Dungeon Scribbles

adt <)

DUN LAOGHAIRE

Dungeon Scribbles: A Study of Procedural Generation
and Pathfinding in 2D Game Design

Samuel Downey

N00212512

Project Supervisor

Timm Jeschawitz

Year 4 2024-25

Samuel Downey

Dungeon Scribbles

DL836 BSc (Hons) in Creative Computing

Declaration of Authorship

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Programme
Chair.

WARNING: Take care when discarding program listings lest they be copied by some- one else,
which may well bring you under suspicion. Do not to leave copies of your own files on a hard
disk where they can be accessed by others. Be aware that removable media, used to transfer
work, may also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer
to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Computing (Hons) course handbook. Please read
carefully and sign the declaration below.

Collusion may be defined as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another
who then makes some changes and hands it up as their own work.

Declaration

| am aware of the Institute’s policy on plagiarism and certify that this thesis is my own work.

Signed:

Date:

Failure to complete and submit this form may lead to an investigation into your work.

Samuel Downey

Dungeon Scribbles

Abstract

This thesis explores the full development cycle of a top-down 2D roguelike video game built
using the Unity Engine. The project was guided by a strong focus on research-led design,
incorporating both front-end and back-end planning to ensure the final product was stable,
functional, and visually engaging. Early research played a critical role in shaping the project’s
technical foundations, particularly in the implementation of procedural generation and
pathfinding, two key systems that created a dynamic and replayable game environment.

The development followed a modular approach, allowing systems such as player movement,
combat, health, animations and much more to be implemented in isolation and tested
independently. A structured project management process, using Miro boards and management
strategies such as agile sprint tracking and kanban methodology, helped maintain consistent
progress and supported clear documentation throughout development. Manual testing and
player feedback informed several iterations of improvement, enhancing the game’s playability
and overall experience.

The result is playable prototype that meets its original goals while leaving room for future
content expansion. Key technical competencies in Unity, C#, system architecture, and game
design were strengthened, and the project serves as a strong foundation for continued
development portfolio presentation. This thesis provides a detailed overview of how thoughtful
planning, research, and iterative testing can support the creation of a well-rounded
independent game project.

Samuel Downey

Dungeon Scribbles

Acknowledgements

I would like to acknowledge and give thanks to my project supervisor Timm who encouraged me
through this project and offered me genuine and thoughtful critiques to make sure this project
was going in a good direction.

I would like to give a special thanks to my girlfriend and my family who have been cheering me
on over the duration of this project. Their support means the world to me.

Samuel Downey

Dungeon Scribbles

Table of Contents

Dungeon Scribbles: A Study of Procedural Generation and Pathfinding in 2D Game Design....... 1
LI 14 feTe [5Te3 1 o] o NPT PP PPN 12
1.1 OVEIALLAIM et ettt et et e e e e et e e e eaneenaaes 12
LIV Y o] o] Lfed= 1 d[e] o I Y - P TP PRSP PPRN 12
LRSI I=Te] a1 o] Lo =1 [-T- S PR PU TP PPRN 12
1.3.1 Project Management TEChNOLOZIES ..c.ueuuirniiiiii e e e 12
1.3.2 Development TEChNOLOZIES «..euiuiei ittt e e e eaes 12
1.3.3 DESiZN TECHNOLOZIES .. enitiiiiiiiie et e et e e e e et e e e s eae s eeaansnaanns 12

1.4 ProJeCT ManagemMENT . .. it e et et ettt ae e et e e en et enaaensanansaaaneansnsasnnnn 12
I T 2= T LU 1= =] 0 € 13
1.5.1 Functional REQUIrEMENTS...cuieiiii ittt e et e e e e eanenes 13
1.5.2 Non-Functional REQUIrEMENTScuiuiniiiiii e e e eens 13

LT D L-E] =1 o PP PRSP PRN 13
1.6.1 BACK-ENGA DESIZN .cuitniiiiiiiiiiiiiiiie st ee et e e e st eneaeaneaansaansasnsanansnnsnns 13
T.6. 2 FrONt-ENd DESIZN «.eneniiiiii it e e 13

LA (0] o] (=T aqT=T a1 €14 [o] o PO PO PP P PRSP PPN 13

T B USBE TESTING ittt e ettt ettt e e e eaeaeaatataneneneneneneneasaarasnsarnens 14

2 RESEAICH. ..ttt ettt et e e e 15
2. T Front-ENd RESEAICHcei e e e e e e 15
2.1.1The BINdiNg Of ISAAC ... cuiiaii e e 15
A BV YT -t o | (- S PP OP PP PRSPPI 18
2083 HAAES e e 20

2. 1.4 HOWOW KNINT. ettt ee e et e e e e e e e sa e ea e easnsnsnnsnnsnsnsens 22

2.2 Back-ENA RESEAICI «..ueeiiiiiiii et e e e 22
2.2.1 Development ENgine RESEAICh.....c.iuiiiiiiiii e 22
2.2.2 Procedural Content Generation ResearChcc.ceviuiiiiiiiiiiiiiiiiiiiiiiiccice e 24
2.2.3 Pathfinding Algorithm ReSEarCh.......cui it e e aes 26

I R U= To [111 o =T o P 29
KT I [0} { £ [T T3 dTe] o I PPN 29
3.2 ReqUIremMeENtS Gatheringcuiniiiiiiii i e e e e et e e e e st s e e e eaenees 29
3.3 ReqUIremMeNnts MOAELLNG ..c.iviniiiiiii e e e e e et e s e e e e e sa e eananees 29
3.3.1 FUNCLIiONal REQUITEIMENTS. . ciiiiiiiieiii et e e e e e e e e eenenaneaeenes 29
3.3.2Non-Functional REQUIFEMENTS ...cuiniiiiiiiie e e et ee e e e e e e neaaenas 31

I 3 = T= 111 o 11 11 Y P PP PPPPPPPPN 33
RN ©7o] o [¢] LU 11T] o KRR PPN 33

Samuel Downey

Dungeon Scribbles

N B LTS I~ o E PP PP P PR PP PP PP 33
Vo I [a1 o To [53 A e o TN 33
4.2 Programme DeSigN cuuiii it e e e ettt e e e e e e e et e e e e e e aaaaaan 34

N O J o 11 4V 4 (U] (0 1 £ TP RN 34
4.2.2 DESIBN PAtLEIN «ouiniiieiiieiiieiiir et ee et et e eetneaateenstensaesnesasnsansnsensnsensnsnssnnn 37
4.3 USEr INterfaCe DESISN cuuiuiiieiiiiiiiiiiie et ee e et e ettt saeansaneneesaneasssnsnsnsensnsens 37
4.3 WIFBTIAMIES ettt ettt ettt e e e e eaes 37
4.3.2 USEr FLOW Diagram .ou i iiiiiiiii et ee e et e e e e e e e s e e e e e e e e e enananananns 39
4,34 LEVEL DESIEN ittt ettt ettt et e et e e eaea e e aaaanan 42
N @7 o] o o1 LU F-1 Lo o PPN 42

SN [aa] o] t=Taal=] gl €= 14 1] o DT P PP PPPPPRN 42
BT INTFOAUCTION ceeiiiiii ettt et et e e e e e e eaaes 42
LIS] o] 11 | At PP 42

B.2.1 G0ALS «iiniiiiiiii ettt et et e a e eaaes 42
5.2.2 Goal 1 - Functional ResearCh.......c.cciiuiiiiiiiiiiiiiiiiiiiiii e 43
5.2.3 Goal 2 -Back-End System ReSEarChcccouiiiiiiiiiiiiie e aes 43
5.2.4 Goal 3-Gathering Applied RESEArChccuiiiiiiiii s 43
SIS] o] 11101 052U PP PPN 44
LG T T T | £ PP 44
5.3.2 Goal 1 - Front-End Design BreakdOWn.........c.viuiiniiiiiniiiiiii e, 44
5.3.3Goal 2 —Wireframe Creationoieuieuiiiiiiieii ettt et ee e eaaes 44
LI] o] 11 41 4 S PPN 44
Lo N T T | £ PP 44
5.4.2 Goal 1 - Creating a DevelopmMeENnt Ar€avuieriiiiiiiieieieeieeee et ee e eneeeeneeenens 45
5.4.4 Goal 2 - Camera Transition SYSteMcuiuiiiiiiiiiiie e e e e e aas 48
5.4.5 Goal 3—-Enemy Pathfinding SyStemcc.iiiiiiiiii e aes 51
5.4.6 Goal 4 — Player Combat SYSTeM c..u.iuiiiiiiiiiiiie et ee e s e ene e aneans 54
5.4.7 Goal 5 - Health and Knockback SyStem.....cc.veiiiiiiiiiiiiiie e 57
SRS] o] 111 | 0 P PP PPPPPPN 61
R T I o T | (= PO P PR UPPPPPPRPR 61
5.5.2G0al 1—=ROOM Prefabcoveuiiiiiiii e 63
5.5.3Goal2-Procedural Map GeNErationc.veiuiiiiiiiiiiieiiie e et ee e e e e eneeaneans 65
5.5.4 Goal 3—NavMesh INtegrationcoceiiiiiiiiii e 72
5.5.5Goal4 - Updated Camera TranSitioN ..o et eneees 74
5.5.6 Goal 5 —Handle AIM UpPdate.....c.cueiuiiiiiiiiiiieie et e e e e e e e e e anaans 75
5.5.7 Goal B — ENemy iNTeE8ratioN ..c.ive it et e et e e et e e e e eneananaans 76

Samuel Downey n

Dungeon Scribbles

5.5.9G0al 7 —PauSE MENU ...cuuiiiiiiiiiiiiiiiiiiiiiii it ea e 79
LTS T T o 1 L = N 80
BuB.T GOALS ettt ettt ettt et e it ea et et ea e eaaes 80
5.6.2 G0al 1 — LoAdiNg SCIEEN. .. iuiiiiiieiiie ettt e e e et e e e e e te e etersneaesnaaaanaans 81
5.6.3Goal 2 - FinalisSe ROOM ...c..iiiiiiiiiiiiiiiiiiiiiii e 83
5.6.5 Goal 3-Health bar Ul additionc.cccuviiiiiiiiiiiiiiiiiiiiii e 89
5.6.6 Goal4d —Health e c...eun ittt e e ee e eeaee 91
5.6.7 Goal 5-Enemy design implementation..........ccoviiiiiiiiii i 93
5.6.8 Goal 6 — Fixing enemy in starting roOM BUE ... c.iviiniiiiiiiiiiiii e e e e eneaes 99
LIRS o 1 < 7 103
B.7.7 GOALS ettt e e e e e enae 103
5.7.2Goal 1 - Add Door Design to ROOMiuiiiiiiiiiieii e e e e eaas 104
5.7.3G0al2—Add @ Player DESISNcuiiiiiiiiiiiiiiiieiiie e eie e e e e e e et e e e e eaas 105
5.7.4 Goal 3—-Update Combat SYyStem ...t ie et eee e e eae e eenaneans 111
5.7.5G0al 4 - Fix Player CLPPING BUE . .cuiuieniiiiiiiiiiieiiee et et et et e eee e saeneenanenns 114
5.7.6 Goal 5 —Update User INtEIrfacCecuuiiiiniiiiieii et eeaas 116
5.7.8 Goal 6 —Updating PauSE MENUcuiiiiiiiiiiiiiiei e et e e e ae e e aeans 117
5.7.9Goal 7-Main Menu Implementation.......cccviuriiiieiniiniire e e e e e eaaneans 122
5.7.10 Goal 8 — Audio system Implementationcceeeeiiiiiiiiiiiii e 128
5.7.11 Goal 9 — Controller SUPPOIt ...ttt et e e e et e e e e eeeneans 139
LIRS ST o] 1 | A PP 141
LR TR I C T T | £ PPN 141
5.8.2 Goal 1 —First Draft Of REPOIT.....cuiiniiiiiiiiiiieie et e e e e e e eaaneans 141
5.8.3 Goal 2 - Receive Feedback..........ccoouviiiiiiiiiiiiiii 142
SR [T 4 o= PP P PP 143
B.T INTFOAUCTION 1.ivtiiiiiiiiiii ittt e e e e e s e s e ens 143
6.2 FUNCTIONAL TESTING .eviininiiiiiiiiiiieiiiie et et ee e r e et et et ensaeeneantneatnsastnsansnsassnsnsnnees 143
6.2.1 MENU NAVIZATION ..vuiniiiiiiiiiitii et ee et eee e ete e eae e eaeenenseneneaesnseasnsansnsensnrans 143
B.2.2 Player CONTIOLS .euiuuiniiiiieiteiert et et et et et ea e enaeenseenseeanseansenensenensnns 144
LSRG =Y a1 0 0}V 11 1 =] = Lo { (o] o IR PP PO P P 145
B.2.4MapP NaViGatiON .ouivniiiiiiiii et e e e e e et eae e e st e eaeeneaaeneaneneananenns 145
B. 3 USBE TESTING ceuiniiiiiiiiiiiiie it te et et et e et en et ensantasantnsaensantnsansnsnsensnsenees 146
B.3.71 Player CONTIOLS .oueniniiiiiiiiiee ettt et et et eae e e seeeneeeneeaansaansenanenns 146
6.3.2 ENemMY INTEraCtioneninieiii et et e et e et e et e e e e e e e eans 148
6.3.3GaMEWOIIA .ueeniiiiiiii ettt et et et e e e e e een 149
6.3.4MeNU INTEraCTiON «cuuiuuiiiiiiiii ettt et e s e e e 150

Samuel Downey

Dungeon Scribbles

LR 3 0o o Te] LU 1= YT] o PP 151
I B I o = YL G @0 {0 N 151
B.4. 2 ENemMY INTEraCtioN (.ot e e et e e e e e e e aaaas 151
6.4.3GaMEWOIIA ..uevnniiiiiiiii ittt et et e e e ee 151
6.4.4MenU INtEraCtioNcuiiuiiiiiiiiiii ittt aa e 151

7 CONCLUSION (itiiiiiiiiiiiiii ittt et ea st st et eaa e taeaaeeanseaaenanes 152

/2% B (1 { (T [T o] d Lo o B PP PT PP 152

A [=Ted] gTo] Lo =1 =T ST 152
2 I 1= {0 o - ORIt 152
72728 o 410 o 1= o Lo o U 152
7 2.3 UNILY oottt ettt e et e et e e ettt e et e et e e ee e e e e eaaeeeraeeanes 152
7.2.3VisUAl STUAIO COUER . cuuiiiiiiiiiii ettt ettt et et e e et ee e e e e e eeneeen 153
T 24 MITTO ittt e e e e aa e 153
7.2.5UNity Version CONtIrOL. ... iii ittt ee et ere e e et eneeeeneanensansnsansnsnns 153
7. 2.6 0NEDIIVE cceuiiiiiiiiiiii e 153

RSN o o [=Tex dl o o F= T 1= T S PP 154
7.3 T RESEAICK et 154
7. 3.2 REOUITEIMENTS 1ouiniiiiiiiiie et ee ettt et et eaeteaaaeensanensssnernsnsensnennsnenns 154
RS R T D 1-T] =1 o D PP OT PP PP PPt 155
7.3. 4 1MPLEMENTATION c.eeiniiii ettt et et e et e et et e e e e e e eans 155
RS RN U 1= g [=E] d] oV < PP PP P 155

7B REFLECHION ceeuiiiiii e e e 156
7.6.1 ProjeCt ManagemeENntcuieiiiiiiiiiiiiie et ee e eae e ete e e et eneae e eaeneananaananeans 156
7.6.2VieWS ONTHE PrOJECT .neiiiieiiee e e et e e e e e e eanes 157
7.6.3 WOrKing With @ SUPEIVISOT . cuuiuiiiiiiiiieiie ettt r e s e s e s e s e e e easaneanas 157
7.6.4 Further CompetencCies & SKIllS ...vuiuiiiiiiiiiiiiiiei e e e e eans 157
7.6.5 How the Project Could be Developed FUITherciuviiiiiiiiiiiiieeice e eeans 157

2 A o 1] LU 1YL] o PP 158

G RE EIENCES . ettt ene 159

Samuel Downey n

Dungeon Scribbles

Table of Figures

Figure 1 - Screenshot of The Binding of ISSAC Main MENUceuuviuiiiiiiiiiiiiiieiiie e eiie e e eieseneeneanees 15
Figure 2 - Screenshot of The Binding of Issac Gameplay / User INterface.......c..cceeueeeviieuieininiieiennnennnennnns 16
Figure 3 - Screenshot of The Binding of ISQAC PaUSE MENUcc..veuiiuiiiiiiiiiiiieiiie et eiieeiee s seneeenesannees 17
Figure 4 - Vagante Main MENUeeuuveueeueiiieieeeiieeiieeteetieetes et s etseasstansanesansstnsstnsasssanssesssssssanssenssennses 18
Figure 5 - Screenshot of Vagante Gameplay / USEr INtEIfaCe...........ceeueviuiiiueiieiiieiiieeiieeeeeeieeeiee e eeeaannes 19
Figure 6 - Screenshot Of HAAES Main MEINUeeuiiii it e et eee et e as e e e eaesean e st s aneeaneannes 20
Figure 7 - Screenshot of Hades Gameplay / USEr INteITACEccuuveueieueiiiiiieiiie e eeeeevieeeeeenee e e e e e sannees 20
Figure 8 - Screenshot of HAAES PAUSE MENUceuivuiiieiiieiiie et ete et eteetieeae e e e saeeen e sasan s s eannaes 21
Figure 9 - HOUoW KNight PAQUSE MENUccuuivunieieiieiie it eie et et e et s e s e st e easeanesanasansasnsannasnnsannees 22
Figure 10 - Screenshot Of UNity File EXPLOIEI.........cuuieueiee et et ieete e e e teeaestesas st e saeennssrnsannssnnsannees 34
Figure 11 - Screenshot of ANimation File STrUCTUIEc..euuieueeeiiiiieiee e tie et etie e eaeeaeeeasensaaeeanaanaaes 34
Figure 12 - Screenshot Of AUGIO File STrUCTUIEceeuueeeiiieeiie ettt et ettt e et e e eae e et eeenes 35
Figure 13 - Screenshot Of Prefabs File STrUCTUIEcveuuiveiuieiiiee et e ettt etee e eteeeeaeeeaeseaneeeenes 35
Figure 14 - Screenshot Of SCrIPES File STTUCTUIEccuueeeuieeiiieeeiee ettt et e etaee et eeeaeeeaeseeneeeenes 36
Figure 15 - Screenshot Of TileSets File STrUCTUIE........c..eveeuiveeiieeeiiee ettt ettt ettt e eea e e eae e et eeenes 36
Figure 16 - Screenshot of Main Menu WIreframecoeuueeeeueieiieeiiie et ettt eeteeetaeeeeee s eeaeeeeans 37
Figure 17 - Screenshot of User INterface WireframE...........cevuuueieuueeeiiieeeie ettt st e et e et eeeeeeeaeeeenns 38
Figure 18 - Screenshot of PausSe MenU WIreframmecceuuceeeueiiiueeeiiieeiiee et et e eeee e et e eeaeeeeaesannneeenes 38
Figure 19 - Main Menu USEr FLIOW CRAITceuuuiiiee ettt ettt e e tee e et s eeae e et e eeaseeansaenneeenes 39
Figure 20 - Player Controls USEr FIOW CRAITccuuuuiiiiiiiiiieeiiiee ettt e et e eetaee e s eeeanaees 40
Figure 21 - Pause Menu USEr FIOW CRaAIT.........uuei ittt ettt e e e e et e s e eeaae e s eeeanaees 41
Figure 22 - User Interface USer FIOW CRarTcooouuuuiiieiiiieieeeiiee ettt e et e e et e s eeeanaees 41
Figure 23 - Snippet of back-end SYySteM reSEAICHcccceuuueiiiiiiieiieeiiee ettt et eeeaaaees 43
Figure 24 - SCre@nShOt OF TEST LEVELcuuuuiieiiiieieeiiee ettt st e e s e e e e s e etaeae e s eeeanaees 45
Figure 25 - Code snippet of Player MOVEMENT SCHPTccuuuueieeiiiieieeiiiee et eeteee s e et e etaee e s eeenaaees 46
Figure 26 - Code snippet of Input Manager for Player MOVEMENTcccovevuuueiieiiiieieeiiiieeeeeieieeeeeennnen. 47
Figure 27 - Snippet of trigger points for Camera TranSition SCHPT.......c.eviueiiueeieiiieiiieeiireieeeiereierenereneeennees 48
Figure 28 - Code snippet of Camera tranSitionN SCHPT........veuveuieeeiriiie et eeeeteetieeteereeneennsersansenssanses 49
Figure 29 - Code snippet of Camera tranSitionN SCHIPT........veuuveuieeeriiieiee e eiieeteetieetieereeneernsersansennsenses 50
Figure 30 - Snippet of teSt €NemMY SAmME ODJECTcuuniiuiie ittt eteeaser s easeaneaesannesansannaes 51
Figure 31 - Code Snippet 0f eNemy MOVEMENT Alceunieniiiiiiieeie sttt eteete e eas et s easeassarsaneansannees 52
Figure 32- Snippet of nav surface script for baking 0bjeCt deteCtiONccuuevvuviiieiiieiiiiiiieeerie e eeans 53
Figure 33 - Script to set collision layer as an 0bjeCt t0 AETECTvuiiueiiiiiiiiiie e e e e e 53
Figure 34 - Updated Player Movement script for Player Melee integrationcccueeeuvveueeeneiineieneeennnennnns 54
Figure 35 - Code snippet Of Player MELEE SCIiPt.......cuueeuieeiiiieeei ettt etieeaeeetesaee e s s s e e s eann e 55
Figure 36 - Code snippet of Player WEAPDON SCIIPT........ccueeuiiiiieeiee e etieeteeeeetieeaeenesaeennsansanessnnsannees 56
Figure 37 - Code snippet of Player HEAlth SCriPt.......c..ciuueeuiiiiieiii et etieeteeaseeeeea s s saassaneannees 57
Figure 38 - Updated Enemy script with health integration.ceeuueeeeueeiiiieiiiieieiee et etneeeenes 58
Figure 39 - Code snippet of updated player movement script for new aim mechanic and knockback

INTEETATION. «..eieeeeeeiee ettt ettt e et e e et e et e e et e etaa e et e etaa e eenesatanseeenaeannaeeanssaennsaennnsennnensnnsennnnns 59
Figure 40 - Updated Player movement script for knockback integration.c.ceceueeeeuueeeenieeeenceeennneennn. 60
Figure 41 - Updated Enemy script for KnoCKback int@Gration.ueeeuueeeiueeeinireiiieeeieeeeieeeneeeeneeeenns 61
Figure 42 - Code Snippet OFf ROOM SCIIDT .cu.ueeiuiieiee et eetee ettt eteeeete e et e etae e et s eeasetaaeeetnaseennesarnnneeenns 63
Figure 43 - Screenshot OF FOOM Prefab.ccoeuueieuuei ittt ettt etaee e eteeetaseeaaeseeaneeenes 64
Figure 44 - Code snippet one of ROOM ZENEIatioN SCIIPL.cuuueieuueeeeieeeieeeiiie et e etaeeetee et eeeneeraneeeenns 65
Figure 45 - Code snippet of ROOM ZENEIation SCIIPT.ccu.eveuueiiieeeiiieeeieeetieeeetieeetieeeeteeeeneeenaeeetneeennns 66
Figure 46 - Code snippet of ROOM ZENEration SCIrIPT.c..cveuueiiiueeeiiieeeieeetiieeeieeetaeeeteeeteeeenneetneeeenns 66
Figure 47 - Code snippet of ROOM ZENEIation SCIPT.cu.eveuuueiiiueeeiiieeeieeetieeetieeetieeeteeeeneeennesernseeenns 67
Figure 48 - Code snippet of ROOM ZENEIation SCIIPT.ccu.eveuueiiieeeiiieeeieeetieeeeieeetieeeteeeeneeenneernnneeenns 67
Figure 49 - Code snippet of ROOM ENEIatioN SCIIPT. ...c.ccuuuueiieeiuuieeieetiieeeeetieeeeeteaeeeeeteneeeeetaeaeeeeeennaens 68

Samuel Downey n

Dungeon Scribbles

Figure 50 - Code snippet of ROOM ENEIatioN SCIIPT.ccuuuueieeiiuneeieetiiieeeetiieeeeeteteeeeeteaeeseetaeaeseeeanaens 69
Figure 51 - Code snippet of ROOM GENEIatioN SCIIPT. ...c.ccuuuuereeiuuneereetiiieereetiieeeeetitee e ettt seetaeaeseeennanns 70
Figure 52 - Snippet 0f ROOM dESIgN JEEIATION.cceevvuuiieiiiiieieeiiiee ettt et eeeteaee e eeeaae e s eeennaees 70
Figure 53 - ROOM geNeration SCIPTTEST. ...c..uiiuuiiiiiiiiiei ittt ettt e b e eea et s eanes 71
Figure 54 - Snippet Of EN€MY NAV MESH DUGcuuveuiiiiiieiiieeiie ettt et et eeseteeas et s easeassaaesansssnnsannses 72
Figure 55 - Update to enemy movement SCHPT L0 FIX DUGveuueeuniiiiiiiiiiieiie e eiie e ereeeeeesereseneeneaanees 72
Figure 56 - Demonstration Of BUG fiX [N @CHIONcuuiiuiiie it iiie ettt ee et e teetseteeasersensenssaresannsennsannses 73
Figure 57 - Updated camera transSition LOZIC.cuuueiuueiueiiieiiieeiis et ieetietteeeneeteeaserseasannsarnsannssnesennses 74
Figure 58 - Update to player MOVEMENT SCIIPT.cuueiuueiee it iiieeie s et eeetesteeeeete st ernsenesansssrssansenssannses 75
Figure 59 - Snippet of enemy integration into procedural ENEration.cccueeiuieeuieeuieeieeenereiereeeeeeennnes 76
Figure 60 - Code snippet Of €NEmMY INTEEIAtION.eiuueiuueeiieiiieereteietteeteeterteeteeaserstnsansstrnsansssnssannses 76
Figure 61 - Screenshot of eNemy SPAWNING DUG.cuueiuuiiiiiiiieeiit et ee e e eteeteetieeaserseaesennssrnsannssnssennses 77
Figure 62 - Enemy spawning BUg SOIULION.uuuiiiueiie it iiie e eeeeee e eeeeeeteetseanseanaennsaensansennsannees 78
Figure 63 - Code Snippet of interface Manager SCIIPL.veueeuiiuiiiieeieieeetieetieeteeerieeteeenessresaneesnaeenees 79
Figure 64 - Snippet of PaUSE MENU INTEGIATION.ccueivueeeeeeieeeie e e eeeee e et teeteetieeaeereeaaennsarsanassnnsennses 80
Figure 65 - Loading SCrEEN AESIGNcuuueeeeneeiie ettt ettt e et e e et e etae e et s etaneeetneeeenneeanaseennnaeenns 81
Figure 66 - Code snippet Of [0adiNg SCrEEN [OGIC......ccuuueeeuuireeiieeiee ettt et et e et e eeeaeeeeneeeenes 82
Figure 67 - FINaliSed rOOM AESIGN.......ccuueeuuieeeie ettt ettt et et e et e e tae e et s eeae e et e eeaaeenneseennneeenes 83
Figure 68 - Code SNIPPEt OF AOON LOGIC. «...eeeuueeeeneeeteeeiie ettt et e et e et e et e et e eeaaeeenneeeeaneeenns 84
Figure 69 - Code SNIPPEt Of AOON LOGIC. «..veuueeeueieiiee ettt ettt e e tae e et s etas e et e eeaaseeansaennneaenns 85
Figure 70 - Snippet of room script for SMart dOOr LOZIC.cceuuueieuuieiiiieiiiee ettt etieeeee e et eeenns 86
Figure 71 - Snippet of room script for Smart dOOI LOZIC.ceeuuueiiiuieeiiieieiee ettt et eeeeeee e et eeeaes 87
Figure 72 - Snippet of room script for SMart dOOF LOICveuuueieuuieeiiiiiiiie ettt ettt e eee e et eeenes 87
Figure 73 - Snippet of room script for SMart dOOr LOZIC.ceeuuueieiuieeiiieiiiiee ittt ettt etieeeeee e et eeaans 88
Figure 74 - First version of health bar added t0 USEr INtEITACE.c.ceeuviuiiiuiiiiiiie et 89
Figure 75 - First version of dynamically moving health Dar.c.cooueiiiiiniiiiiiiiiiie i 89
Figure 76 - Additions to player health script for health bar functionality.coeeeuiieeieeiiiiiiiineeinneennnes 90
Figure 77 - Code Snippet OFf REAIEN IEEIM.ccouuuuiiiiiiiiiieeiiee et ettt e e e et e s e eeanaees 91
Figure 78 - Health item in the game with new enemy designs implemented.ccc.ccceeveiniiiiiniriinnnnnn. 92
Figure 79 - Additions to room manager script to implement health items.ccccoeueiiiiiiiiiiiiiniieinnneenn, 92
Figure 80 - Enemy WalKing SPHtE SREET.........covuuiiiiiiiiiiiiiiii ettt ettt e era et e e 93
Figure 81 - ENnemy @animation CONTIOULEY.coueveueiiuieie ittt et et st et e teets et s eaeannsanesannsanneannes 94
Figure 82 — Animation controller variables added to enemy MoVEeMENT.ccccovveeuiiiiniieiiieeeniirenneeennn. 95
Figure 83 - Animation controller variables added to enemy damage.ccoueeeeeuieeiiieiineneriierenereeeennnes 96
Figure 84 - Enemy designs implemented iNtO GamIE.ccuviuieiuiiiiiiiieeiie e eteetieeteerseaeennsarsannsenesennses 97
Figure 85 - Addition of death animations to enemy animation CONtroller............ccccvvevvviuieeiiiiieiineeenneennnns 98
Figure 86 - Animation variables being implemented into enemy death [0gIC.ccccovveveeeiiiiririnniinnnennnnn 99
Figure 87 - Modifications to the ro0mM ManNaAZEr SCIPT.euuieuiiiueiiieiieeiiereieetieeeeeeneeeresereeensenssenneenaennns 100
Figure 88 - Modifications to the ro0mM ManNAZEr SCIPT.euuiiueiiueiiieeieiiiettie e ereeereeererereetnesenssasernesannes 100
Figure 89 - Modifications to the ro0mM ManNAZEr SCIPT. ..c..eeuuieueiiueiieeietiieetieetieereeenesererereetnesenssasernesnnns 101
Figure 90 - Modifications to the ro0mM MaNAZEIr SCIPT.euuieueiieeiieiiieiiieetie e eteeeneeereeareetneseneeanneresanns 102
Figure 91 - Modifications to the room manager script.

