
BSc (Hons) in Creative Computing

Pedagogy of Music Theory and
Improvisation through mobile
applications

Author: Eoan O’Dea | N00162393

Supervisor: Mohammed Cherbatji

Declaration of Authorship

I hereby certify that the material, which I now submit for assessment is entirely my work
and has not been taken from the work of others except to the extent of such work which
has been city and acknowledged within the text of my work.

Declaration

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my work

Signed:

Date: 08/05/2021

Abstract

This document contains research in the area of Music Theory and Improvisation to
determine if it can be taught through the use of mobile applications, using gamified
methods of education.

The idea behind this project grew from interviewing a variety of musicians, and how they
respected their instruments. Particularly comparing Pianists and Guitarists. A Pianist
would often spend years learning music theory, including chords, scales, chord
progressions etc. alongside learning pieces. After learning this, they usually can only
play sheet music after a large amount of practice. This was noticed to be the opposite
for many Guitar players, who would usually know very little about the subject of music
theory, but can often improvise at a very strong level.

The project aims to bridge the gap between these two musicians, understand the gap
within their knowledge and introduce the user to the dense subject of Music Theory in
small, consumable pieces of information, which they can learn from by using the
application consistently.

Acknowledgements
I would like to thank my supervisor, Mohammed Cherbatji. I could not have asked for a
better supervisor for this project. He offered dedication, attention to detail and
incredible guidance throughout. This project would not be half of what it is now if it
wasn’t for his invaluable experience. Working with him was an absolute pleasure.

This project would be nowhere without the large array of musicians who helped me
identify and understand the presented problem, and to test the application along the
way. This includes: Aoibhinn O’Dea, Clare Mohan, Christoph Busse, Johannes Hofmann,
Annika Schewitz, Theresa Kolb, Maccon Keane, Daniel Henshaw and many more.

I’d also like to thank Clare Appleby for guiding me along my journey of education, and
my fellow classmates, who made the whole year of remote learning much easier.

Lastly, I would like to thank my family, and in particular, my father, Paul O’Dea, for his
constant support not only throughout this thesis but throughout my four years at IADT,
which would not have been possible without him.

Table of Contents

1 Introduction 9

2 Research 9
2.1 Introduction 9
2.2 Problem Identification 10

2.2.1 Problem 1 - Fundamentals of Music Theory 10
2.2.1.1 Stave 11
2.2.1.2 Clefs 11
2.2.1.3 Types of Notes 12
2.2.1.4 Time Signature 13
2.2.1.5 Reading notes on a Piano 14
2.2.1.5 Reading notes on a Stave 14

2.2.1.5.1 Treble Clef 14
2.1.5.2 Bass Clef 15

2.2.2 Problem 2 - Teaching a Key 15
2.2.2.1 Scales and Chords 16

2.2.3 Problem 3 - Improvising 17
2.2.3.1 Chord Progressions 17

Progression 1 18
Progression 2 18

2.2.3.2 Licks 18
2.2.3.3 The Dimensions of Improvisation 19

2.2.3.3.1 Anticipation 19
2.2.3.3.2 Use of Repertoire 19
2.2.3.3.3 Emotive Communication 20
2.2.3.3.4 Feedback 20
2.2.3.3.5 Flow 20

