project, screenshots were
taken to document these changes and then placed in the current section of the template that
the project was in. When goals were completed, the were moved from the In Progress section to
the Done section in the Kanban table that was used. Being able to look back on the Kanban and
Sprint system to see previous goals and how they were implemented made huge impacts on the
writing process of the report. Miro was a great tool to use for this project and shall be used again
in future projects for the same level of project documentation and management.

7.2.5 Unity Version Control
The Unity Version Control system was something that I did not think I would be using when
starting this project due to having no previous experience with it, and it was good that there
wasn9t too much trust placed in this system, since the engine often lost connection with the
version control API.

When the system was functioning properly, it worked nearly exactly the same way as GitHub in
the way that you could commit your code changes, push them up to a cloud based service and
then pull or rollback the code if needed, all while being able to comment on your commits to
see what each commit was for.

Although when the system was not working due to connectivity issues from the engine, there
was no access to any of these options, e昀昀ectively making the system useless for long periods of
time. Thankfully the Unity Version Control system was not the only version control system that
was implemented during this project so the risk associated with this system was minimized.

Overall, when the system was working, it was great, but the constant issues in connection with
the API made it abundantly clear that this system was not ready to be deployed in its current
state.

7.2.6 OneDrive

OneDrive was used as the primary version control system for the duration of this project due to
previous experiences of losing assets when using GitHub to store Unity oles. OneDrive was

Dungeon Scribbles

154 Samuel Downey

used the same way as any version control system where an updated version of the game would
be uploaded to the OneDrive ole with a comment within the title of the ole to note which version
of the project it was and what was done most recently.

Although due to the size of the oles that and the time it took for these oles to be uploaded, the
OneDrive pushes were done less frequently, only really being pushed when a major
implementation was made to the game, such as the orst version of the Procedural Generation
system being created or when the Health item was brought into the game.

Overall, OneDrive9s contribution to the project was a great help and a very good stress reliever.
Knowing that there was a safeguard put in place in case of a major problem with the Unity
Version Control system was a very large comfort, especially towards the end of the project9s
development when most of the work consisted of non-functional design-based updates.

7.3 Project Phases

7.3.1 Research

The research phase proved to be one of the most critical components of this project,
particularly in how the applied research was conducted. Without the amount of research that
was gathered, the project would have seen immense increases in bugs and technical problems
when being developed.

Research into back-end system design was signiocantly more extensive than the front-end
research due to a lack of knowledge and experience working with these kinds of programming
ideas and techniques, but thanks to this extensive research section, better decisions were
made on what game engine would be chosen for development of this project, the pathonding
algorithms that would implemented, as well as the implementation process of procedural
generation into a 2D game world.

Without this research phase, there would not have been such a well maintained codebase or
stress free development environment, so this phase would be considered a success.

Overall, the research phase can be considered a major success, as it directly innuenced key
development decisions and laid a strong foundation for both design and implementation. The
depth and relevance of the applied research ensured a smoother worknow, fewer technical
issues and a more focused development process, ultimately contributing to the stability and
coherence of the onal product.

7.3.2 Requirements

The front-end and back-end design research conducted in Chapter 2 played a vital role in the
development of the project9s functional and non-functional requirements. By analysing design
patterns, gameplay structures, and interface design philosophies from comparable games, this
research provided a clear direction for deoning the technical and experimental goals for the
project. It laid the groundwork for both the design philosophy and the software architecture,
ensuring that development could proceed with clarity and purpose. As a result, the
requirements phase was well-informed and e昀昀iciently executed, directly beneoting from the
depth of research established earlier in the process.

Overall, the requirements phase successfully translated research ondings into actionable
development goals, ensuring alignment between the intended user experience and technical

Dungeon Scribbles

155 Samuel Downey

execution. It provided a clear roadmap for implementation, helped avoid over scoping the
project, and supported a modular, maintainable development structure. This early clarity
proved essential in maintaining focus throughout the project9s development and contributed
signiocantly to the project9s overall stability.