Figure 92 - Updated room design with door prefabs BroUughit in...........cceeeueeeiuiereiiiieeieiiiieeeeie e 104
Figure 93 - New character design being implementedccoeuueeeiiiiiiiiiiiiieeeiie et eee et eeens 105
Figure 94 - Player animation CONTIOUETcc..veuueeieeeeii ettt et e et e et e eeae e et e eeaeeenaseenaeeens 106
Figure 95 - Player movement code updated with animator integrationsS............cceeeeueeeeuueeeenieeeeneeeennneenns 107
Figure 96 - Player movement code updated with animator integrationsS............ceeeeeueeeeuneeeenieeeenereennneenns 108
Figure 97 - Player movement code updated with animator integrationsS............ceeeeeeeeeeuueeeenieeeeneeeennneenn. 109
Figure 98 - Player movement code updated with animator integrationsS............cceveeueeeeuueeeenieeenneeennneenns 110
Figure 99 - Updated handle aim function for easier animation controllingccccccceeueeeniiiceineeinnennnns 111
Figure 100 - Updated player melee script with animation controller integration............c.ccceeeeuceeneeenennne. 112
Figure 101 - Updated player melee script with animation controller integration............c.c.ceceeuceeneeeneennnee 113
Figure 102 - Updated player melee script with animation controller integration............ccccceeeeuceeneeeneennnee 114

Samuel Downey

Dungeon Scribbles

Figure 103 - Updated enemy Script to fix ClDPING DUG.c..oveuuiiiimiiiiiiiiiiiiiiiiiiinete et et 115
Figure 104 - Mini map added t0 USEr iNterfacCe.c.eeveuuiiiiiiiiiiiiiiiiiiiiii ittt et 116
Figure 105 - Small code addition for room CLEAINEG ICON.......ccuueiiuuiiiiiieeiieeiiiieeetie e etieeseteeeeieeeeaeeeeaeeanes 116
Figure 106 - Updated health bar dESiGN.cccuuviiuuiiiiiiiiiiiiiiiii ittt ettt e e e e e et e e e 117
Figure 107 - Updated pause MENU AESIGN.ceuueuueiieiiieeiieeieeeieteieetieetereneetsetseansarsenssanssenssensernesannes 118
Figure 108 - OptionNs MeENU @AAITION.ceuuiiuiieieiiieiiieetieeiie ettt ee et e tereneetasetseansarnsasstnssenssennsrnssannes 118
Figure 109 - Updated INterfaCe MANAZEEL.ceuunvuueieeitieeiieeieeeeeseiereieetereneetsetseansassansanssenssensernssannes 119
Figure 110 - Updated INterfaCe MANAEEN.ceuuiuueiieiiieeiieeteetie s e eteetiesteetisstssansarnsarssenssenssanssenesannes 120
Figure 117 - Updated INterfaCe MANAZEN.cuuuiuueiieiiieeiieeteeeesteeteeteseestisstseansarsanssenssenssanssenesanns 121
Figure 112 - Updated INterfaCe MANGEEN.vuuiiueiieitieiiieeteeeietteeteetesesetsstssansarsarssenssenssanssrnesannes 122
Figure 113 - Main MeENU AQUEA.eeniiiiiiie et e s e et e te s eseatseasean et sasnaaassanssansernesnnnns 123
Figure 114 - OptioNS MENU AQUEM.cunieeiie ettt et ee et e te s e eatseaseanseansasnsaansanssanssenesannns 124
FigUure 115 - MAIN MENU SCIIPT.eeei ettt etie et e et e et eet s et eta st sansssnssrnassnssrnsarnsennsenssnnsernesennes 125
FigUure 116 - MAiN MENU SCIIPT.eunieiiieieeeee et eeetie et e et e eteeeaseteeten st sanssanssenasanssrnsernsennsresssnsernesnnnes 126
FigUure 117 - MAIN MENU SCIIPT.eueeeiieiee et teetie e eaeeeteeeteeseseeeeeenstnesanassnssrsesnssrnsersennsenssennernesnnnes 127
Figure 118 - Gam@ QUUAIO IMUXEI.c...ccuuui e eeiee ettt et et e etae e et eeta e eta s etaeeetnesaennneetnnaeeansaannnsaennnseens 128
Figure 119 - VOIUME SETEINGS SCIIPT. ...eeuueeeteee ettt et et e et e et e et e eta e et s etaneetaeeeaneannnennnnaeens 129
Figure 120 - VOIUME SETEINGS SCIIPT. ...eeuueeeieeeeee ettt ettt et e et e et e e tae e et e etaneetneaeeaneennnsannnnaeens 130
Figure 127 - AUGIO MANAGET SCIIDT.c....ceue ettt ettt e et e et e et e et e eta e etaeseeansetneeeeanseannnsennnnaeens 131
Figure 122 - AUAIO MANAZGET SCHIPTttt e et et et et et e ea e ee e eaeena e enneenneeneennns 132
Figure 123 - Additions to player movement script for player audio.cccouieeieuiiiiiiiiiiiiiiiiieeieeennes 132
Figure 124 - Additions to player movement script for player @UaiO............cceuueeeenereiuieeiiereiiieeeieeeineeenns 133
Figure 125 - Additions to player movement script for player audio.cccoueeeiieuiiiiiiiiiiiiiiiiieeieeennes 134
Figure 126 - Additions to player movement script for player audio.cceoieeeiieuiiiiiiiniiiiiiiieieeieeennes 134
Figure 127 - Additions to player melee script for player QUaiO............c.coeueeeuiiiiiiiiiiiiiiieeeie et eeeeenes 135
Figure 128 - Additions to player melee script for player QUaiO............c.coeueeeuieiiiiiieiiiiiiee e eeeeenes 135
Figure 129 - Additions to enemy SCript for eNemy QUAIO.cceuiiuiriniiiniiiie it e eeaees 135
Figure 130 - Additions to enemy SCript for enNemy @UAIO.cocuuiiiiuniiiiiiiiiiiiiiiiiieie et et 136
Figure 131 - Additions to enemy Script for enNemy QUUAIO.ccecuuiiiiuniiiiiiiiiiiiiiiiiieie et 137
Figure 132 - Additions to enemy SCript for enNemy QUAIO.cecuuiiiiuniiiiiiiiiiiiiiiiiieice et et 138
Figure 133 - Additions to enemy SCript for enNemy @UAIO.cocuueiiiuiiiiiiiiiiiiiiiiiiieie et et 138
Figure 134 - New input system additions for CONTroller SUPPOIT........cc.vuueveeeiieeieeiieeieeeeeeneeeereeeraennnes 139
Figure 135 - Additions to player melee script for CONtroller SUPPOIT.........eveueeereieeniriiiieieeeeieeeeeereennnes 139
Figure 136 - Additions to player melee script for CONtroller SUPPOIT.........vveueeenveiireniiiiiiiieeieeieeeeeneennnes 140
Figure 137 - Additions to interface manager script for controller SUPPOIt..........c.eveueviuiiiieiieiieenieeneennnes 140
Figure 138 - Additions to interface manager script for controller SUPPOIt..........c.eveueviiiiiieiieiieeiieenieennnes 141

Samuel Downey

Dungeon Scribbles

1 Introduction

1.1 Overall Aim

The overall aim of this project is to successfully research and develop a 2D game with a similar
gameplay loop to popular dungeon crawler roguelikes in the Unity 6 engine while furthering my
knowledge into procedural generation systems and enemy artificial intelligence in video games.

1.2 Application Area

This project falls under the Entertainment and Media application area, with a specific focus on
Game Development. Video games are a form of interactive media designed to entertain and
engage players through immersive gameplay, storytelling, and interactive mechanics. The
project explores the technical and creative aspects of game development, combining software
engineering, digital art, sound design, and user experience design to create a cohesive and
enjoyable game.

1.3 Technologies

1.3.1 Project Management Technologies

Miro will be used as the primary application for tracking the progress and development of this
project. To maintain a clear record of game development updates, screenshots will be uploaded
to a Miro board along with short breakdowns of these updates. This approach will provide a
quick and accessible way to look back on previous versions of the game while also creating an
easier method to collect these screenshots for the upcoming report.

The Unity Version Control System will be the primary version control system due to its ease of
access within the Unity engine as well as its similarities with GitHub. The OneDrive cloud
storage system will also be used for this project to store full project files after major
implementations in case of a failure with the Unity Version Control System.

1.3.2 Development Technologies

The project will be developed using the Unity 6 Engine paired with Visual Studio Code as the
IDE. This decision is explained in detail in Chapter 2.

1.3.3 Design Technologies

The project will be using Figma as the design application for the menu system wireframes as
well as the user interface wireframes. Photoshop CS6 will be used for asset design or image
editing if necessary. The project will be using many assets found on the Unity Asset Store as
well to save time on design while still having a high quality look.

1.4 Project Management

The project will use a two- week Agile sprint system, with each sprint focused on hitting
specific implementation goals. Miro will be used to keep everything clear by showing tasks
visually, along with regular sprint reviews with the project supervisor to make sure that the
documentation stays up to date. To stay organized with tasks, a Kanban board will be set up
with columns such as “To Do”, “In Progress”, and “Completed” to make it easier to track

development progress.
Samuel Downey

Dungeon Scribbles

1.5 Requirements

1.5.1 Functional Requirements

The functional requirements of this project will be guided by research into key game systems
commonly found in games of similar genres. Researching how other games implement key
features such as player systems, procedural room generation, and enemy systems will offer
valuable insights into how these mechanics work and how they can be adapted for this project.

The goal is to understand how these systems operate and to use them as a reference point for
structuring the codebase. Well-structured code is crucial for maintainability and efficient
debugging, and studying proven examples will help ensure that each system is designed with
these principles in mind.

1.5.2 Non-Functional Requirements

The non-functional requirements of this project will be informed by research into design
principles of games within similar genres. Researching how other games handle menu design,
player and enemy animations, and sound design will help shape the game's overall user
experience and visual consistency.

Understanding how these design principles impact usability and player engagement will play a
key role in guiding the design process. Factors such as menu layout, control scheme, visual
feedback, and audio cues will be carefully considered to ensure the game feels intuitive,
immersive, and enjoyable to play.

1.6 Design
1.6.1 Back-End Design

The back-end software design of this project will be focused on implementing each feature
separately to ensure a well-organized and maintainable codebase. By keeping different
systems, such as player movement, enemy Al, and room generation separated from each other,
it will become easier to find and fix any bugs that are found. This approach will also improve the
readability of the code, making it easier to understand and update in the future.

1.6.2 Front-End Design

The majority of the assets for the game will come from third-party platforms as well as the Unity
Asset Store which offer a wide range of high quality sprites, animations and environment assets.
This will make it easier to keep a consistent visual aesthetic across the game. Music and sound
effects will be sourced from YouTube primarily as there are many royalty free soundtracks and
sound effects available.

1.7 Implementation

The implementation phase will loosely adhere to the Agile sprint system which was explained
previously in the chapter, primarily the purpose of keeping project progress and documentation
organized. If goals are completed ahead of the sprint schedule, that will not be used as an
excuse to not continue working. The implementation phase will be adhering heavily to the
Kanban system that was also explained previously in the chapter. If utilized correctly, the
Kanban system will provide a steady stream of implementation goals the project will need. With

Samuel Downey

Dungeon Scribbles

these ideas in mind, there should be a steady stream of constant progress through the entire
duration of the project, and the sprint goals can be rewritten to reflect the amount of work that
was actually accomplished over that respective sprint period.

1.8 User Testing

The user testing phase will consist of three separate stages. The first stage involves manual
testing of every change made to the game, ensuring that both modifications to existing features
and newly implemented features function as intended. This process will focus on identifying
and resolving errors while ensuring that no existing functionality is compromised. Testing will be
thorough and extensive, especially for overlapping features, continuing until no bugs can be
found.

The second phase involves user testing studies with friends and fellow students from Creative
Computing and other departments. This phase aims to gather perspective and insight into how
users interact with the game, including its menu systems, control scheme, and overall
enjoyment. Feedback from this focus group will be used to implement changes, fix identified
bugs and adjust features to ensure a fairer experience for the player before moving on to the
final testing phase.

The third and final testing phase will involve large-scale user testing at Comic-Con Dublin, held
at the Convention Centre in Dublin City Centre. A small group of students and lecturers has
been invited to attend the event as ambassadors for the new Game Design course, providing an
opportunity to gather extensive user testing data. This event will also offer the chance to receive
feedback from major studios such as Black Shamrock and Larian Studios on ways to improve
the game. With insights from industry professionals and public opinion, this phase is expected
to be the most significant stage of testing.

Samuel Downey

Dungeon Scribbles

2 Research

2.1 Front-End Research

2.1.1 The Binding of Isaac

Figure 1 - Screenshot of The Binding of Issac Main Menu.

The Binding of Isaac’s main menu (Seen in Figure 1) has a unique style, but it does not sacrifice
its functionality. It has a basic list style menu, offering all the necessary buttons that a menu
would need to provide such as the New Run, Continue and Options buttons. But it also has the
Challenges and Stats buttons which are nice additions. The lack of a Quit button seems like a
bit of an oversight in terms of overall user experience so | will be making sure to add one in my
menu. Other than the lack of a Quit button, the menu does its job displaying the menu options
to the player very well.

Samuel Downey

Dungeon Scribbles

Figure 2 - Screenshot of The Binding of Issac Gameplay / User Interface.

When looking at The Binding of Issac’s user interface (Seen in Figure 2), one of the first
noticeable elements is the highly contrasting red hearts in the top-left corner of the screen,
which, based on common gaming conventions, represents the player’s current health. Thisis an
effective way to communicate the health system without needing direct explanation, clearly
implying that taking damage results in losing a heart.

Beneath the hearts is a simple inventory system, displaying coins, bombs, and keys. This layout
clearly communicates the items that can be found but also removes any sense of mystery when
discovering these items. While the system supports simplicity, it may not suit designs aiming for
more surprise and exploration.

On the far right side of the screen is a mini-map, highlighting the player’s current position while
also displaying available paths and special rooms which are marked with a yellow crown to
signify their importance. This is a simple and effective way to design a mini-map, and while the
exact style may not be adopted, the focus on simplicity is a quality worth trying to emulate.

Samuel Downey

Dungeon Scribbles

PAvseED!

2
2
%

» RESVME GAME
EX\T Game

Figure 3 - Screenshot of The Binding of Isaac Pause Menu.

The Binding of Isaac’s pause menu (Seen in Figure 3) shows a very simple and understandable
design. The three main buttons, Resume, Options, and Exit are easy to see, helping users
quickly find what they need. The options button stands out a little more due to the larger font,
helping guide the user’s attention to important buttons.

The player’s stats are also shown in the pause menu, giving players a safe way to check their
information without worrying about being attacked. The “My Stuff” section clearly lists the items
collected by the user, keeping everything readable.

While the menu design works well and maintains visual consistency, the biggest takeaway is
how it focuses on the most important buttons by simply making them a little bigger. Keeping the
player’s stats out of the pause menu might also be a better idea for the project in case the stats
or upgrade system have to be scrapped.

Samuel Downey

Dungeon Scribbles

2.1.2 Vagante

) e

Hew Game

¥
§

Figure 4 - Vagante Main Menu.

The Vagante main menu (Seen in Figure 4) is very simple and very easy to navigate, the artwork
immediately familiarizes the player with the art style of the game. The marker over the selected
menu button is great for showing what the player is currently selecting and removes any
confusion about what they are doing. The lack of unnecessary buttons is great for keeping the
menu system easy to understand, making it easier for the player to pick up and start playing.

Samuel Downey

Dungeon Scribbles

Figure 5 - Screenshot of Vagante Gameplay / User Interface.

One of the first things to notice when breaking down Vagante’s user interface (Seen in Figure 5)
is the health bar which is positioned in the bottom left corner. It effectively shows the player’s
health through a number and bar format, making it easy for players to understand.

Above the health bar is a minimalistic simple inventory system, which gives players more
flexibility in item type discovery, while also leaving more room for items to be added to the game
later. However the alignment of the inventory should be updated to fit the rest of the menu
which follows a left to right design philosophy.

Beneath the health bar is a larger inventory system along with a stats and level section. These Ul
features suggest that players can level up or discover better items, adding important context
and keeping players engaged. A good example of a simple yet informative Ul.

The mini map in the top left corner shows the player’s current position and where they have
already been. The viewing angle of the map gives the user a better sense of scale of the size of
the level.

The currency display sits neatly in the top-right corner of the screen. It’s out of the way but still

easy to see, showing that currency is an important aspect of the game while not making the Ul

feel crowded. Overall the Ul includes many smart decisions that could be used as a great point
of reference.

Samuel Downey

Dungeon Scribbles

2.1.3 Hades

HADES

FARLY ACCESS

PLay

OPTIONS
PATCH NOTES

Quit L— -
‘ v

NEXT MAJOR UPDATE
JUNE (LEARN MORE)

Figure 6 - Screenshot of Hades Main Menu.

The Hades main menu (Seen in Figure 6) is very simple and easy to understand. The game title is
well placed in the top left corner with good spacing from the edges of the screen, making it feel
well-balanced. The menu buttons are centred on the left side of the screen which works well
because there aren’t many button options, helping to keep the menu clean and straightforward
for the user. One thing that is strange is the large gap between the Patch Notes button and the
Quit button, the space seems too wide but aside from that the menu works well.

E GAN+1 @

Figure 7 - Screenshot of Hades Gameplay / User Interface.

Samuel Downey

Dungeon Scribbles

The Hades user interface (Seen in Figure 7) look overly technical can hard to understand without
a tutorial. Without knowing the game, it’s unclear what many of the symbols and items mean,
which is something to avoid.

In the bottom right corner, there seems to be a simple inventory system with currency and
potions, although their exact use isn’t very clear. On the left side of the screen, there seems to
be an ability system, with a health bar underneath and possibly a life counter above. However
this is not explained, which makes the Ul harder to use.

Overall, this design creates an unnecessary learning curve. A goal to keep in mind is to keep the
interface simple and clear.

CONTINUE
SETTINCS
CONTROLS

DispLAY

QuiT

Figure 8 - Screenshot of Hades Pause Menu.

The Hades pause menu (Seen in Figure 8) has a simple design but could be made even cleaner.
The main buttons (Continue, Settings, and Quit) are clearly listed, but menu options like
Controls and Display could have been grouped under the Settings button to make the layout
even simpler.

The design matches the games visual aesthetic, and the buttons are easy to see. Like many
games, the menu is placed in the centre of the screen, which is a good layout choice to keep in
mind for the project.

One nice detail is the small text at the bottom of the pause menu, reminding players about
when their last save point was. This simple feature keeps the save point clear to the player
without being intrusive, and would be a good addition if a save game system is implemented.

Samuel Downey

Dungeon Scribbles

2.1.4 Hollow Knight

L/rﬁi’o'c‘\@hz&w
8
<€ CONTINUE 3

OPTIONS

QUIT TO MENU

s

Figure 9 - Hollow Knight Pause Menu.

The pause menu in Hollow Knight (Seen in Figure 9) is simple, sleek, and well-designed,
requiring no improvements. All major buttons are clearly visible, with a marker indicating the
currently selected option to eliminate any player confusion. The aesthetic aligns perfectly with
the game's theme, making it a strong design reference. Acommon pattern observed in other
pause menus is the centre alighment, combined with a mid-opacity dark background and high-
contrast menu elements to ensure buttons remain visible against the game backdrop.

2.2 Back-End Research

2.2.1 Development Engine Research
Unity
The Unity engine is a free, open-source game development engine. It uses the C# programming
language and uses Visual Studio Code as its programming IDE but that can be changed if the

user wishes to. Itis capable of both 2D and 3D environment rendering and is most known for
being the most accessible game development engine for independent game developers.

The biggest benefit of the Unity engine is how small the barrier to entry can be for new game
developers. There are countless amounts of community forums and YouTube tutorials that can
be freely accessed if you know the key terms to search for. The integration of Visual Studio Code
is also great as it provides a platform that many programmers are familiar with. The number of
third-party libraries that are available to use is also quite large which shortens the time that it
takes to create assets or look for certain coding structures.

The downfalls of the Unity engine are mainly due to the price point behind certain assets or
libraries which really lock some developers out of the creative space. There is also the file
explorer structure which adds a lot of difficulty when communicating between different scripts,

throwing many instantiation errors, but those are issues that can be solved.
Samuel Downey

Dungeon Scribbles

Unreal

The Unreal engine is a free game engine created by Epic Games in 1998 and is currently on its
5th iteration. It uses the C++ programming language and it is capable of rendering both 2D and
3D environments. It is most known for its stunning rendering capabilities which has led a lot of
AAA game studios such as Halo Studios (Formerly 343) and CDProjektRed to abandon their
home-made engines to use the newest iteration of Unreal Engine.

The biggest benefit that Unreal Engine has is simply how powerful of an engine it is and how the
rendering output is done in such high detail. The Unreal blueprints are a great starting point to
learn how Unreal works and some users have stated that after learning blueprints, the barrier to
entry for learning C++ is much lower due to learning all the fundamental principles through the
blueprint's functionality being explained.

Although Unreal blueprints is a great start to learn Unreal engine. There are also contradictory
statements from other users who report that the Unreal blueprints system is quite restrictive as
it only has a certain number of options for creating game objects. There are also reports that
Unreal blueprints has significantly worse performance over its programming counterpart.

The lack of experience with the Unreal engine and the C++ programming language was already
casting doubts on this engine being chosen, but the issues with the Unreal Blueprints system
with performance and lack of creative freedoms has locked in the answer on whether this will
be the chosen engine.

Godot 4

The Godot 4 engine is a free, open-source game development engine. It has the option of being
able to write games in the C# programming language or their own programming language which
the developers of the engine have called GDScript. The layout of the engine is very similar to the
Unity engine as well as its capabilities as an engine. It can render games in both 3D and 2D
environments but seems to be more popular in the 2D pixel art space.

One of the biggest advantages of the Godot 4 engine is its built-in programming language, and
the fact that all the coding is done directly inside the game engine without the use of an IDE.
This setup makes coding much easier, thanks to the simple file structure that lets scripts and
game objects communicate with each other more smoothy than in other engines. This structure
also removes a lot of the instantiation errors that Unity developers often run into when trying to
get game objects to reference each other.

One of the biggest downsides to Godot is the fact that it is a newer engine with less people using
it and therefore having less resources and libraries to call upon when running into an error or
trying to add a new feature to your game, therefore the learning curve could be considered
much higher than the other engines.

Conclusion

Through comprehensive research into various game development engines and an evaluation of
the resources they provide, it was determined that the Unity engine would be the most suitable
platform for this project. Other engines were considered heavily, however, the lack of extensive
learning and troubleshooting resources presented a significant risk in development. This risk is
further compounded by the absence of prior experience with these alternative engines, making
Unity the most practical and reliable choice.

Samuel Downey

Dungeon Scribbles

While each engine offers unique advantages and disadvantages, as outlined by the above
breakdowns, Unity's benefits clearly outweigh the potential drawbacks of other considered
platforms. The availability of comprehensive documentation, a supportive developer
community, and familiarity with the engine significantly reduces the likelihood of encountering
game breaking issues during development. Exploring other engines might have been viable with
prior experience or better independent learning resources, but Unity remains the most effective
option for achieving the project's goals.

2.2.2 Procedural Content Generation Research

What is Procedural Content Generation?

“Procedural content generation (PCG) is an increasingly important area of technology within
modern human-computer interaction (HCI) design. Personalization of user experience via
affective and cognitive modelling, coupled with real-time adjustment of the content according
to user needs and preferences are important steps toward effective and meaningful PCG.
Games, Web 2.0, interface, and software design are among the most popular applications of
automated content generation.” Yannakakis, G. N., & Togelius, J. (2011).

“Procedural content generation (PCG) refers to the practice of generating game content, such
as levels, quests or characters, algorithmically. Motivated by the need to make games
replayable, as well as to reduce authoring burden and enable particular aesthetics, many PCG
methods have been devised. At the same time that researchers are adapting methods from
machine learning (ML) to PCG problems.” Risi, S., & Togelius, J. (2020).

In summary, Procedural Content Generation (PCG) is the practice of using variable based
algorithms to create large amounts of content for multiple different fields but is most popularin
the software development industry. It provides a more streamlined output of projects by
lessening the time needed for creating content from scratch, and thanks to introduction of
machine learning and artificial intelligence, procedural generation has evolved even further in
recent years.

Fractal Terrain Generation

“It is obvious that fractal automatic terrain generation can save game developers a lot of time by
reducing the amount of height data and they must generate themselves. During studying this
algorithm, the reason fractals can be used to terrain is apparently. The main reason is that
terrain is self-similar. This statement seems abstract; however, we could imagine that the
magnified subsets of the objects look like the whole to each other. Taking the mountains as an
example, the horizon of a mountain is not flat, but it is rugged. If we zoomed in on a part of the
hillside, it would also look uneven, just like the surface of the hillside, a single rock or stone that
is part of it. Therefore, using the fractal terrain generation as the article says above, a
crosssection of a rugged mountain is thus produced. One most typical case in today's game is
Terraria, the terrain in Terraria is randomly generated by fractal terrain generation, which creates
different terrain situations, such as mountains, riverbeds, and caves.” Shen, Z. (2022).

In summary, Fractal Terrain Generation is a technique that enables game developers to create
realistic terrain efficiently by leveraging the self-similar nature of fractals. Natural landscapes,
such as mountains, exhibit self-similar properties where smaller elements like hillsides or rocks
resemble the larger structure. This characteristic makes fractals particularly suitable for
simulating rugged and uneven terrain. By reducing the need for manually generated height data,
this method facilitates the creation of varied and natural-looking environments. A notable

Samuel Downey

Dungeon Scribbles

example of this technique is demonstrated in the game Terraria, where fractal terrain generation
is used to produce randomized landscapes, including mountains, riverbeds, and caves.