2.3 Conclusion 21

3 Requirements 22
3.1 Introduction 22
3.2 Requirements Analysis 22

3.2.1 Existing applications 22
3.2.1.1 Duolingo (iOS, Android & Web) 23
3.2.2 Piano by Yousician (iOS, Android) 24

3.2.2 User Profile 26
3.2.2.1 Personas 27
3.2.2.2 Survey 27

3.2.3 Requirement Modelling 31
3.2.3.1 Requirements 32

3.2.3.1.1 Functional Requirements 32
3.2.3.1.2 Non-Functional Requirement 32

3.2.3.2 Use Case Diagram 33
3.3 System Model and System Requirements 33

3.3.1 Possible Technologies 34
3.3.1.1 MERN Stack 34

3.3.1.3.1 Advantages 34
3.3.1.3.2 Disadvantages 34

3.3.1.2 Laravel, Vue.js & MySQL 35
3.3.2.1.1 Advantages 35
3.3.2.1.2 Disadvantages 35

3.3.1.3 Flutter, GraphQL, Express.js, Node.js & MongoDB 35
3.3.2.3.1 Advantages 36
3.3.2.3.2 Disadvantages 36

3.3.2 Conclusion 36
3.4 Feasibility 37
3.5 Project Plan 37
3.6 Test Plan 38

3.6.1 Unit Testing 39
3.6.2 User Testing 39
3.6.3 System Testing 39
3.6.4 Integration Testing 39

4 Design 40
4.1 Introduction 40
4.2 Program Design 40

4.2.1 Technologies 40
4.2.2 Structure of the Technology Stack 43
4.2.3 Design Patterns 45
4.2.3 Application architecture 46
4.2.4 Database design 47
4.2.5 Data Design 48

4.3 User interface design 49
3.3.1 Wireframe 49
3.3.2 User Flow Diagram 52
3.3.3 Style guide 53

3.3.4.1 Colour 53
3.3.4.2 Typography 55

3.3.4.3 Shape 55
3.3.4.4 Sound 56

3.3.4 Environment 56
3.3.5 HiFi Prototype 57

4.4 Content Design 60
4.4.1 Music Theory Foundation Content 60
4.4.2 Music Theory Key Content 61
4.4.3 Improvising 62

4.4 Conclusion 63

5 Implementation 64
5.1 Introduction 64
5.2 Development Environment 64

5.2.1 Dart 64
5.2.2 Flutter 65
5.2.3 GraphQL for VSCode 65

5.3 Database 65
5.4 Backend 67

4.4.1 Serving Static Assets 68
4.4.2 Structure 68
4.4.3 Validation 71
4.4.4 Resolvers 71
4.4.5 Entities 73
4.4.6 Mikro ORM 75
4.4.7 GraphQL 77
4.4.8 Deployment 77

5.5 Frontend 79
5.5.1 Structure 80
5.5.2 Authentication & Routing 80
5.5.3 Models 83
5.5.4 GraphQL 84

5.5.4.1 Querying data from the server 84
5.5.4.2 Running Mutations to the server 87

5.5.5 Services 87
5.5.5 Lesson 88
5.5.6 Deployment 91

5.6 Admin Dashboard 92
5.7 Conclusion 95

6 Testing 97

6.1 Usability Testing 97
6.1.1 User Test Prerequisite 97
6.1.2 Tasks 98
6.1.3 Results 98

6.2 Unit / Integration Testing 99
6.2.1 Unit Testing 99
6.2.2 Manual Integration Testing 100

6.3 Performance Testing 100
6.3.1 Server Testing 100
6.3.2 Mobile Application testing 101

6.3.2.1 App Launch testing 101
6.3.2.2 CPU & Memory Testing 102
6.3.2.3 Memory Leak Testing 102
6.3.2.4 Broad Device Testing 103

6.3.3 Admin Dashboard testing 103
6.4 Conclusion 106

7 Conclusion 108
7.1 Project Management 108
7.2 Future Development 110
7.5 Learning Outcomes 111
7.6 Project Summary 111
7.7 Final Words 112

References 112

1 Introduction
Music theory is an extraordinarily dense subject. It can take people years to learn and
understand all of its details, and more often than not, people don’t understand the
benefits of learning it.

This is often the case for many pianists, who learn music in a very traditional way, they
often learn to read sheet music alongside learning scales, chords, key signatures
without ever applying this knowledge to anything, they usually know a specific set of
pieces they spent a long time learning by heart. This can be the opposite when it comes
to guitarists, who would normally know very little about the subject of music theory, but
can still improve at a very strong level.

This document aims to understand the gap between these two different musicians, and
not only teach a user the fundamentals, but show them the reason why learning it would
benefit them as a musician of any level.

This document is broken up into different chapters which focus on various steps that
were taken to complete this project: 2. Research - Discusses the fundamentals of music
theory, improvisation, and what is required to teach it. 3. Requirements - analysing the
problem, understanding the requirements and deciding on the technology stack. 4.
Design - resolves problems defined in the previous two chapters by creating the
program design, user interface design & content design of the application. 5.
Implementation - The process of implementing the application using the technologies
mentioned in the requirements chapter. 6. Testing - Testing the application and its
various components, both together and individually. 7. Conclusion - How the project was
managed, Future development and final words about the project.