7.3.3 Design

The design phase was largely innuenced by the research and requirements work done in
Chapter 2 and Chapter 3. With a strong foundation already established, both back-end
architecture and front-end wireframes were easier to translate into practical and achievable
design solutions. The early analysis of system structure and user interface principles allowed
for a more focused and informed approach when outlining the project9s functionality and user
experience.

Overall, the design phase provided a clear visual and structural roadmap for development,
bridging the gap between planning and implementation. The modular design approach and
organized ole structures helped streamline the development and simplify future adjustments.
By aligning the design decisions with previously deoned requirements, the project maintained
consistency and coherence across both the technical and visual elements.

7.3.4 Implementation

The implementation phase was broken down into two week sprint segments, creating small and
manageable goals to fulol during the weeks. This system was followed as it seemed to adhere to
the same style of development that was already being followed when planning out this project,
to create small and e昀昀ective implementations, keeping systems detached from each other as
much as possible to create the best environment for debugging and code maintenance. The
sprint goals were not radically adhered to, if the goals were completed ahead of schedule then I
just kept working into the next development phase, not letting any time go to waste.

Thanks to a strong research phase, speciocally in applied research, the beginning of the
implementation phase started very strong as well, being able to create a test area full of
foundational systems such as player combat, health, movement and collisions with very little
issue. Even being able to create the orst test for the procedural generation system.

This momentum continued to be carried through the rest of the implementation phases, taking
these foundational systems and reworking them as the game needed, sometimes completely
rewriting them but never changing the idea behind the system or how it should function.
Thankfully, there were very few bugs found through the duration of the project, the ones that
were found were traced and oxed before they became larger problems later in the project.

Overall, with the results of the user testing chapter in mind, this phase of development seemed
to be a success, nearly every goal for the game was completed while consistently keeping a
largely maintainable code base with very little to no bugs being found during the user testing
phases.

7.3.5 User Testing

The user testing (as explained in Chapter 1) was broken up into three phases. The manual
testing phase, the focus group testing phase and the major testing phase. Each phase was
extremely beneocial for the development of the project. The manual testing phase went on for

Dungeon Scribbles

156 Samuel Downey

the entire duration of the project, when adding a new feature to the game or modifying an
already existing system, manual testing on the change or the addition would occur by myself.

The goal of manual testing would be to ond bugs or exploits inside the game before letting other
testers ond them, so that other testing phases would provide better user data than simply listing
issues that could have been found through manual testing. This goal was achieved with great
success, being able to gather better user data from the focus group sessions that revolved
around what the game can improve on rather than what the game needs to ox before it is
playable.

The focus group sessions went very successfully thanks to the manual testing which was
conducted before, the game received great user feedback about how the game felt, what could
be changed, and what new features the game would need to become a better experience for
the users. The focus group really shined a light on the direction the game needed to go.

The onal phase of testing was the major testing phase. A handful of students along with myself
were given the opportunity to attend Dublin Comic-Con in March of 2025 as ambassadors for
the Game Design course which would be launching its orst year in the coming September.
During this event, the major testing phase would be conducted. The goal was to get as many
people to play the game and to give feedback on the current stage of the game9s development
and this goal was a success. There weren9t many people who wanted to do the surveys made for
the game but there were a lot of people who enjoyed giving their feedback through conversation
which was just as useful.

Contact with game studios such as Larian and Black Shamrock along with game design
organizations such as Desk Rage and IMIRT was made during this phase of testing and they gave
some incredible feedback on not only the game but also in terms of furthering my career in
game design.

Overall, each phase of user testing was a success, each phase complimenting the previous and
getting great results through all of them.

7.6 Renection

7.6.1 Project Management

Project management was handled e昀昀ectively throughout the duration of the project. The use of
a Miro board ensured that all documentation, goals, and materials were organized in a central,
accessible location. Breaking the documentation into individual goals and agile sections made
it easier to reference changes and progress when compiling materials for the onal report. While
the sprint goals were more aligned with a Kanban methodology than traditional sprints, this
approach contributed to a consistent and manageable worknow. These project management
strategies played a signiocant role in the project9s overall success and helped maintain a low-
stress development environment.