Bitmap Terrain Generation

“Unlike fractal terrain generation, this is not a completely random technique. There are already
several first features on the map, and the process uses it to generate detailed data for each
small feature, then the units that make up the map, which means the final terrain is something
like the zooming terrain from the first terrain. Because of the unique features of zooming, bitmap
terrain generation is usually the case for massively multiplayer game maps. Because the game
designer may wish to have certain functions in several places, but do not care about the exact
height of each square. Hence, they will indeed be very manually generating data for each
square, which is very time-consuming. Thus, this technique helps to save plenty of time,
otherwise, the game programmers need plenty of time consuming to generate code for each
different terrain situation. Nevertheless, the generated data can be enhanced to make the
terrain looks more exquisite the important thing is that bitmap terrain generation can be used to
generate data other than the height of each tile and each pixel value can correspond to a
specific terrain type, such as desert or jungle (which means dividing different types of terrain).”
Shen, Z. (2022).

In summary, Bitmap Terrain Generation is a semi-random technique used to create game maps
through predefined features. Unlike fractal terrain generation, which relies on complete
randomness, this method begins with initial map parameters such as map size, the number of
props, and specific generation rules. As a result, the generated terrain reflects the original map
features while introducing slight variations with each iteration. This approach is particularly
popularin the dungeon crawler genre, where it generates seemingly random rooms that share a
similar structure and properties but rarely appear identical. Bitmap terrain generation
significantly reduces development time by automating terrain creation, minimizing the need for
manual coding. It also enhances detail in landscapes and supports the assignment of room or
terrain types (e.g., desert or jungle areas), adding versatility to the method.

Perlin Noise

“Itis a common method to use a noise function to generate 2D-terrain, but normally we choose
Perlin noise instead of normal noise. The reason we choose Perlin noise is easy to understand.
Noise is a random number generator, and the random numbers generated by ordinary noise
have no rules at all (Perlin noise is pseudorandom). Therefore, the cascading mountains in
nature, the texture of marble, and the undulating waves on the sea surface seem to be chaotic,
but there are inherent laws to follow. Normal noise cannot simulate these natural effects. The
Perlin noise algorithm makes these possible. Therefore, a set of smoothly interpolated random
numbers can be obtained by using the Perlin noise algorithm, which is correlated with each
other and can be used to generate random values close to nature. By seeing the random texture
generated by normal noise and the texture generated by Perlin noise, it can be found that the
texture generated by Perlin noise is more natural and smoother, with obvious transition effects
between random values.” Shen, Z. (2022).

In summary, Perlin Noise is a widely known and popular method for generating 2D terrain and
simulating textures. Perlin noise produces pseudorandom values that are smoothly interpolated
and correlated, resulting in natural-looking patterns with gradual transitions. This makes it
particularly effective for mimicking chaotic natural phenomena within real environments. The
smooth transitions provided by Perlin noise create a more visually appealing result compared to

Samuel Downey

Dungeon Scribbles

standard noise, which often lacks structure and transition effects. Its versatility and realistic
output have made it acommon choice in game development for generating natural terrain and
texture patterns.

Key Findings
The above research explores Procedural Content Generation (PCG) by examining several
prominent methods, including Bitmap Terrain Generation, Perlin Noise, and Fractal Terrain
Generation. The initial focus was on getting an understanding about the theoretical foundations
of these methods, including the underlying formulas and the historical evolution that shaped
their current models. This approach provided a comprehensive understanding of how PCG
operates and highlighted various ways these concepts can be applied in game development.
Additionally, real-world examples were analysed to demonstrate practical application of these
techniques in games, ensuring a deeper understanding of their functionality before exploring
further.

The practical application of PCG methods were then investigated, with a particular emphasis on
Perlin Noise and Bitmap Terrain Generation, as these are widely used and well-integrated
techniques in game development. Unreal Engine 5 was examined for its PCG implementation
due to its prominence among both AAA and independent game developers. The Unreal 5 Tech
Demo in early 2023 showcased advanced PCG integration, demonstrating the extensive
automation capabilities it offers to developers.

Further analysis was done on the use of Perlin Noise within the Unity engine, a major competitor
to Unreal, which offers its own PCG system. Unity includes a built-in Perlin Noise function that
can be directly linked to terrain generation scripts in both 2D and 3D environments. This
integration is particularly notable for its optimization, as it avoids continuous terrain generation
until memory limits are reached. Instead, Unity’s method ties a single game object, minimizing
memory usage while effectively creating randomized open spaces and maintaining
performance.

Building on this research, principles and ideas from Bitmap Terrain Generation will be adapted
and implemented into the project’s procedural dungeon generation script. By applying these
techniques, the project will aim to create a dynamic, efficient dungeon layouts that reflect the
proven benefits of PCG systems, while also maintaining strong performance standards.

2.2.3 Pathfinding Algorithm Research

What is a Pathfinding Algorithm?

“Pathfinding refers to computing an optimal route between the specified start and goal nodes. It
is an important research topic in the area of Artificial Intelligence with applications in fields
such as GPS, Real-Time Strategy Games, Robotics, logistics while implemented in static or
dynamic or real-world scenarios. Recent developments in pathfinding lead to more improved,
accurate and faster methods and still captivates the researcher's attention for further
improvement and developing new methods as more complex problems arise or being
developed in Al. A great deal of research work is done in pathfinding for generating new
algorithms that are fast and provide optimal path since the publication of the Dijkstra algorithm
in 1959.” Maurya Ananya, Yadav Aayushi, & Baiswar Ashish. (2022).

“Pathfinding is the searching technique for finding an optimal path from a starting location to a
final(given) destination. The shortestpath problem is most studied in computer science.

Samuel Downey

Dungeon Scribbles

Generally, to represent the shortest path problem we use graphs. A graph is a visual depiction of
a collection of things in which some objects are linked together by links. The interconnected
objects are represented by points termed vertices and the edges are the ties that connect the
vertices. An optimal shortest path is defined as the minimum length criteria from a source to a
destination. Pathfinding algorithm has become popular with the rise of gaming industries.
Games with genres like survival, action-adventure, role-playing games, and real-time strategy
games often have characters sent on missions from their current location to a predetermined
destination. In these types of games, pathfinding algorithms have a dominant role. Some of the
shortest path algorithms are namely as Dijkstra algorithm, Bellman-Ford algorithm, Floyd-
Warshall algorithm, Genetic algorithm, A* pathfinding algorithm, etc. Unity-3d is a game engine
that is used by most of the gaming industries and indie game developers. This software is
available for free which is one of the reasons for its high usage in the gaming industry. Unity-3d
is a complete integrated development environment (IDE) with an asset workflow, scripting,
integrated editor networking, scene builder, and more. It also includes a large community and
forum where anyone interested in learning Unity can go and get answers to all of their questions.
In unity-3D we use the c# programming language. Unity is a cross-platform developing software
that is easy to learn for beginners and powerful enough for experts.” Igbal, M. A., Panwar, H., &
Singh, S. P. (2022).

In summary, pathfinding is the process of finding the most efficient and effective route to a
destination. Itis a key technique within artificial intelligence, with application in GPS, navigation
and video games. Pathfinding algorithms such as Dijkstra’s, A*, and Bellman-Ford are some of
the most common algorithms when working with pathfinding but the A* method is by far the
most popular within game development. The development of faster and more accurate
algorithms continues to be a focus of research, particularly a new challenge in Al and game
development.

Breadth-First Search (BFS):

“Breadth-first search, in 1959.BFS explores equally in the directions until the goal is reached.
Alternatively, we can say that it starts from a chosen node and examine its neighbour, the node
which has been traversed is marked as visited. Breadth-first seeks is a graph traversal set of
rules that begins of evolved by traversing the graph from the basis node and exploring all the
neighbouring nodes. Then, it selects the closest node and explores all the unexplored nodes.
While the usage of BFS for traversal, any node within the side of the graph may be taken into
consideration as the basis node. BFS uses a queue (FIFO). BFS guarantees the shortest path.
The data structure used to represent the graph determines BFS's temporal complexity. The time
complexity of the BFS algorithm is O (V+E), where V is the number of vertices, whereas E is the
number of vertices. The space complexity is of BFS can be expressed as O (V).” Igbal, M. A,,
Panwar, H., & Singh, S. P. (2022).

Greedy Best First Search (Greedy Search):

“The greedy best-first search algorithm always selects the path that appears to be the most
appealing at the time. It is defined as the combination of depth-first and breadth-first search
algorithms. It uses both heuristics and search functions to perform its operations. We can use
both methods while using the best-first search.

At each stage, we may use the best-first search algorithm to select the most promising node
from the graph. We expand the node that is closest to the goal node in the best-first search

Samuel Downey

Dungeon Scribbles

process, and the closest cost is determined using a heuristic function, i.e. For GreedyBFS the
evaluation function f(n) is given as:

Where h(n) is the heuristic function which is defined as the distance of approximation of how
close we are to the goal from a given node. The time complexity of the algorithm is given as
O(n*logn).” Igbal, M. A., Panwar, H., & Singh, S. P. (2022).

A* (A-Star):
“Consider a square grid having many obstacles and we are given a starting cell and a target cell.

We want to reach the target cell (if possible) from the starting cell as quickly as possible. Here
A* Search Algorithm comes to the rescue.

What A* Search Algorithm does is that at each step it picks the node according to a value-‘f’
which is a parameter equal to the sum of two other parameters - ‘g’ and ‘h’. At each step it picks
the node/cell having the lowest ‘f’, and process that node/cell.

We define ‘g’ and ‘h’ as simply as possible below. g =the movement cost to move from the
starting point to a given square on the grid, following the path generated to get there.

h =the estimated movement cost to move from that given square on the grid to the final
destination. This is often referred to as the heuristic, which is nothing but a kind of smart guess.
We really don’t know the actual distance until we find the path, because all sorts of things can
be in the way (walls, water, etc.). There can be many ways to calculate this ‘h’ which are
discussed in the later sections.” Belwariar, R. (2018, September 7).

Key Findings:
When researching pathfinding algorithms, the initial focus was on popular methods that were
commonly used by game developers to gain a better understanding of how they worked and
they were the preferred methods. This research highlighted methods such as Breadth-First
Search (BFS), Greedy Best-First Search (Greedy Search), and A* (A-Star) as widely used
approaches to pathfinding within the game development community. All of these methods are
based on the same core principles, calculating the shortest possible route using directional
nodes and evaluating the cost to reach the target node.

After gaining an understanding of how these algorithms work, further investigation into their
practical application in game engines showed that the functional implementations are limited,
with most engines relying on built-in solutions like NavMeshComponents. The Nav Mesh system
is based on the A* pathfinding algorithm, which research confirms as the most popular and
adaptable pathfinding method for game development. The A* pathfinding algorithm’s strength
lies in its ability to work seamlessly across both 2D and 3D environments without needing large
adjustments, making it highly versatile. It’s integration into most modern game engines
highlights its importance in the industry.

Overall, pathfinding algorithms play a critical role in game development, with A* standing out as
the most effective option due to its efficiency and adaptability. While algorithms like BFS and
Greedy Search provide great insights, A*’s usability has made it the industry standard for route
planning. For these reasons, the chosen system will be the A* pathfinding algorithm for this
project.

Samuel Downey

Dungeon Scribbles

3 Requirements

3.1 Introduction

The requirements phase is an important part of the development process, as it establishes the
foundation for the project. This chapter outlines the key of functionality and performance goals
needed to meet the project’s aims. By researching similar games and considering design and
user experience principles, the requirements were chosen to help make sure they were made to
help make sure the final product is both technically strong and enjoyable to play, all while
staying within a sizable scope.

3.2 Requirements Gathering

To ensure an in-depth understanding of the requirements needed for this project was gathered,
research into several popular titles within the roguelike genre was conducted, these games
include, The Binding of Isaac, Vagante, and Hades. Through analysing these games, key insights
were gathered into essential gameplay elements, design philosophies, and structural
frameworks commonly used in this genre. Most of the design research into these games was
covered in detail in Chapter 2. Core gameplay elements like procedural generation, enemy
behaviour and player progression systems were broken down to better understand how they
work to create a strong gameplay experience. Based on this research, preliminary code
structures were also planned to help guide the technical side of the project.

3.3 Requirements Modelling

3.3.1 Functional Requirements

Main Menu

A script will be created to control the main menu, Unity’s Canvas Panel will be used for a fast
and responsive menu setup. Switching between panels will be managed using the SetActive()
method from Unity’s Ul tools. The script will also use Unity’s Scene Manage system to make the
Play and Exit buttons work. The Options button will switch panels within the same scene,
avoiding unnecessary scene loading and keep the menu performance smooth.

Player

A movement script will be created and will be integrated into the New Unity Input System to
support both keyboard and controller inputs, the input system will make it far easier to create a
control scheme for both input methods. This script will also handle the knockback functionality,
allowing it to be triggered by enemy interactions. The knockback system will apply directional
force based on the enemy's position, ensuring accurate and responsive player knockback.

A dedicated script will be created to manage the player's health, separated from the movement
script to simplify future debugging and improve code maintenance. This health script will
handle interactions with enemies, monitor health values, and remove the player from the scene
when the player’s health reaches zero.

A dedicated script will be created to manage the player's combat functionality. This script will
handle interactions with enemies and will be responsible for removing an enemy from the scene
once its health reaches zero. The combat will be built using a game object with a trigger that

interacts with the enemy.
Samuel Downey

Dungeon Scribbles

Enemy

A script will be created to control the enemy's pathfinding. This pathfinding system must be
capable of detecting obstacles and determining the shortest route to the player. The enemy will
also need to interact with the player’s movement script to trigger the knockback function.
Within the same interaction, the script can also deduct a specified amount of health from the
player’s health script, allowing both the damage and knockback mechanics to be managed
efficiently from the enemy’s side.

Room Generation

A script will be developed to control the generation of the game world, with the world being
randomized each time the scene is loaded. The system must be capable of detecting
neighbouring rooms to support door functionality. Integration with Unity’s Tilemap system is
necessary to enable enemy obstruction pathfinding and player collisions with closed doors and
walls, ensuring that unplayable areas remain inaccessible.

The random generation system will also require configurable enemy parameters, including
spawn positions and the number of enemies per room. Additionally, camera functionality will
need to dynamically follow the player through different rooms by using trigger points to adjust
the camera position as the player transitions between different areas.

Player / Enemy Health System

A dedicated health system will be required for both the player and enemies. The player’s health
system must be able to interact with the enemy’s combat system, triggering either deactivation
or destruction of the player object when health reaches zero. Similarly, the enemy health
system should function the same way, removing the enemy from the scene when reaching zero
health, while maintaining compatibility with the player’s combat system.

Player / Enemy Combat System

Two independent scripts will be needed to handle the combat systems for both the player and
enemies. Each script should be capable of interacting with the corresponding health system,
player combat affecting enemy health, and enemy combat affecting player health. Both
systems must also trigger knockback effects for their target. Following a decoupled structure
will help maintain modularity and simplify integration between components.

Player / Enemy Knockback System

The enemy will need a script designed to trigger the knockback function within the player's
movement system. Alternatively, this trigger could be incorporated into the enemy’s combat
script to reduce the overall number of scripts. However, keeping the systems decoupled allows
both the knockback and health systems to activate simultaneously, resulting in smoother
gameplay. Similarly, the player’s combat system must be able to trigger the enemy’s knockback
function. Maintaining consistency across both systems helps ensure a more polished and
reliable gameplay experience.

Pause Menu

A script will be required to manage the status of the pause menu. The Unity Scene Management
library will be used to allow the pause menu to exit to the main menu, creating a loop that can
reset the game level scene. This script will also handle the integration of an options screen by
toggling between the pause and options menus. When either menu is active, the user interface

will be deactivated to prevent overlap between the two interface systems.
Samuel Downey

Dungeon Scribbles

User Interface

The user interface will need to include a health bar and a mini map to help the player keep track
of their health and explore potential areas. The health bar will reflect the player's current health
by using variables from the player’s health script, adjusting its size based on the player’s
remaining health. The mini map will be created using a render texture and a separate camera
set to a different layer. The user interface will also need an experience level counter and a visual
inventory system if those features get added into the project.

3.3.2 Non-Functional Requirements

Main Menu

A clear and user-friendly main menu layout is essential to ensure players can easily navigate the
interface. The overall visual design should reflect the game’s colour palette and aesthetic to
maintain a consistent look and feel across all menus.

To inform the layout and functionality of the menu, research materials from similar games
within the same genre will be gathered to help identify common design patterns and player
expectations. The goal is to create an intuitive menu that requires no additional guidance to use
effectively.

Once the main menu design is finalized, it can serve as a template for the options and pause
menus. This approach ensures visual consistency and provides a better user experience
throughout the game.

Player

A sprite sheet will be required for the player which includes idle animations facing all four
cardinal directions. These animations will help indicate the player’s last movement direction,
which is important for determining the correct direction of the next attack.

The player’s sprite sheet will also need to include running animations for all four cardinal
directions. These animations will transition from the idle state to accurately reflect the player's
movement direction. Special attention should be given to horizontal movement to avoid
overlapping animation triggers and ensure smooth transitions.

The player’s sprite sheet should also include attack animations for all four cardinal directions.
These animations will work in conjunction with the idle and running animations to clearly
indicate the direction of the player's attack. The attack animations will be triggered using the
Any State feature in the animation controller, allowing them to run independently of the current
animation state, provided their conditions are met. Exit times will be set to ensure each attack
animation fully plays before another begins. Additionally, the player’s attack hitboxes should be
carefully aligned with the swing of each animation to give a clear visual indication of the attack's
effective area.

The player character’s sprite sheet should also include damage animations for all four cardinal
directions. These animations can be integrated using the Any State feature in the animation
controller, ensuring they play without overlap if the specified conditions are met. Including
directional variations helps visually indicate the direction from which the player takes damage,
reinforcing the accuracy of the knockback system. Exit times will be applied to these
animations to ensure they fully complete before transitioning to other states.

Samuel Downey

Dungeon Scribbles

The animation controller should be configured with appropriate Booleans and triggers to allow
seamless integration of animations into the corresponding player scripts.

Enemy

A sprite sheet for the enemy character should include a single idle animation, intended for use
when the player is not present in the room. Although the idle animation may not be strictly
necessary due to the player not seeing it very often, its inclusion ensures smooth and
consistent transitions between animation states across various game components.

The same sprite sheet must also contain movement animations for all four cardinal directions,
as these are essential for when the enemy is actively pursuing the player within a room.

Damage animations in all four directions are also required and should be linked to the enemy's
current movement direction. When triggered, the appropriate damage animation will play based
on the last direction of movement. These animations should be connected via the Any State
node in the animation controller and configured with exit time to ensure clean transitions
without overlap, allowing the animation to complete before returning to movement.

Death animations for all four cardinal directions should also be included to reflect the direction
the enemy was facing at the time of defeat. These will also use the Any State node and be set
with exit time to allow full completion of the animation before the enemy is removed or
deactivated in the scene.

The animation controller must be set up with the necessary Booleans and triggers to enable
integration of all animations into the appropriate enemy behaviour functions.

Room Generation

An appropriate tile map from the Unity Asset Store will be required for the room design. This
Tilemap should include walls from various perspectives, props for both open and closed doors
that can be integrated into the walls, door hole props for wall integration, and obstacle props to
diversify the rooms.

User Interface

The User Interface design should include a portion of the screen dedicated to displaying the
player's health bar, as this is a clear and informative way to communicate the player's current
status. The design should align with the overall aesthetic of the game.

Additionally, a mini map will need to be designed to assist the player in navigating the world.
Since the world is procedurally generated, it is important to ensure that the player can easily see
available rooms, with a clear indication of whether each room has been explored or not.

A player hot bar would be great to add as well to have a visual indication of the player’s inventory
and what is currently selected in their arsenal if there is an inventory system brought into the
project. A dedicated experience bar would also be great to have if there is time to add that to the
game. When designing the user interface, this idea will be kept in mind in case there is time to
make this idea into a reality.

Pause Menu

An appropriate pause menu should be designed to clearly present the available options to the
player while providing an easy and intuitive navigation system. Research will be conducted on

Samuel Downey

Dungeon Scribbles

pause menus from popular games within the same genre to better understand how these
systems feel and operate.

3.4 Feasibility

After breaking down all requirements and conducting extensive research, the completion of this
project appears highly feasible, particularly given the larger development time allocated to this
project. A significant portion of time will be dedicated to refining the procedural generation
scripts to ensure the room generation system functions as intended without issues. Once this
foundation is in place, the remaining aspects of the project should come together quickly,
supported by extensive experience in building menu systems, scene navigation systems, and
player mechanics.

A decoupled approach will be used, breaking each implementation into separate components
to streamline development. This strategy not only speeds up progress but also simplifies
debugging, leading to overall improved production. The front-end design process is not
expected to be time-intensive, as many assets will be sourced from third-party suppliers and
the Unity Asset Store. Additionally, integrating back-end systems with the user interface is a
familiar process, further reinforcing confidence in the project's successful execution.

3.5 Conclusion

This chapter provided a clear breakdown of the project’s requirements, covering both functional
and non-functional needs. Research into existing games and design principles helped identify
and plan key gameplay mechanics, Ul elements, and system structures. A decoupled design
approach was chosen to make development, testing and integration easier for the project. The
feasibility breakdown showed that this project realistic, supported by a clear development
timeline that was outlined in the project’s proposal. The use of external assets will also help to
speed up the work. With these requirements in place, development will be able to move forward
with a strong technical foundation.

4 Design

4.1 Introduction

This chapter outlines the design process used to develop the project. It covers two main areas,
user interface design and programme design. The first section will look at the back-end’s
architecture through the project’s file structure to show what design patterns were used to keep
the code maintainable. The second section will discuss the Ul research conducted in Chapter 2
and how it guided the creation of the Ul wireframes.

Samuel Downey

Dungeon Scribbles

4.2 Programme Design

4.2.1 Unity Structure

ik # 0

Assa

sats

Figure 10 - Screenshot of Unity File Explorer.

This overall setup of folders (Seen in Figure 10) was made to ensure that everything created in,
or imported into the project could be stored away but also found and accessed with ease.
Having everything in dedicated folders was very beneficial, especially in later stages of
development when the project was at its peak amount of assets.

= Assels

Figure 11 - Screenshot of Animation File Structure.

The structure of the Animation Files (Seen in Figure 11) is organized in a simple and logical way.
All animation-related files are stored within a main “Animations” folder, which is then divided
into categories based on the game objects they belong to. For example, the Player and the
Enemy each have their own subfolders. Inside these folders, animations are further separated
into specific actions, alongside the corresponding sprite sheets used to create them. This setup
keeps the animation assets easy to manage and locate.

Samuel Downey

Dungeon Scribbles

AL LRl Rl

Figure 12 - Screenshot of Audio File Structure.

The structure of the Audio Files (Seen in Figure 12) is very similar to the structure of the
Animations files. Every audio related file is placed within the Audio Folder, these files are then
categorized into their respective subfolders. If the audio file is to do with the player’s sound
effects, then they will be placed in the Player category. This file structure made it very easy to
differentiate between different sounds and what they were set to be dedicated to when doing
the audio design for the game. Having the game mixer and the Audio Manager scriptin the
overall audio file made sense as well as they were made to control all of the audio settings
within the game.

B Project
4

* Favorites Assetls FPrefabs > RoomFabs

Figure 13 - Screenshot of Prefabs File Structure.

The structure of the Prefabs files (Seen in Figure 13) kept the same philosophy that was built
with the Audio and Animations files. Everything prefab related gets brought into the Prefab
folder and is then categorized into their respective subfolder. Everything related to the room
prefab and how it operates is brought into the RoomFabs Folder. This is the same with the
EnemyFabs and PlayerFabs folder. This file structure philosophy made it very easy to navigate,
having everything neatly placed away into categories was very beneficial in later stages of
development.

Samuel Downey

Dungeon Scribbles

Figure 14 - Screenshot of Scripts File Structure.

The structure of the Scripts files (Seen in Figure 14) keeps the same structure philosophy as the
file paths that have been previously mentioned. There is a main Scripts file which is home to the
categories of which each script can be placed into, we have Player scripts, Enemy scripts, Map
scripts a few others. This file structure gives the first glimpse of the decoupled back-end game
design that was mentioned in Chapter 1. This file structure was particularly important for the
scripts as there were so many written, finding where to modify functions would have taken far
longer if the files were not organized this way.

Ass
L
=)
mC
=
i
| "R
S
Fe
= Set
=

)

WallPallota

Figure 15 - Screenshot of TileSets File Structure

The structure of the TileSets folder (Seen in Figure 15) is very similar to the previously discussed
file structures, which all follow the same structure philosophy. Each tile set that was brought
into the project was brought into the TileSet folder and then categorized into each tile set they
were for. Some of these TileSets include GroundPalette, and WallPalette which contain the
ground tiles and wall tiles which were used to design the game. These folders were great for the
creation of tile prefabs, being able to find the specific tile | need by number without losing them
in a sea of irrelevant tiles. This file structure proved extremely useful for the duration of the
project as there wasn’t many tile sets brought in after the original batch.

Other files such as the NavMeshComponents files and Cainos files were brought in with other
3" party assets and were kept to make sure that | wasn’t removing important materials or scripts

Samuel Downey

Dungeon Scribbles

for these 3rd party assets. These files don’t reflect the structure philosophy | was going for when
managing these files.

4.2.2 Design Pattern

The back-end development of the project followed a slow and methodical approach, with a
strong focus on maintainability. Small, meaningful changes were introduced incrementally to
ensure each addition was properly integrated and tested. Scripts and features were consistently
separated to make debugging easier. For example, the Player was built using individual scripts
for movement, combat, and health, allowing for a more focused development and quicker
troubleshooting. This structure was maintained throughout the project, making final code
adjustments easier as the game moved toward the build stage. Overall, this approach helped
keep the codebase clear and improved the stability of the final product.

4.3 User Interface Design

4.3.1 Wireframes

Game Title

Figure 16 - Screenshot of Main Menu Wireframe.

The project’s main menu wireframe (Seen in Figure 16) takes heavy inspiration from Vagante
(Seenin Figure 4), particularly in how it positions the game title and menu componentsin a
unique and well-executed manner. The selected hover effect effectively highlights the currently
selected option, enhancing usability. This menu design strikes a balance between uniqueness
and simplicity by avoiding unnecessary functionality. To maintain design consistency across
different parts of the game, the container concept used in the gameplay user interface has also
been incorporated. This approach was not necessary for the pause menu, as its centred
alignment already provides ample space.

Samuel Downey

Dungeon Scribbles

Figure 17 - Screenshot of User Interface Wireframe.

The user interface wireframe (Seen in Figure 17) was heavily inspired by Vagante’s user interface
(Seenin Figure 5). Vagante was chosen as a reference due to its extensive user interface
mechanics, many of which align with the features which are planned to be implemented. Its
design principles prioritize clarity, ensuring that all menu components are well-labelled and
easy to understand, minimizing player confusion. These principles are being followed as closely
as possible to create an intuitive experience for new players. Additionally, interface components
are positioned along the outskirts of the screen, keeping the central gameplay area clear for
better visibility of enemies. The container for the user interface takes inspiration from web
design principles, maintaining a slight distance from the screen edges to enhance overall
aesthetics and create a more polished, stylish layout.

Paused

P Resume
Options

Exit Game

Figure 18 - Screenshot of Pause Menu Wireframe.

The pause menu wireframe (Seen in Figure 18) takes heavy inspiration from the Hollow Knight
and Hades pause menu (Seen in Figure 8). Their pause menu layout maintains a simple, easy-
to-understand structure while incorporating enough visual design to remain appealing. The low-

Samuel Downey

Dungeon Scribbles

opacity background helps distinguish the menu from the gameplay, clearly indicating a change
in game status. Additionally, placing the "Paused" title at the top centre of the screen eliminates
any confusion about the player's action. The three main menu components are easily readable
due to their large font size, while the hover effect enhances clarity by highlighting the currently
selected option. To further improve readability, the pause container provides a contrasting
background for the text, preventing it from blending into the semi-transparent game screen. This
container approach is being explored based on previous experiences where pause menu text
became difficult to read against the background.