2 Research

2.1 Introduction
Playing an instrument is a difficult skill to develop. Depending on the instrument and
your musical level, it usually involves countless years of practice before you can play a
piece, or song, proficiently.

This is particularly true with someone who can play the piano. By the time they obtain a
strong level, they can read sheet music, play a few pieces, and are familiar with a
collection of scales and chords.

A variety of pianists, along with other musicians were interviewed to gain insight for this
chapter. Something consistent amongst these interviewees was that they can read
sheet music, have good knowledge of music theory, and after a lot of practice, can play
a particular piece, but they cannot improvise. They are given all the necessary tools to
improvise, but they are never trained to use these tools in the right way.

It takes months of preparation for a particular piece, and a pianist can usually never
come up with their music instantly. This isn’t necessarily their fault, it‘s the way they
were taught music, to begin with. A similar example of this method of pedagogy is the
2nd level education system. A teacher will hand the student a large book and will tell
them to memorise it. Regardless of the fact that the student understands it, if they can
regurgitate it for an exam, the teacher has done their job.

This is slightly different when it comes to an (intermediate to advanced) guitar player. A
guitarist can play, and usually, can improvise. They manage to learn this from
experimentation. Despite not being taught music theory, scales, key signatures,
sight-reading or anything else that a piano student needs to know by heart, they can
improvise, and they can usually do it quite well.

This is what this research aims to solve, understanding how someone with no
theoretical knowledge can improvise, and how somebody with all the theoretical
knowledge can’t. It is still important to know this information, particularly if you want to
learn how to improvise, but we want to take the elements from how each side is taught,
and subsequently understand musical pedagogy.

2.2 Problem Identification
This section discusses the problems that this research aims to address. The following
problems will need to be researched in order to gain a better understanding on how the
application should work and what it needs to accomplish.

● Problem 1 - Fundamentals of Music Theory
● Problem 2 - Teaching a key
● Problem 3 - Improvising

2.2.1 Problem 1 - Fundamentals of Music Theory
The first problem is music theory pedagogy. As mentioned in the introduction, many
piano students are taught the fundamentals of music theory as they learn the piano,
including scales, chords, sight-reading, dictation, key signatures, etc.

They have been given the necessary tools, but they are never taught how to correctly
use them. This is exactly where the problem occurs. This report aims to understand why

this is the case, and how to resolve it to give the student the tools and knowhow to
improvise.

Learning music theory has been described as being like learning a new language. There
are rules, conventions, good practices and a general flow. (Biasutti, 2017)

If the above statement is true, this would mean a good way to learn music theory, would
be to approach it in small bite-size chunks, while consistently giving the student
different activities to learn.

Before the student can approach the very first key, we need to ensure they understand a
few fundamentals, which includes recognising a stave, the difference between a treble
and bass clef, understanding the type of notes and their values, what a time signature is,
and finally reading notes on a stave.

2.2.1.1 Stave
A stave is a collection of five lines and four spaces where the notes will be placed to
distinguish its pitch.

2.2.1.2 Clefs
A Clef distinguishes the left hand (Bass Clef) from the right hand (Treble clef) they are
split by the note in the middle of the piano, usually referred to as “middle C”.

Fig 2.2.1 - A treble and bass clef on two staves combined

The student needs to understand what these symbols represent, as it usually tells them
which hand to play with. For the most part notes on the top stave (Treble Clef), are

usually played with the right hand and vice-versa with the left hand for the bottom stave
(Bass Clef).

2.2.1.3 Types of Notes
It is also important for the student to understand the type of notes they may encounter
on a stave. This is an essential part of reading and understanding, as it explains how
long the note should be played for.

Note Name Value

Fig 2.2.2

Semibreve 1 - Whole note

Fig 2.2.3

Minim ½ - Half Note

Fig 2.2.4

Crotchet ¼ - Quarter Note

Fig 2.2.5

Quaver ⅛ - Eight Note

(Fig 2.2.2 - 2.2.5 sourced from Farrant, 2020)

It should be noted there are more notes, including Semiquavers, Demisemiquavers and
Hemidemisemiquavers, but these are more advanced and not necessary at this stage.