Overall, the chosen project management approach helped keep everything organized and on
track. Breaking the work into smaller goals made it easier to stay focused and adjust when
needed. This method kept development moving smoothly and made it easier to record progress
for reports and documentation.

Dungeon Scribbles

157 Samuel Downey

7.6.2 Views on The Project

After the initial brainstorming phase, there was a strong sense of conodence in the project9s
feasibility and direction. While the visual style of the project did evolve during development, the
core concept of the game remained consistent throughout development. The current state of
the project at this time renects a solid execution of that idea. Positive feedback from both
industry professionals and the general public has been especially rewarding, reinforcing the
project9s creative and technical e昀昀orts.

Overall, the project has been a valuable learning experience in both design and development. It
demonstrated how a clear vision, guided by research and iterative development, can result in a
well-received onal product. The experience has strengthened long-term goals within the game
development oeld and built conodence in pursuing further opportunities in the industry.

7.6.3 Working with a Supervisor

Working with Timm on this project was an absolute treat. Throughout the development process,
he was always supportive and encouraged the vision that was shared to him from the start. He
gave helpful feedback and asked fair questions that showed he was genuinely interested in the
project. His advice was clear and easy to understand, which made it easier to stay conodent
and focused.

Timm was easy to talk to and always seemed to understand where the project was going.
Meetings felt productive, and his support and guidance made a big di昀昀erence in the success of
the project and created a really positive working environment.

7.6.4 Further Competencies & Skills

Throughout this project, skills in C# and the Unity engine improved signiocantly thanks to
hands-on problem solving and research into back-end systems. Moving to a modular scripting
approach also made it easier to explore and test di昀昀erent features without a昀昀ecting other parts
of the project. This structure allowed more nexibility to experiment, learn from mistakes, and
ond working solutions more conodently.

This was also the orst time a procedural generation system was developed, which involved both
theory and applied research to be conducted. That process helped deepen the understanding of
Unity9s capabilities, especially in how to generate dynamic game worlds. Another new area was
pathonding. Learning how to utilise a system that detects and follows the player through
dynamic levels was very di昀昀icult.

Overall, the experience built a stronger foundation in programming, game systems, and Unity
worknows. These skills will be valuable in future work, for both solo and collaborative works.

7.6.5 How the Project Could be Developed Further

This project has a lot of potential for future improvements, with most of them focusing on
adding more content to the project. One main issue during testing was the lack of idle
animations in each cardinal direction being implemented, which made it harder for players to
tell which way their aim was facing, sometimes leading players to miss an attack.

Another common suggestion was to introduce more enemy types to keep combat interesting
and varied. Other possible additions include increasing room variety, creating a full map view
for better navigation, and adding systems such as keys to open doors, an inventory system for

Dungeon Scribbles

158 Samuel Downey

managing items, and a boss oght to give the project more of a goal. These ideas all support the
same development direction, expanding the project9s content to make the experience deeper
and more rewarding.

Overall, the project has a solid foundation to build on, and adding these features would help
bring the game closer to a more complete and polished version.

7.7 Conclusion

In conclusion, this project brought together all key stages of game development (Research,
Planning, Design, and Implementation) into one well-rounded and rewarding process. Early
research played a major role in guiding decisions about the game9s structure, helping to avoid
common problems and supporting important choices around tools, systems, and programming
techniques. This included deep research into procedural generation and pathonding algorithms,
which were major technical milestones in the project. These systems helped shape a dynamic
and replayable game world and taught valuable lessons about how complex features work
inside the Unity engine.

The requirements and design phases, which were heavily innuenced by the research phase,
gave the project a solid foundation to build on, making it easier to move into development with
clear goals and a structured plan. During implementation features such as animation, user
interface, audio , and gameplay mechanics were built and tested in smaller pieces, allowing for
better control, easier debugging, and a smooth development experience. Project management
tools like Miro helped keep the work on track, while feedback from testers provided useful
insights for future improvements.

Overall, the project achieved its goals and demonstrated what9s possible with a strong creative
vision and a steady, organized worknow. While there is still room to grow, especially with more
content and expanded features, the project as its stands is functional, stable, and a solid
foundation for future development.