4.3.2 User Flow Diagram

[Start Application]

- kain Menu

r

es—h[Load into game]

‘ [Change SFX Volume

4[Save & Exit] Oiptions Menu Ve @

Yes / Mo

Yes / No

| [Change Music

L Volume
e Close Application

Figure 19 - Main Menu User Flow Chart

Samuel Downey

Dungeon Scribbles

Load into Game

Controls

Controller

Player Move

Pause Menu

‘es

Yes

Press Start Button

(=

Player Attack

as

N

e

Player Move

Yes

Keyboard

+ Mouse

Player Attack

Pause Menu

Yas

WASD Left Click
Yes

Figure 20 - Player Controls User Flow Chart

Press ESC

Samuel Downey

Dungeon Scribbles

b[Open Pause Menu

@ Yes—»[Back to Game }

’—[Change SFX Volume

Yes ! No

4[Save & Exit

|

Yes /Mo

Change Music Vi Main Menu
Volume
Figure 21 - Pause Menu User Flow Chart

Load Into Game
Health Bar

’—[Flayer Takes Damage]—‘ Flayer Moves Room

Yes Mo

B v

Options Menu

Health Bar Decreases Health bar Remains fes Mo
the same l
Camera Moves to Camera stays in
new room and follows current room and
player follows player

Figure 22 - User Interface User Flow Chart

Samuel Downey

Dungeon Scribbles

4.3.4 Level Design

The level design for this project is heavily inspired by The Binding of Isaac (Seen in Figure 2). It
uses a repeating room structure, where the contents and door positions are randomized each
time the game is played. This keeps the experience fresh and makes each room feel different.
The starting room is the only room that is generated the same way, giving the player a calm and
familiar entry point. This design is easy to iterate on, allowing for a dynamic experience while
also reusing assets to save time and focus more on development.

4.4 Conclusion

This chapter outlined the structured approach used to design both the system architecture and
the user interface of the project. A well-organized file structure and clear separation of scripts
helped streamline the development, improving the maintainability and debugging efficiency.
The chosen design patterns also supported a modular approach, allowing flexibility for future
updates.

Research into the user interface design across similar games provided valuable insights into the
best design practices for improving the user experience. By analysing menus and interface
elements, the user interface was crafted to balance clarity, usability, and visual appeal. The
wireframing process reinforced these design decisions, ensuring the user interface aligned with
the specific needs of the project.

Overall, the design choices made in this chapter created a strong foundation for a structured,
intuitive, and a visually appealing game experience. Combining solid technical architecture with
user-centred design principles ensures that the final product is both functional and engaging.

5 Implementation

5.1 Introduction

This chapter provides a comprehensive breakdown of the project’s development process,
detailing the implementation of all major systems across each sprint. It covers the full range of
technical work undertaken, including feature development, feature modification, bug discovery
and resolution, animation integration, audio system implementation and much more. Each
section highlights the goals set and the challenges encountered during development and how
each challenge was overcome, offering a clear view of how the project evolved from initial
concepts to the functional final product.

5.2 Sprint 1
5.2.1 Goals

¢ Have a full breakdown of game requirements.
e Organize previous project research.
e Begin collecting design research materials.

e Begin collecting system tutorial breakdowns for back end.

Samuel Downey

Dungeon Scribbles

5.2.2 Goal 1 - Functional Research

During this phase of the project, research was conducted on popular games within the same
genre to identify both functional and non-functional requirements. These are discussed in detail
in Chapter 3.

5.2.3 Goal 2 - Back-End System Research

Following the requirements breakdown, further research was conducted into game engines,
procedural generation, and pathfinding algorithms to determine the most suitable technologies
for the project. This research is explored in detail in Chapter 3.

5.2.4 Goal 3 - Gathering Applied Research

B Uity Tutonak Kaockbadk anyese in ANY game B 0¥ DOWN pasement - Unity Tuterial B "efee & Ranged fop Dovn Comibat - Unity 20

B 24 Al Pahfinding: Unity 20 Pathifnding with.. B FERFECT Tilemap Soriing Layers - Fop Dawn U B Vayer Tracking and Camera Bounds - Top Dow

GitHub
h8man/NavMeshPlus:
Unity NavMesh 2D
Pathfinding

Linity Mavblesh X thlind i
Contribute to hman'N avilashil

- 1p Zone Transtions Dy Waypaings - Top Dow devalopment by cresng o ago Jrsty Tutorat ROGUELLKE Rogen / Durgeon &.
Map Zone T Doy Top Jgwl u L HOGUELIKE B i L
. on GitHb. i L ¢ il .

Figure 23 - Snippet of back-end system research.

Following the research into procedural generation and pathfinding algorithms, examples of
applied systems were gathered to understand how they have can be implemented in games
(Seenin Figure 23). Both simple and complex systems were explored to evaluate the feasibility
of building and integrating them cohesively. This included foundational elements such as top-
down 2D movement, as well as more advanced systems like stage-based camera tracking and
basic random room generation.

Once the back-end systems researched was gathered, an initial design document was created.
This included collecting and analysing references of user interfaces from games within the

Samuel Downey

Dungeon Scribbles

same genre to inform the development of a cohesive design language for the project. Front-end
research and breakdowns are discussed in detail in Chapter 3.

5.3 Sprint 2
5.3.1 Goals

e Beginto break down the design languages
e Start putting together a wireframe based on the breakdown

5.3.2 Goal 1 - Front-End Design Breakdown

During this stage of the project, the front-end research and breakdowns were conducted to
better understand user interface design patterns within the genre. These breakdowns are
spoken about in detail in Chapter 2.

5.3.3 Goal 2 — Wireframe Creation

The initial wireframes for the game were developed during this development phase. Using
assets from the Unity Asset Store, | created a basic test environment to visualise interface
layout and functionality. Screenshots from this environment were imported into Figma to begin
designing the first iterations of the user interface and pause menu. A comprehensive breakdown
of these wireframes and their design rationale is provided in Chapter 4.

5.4 Sprint 3
5.4.1 Goals

e Create a test level with a moveable player.

e Create a camera system that can follow the player through different stages.
e (Create a basic enemy that follows the player.

e Create a basic player attack script.

e Create a basic knock back script.

e Create a basic player and enemy health script.

Samuel Downey

Dungeon Scribbles

5.4.2 Goal 1 - Creating a Development Area

Figure 24 - Screenshot of Test Level.

The test level (Seen in Figure 24) was created using Unity’s Tilemap functionality, supported by a
2D asset pack sourced from the Unity Asset Store. As this was the first time working with the
Grid and Tilemap system, care was taken to build a strong understanding of the basics,
including importing tile palettes and setting up a grid with multiple sorting layers. Particular
attention was given to creating separate player and collision layers, ensuring they were stacked
correctly so the player could interact with the environment properly rather than walking through
the floors or walls. Applied research into Unity’s Tilemap system proved highly valuable in
gaining a solid understanding of its functionality.

Samuel Downey

Dungeon Scribbles

using

public class

J
L

* verializeField brivate float

private Vect

private Ri

void Awake

void Update

Figure 25 - Code snippet of Player Movement script.

The Player Movement script (Seen in Figure 25) provides a basic 2D movement mechanic using
Unity's physics system. The movement direction is determined by input values which are stored
in the Unity Input Manager as a Vector2. This vector is multiplied by the _moveSpeed variable,
and the result directly sets the Rigidbody2D's linearVelocity. This approach instantly moves the
player in the desired direction at a consistent speed, with all movement handled by the physics
engine.

Samuel Downey

Dungeon Scribbles

Lsing
using
using

using Uni

public class
f

1
public static Ve

private Player

private InputAc

void Awake

void Update

Figure 26 - Code snippet of Input Manager for Player Movement.

The Input Manager script (Seen in Figure 26) converts WASD key inputs into a normalized
Vector2 value via Unity’s input system, storying the direction in a static Movement variable. The
Player Movement script accesses this value each frame, multiplying it by a speed parameter
and applying the result to the player’s Rigidbody. linearVelocity, creating immediate, physics
driven movement.

Initial testing of the player movement script demonstrated quick and responsive control, thanks
to the integration of the Unity Input System. Following the player testing, was testing the player’s
integration into the Tilemap that was previously added to the scene. The integration process was
successful, thanks to the prior research and setup conducted during the Tilemap configuration
phase.

Samuel Downey

Dungeon Scribbles

5.4.4 Goal 2 - Camera Transition System

Figure 27 - Snippet of trigger points for Camera Transition script.

A camera transition system (Seen in Figure 27) was required to adjust camera bounds based on
the player's location within the level. Implementing this system at this stage of development
would help to prevent potential complications during later stages of development, notably
when developing procedurally generated environments. Unity’s extensive community resources
were instrumental in finding a suitable solution, which was brought into the test scene to gain a
clearer understanding of its functionality.

As shown in Figure 27, the system was constructed using two polygon colliders, each serving as
a camera boundary. These boundaries constrain the camera to follow the player only when
within their respective zones. Additionally, two trigger points were placed, one in each boundary
area, to signal the camera to switch its confining boundary. At the same time, the player’s
position was adjusted slightly during the transition to prevent repeated triggering or overlap
between zones.

Samuel Downey

Dungeon Scribbles

public class

void Awake

private void

if

Figure 28 - Code snippet of camera transition script.

Samuel Downey

Dungeon Scribbles

Figure 29 - Code snippet of camera transition script.

The Map Transition script (Seen in Figure 28 and Figure 29) manages camera boundary
transitions using Cinemachine's Confiner2D system. When the player enters a trigger zone, the
script updates the camera's bounding shape to a new PolygonCollider2D boundary
(mapBoundry), seamlessly transitioning the camera's constrained view area. This prevents the
camera from showing out-of-bounds areas while maintaining smooth movement. The script
also slightly adjusts the player's position after transition (via UpdatePlayerPosition) to prevent
accidental re-triggering of the zone, ensuring stable camera behavior. An enum defines
transition directions (Up, Down, Left, Right) for organized level design. The system leverages
Unity's trigger colliders and Cinemachine's dynamic confiner modification to create polished
scene transitions.

Samuel Downey

Dungeon Scribbles

Through testing it was found that this system would need some modifications as the trigger
points that changed the camera bounds were not as reliable as originally desired, sometimes
leading the player to be hidden from the camera in the wrong zone or sometimes ignoring trigger
points completely and causing the camera to be stuck in the previous zone.

5.4.5 Goal 3 - Enemy Pathfinding System

Figure 30 - Snippet of test enemy game object.

Samuel Downey

Dungeon Scribbles

agent;

Awake

target = GameObject.FindWithTag("! r").transform;

Start
agent = GetComponent<NavM
agent.updateRotation =
agent.updateUpAxis =

Update

agent.SetDestination(target.position);

Figure 31 - Code Snippet of enemy movement Al

The Enemy script (Seen in Figure 31) implements pathfinding using Unity's NavMesh navigation
with support from the NavMeshPlus GitHub repository. This solution enables nav mesh to be
baked directly onto the Tilemap’s collision layer, creating walkable surfaces for pathfinding
calculations. The Enemy script identifies the player's transform as the target destination, while
the NavMeshAgent component handles movement by continuously recalculating paths along
the baked mesh. The enemy's rigidbody follows these calculated paths toward the player
position, automatically navigating around obstacles. Essential 2D configuration includes
disabling updateRotation and updateUpAxis to maintain proper movement alignment. This
approach provides efficient pathfinding through pre-baked navigation data without requiring
manual waypoint systems.

The NavMeshPlus GitHub repository was discovered while gathering the applied research
during the first sprint. Through investigation into how this works it looks as though this
repository works using the A* (A-Star) pathfinding algorithm which was discussed at length in
Chapter 2. Upon further investigation it was also found that the Nav Mesh component built into
the Unity engine was also powered by the A* pathfinding algorithm.

Samuel Downey

Dungeon Scribbles

v NavMesh

Untagged Default

b Transform

B ~ Navigation Surface

Humanoid

All
Ever

Render Meshes

B ~ Navigation CollectSources2d

Rotate Surface to XY

Add Component

Figure 32- Snippet of nav surface script for baking object detection.

n v Navigation Modifier

Add Component

Figure 33 - Script to set collision layer as an object to detect.

Samuel Downey

Dungeon Scribbles

5.4.6 Goal 4 - Player Combat System

e;

_movement;
_rb;
_aim;

Awake

_rb = GetComponent<

Update

_movement.Set(InputManager.Movement.x, InputManager.Movement.y
_rb.linearVelocity = _movement * moveSpeed;

_movement.sqrMagnitude > 0.01f

angle = Mathf.Atan2(| movement.y, Lmovement.x) * Mathf.Rad2Deg;
_aim.rotation = Quaternion.Euler(®, ©, angle + 90);

Figure 34 - Updated Player Movement script for Player Melee integration.

The Player Movement script (Seen in Figure 34) was updated to now include aiming functionality
to create a melee combat system. A new public Transform reference (_aim) tracks the weapon
object requiring directional rotation. When movement input exceeds a minimal threshold, the
script calculates a target angle using Mathf.Atan2 with the movement vector's Y/X components,
converting the result from radians to degrees. This calculated rotation is then applied to the aim
object using Quaternion.Euler, creating smooth directional facing aiming mechanic that
matches the player's movement input.

Samuel Downey

Dungeon Scribbles

Melee;

_isAttacking =

attackDuration
_attackCooldown

Update
CheckMeleeTimer
Input.GetKey(KeyCode.Mouse®)

onAttack();

onAttack
! isAttacking

Melee.SetActive(
_isAttacking =

CheckMeleeTimer
_isAttacking

_attackCooldown += Time.deltaTime;
(_attackCooldown >= _attackDuration)

_attackCooldown = ©;
_isAttacking =
Melee.SetActive

Figure 35 - Code snippet of Player Melee Script.

The Player Melee script (Seen in Figure 35) implements timed melee attacks through a child
GameObject (Melee) that's parented to the Aim GameObject which is controlled inside the

Samuel Downey

Dungeon Scribbles

Player Movement script, ensuring proper directional alignment. The system uses three key
variables: a boolean _isAttacking, a 0.3 second _attackDuration, and a cumulative
_attackCooldown timer. When the mouse button is pressed, the OnAttack() function activates
the Melee GameObject which contains the player’s attack box and sets the attacking state to
true, while CheckMeleeTimer() automatically deactivates the GameObject after the attack
duration expires. This creates a self-contained attack system where the melee hitbox follows
the player's aim direction through its hierarchy placement, with built-in cooldown prevention
through the attacking state boolean.

_damage = 1;
OnTriggerEnter2D l1ider2D collision

_enemy = collision.GetComponent<Enemy>();

_enemy !=

_enemy.TakeDamage(_damage) ;

Figure 36 - Code snippet of Player Weapon script.

The Weapon script (Seen in Figure 36) serves as the damage-dealing component attached to
the Melee GameObject. When active, it detects collisions through Unity's trigger system and
applies damage to any encountered Enemy objects. The script features a modifiable _damage
value that gets passed to enemies via their TakeDamage() method. Using OnTriggerEnter2D, it
efficiently checks for Enemy components on colliding objects before executing damage calls,
preventing unnecessary operations on non-enemy collisions. This creates a lightweight damage
system that leverages Unity's physics callbacks, where the weapon's activation/deactivation is
controlled by the Player Melee script's timing system. The script's placement on the Melee
GameObject ensures damage only occurs during active attack frames while maintaining proper
directional alignment through the aim system.

Samuel Downey

Dungeon Scribbles

5.4.7 Goal 5 - Health and Knockback system

_health = 100;

t _player;

Awake

_player = GameObject.Find

Update
_health <= ©

Debug.Log("You're dead!”);
_player.SetActive({)J

OnCollisionEnter2D lision2D collision
collision.gameObject.CompareTag("E

_health = health - 10;

Figure 37 - Code snippet of Player Health Script.

The Player Health script (Seen in Figure 37) manages the player's survival state through a
damage system and death check. Attached directly to the player prefab, it maintains a
serialized health value that gets reduced by ten points whenever the player collides with objects
tagged "Enemy". The script continuously monitors health in Update(), deactivating the player
GameObject. The collision system uses Unity's physics callbacks for efficient damage
detection without per-frame checks, creating a straightforward health management solution
that integrates with enemy interactions.

Samuel Downey

Dungeon Scribbles

_agent;

_health = 3f;

Awake

target = GameObject.FindWithTag ayer”).transform;

Start
_agent = GetComponent<NavM
_agent.updateRotation =
_agent.updateUpAxis =

Update

_agent.SetDestination(_target.position);

TakeDamage|(/f _damage
_health -= _damage;
_health <= ©

Destroy(gameObject);

Figure 38 - Updated Enemy script with health integration.

The updated Enemy script (Seen in Figure 38) now includes a health system that interacts
directly with the player's Weapon script. A _health variable tracks the enemy's vitality, while the
TakeDamage() method processes incoming damage from the Weapon script. When the
weapon's hitbox contacts the enemy, it calls TakeDamage() with its _damage value,
decrementing the enemy's health. If health reaches zero, the enemy GameObject is
immediately removed from the scene via the Destroy() method. This creates a clean interaction
where the Weapon script detects collisions and calls the damage function, and the Enemy

Samuel Downey

Dungeon Scribbles

script handles its own health state and destruction with no additional communication needed
between the systems beyond the initial damage call.

Update
! knocked

HandleMovement();
HandleAim();

ApplyKnockbackDeceleration();

i HandleMovement()

_movement .Set(InputManager.Movement.x, InputManager.Movement.y);
_rb.linearVelocity = movement * _moveSpeed;

HandleAim
3 mouseWorldPosition = Camera.main.ScreenToWorldPoint(Input.mousePosition);
r2 aimDirection = (mouseWorldPosition - _center.position).normalized;

Mathf.Abs(aimDirection.x) > Mathf.Abs(aimDirection.y)

aimDirection = ¢ Vector2(Mathf.Sign(aimDirection.x), 0);

aimDirection ' Vector2(®, Mathf.Sign(aimDirection.y));

angle = Mathf.Atan2(aimDirection.y, aimDirection.x) * Mathf.Rad2Deg;
_aim.rotation = Quaternion.Euler(@, 8, angle + 99);

Figure 39 - Code snippet of updated player movement script for new aim mechanic and knockback integration.

The refactored Player Movement script (Seen in Figure 39) now implements three key systems in
a state-driven architecture. When in the UnKnocked state, the script processes movement
through the existing physics-based velocity system while introducing a new mouse-driven
aiming mechanic. This aiming system converts screen coordinates into game world space,

Samuel Downey m

Dungeon Scribbles

calculating the closest appropriate cardinal direction by comparing the axis dominance,
prioritizing horizontal or vertical based on closest input direction, and applies proper 2D
rotation with a 90-degree offset.

ApplyKnockbackDeceleration

_rb.linearVelocity = Vector2.Lerp(_rb.linearVelocity, Vector2.zero, Time.deltaTime

Knockback

direction = center.position - t.position;
_knocked = :

_rb.linearVelocity = direction.normalized * _knockbackVel;

StartCoroutine(Unknocked());

Unknocked

_knockedTime) ;

_knocked =

Figure 40 - Updated Player movement script for knockback integration.

When knockback is triggered, the script switches to the _knocked state where movement input
is disabled and physics take over, applying force away from the impact source at a configured
velocity, then smoothly decelerating using the Vector2.Lerp method until the timed recovery
period ends with the UnKnocked() coroutine. The state management ensures clean transitions
between these modes, with the _knocked boolean preventing movement/aiming during
recovery while maintaining all existing physics interactions. This creates responsive combat
feedback while preserving the original movement feel, with the cardinal-direction aiming
complementing melee systems by providing clear directional intent. All of this can be seenin
Figure 40.

Samuel Downey m

Dungeon Scribbles

Knockback

or3 _direction = (_center.position - t.position).normalized;

knocked = -
_agent.isStopped =

_agent.velocity = direction * knockbackvel;

StartCoroutine(UnkKnocked());

UnKnocked
_knockTime);

_knocked =
_agent.isStopped

Figure 41 - Updated Enemy script for knockback integration.

The enemy and player both use a knockback system that activates when they collide. When the
player weapon hitbox collides with an enemy, the enemy's Knockback() method figures out the
direction from the player’s centre, then pushes the enemy back using that direction and a force
value. It also turns off the enemy’s pathfinding for a short time so the knockback works properly.
After a short delay, the enemy goes back to normal behavior. The enemy knockback function
can be seenin Figure 41.

In the same way, when an enemy hits the player, it triggers the player's Knockback() method,
which works in a similar way. Both systems use the same idea. Knockback based on direction, a
short delay, and temporary changes to how they move. The player’s knockback works with their
movement system, while the enemy’s knockback pauses their pathfinding. This makes the
combat feel fair and reactive on both sides.

5.5 Sprint 4
5.5.1 Goals

e Create aroom prefab.

e Add adesign to the room.

o Create a procedural generation script.

e Update enemy nav mesh to work with map generation.

e Update camera transition script to work with dynamically generated map.

Samuel Downey

Dungeon Scribbles

e Add apause menu.

Samuel Downey

Dungeon Scribbles

5.5.2 Goal 1 — Room Prefab

using UnityeEngine;

Room : MonoBehaviour
GameObject topDoor;
GameObject bottomDoor;
GameObject leftDoor;
GameObject rightDoor;
tor2Int RoomIndex {
OpenDoor (Vector2Int direction)

direction == Vector2Int.up

_topDoor.SetActive(true);

direction == Vector2Int.down

_bottomDoor.SetActive(

direction == Vector2Int.left

_leftDoor.SetActive(true);

direction == Vector2Int.right

_rightDoor.SetActive(true);

Figure 42 - Code Snippet of Room script.

Samuel Downey m

Dungeon Scribbles

The Room script (Seen in Figure 42) serves as a modular door control system for the procedural
room generation scripts, attached to each room prefab. It contains four serialized GameObject
references representing each cardinal exit point. The public OpenDoor() method accepts a
Vector2Int direction parameter and activates the corresponding door GameObject when called.
This activation system integrates with the Room Manager script which determines neighbouring
rooms, only doors leading to valid adjacent rooms will be triggered via this method. The script
also includes a Vector2Int Room Index property for grid-based room tracking in the map
generation system. This creates a clean system where the Room Manager script handles level
generation logic and each Room instance manages its own door states.

o

9 RoomV2

Figure 43 - Screenshot of room prefab.

Samuel Downey

Dungeon Scribbles

5.5.3 Goal 2 - Procedural Map Generation

_roomPrefab;
_maxRooms = 15;
minRooms = 10;

roomWidth = 20;
roomHeight = 12;

gridSizeX 15;
_gridSizeYy 15;

t> roomObijects =
> _roomQueue =
, | _roomGrid;
generationComplete
roomCount ;
Start

_roomGrid = _gridsizex, gridSizey];
roomQueue = Queue<Vector2Int>();

initialRoomIndex Vector2Int(_gridSizeX / 2, _gridSizeY / 2);

StartRoomGenerationFromRoom(initialRoomIndex);

Figure 44 - Code snippet one of Room generation script.

The Room Manager’s Start() function in the (Seen in Figure 44) sets up the main systems needed
for procedural generation. It first creates a 2D grid called _roomGrid to keep track of where
rooms are placed. Then, it sets up a queue called _roomQueue to manage the order in which
rooms are generated. The starting room’s position is calculated and placed in the centre of the
grid. Finally, it calls StartRoomGenerationFromRoom() to begin generating the dungeon, making
sure it always starts from a consistent and expected location.

Samuel Downey

Dungeon Scribbles

Update

roomQueue.Count > @ && roomCount < _maxRooms &% !generationComplete

roomIndex _roomQueue.Dequeue();
gridX = roomIndex.X;
gridy roomIndex.y;

TryGenerateRoom(vect nt(gridX 1, gridy
TryGenerateRoom(vector2Int(gridX + 1, gridy

TryGenerateRoom(vect t(gridx, gridy + 1

TryGenerateRoom(vector2int(gridX, gridy - 1
_roomCount < _minRooms

Debug. Log(
RegenerateRooms();

lgenerationComplete

Debug.Log (%" G 1 npiete, roomCount
generationComplete =

Figure 45 - Code snippet of Room generation script.

)5
)5
)5
);

The Room Manager’s Update() function (Seen in Figure 45) runs the room generation process
every frame. It checks the queue of room indices and tries to spawn new rooms in all four
cardinal directions. If the number of rooms drops below the minimum limit (_minRooms), it
calls the RegenerateRooms() function to restart the process. When the maximum number of
rooms (_maxRooms) is reached, the generation ends and a message is logged to show it's

complete.

StartRoomGenerationFromRoom

roomQueue . Enqueue (roomIndex) ;

roomCount ++;

initialRoom Instantiate(roomPrefab, GetPositionFromGridIndex(r

initialRoom.name $ roomCount

GetComponen >().Roomindex = roomindex;

ts.Add(initialRox

Figure 46 - Code snippet of Room generation script.

oomIndex)

The Room Manager’s StartRoomGenerationFromRoom() function (Seen in Figure 46) begins the
generation process by placing the first room into the queue and marking its spot on the grid as
taken. It then creates the starting room, gives it a unique name and index number, and stores it
in the _roomObjects array to keep track of it. This sets up a clear starting point for the rest of the
dungeon to build from.

Samuel Downey m

Dungeon Scribbles

TryGenerateRoom(Ve roomIndex

roomIndex.x;

y roomIndex.y;
roomCount > maxRk
Random.value < 9.5f && roomIndex != Vector2Int.zero

CountAdjacentRooms (roomIndex) > 1

roomQueue . Enqueue (roomIndex) ;

roomGrid/x, y| = 1;

roomCount++;

newRoom Instantiate(roomPrefab, GetPositionFromGridIndex(roomIndex), Quaternion.identity);
newRoom.GetComponent< >() .RoomIndex roomindex;
newRoom. name § roomCount | “;

roomobjects.Add(newRoom) ;

OpenDoors(newRoom, X, y);

Figure 47 - Code snippet of Room generation script.

The Room Manager’s TryGenerateRoom()function (Seen in Figure 47) handles procedural room
generation by validating potential new rooms through four checks. The maximum room limit,
random 50% chance, adjacent room density, and grid availability. If valid all of these checks are
valid, it updates the grid/queue, instantiates the prefab with proper positioning/naming, and
connects doors to neighbours via the OpenDoors() function. This ensures balanced dungeon
layouts while maintaining generation rules.

RegenerateRooms

roomobjects.ForEach(Destroy);
roomobjects.Clear();

_roomGrid = _gridSizeX, gridSizeY];
roomQueue.Clear();

roomCount 0;

generationComplete =

initialRoomIndex Vector2int(_gridSizeX / 2, gridSizeY / 2);

StartRoomGenerationFromRoom(initialRoomIndex);

Figure 48 - Code snippet of Room generation script.

The Room Manager’s RegenerateRooms() functions (Seen in Figure 48) acts as a safeguard in
case of room generation failure, such as when not enough rooms are placed. It clears everything
by deleting all existing rooms, resetting the grid and queue, and setting all counters back to zero.
It them starts the generation again from the centre point. This ensures that the game always
creates a working dungeon layout, even if something goes wrong with the first attempt.

Samuel Downey

Dungeon Scribbles

OpenDoors (GameObject room, X,
I newRoomScript = room.GetComponent<R
leftRoomScript = GetRoomScriptAt
m rightRoomScript = GetRoomScriptAt

m topRoomScript = GetRoomScriptAt
om bottomRoomScript = GetRoomScriptAt

x > 0 & roomGrid|[x 1, y] I=0
newRoomScript.OpenDoor(Vector2Int.left);
leftRoomScript.OpenDoor(Vector2Int.right);

X < gridsSizeX - 1 & roomGrid[x + 1, y] =0

newRoomScript.OpenDoor(Vector2Int.right);
rightRoomScript.OpenDoor(Vector2int.left);

y > 0 & roomGrid[x, y - 1] |= 0

newRoomScript.OpenDoor(Vector2Int.down);
bottomRoomScript.OpenDoor(Vector2Int.up);

y < gridSizey 1 && roomGrid[x, y + 1] =0

newRoomScript.OpenbDoor(Vector2Int.up);
topRoomScript.OpenDoor(Vector2int.down);

Figure 49 - Code snippet of Room generation script.

The Room Manager’s OpenDoors() function (Seen in Figure 49) is used to connect rooms
together. It checks each cardinal direction to see if there is a neighbouring room in the
_roomGirid. If there is, it calls the OpenDoor() function for both rooms, making sure that the
doors line up properly. For example, one room’s right door connects to the neighbour’s left door.
This keeps the layout easy to move through and follows the rules set by the procedural
generation system.

Samuel Downey m

Dungeon Scribbles

GetRoomScriptAt

t roomobiject rc

roomobject !