2.2.1.4 Time Signature
A Time Signature is a sign that indicates the number of beats within a single bar and the
note value that receives one beat. Time signatures can be set in simple or compound
time.

Time
Signature

2/2 3/4 4/4 6/8 C (Common
Time)

Beats Per
Bar

Two beats Three beats Four beats Six beats Four beats

Type of
Beats

Minums Crotchets Crotchets Quavers Crotchets

Time Simple Simple Simple Compound Simple

Simple time is any time signature where the bottom value matches the value of the note
e.g. A crotchet is a ¼ note, so a 4/4 time signature has a crotchet as it’s the type of beat.

Compound time is a time signature where the note division is into groups of three. You
immediately know you are in a compound time when you see an 8 as the bottom value.

Fig 2.2.6 - A stave with 2/4 time (Aichele, 2018)

In Fig 2.2.6 above, the time signature is set to 2/4. This means a maximum of two beats,
and if more notes are to be added another bar is required.

The time signature is how a musician understands the rhythm of the music and how to
keep in time with the piece of music as composed.

2.2.1.5 Reading notes on a Piano
It is important for the student to firstly find the centre note on the piano, which is
referred to as “Middle C”. In the beginning, this can be helpful to use as a reference point
when figuring out where certain notes are situated.

Fig 2.2.7 - An octave on a piano

A piano is divided up into octaves, which are a series of 12 notes (or 7 excluding the
black notes) in a certain pitch. The final C in Fig 2.2.6 above, is the beginning of the next
octave.

2.2.1.5 Reading notes on a Stave
Once all of the above information is understood, the student is ready to read notes on a
stave. This can be overwhelming at the beginning, so it is common to develop learning
techniques to help the student remember where notes are situated.

2.2.1.5.1 Treble Clef

Fig 2.2.8 - The lines on a stave Fig 2.2.9 - The spaces on a stave

(Fig 2.2.8 - 2.2.9 sourced from Sangma, 2017)

The notes placed on the lines in Fig 2.2.8 can be memorized using the following
mnemonic:

Every
Good
Boy
Deserves
Fruit

The notes in Fig 2.2.9 usually don’t require a mnemonic as they spell the word Face.

2.1.5.2 Bass Clef
There are also similar mnemonics to memorise notes within the bass clef.

Fig 2.2.10 - Lines in the bass clef Fig 2.2.11 - spaces in the bass clef

Good
Boys
Do
Fine
Always

All
Cows
Eat
Grass

(Fig 2.2.10 - 2.2.11 sourced from How To Play The Piano, n.d.)
(mnemonics from key-notes n.d.)

2.2.2 Problem 2 - Teaching a Key
In music, a key is a set of notes that correspond to a scale. Any piece, improvised or not,
will always follow this structure. The point of the structure is if you start somewhere,
you should always finish there, it is described as a song’s home (Dummies, n.d.).

The reason behind this structure is because, if you follow it, the sound created is
pleasing to your brain. If you don’t, the sound is unpleasant. For that reason, almost all
music follows this structure.

For this section, the key of C will be explained, as it is the first key a student will learn on
the piano.

A musical key will tell several things about a song; what sharps and flats are used (the
black notes on a piano) and the scale it is based on. The first note of the scale would be
the home note, and all of the other notes would have a relation to this note.

Each note within an octave on a piano has a different key, and they become more
complex the higher the position in the octave.

2.2.2.1 Scales and Chords
A scale is moving through an octave in a particular key. In the case of the C Major key, it
has no sharps or flats, so the movement is step-by-step from the initial C note on the
piano, to the next one.

A scale will always begin on the key it is in. For example, to play an A minor scale, begin
on the A note. An E melodic minor scale will start on the E key.

This document will not cover melodic minor scales, as they are advanced components
of music theory, but they are mentioned in the paragraph above to prove the structure
will always remain the same as one digs deeper into advanced music theory concepts.