Dungeon Scribbles

159 Samuel Downey

8 References
Adobe Systems Incorporated. (2012). Adobe Photoshop CS6 [Computer software].
https://www.adobe.com/products/photoshop.html

Belwariar, R. (2018, September 7). A search algorithm - GeeksforGeeks. GeeksforGeeks.
https://www.geeksforgeeks.org/a-search-algorithm

Chris9s Tutorials. (2021, May 3). How to import a 2D character sprite sheet and use in a
GameObject in Unity (2021) [Video]. YouTube.
https://www.youtube.com/watch?v=FXXc0hTWIMs

Code Monkey. (2018, September 16). How to make a simple minimap (Unity tutorial for
beginners) [Video]. YouTube. https://www.youtube.com/watch?v=kWhOMJMihC0

Epic Games. (n.d.). Unreal Engine [Game engine]. https://www.unrealengine.com/

Figma, Inc. (2024). Figma (Version X.X) [Computer software]. https://ogma.com/

Free Game Assets. (n.d.). Free base 4 direction male character pixel art [Game asset].
itch.io. https://free-game-assets.itch.io/free-base-4-direction-male-character-pixel-art

Free Game Assets. (n.d.). Free slime mobs - pixel art top-down sprite pack [Game
asset]. itch.io. https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-
sprite-pack

Game Code Library. (2023, August 10). Melee & ranged top down combat - Unity 2D
[Video]. YouTube. https://www.youtube.com/watch?v=-4bsGg7dVFo

Game Code Library. (2024, June 25). PERFECT tilemap sorting layers - Top Down Unity
2D #3 [Video]. YouTube. https://www.youtube.com/watch?v=UId0mwanBZg

Game Code Library. (2024, August 9). Player tracking and camera bounds - Top Down
Unity 2D #4 [Video]. YouTube. https://www.youtube.com/watch?v=kV9rVinFyAk

Game Code Library. (2024, August 22). Map transitions by waypoints - Top Down Unity
2D #5 [Video]. YouTube. https://www.youtube.com/watch?v=9r9YbHsjSKs

Godot Engine. (2023). Godot 4 [Game engine]. https://godotengine.org/

h8man. (2022, November 26). NavMeshPlus. GitHub.
https://github.com/h8man/NavMeshPlus

Iqbal, M. A., Panwar, H., & Singh, S. P. (2022). Design and implementation of pathonding
algorithms in Unity 3D. International Journal for Research in Applied Science and
Engineering Technology, 10(4), 71379. https://doi.org/10.22214/ijraset.2022.41136

Maurya, A., Yadav, A., & Baiswar, A. (2022). Pathonding visualizer. I-Manager’s Journal on
Software Engineering, 16(4), 24324. https://doi.org/10.26634/jse.16.4.18801

McMillen, E., & Himsl, F. (2011). The Binding of Isaac [Video game]. Edmund McMillen.
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/

Microsoft. (2024). OneDrive (Version X.X) [Computer software].
https://onedrive.live.com/

https://www.adobe.com/products/photoshop.html
https://www.geeksforgeeks.org/a-search-algorithm
https://www.youtube.com/watch?v=FXXc0hTWIMs
https://www.youtube.com/watch?v=kWhOMJMihC0
https://www.unrealengine.com/
https://figma.com/
https://free-game-assets.itch.io/free-base-4-direction-male-character-pixel-art
https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-sprite-pack
https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-sprite-pack
https://www.youtube.com/watch?v=-4bsGg7dVFo
https://www.youtube.com/watch?v=UId0mwanBZg
https://www.youtube.com/watch?v=kV9rVinFyAk
https://www.youtube.com/watch?v=9r9YbHsjSKs
https://godotengine.org/
https://github.com/h8man/NavMeshPlus
https://doi.org/10.22214/ijraset.2022.41136
https://doi.org/10.26634/jse.16.4.18801
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
https://onedrive.live.com/

Dungeon Scribbles

160 Samuel Downey

Microsoft. (2024). Visual Studio Code (Version X.X) [Computer software].
https://code.visualstudio.com/

Nuke Nine. (2018). Vagante [Video game]. Nuke Nine.
https://store.steampowered.com/app/323220/Vagante/