CountAdjacentRooms (V

yomObjects.Find(r

t index

> r.GetComponent<s > () . RoomIndex

roomobject.GetComponent<

roomIndex

*1dS1zeX

gridsizey

roomGrid|x
1 &%

1, y] =0
roomGrid[x + 1, y] =0
1] 1= o

roomGrid[x, y

count++;
count++;
count++;

+1] I=90

roomGr 1(!| X, Vy

1 &&

count++;

count;

gridx

gridy

GetPositionFromGridIndex

gridindex.x;

gridIndex.y;

index);

roomWidth * (gridX gridSizex / 2), roomHeight * (gridy

Figure 50 - Code snippet of Room generation script.

The Room Manager’s GetRoomScriptAt() function (Seen in Figure 50) is a helpful tool that finds a
room’s Room script by looking through _roomObjects for a matching room index. It’s mainly
used by the OpenDoors() function to let rooms communicate with each other—such as keeping
door states in sync.

The CountAdjacentRooms() function (Seen in Figure 50) checks how many rooms are directly
next to the current one (up, down, left, or right) by looking at _roomGrid. This is important for the
TryGenerateRoom() method, as it helps avoid placing too many rooms too close together and
keeps the dungeon layout clear and balanced.

The GetPositionFromGridindex() (Seen in Figure 50) function takes grid coordinates like [3,2]
and turns them into actual world-space positions using the set room width and height
(_LroomWidth and _roomHeight). It also centres the whole dungeon by adjusting the positions
based on the middle of the grid.

Samuel Downey m

Dungeon Scribbles

OnDrawGizmos

gizmoColor

.color = gizmoColor;
gridsizeX; x4
); Yy < gridSizeY; y++)

position = GetPositionFromGridIndex X, ¥

Gizmos .DrawWireCube(position, roomWidth, roomHeight, 1

Figure 51 - Code snippet of Room generation script.

The OnDrawGizmos() function (Seen in Figure 51) is a helpful debug tool used in the Unity Editor.
It shows the generation grid by drawing see-through cyan cubes at each possible room location.
This makes it easier to check the grid size and room placement while building and testing the
game.

Figure 52 - Snippet of Room design iteration.

Integrating designs into the procedural generation environment required a few different
iterations. Initial attempts involved layering designs over the grid system (Seen in Figure 52), but
this approach proved inefficient due to the constantly regenerating map layout. The dynamic
nature of door GameObjects also presented additional challenges with this approach, as pre-
made designs couldn't accommodate their changing positions. This idea was ultimately
scrapped, but can be seen demonstrated by the results shown in Figure 52.

Samuel Downey

Dungeon Scribbles

Figure 53 - Room generation script test.

The final approach adopted a more streamlined solution by designing directly within the room
prefab (Seen in Figure 53). This method significantly reduced design time, as a single template
could be replicated across all room instances while maintaining consistency. Testing confirmed
that the Tilemap collision system continued to function correctly with this implementation. The
dynamic door system challenge was addressed through a neighbour-state detection
mechanism, where door GameObjects would be activated or deactivated based on adjacent
room connections. However, fullimplementation and testing of this door system occurred
during later stages of project development.

Samuel Downey

Dungeon Scribbles

5.5.4 Goal 3 - Nav Mesh Integration

Start

agent GetComponent<
agent.updateRotation
agent.updateUpAxis
Update

| knocked & target = && IsPlayeroOnSameNavMesh()

agent.SetDestination(target.position);

_agent.ResetPath();

IsPlayerOnSameNavMesh
target
path ‘ { 2

hasPath agent.CalculatePath(target.position, path);
hasPath && path.status == NavMeshPathStatus.PathComplete;

Figure 55 - Update to enemy movement script to fix bug.

Dungeon Scribbles

The enemy script (Seen in Figure 55) was updated with a NavMesh validation mechanic to
address pathfinding issues that occurred when enemies tracked players across rooms the
player wasn’t in. The key addition was the IsPlayerOnSameNavMesh() method which performs
three critical checks.

Firstly, it verifies that the target exists. Secondly, It calculates a potential path using the
CalculatePath() method, and finally, it confirms the path is fully traversable. This validation
stops the SetDestination() callin the Update() if these conditions aren’t met, preventing
movement attempts when the player is in disconnected rooms.

Figure 56 - Demonstration of bug fix in action.

The system now automatically resets the current path when either the player becomes
unreachable or the enemy is in a knocked-back state. These changes directly address the
original issue where enemies would cluster near room transitions, blocking player movement,
while maintaining the existing knockback system's functionality. The solution pairs with the
prefab modification where rooms now bake their NavMesh before generation, ensuring proper
pathfinding segmentation between rooms. Results can be seen in Figure 56.

Samuel Downey

Dungeon Scribbles

5.5.5 Goal 4 - Updated Camera Transition

MapTransition.cs X

m.l;‘:[&r.)l,unl.n‘y',
confiner;

Awake

confiner = FindObjectOfType<

OnTriggerstay2D r2D collision

collision.CompareTag(wyer”) &% confiner.m BoundingShape2D != mapBoundary

confiner.m BoundingShape2D mapBoundary ;
confiner.InvalidateCache();

Figure 57 - Updated camera transition logic.

The reworked Map Transition script (Seen in Figure 57) implements a dynamic camera boundary
system that automatically adapts to procedurally generated game world. Each room prefab now
contains its own PolygonCollider2D boundary, eliminating the need for static trigger points.
When the player enters any room area, the OnTriggerStay2D callback continuously checks if the
CinemachineConfiner's bounding shape needs updating. Upon detection, it immediately
switches to the new room's boundary and invalidates the camera's cache to ensure smooth
transitions. This solution provides several key improvements, firstly, it reduces scene complexity
by removing dedicated trigger objects, instead using the room colliders themselves as
activation zones. Secondly, it maintains performance efficiency by only executing boundary
checks when the player is actively crossing room thresholds. Finally, the system now works
seamlessly with procedurally generated layouts since each room instance carries its own
preconfigured boundary data. The cache invalidation ensures proper camera recalculation
when switching between differently shaped rooms, preventing visual glitches during transitions.

Samuel Downey

Dungeon Scribbles

5.5.6 Goal 5 -Handle Aim Update

Awake I

_rb = GetComponent<Rigidbody2D>();
_playerMelee = FindObjectOfType<P

Update
! knocked

HandleMovement();

(_playerMelee. cooldownTimer <= of)

HandleAim();

ApplyKnockbackDeceleration();

Figure 58 - Update to player movement script.

The Player Movement script was updated to integrate with the melee combat system by adding
an aiming restriction during the player’s attack (Seen in Figure 58). The modification introduces
a reference to the Player Melee script in Awake(), then checks the _cooldownTimer value within
the Player Melee script before processing aim updates. This prevents the HandleAim() function
from executing while an attack is in progress, effectively locking the attack direction throughout
the entire melee animation cycle. The change addresses two key issues, firstly, it maintains
combat consistency by preventing mid-attack direction changes that could create visual or
gameplay discrepancies. Secondly, it establishes proper animation system integration by
ensuring attack directions remain stable throughout the animation timeline. The knockback
system remains unaffected, as it operates independently of both the aiming and melee
cooldown systems.

Samuel Downey

Dungeon Scribbles

5.5.7 Goal 6 —Enemy integration

GetEnemyCountForRoo
roomNumber

mNumber

roomNumber

SpawnEnemies

fab

osition GetRandomPo

nemy Instantiate(ne efab, paw tion, Quaternion.identity, room.transtorm);
enemy .GetComponent«
enemyRenderer

enemyRenderer.sorting

PositioninRoom

omHeight /

X +

Figure 60 - Code snippet of enemy integration.

Dungeon Scribbles

The Room Manager script (Seen in Figure 60) was extended with three functions to manage
procedural enemy placement. The GetEnemyCountForRoom() method implements a
progressive difficulty curve by varying spawn counts based on room generation order, starting
with 0 enemies in the first room, scaling up to 3 enemies in later rooms. The SpawnEnemies()
function handles instantiation, creating each enemy at randomized positions within room
boundaries while parenting them to their respective rooms for organizational clarity. It includes
validation for the enemy prefab reference and automatically configures sprite rendering settings
to ensure proper visual layering. Position randomization is managed by
GetRandomPositionlnRoom(), which calculates spawn points within the central area of each
room using the predefined room dimensions. This system creates controlled enemy distribution
that maintains gameplay balance while working seamlessly with the procedural generation
pipeline.

A bug was then identified in the room regeneration system where enemies would incorrectly
spawn in the starting room during regeneration cycles. The issue stemmed from the original
implementation only enforcing the "no enemies" rule during initial generation. During
regeneration, the system would recreate all rooms, including the starting room, without
reapplying this rule. This inconsistency meant the starting room remained enemy-free only on
the first generation attempt, disrupting the intended difficulty progression where early rooms
should be safer. The bug was particularly noticeable during failed generation attempts when the
system automatically regenerated rooms below the _minRooms threshold.

StartRoomGenerationFromRoom(V

oomQueue . Enqueue { roomIndex) ;

Instantiate(roomPrefab, GetPositionFromGridIndex(roomindex), Quaternion.identity);
room
ment< >() .RoomIndex roomIndex;

ects.Add(initialRoom);

initialRoom;

SpawnEnemies(initialRoom, 9);

Figure 61 - Screenshot of enemy spawning bug.

To address this, a two-part system was introduced (Seen in Figure 61 and Figure 62). First, the
script now tracks the starting room persistently by storing it in a _firstRoom variable during initial
generation, while explicitly calling SpawnEnemies(initialRoom, 0) to enforce the enemy-free
state. Second, the RegenerateRooms() function was modified to preserve this room: it destroys
all rooms except _firstRoom, clears the generation queue, resets the room grid while re-
registering the starting room's position, and restarts generation from this preserved room. This
ensured the starting room maintained its correct state across regeneration cycles while
allowing other rooms to follow standard spawning rules.

Samuel Downey

Dungeon Scribbles

RegenerateRooms

room in roomObjects
(room != firstRoom)

Destroy(room);

roomobjects.Clear();

_firstRoom !

roomObjects.Add(firstRoom);

roomGrid = gridSizeX, gridSizeY];
_roomQueue.Clear();
_roomCount = 1;
generationComplete =

tor2Int initialRoomIndex = _firstRoom.GetComponent<Room>().RoomIndex;
roomGrid| initialRoomIndex.x, initialRoomIndex.y]| = 1;
roomQueue.Enqueue(initialRoomIndex) ;

StartRoomGenerationFromRoom(initialRoomIndex);

Figure 62 - Enemy spawning bug solution.

While this solution fixed the immediate issue of enemies spawning in the starting room, testing
revealed unresolved cases where enemies would still appear. Connected rooms occasionally
inherited incorrect spawn counts during regeneration, and the system didn’t account for post-
generation modifications to _firstRoom . The partial fix highlighted the need for a more robust
spawning rule system that would consistently apply room-specific logic during both initial
generation and regeneration. These refinements were deferred for later development to
prioritize core gameplay testing, with the understanding that the current implementation
provided a stable foundation for further iteration. The solution successfully prevented starting-
room enemy spawns but would require additional work to fully harmonize the procedural
generation and enemy placement systems.

Samuel Downey

Dungeon Scribbles

5.5.9 Goal 7 - Pause Menu

CRoInG s
{ >3

pauseMenu;

isPaused =

Start

pauseMenu.SetActive(isPaused);

Update

Input.GetKeyDown(KeyCode.Escape)

TogglePauseMenu();

TogglePauseMenu

isPaused = lisPaused;
pauseMenu.SetActive(isPaused);

Time.timeScale = isPaused ? of : 1f;

ResumeGame
isPaused = g
pauseMenu.SetActive
Time.timeScale = 1f;

Figure 63 - Code Snippet of interface manager script.

The Interface Manager script (Seen in Figure 63) adds pause functionality through a Canvas-
based Ul pause menu panel that toggles visibility in response to player input. The system
initializes by deactivating the pause menu panel in Start(), then monitors for ESC key presses in
Update(). When triggered, TogglePauseMenu() switches the isPaused state to the opposite of its

Samuel Downey m

Dungeon Scribbles

current state to activate/deactivate the pause menu GameObject accordingly. The script
controls game time using Time.timeScale, setting it to 0 when paused which freezes the
gameplay and restoring it to 1, unfreezing the gameplay when resumed. A dedicated
ResumeGame() method allows button-triggered unpausing, ensuring consistency between key
and Ul interactions. The pause menu reference is serialized for easy assignment in the Unity
Editor, linking to a Canvas panel containing pause menu elements like buttons and text. This
implementation creates a lightweight but functional pause system that can be extended with
additional menu features while maintaining clear state management through the isPaused flag.

PAUSED

RESUME

Figure 64 - Snippet of pause menu integration.

5.6 Sprint 5
5.6.1 Goals

Add a loading screen.

Finalize room design.

Add door logic to the rooms.

Add a visible health bar.

Add a health item.

Add an enemy design and animator.

Fix enemy spawning in starter room bug.

Add player into room generation.

Samuel Downey m

Dungeon Scribbles

5.6.2 Goal 1 - Loading Screen

Loading...

Figure 65 - Loading screen design.

Samuel Downey

Dungeon Scribbles

pauseMenu;
loadingScreen;

isPaused = :

ger roomManager;
Start
pauseMenu.SetActive(isPaused);
roomManager = FindObjectOfType<R
roomManager ==

Debug. LogError ("

Update
roomManager !=

loadingScreen.SetActive(!roomManager.generationComplete);

Input.GetKeyDown(KeyCode.Escape)

TogglePauseMenu();

Figure 66 - Code snippet of loading screen logic.

The Interface Manager was extended to include a loading screen system that masks procedural
generation processes (Seen in Figure 66). A new GameObject named “loadingScreen” was
added, controlled by the Room Manager's generationComplete boolean. During scene
initialization, the script has a new reference to the Room Manager and implements error
handling if missing. In the Update() loop, the loading screen's active state directly mirrors the
inverse of generationComplete boolean, remaining visible while rooms are generating and
hiding when complete. This addresses the visual issue where players could see rooms being
deleted and regenerated during failed generation attempts. The system operates independently
from the existing pause functionality, with both features coexisting through separate
GameObject controls. The loading screen consists of a full-screen Canvas element with static
text and is activated during these key moments: initial dungeon generation, failed generation
recovery, and any future scene regenerations.

Samuel Downey

Dungeon Scribbles

5.6.3 Goal 2 - Finalise Room

Figure 67 - Finalised room design.

The final room design (Seen in Figure 67) took a handful of iterations and failed versions before
getting to this stage. There were many issues with the room baking incorrectly or the tile palette
not being set up correctly which led to issues with designing proportions. Thankfully the issues
were able to be rectified and a final design was created. The spaces at the four cardinal exit
points is for the implementation of the smart door system where game objects will be
conditionally swapped out depending on if the room has a neighbouring room or if there are
enemies in the room with the player. This system should provide dynamic visual cues for the
player to be able to understand what directional options they have available to them at different
states of the game.

Samuel Downey

Dungeon Scribbles

Openboor ! direction
direction Vector2Int.up
topDoor.SetActive()
topwall.SetActive()
Debug. Log(
direction vector2int.down
bottomDoor.SetAct iV!'(t

bottomWall.SetActive(

Debug. Log(’

direction vector2int.l

leftDoor.SetActive(
leftwall.SetActive(

Debug.Log(’

direction == Vector2Int.right

rightDoor.SetActive()s
rightwall.SetActive(g2

Debug. Log(

Figure 68 - Code snippet of door logic.

The OpenDoor() method has been modified to implement a new paired door/wall system,
creating more dynamic room transitions (Seen in Figure 68). For each cardinal direction, the
function now manages two related GameObjects: a door and a wall. This creates proper spatial
awareness where doorways become physically passable only when open. The system uses
simple boolean activation states, setting doors active while disabling their corresponding walls,
which provides immediate visual and collision feedback. This implementation serves as the first
step for smarter door management.

Samuel Downey

Dungeon Scribbles

InstantiateWall(vector2int direction
direction == Vector2Int.up & ! topDoor.activeSelf
_topWall.SetActive()
Debug.Log("Activated toy
direction == Vector2Int.down && ! bottomDoor.activeSelf
bottomWall.SetActive() &
Debug.Log("Act tt
direction == Vector2Int.left && ! leftDoor.activeSelf
_leftwall.SetActive() b

Debug.Log("Act

direction == Vector2Int.right && ! rightDoor.activeSelf

rightwWall.SetActive()
Debug.Log("~ rht

Figure 69 - Code snippet of door logic.

The InstantiateWall() function works in parallel with the existing OpenDoor() method by
implementing conditional wall activation logic (Seen in Figure 69). This new function only
activates walls in directions where no door currently exists, creating a fail-safe mechanism that
prevents walls and doors from occupying the same space. The system maintains four
directional checks, mirroring the door system's structure, ensuring consistent behaviour across
all room boundaries. When called by the Room Manager during generation, it automatically
creates sealed boundaries in unconnected directions while preserving open pathways where
doors exist. This creates a complete doorway management system where doors open or close
pathways when connecting rooms and walls automatically fill gaps where no connections exist.
The function's conditional activation ensures it works harmoniously with the procedural
generation process without overwriting manually placed doors.

Samuel Downey

Dungeon Scribbles

!t)p!_mnﬁl",
bottombDoor;
leftDoor;
rightboor;

t RoomIndex

enemyCount;
onTriggerenter2D(Cc i other
other.CompareTag(":

enemyCount += 1;

Debug. Log($"Enemy t enemyCount

other.CompareTag(

(_enemyCount > @)

CloseDoors();

FindObjectofType< r>().0OpenDoors (gameObject, RoomIndex.x, RoomIndex.y);

Figure 70 - Snippet of room script for smart door logic.

The Room script now implements dynamic door management system that responds to enemy
presence, creating risk-reward exploration mechanics (Seen in Figure 70). An _enemyCount
variable tracks enemies entering through OnTriggerEnter2D , incrementing when enemies
spawn inside the room's collider. When the player enters which is detected via tag comparison,
the system evaluates this count. If the enemy count is higher than zero, it triggers the
CloseDoors() method to temporarily seal the room, forcing combat encounters. In cleared
rooms where the enemy count is equal to zero, it requests the Room Manager to open all doors
to neighbouring rooms, maintaining progression flow. This creates a gameplay loop where the
player must clear rooms to advance, enemy encounters become mandatory challenges, and
the environment actively responds to combat states.

Samuel Downey m

Dungeon Scribbles

onTriggerexit2p

other.(ompareTag(

enemyCount

Debug.Log($ enemyCount}”);

(_enemyCount 2)

FindObjectofType< f r>().0OpenDoors(gameObject, RoomIndex.x, RoomIndex.y);

other.CompareTag(

t (_enemyCount 0)

FindobjectofType< >() .OpenDoors(gameObject, RoomIndex.x, RoomIndex.y);

Figure 71 - Snippet of room script for smart door logic.

The OnTriggerExit2D method (Seen in Figure 71) completes the dynamic door management
system on the Room side of things by handling two scenarios. When enemies exit the room
when being destroyed, the enemy counter decreases, and upon reaching zero it automatically
triggers the Room Manager to reopen all available doors, creating a satisfying gameplay loop of
clearing rooms and exploring more of the game. Simultaneously, the system monitors player
exits as a safeguard, if the player leaves an empty room, it reconfirms the door states with the
Room Manager to prevent accidental lockdowns. This two-way tracking system ensures rooms
maintain accurate enemy counts while providing appropriate accessibility, with the Room
Manager serving as the central coordinator for all door state changes. This implementation
creates robust room behaviour where doors only remain locked during active combat
encounters, automatically resolving their states when either all enemies are eliminated.

CloseDoors

_topDoor.SetActive

_bottomDoor.SetActive
_leftDoor.SetActive
_rightDoor.SetActive

Figure 72 - Snippet of room script for smart door logic

Samuel Downey

Dungeon Scribbles

OpenDoors(Ga bject room,

newRoomScript room.GetComponent«i

newRoomScript. enemyCount

leftRoomScript = GetRoomScriptAt(
rightRoomScript GetRoomScriptAt(
topRoomScript GetRoomScriptAt(

m bottomRoomScript = GetRoomScriptAt(

(x > 0 & _roomGrid(x - 1, y] != 0 && leftRoomScript

newRoomScript.OpenDoor(Vector2Int. left
leftRoomScript.OpenDoor(Vector2Int.right);
(x < pgridsizeX - 1 & roomGrid[x + 1, y] != @ && rightRoomScript

\

newRoomScript.OpenDoor(Vector2Int.right);
rightRoomScript.OpenDoor(Vector2int.left);

(y > 9 & roomGrid[x, y 1] 1= @ &% bottomRoomScript !=

newRoomScript.OpenDoor(Vector2Int.down);
bottomRoomScript.OpenDoor(Vector2int.up);

(y < pgridSizey - 1 & roomGrid[x, y + 1] != © &% topRoomScript !

newRoomScript.OpenDoor(Vector2Int.up);
topRoomScript.OpenDoor(Vector2Int.down);

Figure 73 - Snippet of room script for smart door logic.

The updated OpenDoors() method in Room Manager script (Seen in Figure 73) now implements
a coordinated door management system that works in tandem with the Room script's enemy
tracking functionality. The method begins by verifying the requesting room has no remaining
enemies before proceeding with any door operations, creating a critical dependency between
the two systems. When safe to proceed, it identifies all valid neighbouring rooms through grid
position checks and null validation, then executes bidirectional door opening, simultaneously
activating doors in both the current room and connected neighbours. This creates symmetrical
pathways where doors only open when the initiating room is cleared of enemies and adjacent
rooms exist in the generated layout. The system handles all four cardinal directions
independently, with each check verifying grid boundaries, room existence in the generation
matrix, and successful component retrieval. The implementation specifically corrects
directional matching to maintain proper pathing logic. This enhanced of the method directly
supports the Room script's combat-driven door states by ensuring automatic reopening of
cleared rooms while respecting the procedural generation constraints. The tight integration
between these systems creates emergent gameplay where players must strategically clear
rooms to progress, with the environment dynamically responding to their combat performance

through coordinated door states across the entire dungeon layout.
Samuel Downey

Dungeon Scribbles

5.6.5 Goal 3 — Health bar Ul addition

Health: 100

Figure 74 - First version of health bar added to user interface.

Figure 75 - First version of dynamically moving health bar.

The modified Update() method inside the Player Health script (Seen in Figure 75) implements
health visualization through a numeric and graphical display, though initial implementation
caused a bug that caused strange height behaviour in the health bar. The TextMeshPro
component reliably displays the current health value of the player, while the Ul Image
experienced an unexpected issue where its height would fluctuate despite being explicitly set to
a constant health bar height. This occurred because the sizeDelta property was modifying both
dimensions when only the width should have been adjusted. The health bar system calculates a
clamped health percentage to prevent visual overflow, but the original implementation
accidentally scaled the full Vector2 dimensions rather than just the x-component for width. The
death check properly enforces health minimums and handles player deactivation, while the
health bar now correctly maintains its height by only modifying the x-value in the sizeDelta
Vector2.

Samuel Downey m

Dungeon Scribbles

healthBar;

update
numHealth.text
healthPercent

rm.anchorMin

rm.anchorMax = V healthPercent, 1);

healthBar.rectTransform.

500f * healthPercent, 3 ar.rectTransform.sizeDelta.y);

Mathf.Max(health, 0);
setActive();

Figure 76 - Additions to player health script for health bar functionality.

The updated health bar implementation (Seen in Figure 76) introduces several key
RectTransform adjustments to refine the health bar's visual behaviour. The anchor points are
now dynamically controlled, with anchorMin fixed at (0,0) and anchorMax's x-value scaling with
health percentage while maintaining a y-value of 1 - this creates smooth left-anchored
shrinking. A new pivot point setting (0,0.5f) ensures the bar contracts from the left edge while
staying vertically centred. The sizeDelta modifications now explicitly separate width and height
adjustments, with the y-value permanently locked to 25f to prevent any height fluctuations. The
width calculation uses a fixed base value multiplied by healthPercent, maintaining proper
aspect ratio. These changes collectively create more polished visual feedback where the health
bar now smoothly decreases from left to right while maintaining perfect dimensional stability.

Samuel Downey m

Dungeon Scribbles

5.6.6 Goal 4 — Health ltem

onTriggereEnter2D(Collider2D other

_player = other.GetComponent<PlayerHea

_player != && player. health < 100

_player. health = player. health + 10;
Destroy(gameObject);

Figure 77 - Code snippet of health item.

The Health Potion script (Seen in Figure 77) implements a basic health restoration system
through 2D collision detection. When a GameObject with a Collider2D enters the potion's
trigger area, the script attempts to get the Player Health component from the colliding object. If
successful and the player's health is below 100, it increments the player's health by 10 points
before destroying the potion GameObject. This creates a straightforward pickup system with
built-in validation that only affects the player and respects maximum health limits while
minimizing confusion about used potions by removing used potions from the game world. The
implementation provides immediate gameplay impact while maintaining balance through its
conditional healing check.

Samuel Downey

Dungeon Scribbles

Figure 78 - Health item in the game with new enemy designs implemented.

The design of the health potion (Seen in Figure 78) was very simple to find and to implement.
There is a sprite pack for potions available on the Unity Asset store which contained the red
potion sprite. After importing the pack and replacing the current sprite of the health potion with
the new red potion sprite. | brought the prefab into the game world and tested it through a
couple of use cases and found no issues with its implementation.

Figure 79 - Additions to room manager script to implement health items.

After testing the functionality of the health item it was integrated into the Room Manager to
create dynamic spawning throughout the dungeon (Seen in Figure 79). The implementation
spawns health potions in every 3rd room and the final room, using a modulo operation for the
recurring pattern. The SpawnHealthPotion() method handles instantiation with several

Samuel Downey

Dungeon Scribbles

safeguards. First, it validates the prefab reference exists, then calculates a random position
within the central area of the room with help from the enemy spawning functionality. Each
potion is parented to its room for organizational clarity and automatically configured to use the
"Player" sorting layer, ensuring proper visual rendering above environmental elements and
proper collision logic. This creates balanced distribution where players can anticipate healing
points, potions avoid edge placement near doors, and the final room guarantees a health boost
before completion.

5.6.7 Goal 5 - Enemy design implementation
2 & & @

*

e € © & e & = e
@ & @ 8 & @& o o

& & & L& L = o e

Figure 80 - Enemy walking sprite sheet.

The implementation of the enemy design began with the selection of a suitable sprite sheet
(seenin Figure 80), which was sourced from a third-party asset library. The chosen sprite sheet
was selected based on two critical factors, its comprehensive animation frames covering all
necessary enemy states (idle, attack, and damage animations), and its consistent visual style
that matched the game's already established pixel art aesthetic. This careful selection process
ensured the sprite sheet could be integrated into the project with no modifications to the style
while maintaining visual coherence across all game elements.

Samuel Downey

Dungeon Scribbles

iy State

Figure 81 - Enemy animation controller.

After importing the slime sprite sheets, time was spent slicing each of the sheets into each
animation sequences to then work on transitions within the animation controller (Seen in Figure
81). When building the animation controller, it was made apparent that starting small and really
focusing on each animation sequence respective of each other was the only way to make sure
that the transition system was built to a standard that the game deserved. This method also
made it easier to make sure that every animation node had a logical transition for every use
case scenario that could have happened with the use of specific booleans and triggers.

Samuel Downey

Dungeon Scribbles

_agent.ResetPath();

deltay = transform.position.y previousPosition.y;

deltaX = transform.position.x - previousPosition.x;
sensitivity = 0.005f;

isMovingUp = deltaY > sensitivity;

isMovingDown = deltay < -sensitivity;

isMovingRight = deltaX > sensitivity;

1sMovingLeft = deltaX < -sensitivity;

Mathf.Abs(deltay) > Mathf.Abs(deltax)

animator.SetBool("Wall , 1sMovingUp);
animator.SetBool(“wWalkDown", isMovingDown);

_animator.SetBool ("walki £)s

_animator.SetBool ("walkLe);

l

_animator.SetBool ("walkRight", isMovingRight);
animator.SetBool ("walkLeft"™, isMovingLeft);

_animator.SetBool("wWall) -
animator.SetBool("wWall in")

_previousPosition = transform.position;

Figure 82 — Animation controller variables added to enemy movement.