PitiIT. (2022, March 30). Unity tutorial: Knockback anyone in ANY game [Video]. YouTube.
https://www.youtube.com/watch?v=ZyCixhKdsIo

Quaternius. (n.d.). Pixel art top down basic [Asset pack]. Unity Asset Store.
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-
187605

RealtimeBoard, Inc. (2024). Miro (Version X.X) [Computer software]. https://miro.com/

Rehope Games. (2023, February 25). How to add music and sound e昀昀ects to a game in
Unity | Unity 2D platformer tutorial #16 [Video]. YouTube.
https://www.youtube.com/watch?v=N8whM1GjH4w

Rehope Games. (2023, March 2). Unity audio mixer tutorial | Unity 2D platformer tutorial
#17 [Video]. YouTube. https://www.youtube.com/watch?v=IxHPzrEq1Tc

Risi, S., & Togelius, J. (2020). Increasing generality in machine learning through
procedural content generation. Nature Machine Intelligence, 2(8), 4283436.
https://doi.org/10.1038/s42256-020-0208-z

Rootbin. (2023, July 21). 2024 AI path昀椀nding: Unity 2D path昀椀nding with NavMesh tutorial
in 5 minutes [Video]. YouTube. https://www.youtube.com/watch?v=HRX0pUSucW4

Rootbin. (2023, October 29). Unity tutorial: Roguelike room / dungeon generation (like
The Binding of Isaac) [Video]. YouTube. https://www.youtube.com/watch?v=eK2SlZxNjiU

Sasquatch B Studios. (2024, February 15). Top down movement - Unity tutorial [Video].
YouTube. https://www.youtube.com/watch?v=RN3yuCvazL4

Shen, Z. (2022). Procedural generation in games: Focusing on dungeons. SHS Web of
Conferences, 144, 02005. https://doi.org/10.1051/shsconf/202214402005

Supergiant Games. (2020). Hades [Video game]. Supergiant Games.
https://www.supergiantgames.com/games/hades/

Team Cherry. (2017). Hollow Knight [Video game]. Team Cherry.
https://www.hollowknight.com/

Tokegameart. (n.d.). Pixel potions with animation [Asset pack]. Unity Asset Store.
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-
118801

Unity Technologies. (2024). Unity Asset Store [Digital marketplace].
https://assetstore.unity.com/

Unity Technologies. (2024). Unity Version Control (Version X.X) [Computer software].
https://unity.com/products/version-control

https://code.visualstudio.com/
https://store.steampowered.com/app/323220/Vagante/
https://www.youtube.com/watch?v=ZyCixhKdsIo
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-187605
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-187605
https://miro.com/
https://www.youtube.com/watch?v=N8whM1GjH4w
https://www.youtube.com/watch?v=IxHPzrEq1Tc
https://doi.org/10.1038/s42256-020-0208-z
https://www.youtube.com/watch?v=HRX0pUSucW4
https://www.youtube.com/watch?v=eK2SlZxNjiU
https://www.youtube.com/watch?v=RN3yuCvazL4
https://doi.org/10.1051/shsconf/202214402005
https://www.supergiantgames.com/games/hades/
https://www.hollowknight.com/
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-118801
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-118801
https://assetstore.unity.com/
https://unity.com/products/version-control

Dungeon Scribbles

161 Samuel Downey

Unity Technologies. (2025). Unity (Version 6000.0.32f1) [Computer software].
https://unity.com/

User Testing Form. (2025). User testing form. Google Docs.
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWyRHWGSS2lXjOtmr795Z6RcUFieA
nb_AJ19uUnOgZ3Q/viewform?usp=dialog

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content
generation. IEEE Transactions on A昀昀ective Computing, 2(3), 1473161.
https://doi.org/10.1109/T-AFFC.2011.6

https://unity.com/
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWyRHWGSS2lXjOtmr795Z6RcUFieAnb_AJ19uUnOgZ3Q/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWyRHWGSS2lXjOtmr795Z6RcUFieAnb_AJ19uUnOgZ3Q/viewform?usp=dialog
https://doi.org/10.1109/T-AFFC.2011.6