The Enemy script was modified to implement the directional movement animations by
comparing position changes between frames (Seen in Figure 82). It calculates movement deltas
by tracking the enemy's current position against its previous frame position. A small sensitivity
threshold prevents animation triggers during minimal movement which in turn increases the
accuracy of the animation transitions. The system prioritizes vertical animations when vertical
movement values exceed horizontal movement values, otherwise defaulting to horizontal
animations. Four boolean parameters (Up/Down/Left/Right) are selectively activated in the
Animator Controller based on these calculations, ensuring only one directional animation plays
at a time. After evaluation, the current position is stored as _previousPosition for the next
frame's comparison. This creates responsive animation transitions that match actual
movement direction and prevent animation conflicts while maintaining smooth visual feedback.

Samuel Downey

Dungeon Scribbles

Knockback (T
_direction = (_center.position - t.position).normalized;
knocked = -

_agent.isStopped = :
agent.velocity = direction * _knockbackvel;

_animator.SetBool

animator.GetBool("wal
_animator.SetTrigger("Hurt
_animator.GetBool ("
animator.SetTrigger("Hurt
animator.GetBool ("l

_animator.SetTrigger(“HurtRight'

_animator.SetTrigger(

StartCoroutine(UnKnocked());

Figure 83 - Animation controller variables added to enemy damage.

The Enemy Knockback() method was modified to integrate directional hurt animations
alongside the existing physics system (Seen in Figure 83). When triggered, the method first
calculates the knockback direction away from the knockback trigger and sets the hurt state to
true. The system then starts three key actions. First it stops the NavMeshAgent's pathfinding
temporarily to avoid pathfinding errors from occurring, it then applies the knockback physics,
and finally it activates animation responses through a two-layer system. The base "Hurt"
boolean enables the hurt state in the Animator Controller, while specific directional triggers are
fired based on the enemy's current movement direction which was handled by the movement
system. This ensures the knockback animation matches the correct direction when hit. If no
directional movement bools are active, it defaults to the "HurtDown" animation as a safeguard.
The knockback state is automatically cleared after a set duration via the UnKnocked coroutine.

Samuel Downey m

Dungeon Scribbles

Figure 84 - Enemy designs implemented into game.

After configuring the animation controller and the code implementation for the enemy
animations, it was time to test the current state of the enemy animations (Seen in Figure 84).
There were some minor issues with transitions at the beginning of testing, much on the side of
the animation controller but after some quick fixes, it all became much smoother and much
more consistent. The only key animation sequence we were missing was the death animations
for the enemies as it would require to add more logic to the enemy script to be able to control
the death state.

Samuel Downey

Dungeon Scribbles

Slimadqua_HirtLeh

Sttmetqua_Deathief ShmeAgqua_DeathRight

Figure 85 - Addition of death animations to enemy animation controller.

When implementing the death animations, firstly time was spent on slicing and bringing
animation sequences into the existing animation controller (Seen in Figure 85), the death
animations were connected to the “AnyState” node. Further transitions were not needed seeing
as the enemy GameObject would be destroyed after the death animations occurred, making
this implementation into the animation controller very simple.

Samuel Downey m

Dungeon Scribbles

IsDead

_animator.GetBool

agent.enabled =

Destroy(gameObject);

Figure 86 - Animation variables being implemented into enemy death logic.

The implementation of the death animations into the Enemy script (Seen in Figure 86) used a
two-phase approach that makes sure the existing gameplay logic works as intended while
seamlessly bringing in the animations. The IsDead() method creates an easy way to enable the
dead state within the enemy’s animation controller, which then works the same way as the
knockback animations handling which worked closely with the enemy movement system. The
Die() coroutine handles the timing to make sure that the knockback physics and the death
animation are not cancelled out before the enemy is destroyed from the scene. This created a
visually appealing death sequence where nothing important to the sequence gets interrupted.

5.6.8 Goal 6 - Fixing Enemy in Starting Room bug

When tacking this bug during a previous sprint, it was mentioned that the bug wasn’t completely
fixed although it was occurring less frequently. This task was dedicated to eradicating this bug
from the game entirely.

During testing, each part of the room management system was inspected and tested for its
intended purpose. When testing the room regeneration systems, it was noticed that not all
rooms were generating but there was also no error being thrown. It was discovered that every
room was being generated but due to the regeneration not recognising the first room in the
queue, aroom was being generated on top of the first room, which brought the enemy inside the
player’s spawn area. This was not seen in the game due to the sorting layers being so well
organized.

Samuel Downey m

Dungeon Scribbles

RegenerateAllRooms

room roomObjects

Destroy(room);

roomobjects.Clear();

_roomGrid = _gridSizeX, _gridSizey];

roomQueue.Clear();
roomCount = 0;

generationComplete -

initialRoomIndex - vector2Int(gridSizeX / 2, gridSizeY / 2);
StartRoomGenerationFromRoom(initialRoomIndex) ;

MovePlayerToFirstRoom() ;

Figure 87 - Modifications to the room manager script.

The RegenerateAllRooms() method was completely restructured (Seen in Figure 87). Instead of
destroying all rooms, it now preserves the first room, then resets all generation variables such
as _roomGrid and _roomQueue, before restarting the regeneration process. This restructuring
allows the same functionality as before but without ighoring the first room. The
MovePlayerToFirstRoom() function works as a safeguard in case of an issue with the first rooms
coordinates on the grid to ensure proper positioning after regeneration.

StartRoomGenerationFromRoom t t roomIndex

ue . Enqueuve (roomindex) ;
roomIn
room

roomGrid

roomCount++;

initialRoom Instantiate(roomPrefab, GetPositionFromGridIndex(roomIndex), Quaternion.identity);
initialRoom.name = % roomCount
1Room. GetComponent< >() .RoomIndex roomIndex;

s.Add(initialRoom);

SpawnkEnemies(initialRoom, 0);

Figure 88 - Modifications to the room manager script.

The StartRoomGenerationFromRoom() method was modified to improve room tracking from the
first generation (Seen in Figure 88). It now consistently places the first room in the centre of the
grid and registers its position with the _roomGrid array and the _roomObjects list. The function
explicitly tags the first room, ensuring that no enemies spawn inside of it during any generation
attempt.

Samuel Downey 100

Dungeon Scribbles

TryGenerateRoom(Ve t roomIndex

X = roomindex

y roomIndex.y;

roomCount > Rooms H
Random.value < &% roomIndex != Vector2Int.zero
CountAdjacentRooms (roomIndex) > 1 t $

roomGrid[x, y] 1= ©

roomQueue . Enqueue (roomindex) ;
roomGrid| x, y 1;
roomCount ++;
newRoom = Instantiate(roomPrefab, GetPositionFromGridIndex(roomIndex), Quaternion.identity);
newRoom.GetComponent< >() .RoomIndex roomIndex;
newRoom. name h 1 roomCount

roomObjects.Add(newRoom) ;

OpenDoors(newRoom, X, Y);

enemyCount = GetEnemyCountForRoom(roomCount);

SpawnEnemies(newRoom, enemyCount

Figure 89 - Modifications to the room manager script.

The TryGenerateRoom() method was improved with additional validation checks to prevent
incorrect room placement (Seen in Figure 89). Now it verifies four conditions before spawning a
room, these conditions include the maximum room count, random generation chance, adjacent
room count, and a grid position check. The grid position check is the most important change for
this bug, making sure the position is not occupied before spawning a room inside. Only
successful validation of these conditions enqueues the room to be instantiated.

Samuel Downey 101

Dungeon Scribbles

MovePlayerToFirstRoom
roomObjects.Count == ©

Debug.LogError("

firstRoom roomObjects|@];
playerSpawnPosition = firstRoom.transform.position;

player

player Instantiate(_playerPrefab, playerSpawnPosition, Quaternion.identity);

player.transform.position = playerSpawnPosition;

Debug.Log

Figure 90 - Modifications to the room manager script.

The MovePlayerToFirstRoom() was added (Seen in Figure 90) as a coordination function which
handles the player’s position in conjunction with the reworked generation system. It either
spawns a player or moves an existing player to the first room, guaranteeing that the player starts
in the first room.

Samuel Downey

102

Dungeon Scribbles

OpenbDoors] ect room,

newRoomScript room.GetComponent<

newRoomScript. enemyCount == 0

leftRoomScript = GetRoomScriptAt(
rightRoomScript = GetRoomScriptAt(

1 topRoomScript = GetRoomScriptAt(
bottomRoomScript = GetRoomScriptAt(

(x >0 && roomGrid|[x - 1, y| |= 0 && leftRoomScript

newRoomScript.OpenDoor(Vector2Int.left);
leftRoomScript.OpenDoor(Vector2Int.right);

(x < _gridSizeX - 1 && roomGrid[{x + 1, y] != @ && rightRoomScript !

newRoomScript.OpenDoor(Vector2Int.right);
rightRoomScript.OpenbDoor(Vector2int.left);

(y > 0 & roomGrid[x, y 1] = 0 & & bottomRoomScript !-=

newRoomScript.OpenDoor(Vector2Int.down);

bottomRoomScript.OpenDoor(Vector2Int.up);
(y < _gridSizey 1 && roomGrid{x, y + 1] != 0 & & topRoomScript !

newRoomScript.OpenDoor(Vector2int.up);
topRoomScript.OpenDoor(Vector2Iint.down);

Figure 91 - Modlifications to the room manager script.

The OpenDoors() function was improved (Seen in Figure 91) with neighbour validation which
cross-references the _roomGrid array, preventing doors from opening in invalid directions. The
function now only activates when the current room has no enemies. The script also uses the
GetRoomScriptAt() method to communicate with other rooms, ensuring that doors open
between neighbouring rooms.

5.7 Sprint 6

5.7.1 Goals
e Add side door design.

o Add afully designed player character.
e Update melee system.

e Fixenemy clipping bug.

e Add mini map to user interface.

e Update health bar design.

Samuel Downey 103

Dungeon Scribbles

e Update menu designs.

e Add options menu.

e Add a main menu design.
e Add audio system.

e Add controller support.

5.7.2 Goal 1 - Add Door Design to Room

Figure 92 - Updated room design with door prefabs brought in

The final stage of the room design process involved creating the doors (seen in Figure 92). Each
door required two distinct sprite variations to function within the smart door system, one for the
closed state and one for the open state. Designing the top and bottom doors proved
straightforward, despite relying on an unfamiliar prefab creation technique with no prior
research.

The door prefabs in both the closed and open state were assembled using four 2D game objects
each, equipped with Sprite Renderer components. Suitable door and wall sprites were selected
from the chosen tile palette and assigned to the corresponding game objects. A Box Collider 2D
was added to the closed state prefabs to ensure it behaved the same as the previous
placeholder models. Careful alighment minimized visual clipping and ensured the components
fit seamlessly within the environment, followed by functionality testing to confirm behaviour
consistency with the previous model.

Attention then turned to the left and right doors, which presented a challenge. The tile palette
that was chosen lacked appropriate sprites for side-facing doors. Several approaches were
attempted, such as rotating existing door models on the Z-axis to simulate the desired effect,

Samuel Downey

104

Dungeon Scribbles

but the results were unconvincing and felt sloppy. A breakthrough came when a photography
student suggested using stairs instead of doors for the room's sides. A rough prototype based
on this idea was assembled and integrated. A blocked version of the stairs, featuring a rock
obstruction, was also created to serve as the closed-door variation. These designs replaced the
original placeholders and passed testing without issues.

5.7.3 Goal 2 - Add a Player Design

Figure 93 - New character design being implemented

The implementation of a player design (seen in Figure 93) began with finding a suitable sprite
sheet that would suit the needs of the game. The sprite sheet was sourced from the same third-
party website as the enemy slime sprite sheet. Both asset packs aligned well with the existing
game environment, maintaining the visual aesthetic that was established early in development.
The player sprite sheet included a wide range of animations which made it an easy choice,
although not all animations were implemented, such as all four direction based idle animations,
to ensure that the essential animations were functional and ready in time for the major user
testing phase as at this stage of development it was rapidly approaching.

Samuel Downey

105

Dungeon Scribbles

Figure 94 - Player animation controller

Each sprite sheet was sliced into its respective animations before being configured in the player
animation controller (Seen in Figure 94). Transitions for each animation state were configured in
the controller, using the experience gained with the enemy animation controller to create a
more refined controller straight away, without needing modifications later. The process began
with the player's movement animations, focusing on transitions between directional states.

A short timer was then added to reset the animation back to an idle state, preventing any
unintended crossover between transitions. Once the movement animations were in place, the
hurt animations were implemented using a similar approach, followed by the addition of the
attack animations. As the animation controller expanded, a lot of care was taken to ensure each
transition felt logical.

Samuel Downey

106

Dungeon Scribbles

HandleMovement

movement.Set(InputManager.Movement.x, InputManager.Movement.y);
rb.linearvelocity = movement * moveSpeed;

_movement.sqrMagnitude <= of
_idleTimer -= Time.deltaTime;
f(_idleTimer <= of & & ! playerMelee. attackTriggered)

SetIdleState();

_idleTimer = idleDelay;

_animator.SetBool("Idle",)5

animator.SetBool("WalkDown"”, movement.y < 0);
_animator.SetBool("walkup”, movement.y > 0);

animator.SetBool("wWalkLeft"”, movement.x < 0);
_animator.SetBool("walkright”, movement.x > 9);

(_movement.y < @) previousDirection = PlayerDirection.Down;
(_movement.y > ©) _previousDirection = PlayerDirection.Up;
(_movement.x < @) _previousDirection = PlayerDirection.lLeft;

if (_movement.x > @) previousDirection = PlayerDirection.Right;

Figure 95 - Player movement code updated with animator integrations.

The HandleMovement() function within the player movement script (Seen in Figure 95) was
updated to interact with the player's animation controller, this was largely based on the same
system that was developed for the enemy animations. Directional booleans were set based on
movement along the X or Y axis, triggering the corresponding movement animations. While the
player is in motion, the idle timer resets, once movement stops, the timer begins counting down
and finally transitioning to the idle state after a short time. This straightforward system functions
effectively, and thanks to careful setup of the animation controller transitions, no directional
overlap occurs during horizontal or vertical movement. The code evaluates the dominant
movement direction and activates the appropriate animation accordingly.

Samuel Downey 107

Dungeon Scribbles

SetIdleState

~animator.SetBool
~animator.SetBool

_animator.SetBool
_animator.SetBool
_animator.SetBool
_animator.SetBool

Figure 96 - Player movement code updated with animator integrations.

The SetldleState() function (Seen in Figure 96) is triggered when the idle timer has reached zero.
Itis avery simple function that sets every non-idle state to false and sets the idle state to true.
When the idle state is set to true the idle animation plays and begins looping for as long as the
player is standing still. There is no exit time set on the idle animation so it transitions quickly and
smoothly to whatever movement or attack animation gets triggered.

Samuel Downey

108

Dungeon Scribbles

Knockback(Tra
r2 direction = center.position t.position;

_knocked =

_animator.SetBool

_previousDirection

14V

animator.SetTrigger("H

_animator.SetTrigger(”
ks
_animator.SetTrigger("Hurt

_animator.SetTrigger(”

N

rb.linearvelocity = direction.normalized * knockbackvel;

StartCoroutine(Unknocked());

Figure 97 - Player movement code updated with animator integrations.

The hurt animations for the player were integrated within the Knockback() function in the Player
Movement script (Seen in Figure 97), as this placement made the most sense, allowing the hurt
state to be activated during knockback and reset within the UnKnocked() coroutine.

Within the HandleMovement() function, an if statement tracks and stores the player’s previous
movement direction using an Enum variable. This value is then referenced to ensure the correct
hurt animation is triggered. When the knockback function is called, the hurt boolean is set to
true, and the corresponding directional trigger is activated based on the stored movement
direction. With both the boolean and trigger conditions met, the animation controller’s “Any
State” logic identifies the appropriate transition and plays the correct hurt animation.

Samuel Downey 109

Dungeon Scribbles

Unknocked

animationLength = animator.GetCurrentAnimatorStateInfo(®).length;

waitTime = Mathf.Max(knockedTime, animationLength);

waitTime);

_knocked = -
_animator.SetBool

Figure 98 - Player movement code updated with animator integrations.

The UnKnocked() coroutine (Seen in Figure 98) is responsible for resetting both the hurt
animation state and the knocked player state after a specified duration of time. Initially, there
were timing discrepancies between the knockback effect and the length of the hurt animation.
To resolve this, the coroutine was adjusted to wait for the longer of the two durations, either the
knockback time or the current hurt animation length. This change addressed the issue without
introducing any noticeable delay to the knockback effect. Once the wait time concludes, both
the knocked and hurt states are set to false, allowing the HandleMovement() function to resume
normal operation and enabling movement and attack animations to play as needed.

Samuel Downey

110

Dungeon Scribbles

5.7.4 Goal 3 -Update Combat System

HandleAim

_isAttacking
_lockedAimDirection;

mouseWorldPosition = Camera.main.ScreenToWorldPoint(Input.mousePosition);

) aimDirection = (mouseWorldPosition - _center.position).normalized;

Mathf.Abs(aimDirection.x) > Mathf.Abs(aimDirection.y)

aimDirection = Vector2(Mathf.Sign(aimDirection.x), ©);

aimDirection = vector2(@, Mathf.Sign(aimDirection.y));

playerMelee. attackTriggered
_lockedAimDirection = aimDirection;
_isAttacking =
angle = Mathf.Atan2(aimDirection.y, aimDirection.x) * Mathf.Rad2Deg;

aimDirection;

Figure 99 - Updated handle aim function for easier animation controlling

The aiming system (Seen in Figure 99) was updated to determine and return an attack direction
based on the most dominant cardinal direction of the mouse position when the player is
attacking. This directional information is passed to the Weapon script, which manages the
remainder of the attack logic. This approach allows the attack animations to be selected in a
manner similar to the player’s hurt animations, ensuring consistency across animation states.

Samuel Downey 111

Dungeon Scribbles

_meleeTop;
_meleeBottom;
_meleeLeft;
_meleeRight;

Manager interfaceManager;
_animator;

_attackbDuration = 0.5f;
_attackCooldown = 0.5f;
_cooldownTimer = of;

_attackTriggered =
_playerMovement;
Awake

_meleeTop.SetActive
_meleeBottom.SetActive
_meleelLeft.SetActive
_meleeRight.SetActive

_interfaceManager = FindObjectOfType<InterfaceMar
_animator = GetComponent<Animator>();
_playerMovement = GetComponent<Playermo

Figure 100 - Updated player melee script with animation controller integration

At the top of the updated Player Melee script (seen in Figure 100), both the animator and Player
Movement script are referenced to integrate the new aim mechanic into the combat system.
This setup allows the aim direction, calculated by the Handle Aim function, to be accessed and
passed to the Animator. The Melee script serves as a mediator between these two components,
ensuring the correct directional animation is triggered during attacks.

Samuel Downey 112

Dungeon Scribbles

Attack

attackTriggered = 2
cooldownTimer = attackCooldown;

_animator.SetBool (' ’ > >

aimDirection playerMovement .HandleAim();
DeactivateAllMeleeObjects
aimDirection Vector2.up

animator.SetTrigger("Att
meleeTop.SetActive()2

aimDirection == Vector2.down

animator.SetTrigger("Att wn");
meleeBottom.SetActive()3

aimDirecti Vector2.left

animator.SetTrigger("Att) 3
meleeleft.SetActive()3

aimDirection Vector2.right

animator.SetTrigger(
meleeRight.SetActive(

StartCoroutine(EndAttack());

Figure 101 - Updated player melee script with animation controller integration.

The Attack() function (Seen in Figure 101) was updated to add an animation system like the one
used in the player’s Knockback() function. It begins by triggering the attack and resetting the
cooldown timer to prevent attacks from being triggered too quickly. The aim direction is then
retrieved from the Player Movement script, and all melee hitboxes are initially deactivated to
prepare for the attack. A series of conditional statements follow, each corresponding to a
specific attack direction, enabling the player to perform directional attacks as needed. Finally,

the EndAttack() coroutine is called to disable the attack state and reset the necessary variables.

Samuel Downey

113

Dungeon Scribbles

EndAttack

leld »(_attackDuration);
_animator.SetBool
_attackTriggered =

>

DeactivateAllMeleeObjects();

_playerMovement. isAttacking =

DeactivateAllMeleeObjects

_meleeTop.SetActive
_meleeBottom.SetActive
_meleeRight.SetActive
_meleeleft.SetActive

Figure 102 - Updated player melee script with animation controller integration.

The EndAttack() coroutine (seen in Figure 102) is fully executed only after the attack duration
timer has completed. Once triggered, it resets the attack state and the _attackTriggered
boolean. All melee objects are then deactivated to prevent conflicts during the next attack
sequence. This system has performed reliably during testing, with no issues observed.

5.7.5 Goal 4 - Fix Player Clipping Bug

During combat testing, an issue was found where enemies could push the player inside the wall
boundaries due to improper interaction with the player knockback system. When the player
received damage, knockback would be applied as intended, however if the player was cornered,
they could be pushed into and through walls, becoming stuck within the wall. After extensive
testing, the cause was traced to the enemy's Rigidbody configuration. The enemy’s Rigidbody
had been set to Kinematic to fix a previous bug involving the Al pathfinding system during player
knockback, but this inadvertently allowed enemies to ignore level boundaries and push the
player into inaccessible areas.

Samuel Downey

114

Dungeon Scribbles

rb;

_enemy;

player;
EL
rb = GetComponent<Rigidbody2D>();
enemy GetComponent<Enemy>();
onCollisionEnter2D | n2D other
_player = other.collider.GetComponent<pP]

_player ! && ! enemy.IsDead()

rb.isKinematic

_playerLKnockba(k(transform);

Invoke(ResetRigidbody), 0.5f);

ResetRigidbody

rb.isKinematic s
rb.linearvelocity = Vector2.zero;

Figure 103 - Updated enemy script to fix clipping bug.

To fix this issue, the Rigidbody was changed back to a Dynamic state, though this initially
reintroduced pathfinding issues and then dynamically switching the enemy’s Rigidbody to
Kinematic for a brief period, specifically half a second, when player triggers the enemy’s
knockback system. This allowed the enemy Al to remain unaffected during knockback
interactions, while still respecting level boundaries. Updates can be seen in Figure 103.

Samuel Downey 115

Dungeon Scribbles

5.7.6 Goal 5 - Update User Interface

Figure 104 - Mini map added to user interface.

Based on the research that was done on user interfaces in chapter 2, it felt appropriate to
implement a mini-map feature to the game’s Ul (Seen in Figure 104) Some basic research into
tutorials and forum posts was conducted to find the best way to implement this idea. The
method of using a secondary CineMachine paired with a new render texture and a new render
layer was the decided to be the best way this implementation would work with the rest of the
game’s systems. A minimap icon was added to each item that would have been required to be
seen on the map that was only able to be seen by the secondary CineMachine. This
implementation worked perfectly.

CheckRoomCleared

enemyCount == 0 & & clearedIcon !=

clearedIcon.SetActive() -

Figure 105 - Small code addition for room clearing icon.

There was a small code update to the Room Manager (Seen in Figure 105) for the map to have
better visual communication. When a room was cleared, a second icon would appear over the
room to identify the room as being cleared to let players know that they have already been down
that path, this was an attempt to improve the sense of direction which felt lacking in the smaller
testing groups.

Samuel Downey

116

Dungeon Scribbles

Figure 106 - Updated health bar design.

The next task to tackle was updating the health bar design to make it fit the visual aesthetic that
the game had developed. After searching, a template was found that had two different sprite
version available for a health bar and a mana bar. A prototype design was put together using
photoshop before being imported into unity. The pre-existing health bar was then fitted into the
new design template, the number of health was then removed as it was deemed as
unnecessary screen clutter. The background of the health bar was taken from the mana bar
template and worked very well visually. This can be seen in Figure 106.

5.7.8 Goal 6 - Updating Pause Menu

Updating the pause menu design was the next logical step after updating the user interface.
Thanks to the wireframing that was mentioned previously, the layout and functionality for the
pause menu was already made. All that had to be done was to update the font and the
background to fit the design language that was being built within the game. The background for
the pause menu was found using a third-party website and was slightly edited with the help of
photoshop to make space for the pause menu text and buttons.

Samuel Downey

117

Dungeon Scribbles

Figure 107 - Updated pause menu design.

The font was found on a website called DaFont which is known for its wide array of text fonts in
many different styles. After finding the font and the background, they were imported into Unity
and brought straight into the game scene, simply swapping out and game objects that stood
there originally. The pause menu was tested after the game object designs were swapped and
there were no issues found.

Figure 108 - Options menu addition.

A new panel was added to the user interface canvas to fit the options menu. This also required a
new button to be added to the pause menu to be able to swap canvas items to access the
options menu. The design philosophy was set when updating the pause menu so the options

Samuel Downey

118

Dungeon Scribbles

menu followed the same philosophy. Sliders were added to the options menu to be able to
control the volume of the game which is a feature that would be added later during this sprint.
The save and exit button was added with functionality to close the options panel and re-open
the pause menu panel, giving the player proper menu navigation. The updated designs can be
seen in Figure 107 and Figure 108.

cineCam;
pauseMenu;
optionsMenu;
loadingScreen;

userInterface;

player;
_isPaused = -

roomManager;

pauseButton;
_musicSlider;
resumeButton;

interfaceAudioSource;
_openMenuClip;
_closeMenuClip;

Awake

Time.timeScale = 1f;

Figure 109 - Updated Interface manager.

The updated Interface Manager script (Seen in Figure 109) has a reformatted organizational
structure to make better use of the header functionality within the Unity VsCode library. New
serialized fields have been added to set the required game objects into their respective sections
to make sure each object is getting the functionality it needs. There is also addition to some
audio system game objects which will be explained in a later goal. Additional serialized fields
were added, including a CinemachineCamera for the minimap camera handling and

an InputAction controller support.

Samuel Downey

119

Dungeon Scribbles

Start

pauseMenu.SetActive(isPaused);
_optionsMenu.SetActive -

roomManager = FindObjectOfType<i
cineCam

cineCam = GameObject.FindObjectOfType<

player = GameObject.FindWithTag
_roomManager ==

Debug.LogError(”i

_player != && cineCam !=

cineCam.Follow player.transform;
_cineCam. LookAt _player.transform;

Debug.LogWarning("f

OnEnable

_pauseButton.Enable();

Figure 110 - Updated Interface manager.

The updated Start() method (Seen in Figure 110) has a variable set to the room manager which
will be used in a function to work with the minimap functionality. It also locates the secondary
Cinemachine camera which is used to handle the minimap. It then gets the player and uses the
Cinemachine brain to follow the player, creating an accurate minimap that follows the player.
The OnEnable() function is added to activate the _pauseButton InputAction, making sure that
the controller support is added to the script.

Samuel Downey 120

Dungeon Scribbles

OnDisable

_pauseButton.Disable();

Update
_roomManager !=

loadingScreen.SetActive(!_ roomManager.generationComplete);

userInterface.SetActive(! isPaused && ! loadingScreen.activeSelf);
Input.GetKeyDown(KeyCode.Escape) || _pauseButton.triggered

TogglePauseMenu();

TogglePauseMenu

isPaused | isPaused;
pauseMenu.SetActive(isPaused);
userInterface.SetActive -

PlayInterfaceSound(_isPaused);

userInterface.SetActive(! isPaused && ! loadingScreen.activeSelf);

Time.timeScale = _isPaused ? of : 1f;

Figure 111 - Updated Interface manager.

The OnDisable() function (Seen in Figure 111) makes sure that if the Interface Manager script
becomes inactive, the _pauseButton will be disabled, this is more of safeguard to have in case
of an issue with compiling. The update loop has been updated to look for the InputAction button
as well as the escape key to toggle the pause menu, as well as continuously checking the state
of the loading screen and pause menu to set the User Interface state accordingly. The
TogglePauseMenu() function has been updated to integrate some of the audio functionality
along with an additional setter for the user interface state to lessen the possibility of the system
being confused.

Samuel Downey 121

Dungeon Scribbles

ToggleOptionsMenu open

_pauseMenu.SetActive(!open);
_optionsMenu.SetActive(open);

open

EventSystem.current.SetSelectedGameObject(musicSlider);

EventSystem.current.SetSelectedGameObject(resumeButton);

pPlayInterfaceSound isPaused
_interfaceAudioSource !

clipToPlay = isPaused ? openMenuClip : closeMenuClip;
interfaceAudioSource.PlayOneShot(clipToPlay);

ResumeGame

_isPaused :
_pauseMenu.SetActive

PlayInterfaceSound(isPaused);
userInterface.SetActive(! loadingScreen.activeSelf);
Time.timeScale = 1f;

QuitGame

SceneManaser. | nadScene

Figure 112 - Updated Interface manager.

The newly added ToggleOptionsMenu() function (Seen in Figure 112) handles the opening and
closing of the options menu, much like the TogglePauseMenu() function. This function also
makes sure that the event system is configured to enable controller support for menu
navigation, it does this by making sure the Resume button or the Music Slider are selected when
the menu is opened, using that as a start point for navigation. The ToggleOptionsMenu()
function makes sure to close the pause menu before opening the options menu with a clever
use of booleans, setting one to the opposite of the other.

5.7.9 Goal 7 - Main Menu Implementation

After implementing the new pause menu design and option menu functionality, it was time to
move onto the Main Menu implementation. The game needed a way for the room generation
scene to be reset after the player had died, so creating a main menu to switch into before
loading back into the room generation scene made the most logical sense. Thanks to the

Samuel Downey

122

Dungeon Scribbles

wireframing that was done previously along with the design philosophy that is being realised,
creating the design for the menu was far easier.

Figure 113 - Main menu added.

The background art for the main menu was sourced from a third-party website which
specialised in copyright free, ai generated artworks, this specific piece of art was prompted by
another user and available on the website. This specific piece of art was taken as it fit very well
with the visual aesthetic of the game, along with the colours that had been used, it was simply
too perfect not to use.

The scroll asset for the updated pause menu design was reused as it fit well as a background for
the title of the game. The buttons for the menu were made without a template in mind, but
instead were made just adhering to the visual style of the menu, making sure the colours
chosen would reflect the style appropriately while still having enough contrast to be legible.

When collecting screenshots of the pause menu and main menu, a visual glitch with the unity
engine occurred which reverted the chosen font (seen in Figure 107) back to the default font
provided by the engine (seen in Figure 113). This glitch was not visible in the final build of the
game and only occurred after the major testing phase.

Samuel Downey

123

Dungeon Scribbles

Figure 114 - Options menu added.

When adding the options menu (Seen in Figure 114), the same background game object was
used for the options menu, along with the same slider components that we created for the
Music and SFX sliders in the options menu available in the pause menu, and the button
components that were designed for the main menu, this created a consistent design between
the options menu and the main menu.

Samuel Downey

124

Dungeon Scribbles

_mainPanel;
optionsPanel;

_newGameButton;
_musicSlider;

_newText;
_optionText;
_exitText;
_saveText;

_audioSource;
_backgroundMusic;

tem _eventSystem;

Awake

_eventSystem = EventSystem.current;
_mainPanel.SetActive
_optionsPanel.SetActive
SetTextColors
PlayMenuMusic();

SetSelectedButton(newGameButton);

>

)

Figure 115 - Main menu script.

The newly created Main Menu script (Seen in Figure 115) handles all the functionality for the
main menu, being heavily influenced by the pre-existing Interface Manager script which is used

heavily within the Room Generation scene, which can be seen in the way the code is structured
in Figure 115.

Samuel Downey m

Dungeon Scribbles

LoadRoomGeneration

SceneManager.LoadScene

OpenOptions
_mainPanel.SetActive
_optionsPanel.SetActive -
SetSelectedButton(musicSlider);

CloseOptions
_optionsPanel.SetActive
_mainPanel.SetActive -
SetSelectedButton(newGameButton);

ExitGame

Application.Quit();

SetTextColors

ChangeTextColor(newText);
ChangeTextColor(optionText);
ChangeTextColor(exitText);
ChangeTextColor(saveText);

Figure 116 - Main menu script.

The LoadRoomGeneration() function (Seen in Figure 116) handles the scene transition from the
main menu to the Room Generation scene using Unity’s scene management library, which is
used as the gameplay centre for the game. This method works very well and did not need any
modifications during testing.

The OpenOptions() function handles the transition between the main menu panel and the
options menu panel. When activated the function deactivates the main menu panel while
simultaneously activating the options menu panel, also setting the selected button to the music
slider to make sure controller menu navigation was supported.

Samuel Downey

126

Dungeon Scribbles

The CloseOptions() function works in parallel to the OpenOptions() function, reactivating the
main menu panel and setting the selected button as the new game button to ensure that the
controller navigation wasn’t nullified when transitioning through the panels.

The ExitGame() function is quite simple and self-explanatory, shutting down the application.
This function doesn’t work within editing mode so this was not tested until the major testing
phase.

The SetTextColors() function was written to fix a bug that was occurring with the TextMeshPro
components where either every text element in the game would change or they wouldn’t change
at tall, but this was resolved by brute forcing the colour change with the implementation of this
function.

ChangeTextColor
text I=

text.enablevVertexGradient =
text.color = Color.white;

newMaterial = Material (text.fontMaterial);

newMaterial.SetColor(" FaceColor"”, Color.white);
text.fontMaterial = newMaterial;

PlayMenuMusic
_audioSource != && backgroundMusic !=
_audioSource.clip = backgroundMusic;

audioSource.loop = -
audioSource.Play();

SetSelectedButton(GameObiject button

_eventSystem != && button !=

eventSystem.SetSelectedGameObject (button);

Figure 117 - Main menu script.

The ChangeTextColor() function (Seen in Figure 117) is written to work in conjunction with the
SetTextColors() function. This function configures the TextMeshPro components my creating a

Samuel Downey

127

Dungeon Scribbles

new material and applying it to the chosen text components to negate any material conflicts
and successfully changing the text colours.

The PlayMenuMusic() functions work with the audio system, handling the background music for
the main menu while making sure it loops in case the player is at the menu for a longer period of
time, while also providing null checks as a safeguard.

The SetSelectedButton() function is the most crucial function in making sure that controller
support is available for menu navigation, making sure that there is a starting point for the
controller navigation system so that the user can navigate at their pleasure. Without this
function, the controller would not have a starting point and therefore would not be able to
navigate the menus at all.

5.7.10 Goal 8 - Audio system Implementation

The implementation was the next step in the development process. With the major testing
phase rapidly approaching, it was necessary to get the sound system implemented at this stage.
All the sound effects and background music were selected at this stage, all that had to be done
is set up the mixer and the correlating scripts.

it Mixers Master Music

GameMixer

Snapshots

napshot

* Groups

-
-

Figure 118 - Game audio mixer.

Setting up the audio mixer was very simple. The only modification to the audio mixer that was
needed was to split the Master volume group into two sections that would be able to handle the
sound effects and the background music dynamically. This can be seen in Figure 118.

Samuel Downey 128

Dungeon Scribbles

_myMixer;
musicSlider;
_sfxSlider;

Start

PlayerPrefs.HasKey("mi

Loadvolume();

SetMusicvolume();
SetSFxvolume();

SetMusicVolume

volume = musicSlider.value;
_myMixer.SetFloat("MusicParam”, Mathf.Logl@(volume) * 20);
PlayerPrefs.SetFloat("mu volume”, volume);

Figure 119 - Volume settings script.

The creation of the Volume Settings script (Seen in Figure 119) was quite simple as it followed
the same steps that were taken for a previous project. Starting with gaining access to the audio
mixer that was created by creating a serialized variable for it to be placed in, along with the
sliders for each version of the option menus. Firstly, the script checks the PlayerPrefs for saved
volume settings, loading these values in if they exist, and setting these values to default if they
do not.

The SetMusicVolume() converts the music sliders from a linear value to a decibel-based mixer
attenuation logarithmically, allowing the slider to interface with the audio mixer’s decibel
system all while PlayerPrefs saves the raw slider value. This same system is introduced in the
SetSFXVolume() function just being saved under different PlayerPrefs to make sure that the
systems are consistent yet different.

Samuel Downey

129

Dungeon Scribbles

SetSFXvolume

volume = sfxSlider.value;

myMixer.SetFloat("SfxParam”, Mathf.Logloe(volume) * 20);
PlayerPrefs.SetFloat("sfxvolume”, volume);

Loadvolume

musicSlider.value = PlayerPrefs.GetFloat("n
_sfxSlider.value = PlayerPrefs.GetFloat

SetMusicvolume();
SetSFXvolume();

Figure 120 - Volume settings script.

The Load Volume() function (Seen in Figure 120) retrieves the saved volume settings for both the
music and the sound effects and applies them to the sliders in the options menu. It then calls
the set music and set sound effects functions to set them to the saved values, creating a
cohesive sound settings system.

Samuel Downey

130

Dungeon Scribbles

_musicSource;
» _sfxSource;

background;

menuBackground;
Start
sceneName = SceneManager.GetActiveScene().name;
sceneName ==
_musicSource.clip = background;
sceneName ==

musicSource.clip menuBackground;

_musicSource.clip

_musicSource.loop =

_musicSource.Play();

Figure 121 - Audio manager script.

The Audio Manager script (Seen in Figure 121) is primarily in charge of the background music for
the gameplay and main menu scenes. As is evident by the scene-specific handling for the
background music. The music clip that is chosen for either of the two available scenes is
chosen based on the scene name that is currently chosen.

Samuel Downey

131

Dungeon Scribbles

PlaylLoopingSFX

_sfxSource.clip != clip

_sfxSource.clip = clip;
_stxSource.loop [
_sfxSource.Play();

StopLoopingSFX
_sfxSource.loop
_sftxSource.Stop();

_sfxSource.clip
_stxSource.loop

Figure 122 - Audio manager script.

The PlayLoopingSFX() function (Seen in Figure 122) provides a controlled playback of chosen
sound effects. Itis a very simple function that verifies if the clip exists and isn’t already looping
before making sure that it is set to loop before playing the audio clip. The StopLoopingSFX()
exists to stop the loop of anything that is currently looping by nullifying the clip and setting the
loop to false.

loSource playerWalkSource;

wurce playerDamageSource;
y walkClip;
p _hurtClip;

Figure 123 - Additions to player movement script for player audio.

The Player Movement was updated (Seen in Figures 123 until 128) to integrate the newly made
audio system, adding new audio sources and clips that the player movement system needs.

Samuel Downey 132

Dungeon Scribbles

(! playerWalkSource.isPlaying)

_playerWalkSource.clip = walkClip;

_playeriWalkSource.loop = true;
_playerWalkSource.Play();

Figure 124 - Additions to player movement script for player audio.

The player walk source and walk clip are controlled inside the HandleMovement() function,
playing the walking sound effect from the walk source only when the walking state is set to true.
This proximity to the animation state handling creates an accurate system, making sure that
when the player is visually moving across the screen, the correct sound effect is playing as well.
Each important sound effect getting its own source makes sure that different sounds can play at
the same time without cancelling each other out which creates a more immersive gameplay
experience.

Samuel Downey

133

Dungeon Scribbles

_animator.SetBool(
_animator.SetBool
_animator.SetBool
_animator.SetBool

_animator.SetBool
_animator.SetBool

it (_playerWalkSource.isPlaying

_playerWalkSource.Stop();

Figure 125 - Additions to player movement script for player audio.

The SetldleState() function has also been updated to add stop the walking sound effects when
the player has stopped moving. This script works the same way as the HandleMovement(),
handling the animation state and the sound at the same time, creating a consistent visual and
audio experience for the player.

oid PlayHurtSound()

it (_playerDamageSource != null && hurtClip !=

_playerDamageSource.PlayOneShot(hurtClip);

Figure 126 - Additions to player movement script for player audio.

The PlayHurtSound() function is placed inside the player’s knockback function, playing the hurt
sound briefly. The placement of this function follows the same idea as the SetldleState() and
HandleMovement() functions, keeping the visual and audio responses of the game consistent.

Samuel Downey 134

Dungeon Scribbles

oSource playerAttackSource;

pClip _attackClip;

Figure 127 - Additions to player melee script for player audio.

After implementing and testing the walk and damage noises, it was time to move onto
implementing the attack noises for the player inside the Player Melee script. The setup for this
audio integration had the same approach as previous audio integrations where the necessary
audio source and clip were added to the script with the use of serialized fields.

oid PlayAttackSound()

_playerAttackSource != null && attackClip !=n

_playerAttackSource.PlayOneShot(attackClip);

Figure 128 - Additions to player melee script for player audio.

The PlayAttackSound() function was constructed and implemented the same way as the
PlayHurtSound() function, where the attack sound is played for a brief period and the function is
placed in the same area of the script which handles the animation states to continue to create a
consistent visual and audio experience.

Figure 129 - Additions to enemy script for enemy audio.

The audio integration for the enemy (Seen in Figures 129 until 133) was the last game object that
needed to be added. This implementation process took a little bit longer as the enemy script
had allits functionality inside of one script, so more time and care had to be taken to make sure
every sound effect was being placed in the right section.

The process started by creating serialized fields for every necessary audio source and audio clip
that the enemy would need and then beginning to move these clips into their required sections.

Samuel Downey

135

Dungeon Scribbles

id SetIdlestate()
_currentState = EnemyState.Idle;
it (enemykWalkSource.isPlaying

_enemyhialkSource.Stop();

_animator.SetBool
_animator.SetBool
_animator.SetBool
_animator.SetBool

_animator.SetBool

id SetWalkingState|(V 3 movementDelta)
_currentstate = EnemyState.Walking;

it (! enemyWalkSource.isPlaying

_enemyWalkSource.clip = walkClip;
_enemyWalkSource.loop = true;
_enemyWalkSource.Play();

_animator.SetBool

Figure 130 - Additions to enemy script for enemy audio.

The walking animation sound effect was set up the same way as the player’s walking sound
effect where the enemy walking sound effect would play when the enemy animations began to
play and then would stop when the idle animation state was activated. This method was used
again due to how well it worked when implementing the player’s sound effects.

Samuel Downey 136

Dungeon Scribbles

id TakeDamage(float damage)

_health -= damage;

if (_health <= ® & currentState l= EnemyState.D
_currentState = EnemyState.Dead;
_animator.SetBool("Hurt”, false);

_animator.SetBool ("D
PlayDeathSound();

_animator.SetBool("l
_animator.SetBool("
_animator.SetBool("Wa
_animator.SetBool("Wa

Figure 131 - Additions to enemy script for enemy audio.

The death sound was placed in the damage handling section of the script as this is also where
the enemy death logic is held, so this section was the most appropriate, and during testing
proved to work as intended.

Samuel Downey 137

Dungeon Scribbles
vold Knockback(Transform t)

I agent.enabled

-
=

Vector3 direction

_knocked = true;
_agent.velocity = direction * knockbackve

_animator.SetBool("Hurt"”,
PlayHurtSound();

Figure 132 - Additions to enemy script for enemy audio.

The hurt sound was set to be played when the enemy is knocked back which also triggers the
hurt animation, creating a consistent response from the enemy when they are damaged.

d PlayHurtSound()

if (_enemyDamageSource != null & hurtClip != null

_enemyDamageSource.PlayOneShot (_hurtClip);
void PlayDeathSound()
if (enemyDamageSource != null && deathClip = null

_enemyDamageSource.PlayOneShot (_deathClip);

Figure 133 - Additions to enemy script for enemy audio.

Samuel Downey m

Dungeon Scribbles

The hurt and death sound functions were built the same way as the sound functions from the
player’s sound implementation due to how well this system worked the first time, simply
checking if the sound sources and clips are not null and then briefly playing the chosen sound
clip.

5.7.11 Goal 9 - Controller Support

The final step before getting ready for the major user testing phase was to implement controller
support for the game. This was done after some advice was given by a lecturer about making it
easier for testers to be able to just pick up and the play the game and to have less of a learning
curve with the controls.

Actions + Binding Properties

Figure 134 - New input system additions for controller support.

The player movement was very simple to integrate thanks to the New Input System in the unity
engine (Seen in Figure 134). A secondary input was created for the move action with the cardinal
directions of the left joystick and thanks to the input manager script and the fact that the values
for both keyboard and controller were of the same type, this was the only addition that had to be
made for the player movement to have controller support. There was some slight modifications
to the animation transition sensitivity threshold to make sure that the correct animations were
playing when the player was moving horizontally but it was a very minor update.

rate InputAction [attackAction;

3t _attackDuration
»at attackCooldown

_cooldownTimer

Figure 135 - Additions to player melee script for controller support.

The implementation of controller support for the player combat was nearly just as simple as the
player movement (Seen in Figures 135 and 136). A new input action variable was added to the
script which can be set to any button value thanks to the listen feature that this variable has.
This variable is how controller support was added for the player melee script.

Samuel Downey

139

Dungeon Scribbles

Figure 136 - Additions to player melee script for controller support.

The input condition for the player attack was also updated to adhere to the new change which
was quite simple thanks to the implementation of the unity input action variable. Now the script
is checking for both keyboard and controller inputs, allowing players to choose the controller
method they feel most comfortable with and being able to change the controller scheme ata
moment’s notice.

n _pauseButton;
“t musicSlider;
“t resumeButton;

Figure 137 - Additions to interface manager script for controller support.

The interface manager was updated (Seen in Figures 137 and 138) the same way with the
implementation of the input action component for controller support. This time being setto a
different button towards the centre of the controller to make sure that there was no input
confusion.

Samuel Downey

140

Dungeon Scribbles

id Update()
if (_roomManager != null

_loadingScreen.SetActive(! roomManager.generationComplete);

_userInterface.SetActive(! isPaused && ! loadingScreen.activeself);

if (Input.GetKeyDown(KeyCode.Escape) || _pauseButton.triggered

TogglePauseMenu();

Figure 138 - Additions to interface manager script for controller support.

The Update() loop was updated in a similar way to the player melee script where the input
condition to open the pause menu is now looking for the original keyboard input method or the
new pause button that would have been set in the Unity engine inspector. Keeping both
keyboard and controller input options available to the player at all times.

5.8 Sprint 7
5.8.1 Goals

e Complete a first draft thesis report before Easter break.
e Receive and apply feedback given by thesis supervisor.

5.8.2 Goal 1 - First Draft of Report

The first draft of this report was not written in order from chapter 1 to 8. Instead, chapters were
written out of sequence to help figure out how they would connect and flow together. Writing
started with a chapter that had a lot of content and didn’t rely heavily on the others, which
ended up being chapter 6, which focused on user testing. This chapter was written first because
the testing had just been completed, so the information was fresh and easy to write about.

After chapter 6, work moved to chapter 1, the introduction. One section in the introduction
needed a short overview of user testing, so content from chapter 6 was used and adjusted to fit.
This same approach continued throughout the report, with some sections left unfinished until
feedback was received on structure and layout.

Chapter 5 was the only chapter postponed on purpose because it was longer and more time-
consuming. Finishing the shorter chapters first meant getting quicker feedback, which helped
improve the rest of the report. Even though chapter 5 didn’t get much feedback directly, the
feedback from other chapters helped shape its final version. Overall, this writing method turned
out to be the most effective way to develop the first draft.

Samuel Downey

141

Dungeon Scribbles

5.8.3 Goal 2 — Receive Feedback

Valuable feedback was received from the thesis supervisor regarding the first draft of the report.

While much of the content was well-received, several recommendations were provided to
improve the overall flow and reduce the repetitive text within the report. Suggestions included
reformatting sections of the design and research chapters and referencing figures from other
chapters where relevant to the current discussion. Additional advice focused on smaller
improvements to enhance the reader's experience, such as adopting a different style for figure
titles, including a figure table beneath the table of contents, and slightly adjusting the APA
referencing style to better accommodate sources such as YouTube videos. Guidance was also
given on restructuring parts of chapter 5 to improve readability and reduce content congestion.
Each piece of feedback was highly relevant and directly contributed to strengthening the clarity
and impact of the report.

Samuel Downey

142

Dungeon Scribbles

6 Testing

6.1 Introduction

This chapter presents the full testing process carried out during the project’s development,
beginning with functional testing where each game mechanic and feature was manually tested
to ensure it behaved as intended. It then moves into the user testing phase, which combines
feedback and observations from both small focus group sessions and a larger round of testing.
Player input was collected through surveys, gameplay feedback, and direct observation,
offering valuable insight into how users interacted with the game's systems, controls, and
overall experience. The chapter concludes with a breakdown of this data and the key
suggestions received, highlighting what was learned from the testing process and how it helped
shape the final outcome of the game.

6.2 Functional Testing

6.2.1 Menu Navigation

Start a new game.

button is pressed,
the game scene is
loaded.

loaded.

Test | Description of test case | Expected Output Actual Output Comment
No
1 |From the Main Menu. When the new game [The game sceneis [This mechanic works

correctly.

panelis activated

panelis activated.

2 |From the Main Menu. When the exit button[The game did not There is a bug in the main
Exit the game. is pressed, the quit. menu script, but the game
application would can still be exited with the
quit. Alt+F4 command.
3 |From the Main Menu. When the Options [The options panelis [This mechanic works
Enter the Options Menu. [buttonis pressed, [|activated. correctly.
the options panelis
activated.
4 |From the Options Menu. |For the music slider [The music is This mechanic works
Change the Music to adjust the music |adjusted whenthe [correctly.
volume. volume. slider moves.
5 |From the Options Menu, |For the SFX slider to [The SFX is adjusted [This mechanic works
change the SFX volume. |adjust the volume. |when the slider correctly.
moves.
6 |From the Options Menu. |For the Main Menu [The Main Menu This mechanic works
Exit to the Main Menu. |paneltobe Panelis activated. [correctly.
activated.
7 |Enterthe Pause Menu. [The Pause Menu IThe Pause Menu This mechanic works

correctly.

Samuel Downey

143

Dungeon Scribbles

when pause button
is pushed.

8 |From the Pause Menu. |Whenthe Resume [The gametime This mechanic works
Resume the game. button is pressed, |continues. correctly.
time continues.
9 |From the Pause Menu. ([The scene changes [The scene changes [This mechanic works
Exit the game. to the Main Menu to the main menu. [correctly.
when the Exit game
button is pressed.
10 |Fromthe Pause Menu. [Switchto the IThe panel switches [This mechanic works
Enter the Options Menu. [options panelwhen when the buttonis |[correctly.
the options button is|pressed.
pressed.
11 |From the Options Menu. When the slider When the slider This mechanic works
Change the Music moves the music moves the music correctly.
VVolume. volume changes. ivolume changes.
12 |From the Options Menu. When the slider When the slider This mechanic works
Change the SFX Volume. Imoves the SFX moves the SFX correctly.
volume changes. \volume changes.
13 |From the Options Menu. [The panelchanges [The panelchanges [This mechanic works
Exit to the Pause Menu. [to when the Save & [to the pause menu |correctly.
Exit buttonis \when the Exit button
pressed. is pressed.
6.2.2 Player Controls
Test | Description of test case | Expected Output Actual Output Comment
No
1 |Player Movement. For the player to The player moved [This mechanic works
move based onthe |the character correctly.
directional button. |around the screen.
2 |Player Combat. For the player to The player attacked [This mechanic works
attack based on their|in direction of the [correctly.
direction. last movement.
3 [|Attack an Enemy. Forthe enemyto be [The enemy died This mechanic works

attacked and then
die.

after multiple hits.

correctly.

Samuel Downey

144

Dungeon Scribbles

6.2.3 Enemy Interaction

Test | Description of test case | Expected Output Actual Output Comment
No
1 |[Enemy pathfinding test. When player enters [The enemy The enemy has obstacle
the room, the enemy [successfully follows|detection implemented but
follows the player, [the player. the rooms do not have

calculating the
shortest path.

obstacles, making testing
harder.

2 [The enemy attacks the |When the enemy The player loses This mechanic works
player. touches the player |health when the perfectly.

collider, the player |enemy touches
loses health. them.

3 |Enemy death. When the enemy’s [The enemy was This mechanic works
health hits zero, the [removed fromthe |perfectly.
enemy is destroyed |scene when their
from the scene. health hit zero.

6.2.4 Map Navigation
Test | Description of test case | Expected Output Actual Output Comment

No

1 |Wall Collider test When the player or |The player and This mechanic works
enemy runinto a enemy cannot get |perfectly.
wall, they will be past the wall.
stopped.

2 |Room Neighbour Test When the room The doors only open(This mechanic works
generates, doors will when thereis a perfectly.
only open when room on the other
there are rooms on |side of them.
the other side.

3 |Door Open Test When the room When the room This mechanic works
enemy count has hit |enemy count has hitperfectly.
0, the doors to 0, the doors to
neighbour rooms will|neighbour rooms
open. will open.

4 |Regeneration Test When the total The world This mechanic works

enemy count has hit
0, the world will
regenerate, and the
player will be back in
the start room.

regenerates when
the enemy count
hits 0.

perfectly.

145

Samuel Downey

Dungeon Scribbles

6.3 User Testing

6.3.1 Player Controls

Movement

When testing with mouse and keyboard controls, results varied depending on the user's
experience with PC gaming. Those with prior experience had a much easier time understanding
the control scheme, with some needing no instructions at all. Users without PC gaming
experience faced a higher learning curve but were still able to understand the controls after
minimal guidance.

When testing with a gamepad, the results were more consistent. Most players quickly
understood that the joystick controlled movement. A small number of users with no gaming
experience at all needed brief instructions, but once given, they were able to continue without
further help.

How would you rate the player movement? (1 Poor - 5 Excellent)
7 responses

4 (57.1%)

2 (28.6%)

1 (14.3%)

0 (0%) 0 (0%)

1 2

Figure 139 - Survey Rating on Player Movement

Any suggestions on improving player movement?

4 responses

There was one minor bug with invisible walls on the north door - fix that and its solid!
Dodge? Player knockback reduction
A roll feature would be amazing

It could feel a bit more fluid but it was nice

Figure 140 - Survey Suggestions on Player Movement

Samuel Downey

146

Dungeon Scribbles

Combat

Did you think the player combat felt adequate? (1 Poor - 5 Excellent)

7 responses

4 (57.1%)

1(14.3%) 1 (14.3%) 1(14.3%)

0(0%)

1 2 3 4 5

Figure 141 - Survey Rating on Player Combat.

When testing with keyboard and mouse, many users were able to figure out the combat system
before receiving any instructions, regardless of their previous PC gaming experience. The
simplicity of clicking on the screen to attack helped remove any potential learning barriers.

During gamepad testing, most users also identified the combat button without instruction.
Some needed a bit of guidance after experimenting with different buttons, but there was a clear
understanding that a combat system was present in the game.

Any suggestions on player combat improvements?

3 responses

For now it was excellent, bits of variance and room obstructions will really sell it
Dodge perhaps, one or two more abilities

The hit box was confusing, but overall good combat

Figure 142 - Survey Suggestions on Player Combat.

There was some confusion around where the player’s hitbox would appear during attacks. Most
players picked it up quickly, but a few struggled to understand the exact damage area.

Confusion around attack direction also came up due to the lack of directional idle animations.
This issue was noticeable during both keyboard and mouse testing, as well as with gamepad
use. When the player was moving and attacking, there was clear confidence in the direction of
the hit. However, when attacking from an idle position, players were less sure—even though the
game saved the last movement direction to determine the attack. The idle animation facing a
different direction often caused misunderstanding. Once the system was explained, players
understood it better, but the initial confusion highlights that the system lacks intuitive clarity.

Samuel Downey

147

Dungeon Scribbles
6.3.2 Enemy Interaction

Pathfinding

How would you rate the enemy movement? (1 Poor - 5 Excellent)
7 responses

4 (57.1%)

3 (42.9%)

0(0%) 0 (0%) 0 (0%)

1 2 3

Figure 143 - Survey Rating on Enemy Movement.

User testing results revealed both strengths and weaknesses in the enemy pathfinding system.
In one-on-one encounters, the system performed well. However, as more enemies were added
to the room, issues became more noticeable.

It was common for the enemies to follow the same path and block each other instead of finding
ways around. Another issue occurred when the player became cornered, there was no way to
escape, causing a stun lock effect until the player’s health ran out. Additionally, a bug was found
where an enemy would spawn too close to the door, preventing the player from entering the
room. This will need to be adjusted to avoid the issue in future versions.

Any suggestions on improving enemy movement?

4 responses

The only thing that would make it even cooler is adding variance - have enemies move slower and quicker by
room and it'll add challenge!

Nothing unless different enemies are added
At one point, with four slimes, | had gotten stun locked in a corner

It was move fluid than my player but it was quick

Figure 144 - Survey Improvements on Enemy Movement.

There was some great feedback on the enemy pathfinding system, including the idea of adding
speed variance between enemies. This would help reduce enemies grouping together and
would also add more variety to each room. A programmer from Desk Rage also suggested using
dedicated spawn points instead of random ones, a very helpful recommendation.

Samuel Downey

148

Dungeon Scribbles

Combat

User testing results for enemy combat were generally positive. Both the enemy and player
knockback systems functioned as intended, and the player’s health decreased correctly when
colliding with the enemy’s hitbox. Feedback on enemy combat was minimal, with other
developers noting that the enemy’s combat style made sense and felt natural. The most
common suggestion involved the length of time the player was stunned after hitting an enemy.
Some felt it was too long and made the survival more frustrating than fun. As a result, the
knockback duration may be slightly reduced to see if it improves gameplay. This suggestion
came from one of fifty players.

6.3.3 Game World

Map Navigation
Some useful feedback was gathered during testing for map navigation, and several ideas came
up by watching how players interacted with the game world. The main suggestions included
adding more content to rooms, introducing unique objects to help tell rooms apart, designing
new room layouts, and creating a key-and-door system that lets players choose their path
instead of following a set one.

It was also observed that some players assumed all doors were interactive and often ran into
closed ones while ignoring the open ones. To address this, the design of the open and closed
doors will be adjusted to make them easier to tell apart.

How did you feel about the game world? (1 Poor - 5 Excellent)

7 responses

4

4 (57.1%)

3 (42.9%)

0 (0%) 0 (0%) 0 (0%)

Figure 145 - Survey Rating of Game World.

Samuel Downey

149

Dungeon Scribbles

Any suggestions on game world improvements?

4 responses

Perhaps some visual variance in the rooms, or some advancement through it being implied!
More stuff
A key/door feature would be awesome

Maybe have the life of the character to be a bit more durable

Figure 146 - Survey Suggestions of Game World.

Minimap
The minimap feature received very little feedback during testing. However, most players seemed
to understand what the minimap was showing without any explanation. When asked during
gameplay, users were able to correctly identify what the icons and symbols represented on the
map, showing that the feature was intuitive and had reached the standard that it needed to. A
helpful suggestion from a developer at Larian involved expanding the minimap into a full-screen
map, similar to a pause menu, allowing players to see more of the explored area and
understand their current position and needed direction. This idea has strong potential and
could be developed further by adding a map legend to reduce possible confusion for players.

Health Potions

Very minimal feedback was received about the health potions. Every user understood what they
were and how they worked right away. Some early feedback suggested increasing the amount of
health restored, which was adjusted before the second round of testing and received positive
results. No users mentioned the spawn rate or the health value of the potions after the change.
Overall, this can be considered a successful implementation.

6.3.4 Menu Interaction

A lot was learned about the menu system during the major user testing phase. The main menu
worked well overall, with players understanding the button functions easily. However, the
navigation was not as intuitive. Many users had trouble noticing which button they were
currently hovering over until they moved through more of the menu options. While they
eventually figured it out, the process took longer than expected. This issue appeared
consistently across different age groups and gaming experience levels, showing a clear design
flaw that needs improvement. Similar issues were also found in the main options menu and the
pause options menu.

Interestingly, this problem did not occur in the Pause Menu. The strong hover effect used there
likely helped the player easily see what option they were selecting, making navigation smoother.

Samuel Downey

150

Dungeon Scribbles

6.4 Conclusion

6.4.1 Player Controls

User testing for movement and combat mechanics revealed clear strengths and weaknesses in
the current system. The learning curve for player movement and combat mechanics was found
to be quite low for both keyboard and gamepad users.

However, some confusion around the player’s attack direction highlighted the need for some
improvements. Adding more idle animations would help show what the player’s last movement
direction, making it clearer where their next attack will land. Refining the attack hitbox could
also help players better understand the reach and width of their attacks.

A dash or dodge mechanic was another suggestion from testers. This feature like this could add
more variety and excitement to the gameplay and would be a strong addition in future updates.

6.4.2 Enemy Interaction

User testing showed that some of the enemy interaction systems need improvement. The
pathfinding system should be updated so enemies can detect and move around each other.
Giving enemies different movement speeds would add variety and make each room feel more
challenging as the game progresses. Adding more enemy types with different behaviours was a
common suggestion from testers. There are many ways the enemy systems could be improved
to make the gameplay even more interesting and dynamic.

6.4.3 Game World

User testing also highlighted how players interacted with the game world. While the game’s
mechanics were easy to understand, the visual similarity between rooms caused some
confusion about where to go next. The minimap helped reduce confusion, but didn’t fully solve
the issue. Acommon suggestion was to make a full-sized map screen and to include more
content in each room, such as obstacles and landmarks, to make navigation easier and make
the game world more engaging.

6.4.4 Menu Interaction

Based on user testing with the main menu and the pause menu systems, it is evident that the
hover effect plays a critical role in guiding player understanding and navigation. The tests
consistently showed that players struggled with identifying which button or slider they were
interacting with when the hover effect was subtle or insufficiently noticeable. This was
particularly evident in the main menu and options menu, where players often scrolled past
buttons or sliders before realizing their selection. However, in the pause menu, where the hover
effect was more exaggerated, players demonstrated quicker and more accurate navigation,
confirming that a stronger visual indicator significantly improves usability.

Samuel Downey

151

Dungeon Scribbles

7 Conclusion

7.1 Introduction

This chapter provides a comprehensive summary of the project’s development journey, offering
areflection on the progress made across each phase of the project, from initial research to
implementation and testing. It revisits the original objectives, evaluates how effectively they
were met, and outlines key achievements and challenges encountered throughout the process.
In addition to reflecting on the overall design, this chapter also includes a summary of the
technologies used and how they contributed to the project’s goals. The final section presents
personal reflections and insights gained, offering a clear perspective on the project’s success
and opportunities for future improvement.

7.2 Technologies
7.2.1 Figma

Figma was used as the primary design application for most of this project where the original
wireframes, iterations of menus, and user interfaces were designed. Figma also held references
to the design research that had been done to better inform the wireframes that were being made
for the project. Overall, Figma was a large part of the project with its design capabilities.

7.2.2 Photoshop

Photoshop CS6 was used very little over the course of this project, only being called into action
when designing assets for the user interface, specifically when designing the player’s health bar,
the updated pause menu design, and the mini map.

Photoshop was also used when designing stickers for the project which was requested by the
college as part of the student ambassador opportunity at Dublin Comic-Con 2025.

Overall, Photoshop did play an integral role in the development of the user interface, without it
the game would have been lacking a lot of smaller details that added a lot to visual aspect and
the enjoyment of the game.

7.2.3 Unity

The choice to use the Unity engine was one of the most important decisions for this project. This
decision faced a lot of careful consideration and research (research in Chapter 2). Ultimately,
the decision to work with the Unity engine came down to the simple fact that it had more
learning resources and assets available to it which would directly impact the scope of the
project. This decision was absolutely the correct one, staying inside the Unity engine to work on
new game development techniques provided a much more straightforward and stress-free
environment thanks to having previous experience with the engine. The help from the
community was also a huge benefit to this project, having access to resources and people that
can teach you different techniques was a large reason the project went as smoothly as it did.

Overall, Unity provided everything that was needed to be able to create this project, whether it
was an intuitive input system or the ability to import third party or homemade assets through
the package management system the engine has.

Samuel Downey

152

Dungeon Scribbles

7.2.3 Visual Studio Code

Visual Studio Code was used as the IDE (Integrated Development Environment) for this project,
being used to access, modify, and create game scripts. Although the version of Visual Studio
Code was not the same version that it used regularly. Due to the fact that the IDE is booting
through a different application, any plugins or saved user preferences do not carry over unless
you manually log back into the IDE every time you wish to write a piece of code. This did make
the experience a bit more challenging with the lack of code snippets and auto correction tools.

Overall, Visual Studio Code provided as a solid IDE to work with thanks to previous experience,
it’s integration with the Unity engine felt almost seamless at certain stages of the project and
pushed the principles of double-checking work and syntax spelling through the lack of any help
from plugins, which has improved my skills as a programmer.

7.2.4 Mirro

Miro was used as the project management and documentation application for this project,
using a template provided by the college to be able to break down the work in sprint sections.
Using Miro, each stage and goal of the project was properly planned and documented, this
helped when needing to look back on previous version of the project when writing out the
project report. Whenever there was a successful change made to the project, screenshots were
taken to document these changes and then placed in the current section of the template that
the project was in. When goals were completed, the were moved from the In Progress section to
the Done section in the Kanban table that was used. Being able to look back on the Kanban and
Sprint system to see previous goals and how they were implemented made huge impacts on the
writing process of the report. Miro was a great tool to use for this project and shall be used again
in future projects for the same level of project documentation and management.

7.2.5 Unity Version Control

The Unity Version Control system was something that | did not think | would be using when
starting this project due to having no previous experience with it, and it was good that there
wasn’t too much trust placed in this system, since the engine often lost connection with the
version control API.

When the system was functioning properly, it worked nearly exactly the same way as GitHub in
the way that you could commit your code changes, push them up to a cloud based service and
then pull or rollback the code if needed, all while being able to comment on your commits to
see what each commit was for.

Although when the system was not working due to connectivity issues from the engine, there
was no access to any of these options, effectively making the system useless for long periods of
time. Thankfully the Unity Version Control system was not the only version control system that
was implemented during this project so the risk associated with this system was minimized.

Overall, when the system was working, it was great, but the constant issues in connection with
the APl made it abundantly clear that this system was not ready to be deployed in its current
state.

7.2.6 OneDrive

OneDrive was used as the primary version control system for the duration of this project due to
previous experiences of losing assets when using GitHub to store Unity files. OneDrive was

Samuel Downey

153

Dungeon Scribbles

used the same way as any version control system where an updated version of the game would
be uploaded to the OneDrive file with a comment within the title of the file to note which version
of the project it was and what was done most recently.

Although due to the size of the files that and the time it took for these files to be uploaded, the
OneDrive pushes were done less frequently, only really being pushed when a major
implementation was made to the game, such as the first version of the Procedural Generation
system being created or when the Health item was brought into the game.

Overall, OneDrive’s contribution to the project was a great help and a very good stress reliever.
Knowing that there was a safeguard put in place in case of a major problem with the Unity
Version Control system was a very large comfort, especially towards the end of the project’s
development when most of the work consisted of non-functional design-based updates.

7.3 Project Phases

7.3.1 Research

The research phase proved to be one of the most critical components of this project,
particularly in how the applied research was conducted. Without the amount of research that
was gathered, the project would have seen immense increases in bugs and technical problems
when being developed.

Research into back-end system design was significantly more extensive than the front-end
research due to a lack of knowledge and experience working with these kinds of programming
ideas and techniques, but thanks to this extensive research section, better decisions were
made on what game engine would be chosen for development of this project, the pathfinding
algorithms that would implemented, as well as the implementation process of procedural
generation into a 2D game world.

Without this research phase, there would not have been such a well maintained codebase or
stress free development environment, so this phase would be considered a success.

Overall, the research phase can be considered a major success, as it directly influenced key
development decisions and laid a strong foundation for both design and implementation. The
depth and relevance of the applied research ensured a smoother workflow, fewer technical
issues and a more focused development process, ultimately contributing to the stability and
coherence of the final product.

7.3.2 Requirements

The front-end and back-end design research conducted in Chapter 2 played a vital role in the
development of the project’s functional and non-functional requirements. By analysing design
patterns, gameplay structures, and interface design philosophies from comparable games, this
research provided a clear direction for defining the technical and experimental goals for the
project. It laid the groundwork for both the design philosophy and the software architecture,
ensuring that development could proceed with clarity and purpose. As a result, the
requirements phase was well-informed and efficiently executed, directly benefiting from the
depth of research established earlier in the process.

Overall, the requirements phase successfully translated research findings into actionable
development goals, ensuring alignment between the intended user experience and technical

Samuel Downey

154

Dungeon Scribbles

execution. It provided a clear roadmap for implementation, helped avoid over scoping the
project, and supported a modular, maintainable development structure. This early clarity
proved essential in maintaining focus throughout the project’s development and contributed
significantly to the project’s overall stability.

7.3.3 Design

The design phase was largely influenced by the research and requirements work done in
Chapter 2 and Chapter 3. With a strong foundation already established, both back-end
architecture and front-end wireframes were easier to translate into practical and achievable
design solutions. The early analysis of system structure and user interface principles allowed
for a more focused and informed approach when outlining the project’s functionality and user
experience.

Overall, the design phase provided a clear visual and structural roadmap for development,
bridging the gap between planning and implementation. The modular design approach and
organized file structures helped streamline the development and simplify future adjustments.
By aligning the design decisions with previously defined requirements, the project maintained
consistency and coherence across both the technical and visual elements.

7.3.4 Implementation

The implementation phase was broken down into two week sprint segments, creating small and
manageable goals to fulfil during the weeks. This system was followed as it seemed to adhere to
the same style of development that was already being followed when planning out this project,
to create small and effective implementations, keeping systems detached from each other as
much as possible to create the best environment for debugging and code maintenance. The
sprint goals were not radically adhered to, if the goals were completed ahead of schedule then |
just kept working into the next development phase, not letting any time go to waste.

Thanks to a strong research phase, specifically in applied research, the beginning of the
implementation phase started very strong as well, being able to create a test area full of
foundational systems such as player combat, health, movement and collisions with very little
issue. Even being able to create the first test for the procedural generation system.

This momentum continued to be carried through the rest of the implementation phases, taking
these foundational systems and reworking them as the game needed, sometimes completely
rewriting them but never changing the idea behind the system or how it should function.
Thankfully, there were very few bugs found through the duration of the project, the ones that
were found were traced and fixed before they became larger problems later in the project.

Overall, with the results of the user testing chapter in mind, this phase of development seemed
to be a success, nearly every goal for the game was completed while consistently keeping a
largely maintainable code base with very little to no bugs being found during the user testing
phases.

7.3.5 User Testing

The user testing (as explained in Chapter 1) was broken up into three phases. The manual
testing phase, the focus group testing phase and the major testing phase. Each phase was
extremely beneficial for the development of the project. The manual testing phase went on for

Samuel Downey

155

Dungeon Scribbles

the entire duration of the project, when adding a new feature to the game or modifying an
already existing system, manual testing on the change or the addition would occur by myself.

The goal of manual testing would be to find bugs or exploits inside the game before letting other
testers find them, so that other testing phases would provide better user data than simply listing
issues that could have been found through manual testing. This goal was achieved with great
success, being able to gather better user data from the focus group sessions that revolved
around what the game can improve on rather than what the game needs to fix before it is
playable.

The focus group sessions went very successfully thanks to the manual testing which was
conducted before, the game received great user feedback about how the game felt, what could
be changed, and what new features the game would need to become a better experience for
the users. The focus group really shined a light on the direction the game needed to go.

The final phase of testing was the major testing phase. A handful of students along with myself
were given the opportunity to attend Dublin Comic-Con in March of 2025 as ambassadors for
the Game Design course which would be launching its first year in the coming September.
During this event, the major testing phase would be conducted. The goal was to get as many
people to play the game and to give feedback on the current stage of the game’s development
and this goal was a success. There weren’t many people who wanted to do the surveys made for
the game but there were a lot of people who enjoyed giving their feedback through conversation
which was just as useful.

Contact with game studios such as Larian and Black Shamrock along with game design
organizations such as Desk Rage and IMIRT was made during this phase of testing and they gave
some incredible feedback on not only the game but also in terms of furthering my career in
game design.

Overall, each phase of user testing was a success, each phase complimenting the previous and
getting great results through all of them.

7.6 Reflection

7.6.1 Project Management

Project management was handled effectively throughout the duration of the project. The use of
a Miro board ensured that all documentation, goals, and materials were organized in a central,
accessible location. Breaking the documentation into individual goals and agile sections made
it easier to reference changes and progress when compiling materials for the final report. While
the sprint goals were more aligned with a Kanban methodology than traditional sprints, this
approach contributed to a consistent and manageable workflow. These project management
strategies played a significant role in the project’s overall success and helped maintain a low-
stress development environment.

Overall, the chosen project management approach helped keep everything organized and on
track. Breaking the work into smaller goals made it easier to stay focused and adjust when
needed. This method kept development moving smoothly and made it easier to record progress
for reports and documentation.

Samuel Downey

156

Dungeon Scribbles

7.6.2 Views on The Project

After the initial brainstorming phase, there was a strong sense of confidence in the project’s
feasibility and direction. While the visual style of the project did evolve during development, the
core concept of the game remained consistent throughout development. The current state of
the project at this time reflects a solid execution of that idea. Positive feedback from both
industry professionals and the general public has been especially rewarding, reinforcing the
project’s creative and technical efforts.

Overall, the project has been a valuable learning experience in both design and development. It
demonstrated how a clear vision, guided by research and iterative development, can resultin a
well-received final product. The experience has strengthened long-term goals within the game
development field and built confidence in pursuing further opportunities in the industry.

7.6.3 Working with a Supervisor

Working with Timm on this project was an absolute treat. Throughout the development process,
he was always supportive and encouraged the vision that was shared to him from the start. He
gave helpful feedback and asked fair questions that showed he was genuinely interested in the
project. His advice was clear and easy to understand, which made it easier to stay confident
and focused.

Timm was easy to talk to and always seemed to understand where the project was going.
Meetings felt productive, and his support and guidance made a big difference in the success of
the project and created a really positive working environment.

7.6.4 Further Competencies & Skills

Throughout this project, skills in C# and the Unity engine improved significantly thanks to
hands-on problem solving and research into back-end systems. Moving to a modular scripting
approach also made it easier to explore and test different features without affecting other parts
of the project. This structure allowed more flexibility to experiment, learn from mistakes, and
find working solutions more confidently.

This was also the first time a procedural generation system was developed, which involved both
theory and applied research to be conducted. That process helped deepen the understanding of
Unity’s capabilities, especially in how to generate dynamic game worlds. Another new area was
pathfinding. Learning how to utilise a system that detects and follows the player through
dynamic levels was very difficult.

Overall, the experience built a stronger foundation in programming, game systems, and Unity
workflows. These skills will be valuable in future work, for both solo and collaborative works.

7.6.5 How the Project Could be Developed Further

This project has a lot of potential for future improvements, with most of them focusing on
adding more content to the project. One main issue during testing was the lack of idle
animations in each cardinal direction being implemented, which made it harder for players to
tell which way their aim was facing, sometimes leading players to miss an attack.

Another common suggestion was to introduce more enemy types to keep combat interesting
and varied. Other possible additions include increasing room variety, creating a full map view
for better navigation, and adding systems such as keys to open doors, an inventory system for

Samuel Downey

157

Dungeon Scribbles

managing items, and a boss fight to give the project more of a goal. These ideas all support the
same development direction, expanding the project’s content to make the experience deeper
and more rewarding.

Overall, the project has a solid foundation to build on, and adding these features would help
bring the game closer to a more complete and polished version.

7.7 Conclusion

In conclusion, this project brought together all key stages of game development (Research,
Planning, Design, and Implementation) into one well-rounded and rewarding process. Early
research played a major role in guiding decisions about the game’s structure, helping to avoid
common problems and supporting important choices around tools, systems, and programming
techniques. This included deep research into procedural generation and pathfinding algorithms,
which were major technical milestones in the project. These systems helped shape a dynamic
and replayable game world and taught valuable lessons about how complex features work
inside the Unity engine.

The requirements and design phases, which were heavily influenced by the research phase,
gave the project a solid foundation to build on, making it easier to move into development with
clear goals and a structured plan. During implementation features such as animation, user
interface, audio , and gameplay mechanics were built and tested in smaller pieces, allowing for
better control, easier debugging, and a smooth development experience. Project management
tools like Miro helped keep the work on track, while feedback from testers provided useful
insights for future improvements.

Overall, the project achieved its goals and demonstrated what’s possible with a strong creative
vision and a steady, organized workflow. While there is still room to grow, especially with more
content and expanded features, the project as its stands is functional, stable, and a solid
foundation for future development.

Samuel Downey

158

Dungeon Scribbles

8 References

Adobe Systems Incorporated. (2012). Adobe Photoshop CS6 [Computer software].
https://www.adobe.com/products/photoshop.html

Belwariar, R. (2018, September 7). A search algorithm - GeeksforGeeks. GeeksforGeeks.
https://www.geeksforgeeks.org/a-search-algorithm

Chris’s Tutorials. (2021, May 3). How to import a 2D character sprite sheet and use in a
GameObjectin Unity (2021) [Video]. YouTube.
https://www.youtube.com/watch?v=FXXcOhTWIMs

Code Monkey. (2018, September 16). How to make a simple minimap (Unity tutorial for
beginners) [Video]. YouTube. https://www.youtube.com/watch?v=kWhOMJMihCO

Epic Games. (n.d.). Unreal Engine [Game engine]. https://www.unrealengine.com/
Figma, Inc. (2024). Figma (Version X.X) [Computer software]. https://figma.com/

Free Game Assets. (n.d.). Free base 4 direction male character pixel art [Game asset].
itch.io. https://free-game-assets.itch.io/free-base-4-direction-male-character-pixel-art

Free Game Assets. (n.d.). Free slime mobs - pixel art top-down sprite pack [Game
asset]. itch.io. https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-

sprite-pack

Game Code Library. (2023, August 10). Melee & ranged top down combat - Unity 2D
[Video]. YouTube. https://www.youtube.com/watch?v=-4bsGg7dVFo

Game Code Library. (2024, June 25). PERFECT tilemap sorting layers - Top Down Unity
2D #3 [Video]. YouTube. https://www.youtube.com/watch?v=UldOmwanBZg

Game Code Library. (2024, August 9). Player tracking and camera bounds - Top Down
Unity 2D #4 [Video]. YouTube. https://www.youtube.com/watch?v=kV9rVinFyAk

Game Code Library. (2024, August 22). Map transitions by waypoints - Top Down Unity
2D #5 [Video]. YouTube. https://www.youtube.com/watch?v=9r9YbHsjSKs

Godot Engine. (2023). Godot 4 [Game engine]. https://godotengine.org/

h8man. (2022, November 26). NavMeshPlus. GitHub.
https://github.com/h8man/NavMeshPlus

Igbal, M. A., Panwar, H., & Singh, S. P. (2022). Design and implementation of pathfinding
algorithms in Unity 3D. International Journal for Research in Applied Science and
Engineering Technology, 10(4), 71-79. https://doi.org/10.22214/ijraset.2022.41136

Maurya, A., Yaday, A., & Baiswar, A. (2022). Pathfinding visualizer. I-Manager’s Journal on
Software Engineering, 16(4), 24-24. https://doi.org/10.26634/jse.16.4.18801

McMillen, E., & Himsl, F. (2011). The Binding of Isaac [Video game]. Edmund McMillen.
https://store.steampowered.com/app/113200/The_Binding_of_lsaac/

Microsoft. (2024). OneDrive (Version X.X) [Computer software].
https://onedrive.live.com/

Samuel Downey 159

https://www.adobe.com/products/photoshop.html
https://www.geeksforgeeks.org/a-search-algorithm
https://www.youtube.com/watch?v=FXXc0hTWIMs
https://www.youtube.com/watch?v=kWhOMJMihC0
https://www.unrealengine.com/
https://figma.com/
https://free-game-assets.itch.io/free-base-4-direction-male-character-pixel-art
https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-sprite-pack
https://free-game-assets.itch.io/free-slime-mobs-pixel-art-top-down-sprite-pack
https://www.youtube.com/watch?v=-4bsGg7dVFo
https://www.youtube.com/watch?v=UId0mwanBZg
https://www.youtube.com/watch?v=kV9rVinFyAk
https://www.youtube.com/watch?v=9r9YbHsjSKs
https://godotengine.org/
https://github.com/h8man/NavMeshPlus
https://doi.org/10.22214/ijraset.2022.41136
https://doi.org/10.26634/jse.16.4.18801
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
https://onedrive.live.com/

Dungeon Scribbles

Microsoft. (2024). Visual Studio Code (Version X.X) [Computer software].
https://code.visualstudio.com/

Nuke Nine. (2018). Vagante [Video game]. Nuke Nine.
https://store.steampowered.com/app/323220/Vagante/

PitilT. (2022, March 30). Unity tutorial: Knockback anyone in ANY game [Video]. YouTube.
https://www.youtube.com/watch?v=ZyCixhKdslo

Quaternius. (n.d.). Pixel art top down basic [Asset pack]. Unity Asset Store.
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-
187605

RealtimeBoard, Inc. (2024). Miro (Version X.X) [Computer software]. https://miro.com/

Rehope Games. (2023, February 25). How to add music and sound effects to a game in
Unity | Unity 2D platformer tutorial #16 [Video]. YouTube.
https://www.youtube.com/watch?v=N8whM1GjH4w

Rehope Games. (2023, March 2). Unity audio mixer tutorial | Unity 2D platformer tutorial
#17[Video]. YouTube. https://www.youtube.com/watch?v=IxHPzrEq1Tc

Risi, S., & Togelius, J. (2020). Increasing generality in machine learning through
procedural content generation. Nature Machine Intelligence, 2(8), 428-436.
https://doi.org/10.1038/s42256-020-0208-z

Rootbin. (2023, July 21). 2024 Al pathfinding: Unity 2D pathfinding with NavMesh tutorial
in 5 minutes [Video]. YouTube. https://www.youtube.com/watch?v=HRX0pUSucW4

Rootbin. (2023, October 29). Unity tutorial: Roguelike room / dungeon generation (like
The Binding of Isaac) [Video]. YouTube. https://www.youtube.com/watch?v=eK2SIZxNjiU

Sasquatch B Studios. (2024, February 15). Top down movement - Unity tutorial [Video].
YouTube. https://www.youtube.com/watch?v=RN3yuCvazlL4

Shen, Z. (2022). Procedural generation in games: Focusing on dungeons. SHS Web of
Conferences, 144, 02005. https://doi.org/10.1051/shsconf/202214402005

Supergiant Games. (2020). Hades [Video game]. Supergiant Games.
https://www.supergiantgames.com/games/hades/

Team Cherry. (2017). Hollow Knight [Video game]. Team Cherry.
https://www.hollowknight.com/

Tokegameart. (n.d.). Pixel potions with animation [Asset pack]. Unity Asset Store.
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-
118801

Unity Technologies. (2024). Unity Asset Store [Digital marketplace].
https://assetstore.unity.com/

Unity Technologies. (2024). Unity Version Control (Version X.X) [Computer software].
https://unity.com/products/version-control

Samuel Downey 160

https://code.visualstudio.com/
https://store.steampowered.com/app/323220/Vagante/
https://www.youtube.com/watch?v=ZyCixhKdsIo
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-187605
https://assetstore.unity.com/packages/2d/environments/pixel-art-top-down-basic-187605
https://miro.com/
https://www.youtube.com/watch?v=N8whM1GjH4w
https://www.youtube.com/watch?v=IxHPzrEq1Tc
https://doi.org/10.1038/s42256-020-0208-z
https://www.youtube.com/watch?v=HRX0pUSucW4
https://www.youtube.com/watch?v=eK2SlZxNjiU
https://www.youtube.com/watch?v=RN3yuCvazL4
https://doi.org/10.1051/shsconf/202214402005
https://www.supergiantgames.com/games/hades/
https://www.hollowknight.com/
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-118801
https://assetstore.unity.com/packages/2d/environments/pixel-potions-with-animation-118801
https://assetstore.unity.com/
https://unity.com/products/version-control

Dungeon Scribbles

Unity Technologies. (2025). Unity (Version 6000.0.32f1) [Computer software].
https://unity.com/

User Testing Form. (2025). User testing form. Google Docs.
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWYyRHWGSS21XjOtmr795Z6RcUFie A
nb_AJ19uUnO0gZ3Q/viewform?usp=dialog

Yannakakis, G. N., & Togelius, J. (2011). Experience-driven procedural content
generation. IEEE Transactions on Affective Computing, 2(3), 147-161.
https://doi.org/10.1109/T-AFFC.2011.6

Samuel Downey 161

https://unity.com/
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWyRHWGSS2lXjOtmr795Z6RcUFieAnb_AJ19uUnOgZ3Q/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLSc7JTgWyRHWGSS2lXjOtmr795Z6RcUFieAnb_AJ19uUnOgZ3Q/viewform?usp=dialog
https://doi.org/10.1109/T-AFFC.2011.6