In the case of C, the Major and Minor scales go as follows:

C Major C Minor Technical Name

1 C C Tonic

2 D D Supertonic

3 E E Flat Mediant

4 F F Subdominant

5 G G Dominant

6 A A Flat Submediant

7 B Diminished

B Flat Leading Tone

1 C C Tonic

(Ferrant, 2020)

Once the scale is understood, the chord of the specified key can also be easily
understood. A chord comprises the 1st, 3rd and 5th of a scale. Using the table above,
the chords for both C Major and C Minor can be easily understood to be as follows:

C Major C Minor

1 C C

3 E E Flat

5 G G

2.2.3 Problem 3 - Improvising
Once the student has learnt the necessary prerequisites e.g. the fundamentals of music
theory, and a particular key, then they are ready to improvise in this key. In traditional
piano pedagogy, the student wouldn’t usually be introduced to improvising at such an
early level.

Introducing the student to improvisation as early as possible helps them to see the
purpose to the theory, and gives them more of a practical approach to learning the
fundamental structure of music theory.

2.2.3.1 Chord Progressions
A chord progression is the backbone of any piece. It creates rhythm, structure and
sound. There are rules to how it should be structured, but it still offers a lot of flexibility
to the composer.

At this stage, the student has only learnt a single key, so they will be taught to improvise
solely in this key. Later on, as the student learns a second key, they will learn to
improvise in that key, and will subsequently learn to improvise between the two keys
they have learnt.

Chord progressions follow a certain structure, as mentioned in section 2.2.2 about a
human brain either agreeing with the sound heard or not agreeing with it. The following
is the structure of major chord progressions:

1 2 3 4 5 6

Goes to any 5 6 1 or 5 1 2

Using this table, a simple chord progression can be composed. Continuing in the key of
C, the piece should always begin (and end) with the tonic.

Following this structure, the following chord progressions had been composed:

Progression 1

Notes C-E-G A-C-E D-F-A G-D-B C-E-G

Chord C Major A Minor D Minor G Major Major

Sequence 1 6 2 5 1

Progression 2

Notes C-E-G F-A-C G-B-D C-E-G

Chord C Major F Major G Major Major

Sequence 1 4 5 1

Notice that both of these progressions end with a 5 - 1 progression. This is called
“Perfect Cadence”.

2.2.3.2 Licks
A lick is a short musical motif used during improvisation. The purpose of a lick is to
create a pattern that can (but does not have to be) used on different chord changes
throughout the improvisation.

It is essential to provide the student with a collection of licks, which can be used in
different types of improvised pieces.

Once the student has selected a lick, they can intertwine this with particular notes of the
chord they are playing, while always trying to stay within the constraints of that current
chord.

For example, you have a certain lick that starts and ends on 1 (C), but you are about to
move to your second chord, 4 (F), at this point, the lick should be transposed to begin

and end on the F note, while maintaining the pattern defined when playing it the first
time.

2.2.3.3 The Dimensions of Improvisation
At this point, the student has the fundamental knowledge to improvise at a basic level
within the key of C Major. But before the first key of improvisation is complete, it is
important to show the student the dimensions of improvisation;

● Anticipation
● Use of Repertoire
● Emotive Communication
● Feedback
● Flow

(Biasutti & Frezza, 2009)

Fig 2.2.12 - The dimensions of music improvisation - Biasutti, 2017

2.2.3.3.1 Anticipation
Anticipation requires thinking in advance about rhythmic, harmonic and melodic
elements of the piece while improvising. It aids the student to develop the ability to plan,
and think of the structure of the improvised piece.

A possible exercise to train this ability could be to stop playing the piece on an
instrument and to continue singing it.

2.2.3.3.2 Use of Repertoire
Use of Repertoire includes rhythmic and melodic features, such as licks, as described in
under heading 2.3.2. Using a variety of licks helps the performer to remember these

short motifs, and broaden the selection of licks they could potentially use, and helps
them develop strategies for properly selecting the right lick.

Possible exercises to develop this ability could be listening to and analysing famous
musical solos, or to listen to a particular solo and sing the solo back.

2.2.3.3.3 Emotive Communication
Emotive Communication includes emotional feelings and transmission of effectiveness.
The more experienced a performer is with improvisation, the more advanced the music
emotions are.

Possible exercises to develop this could include getting the student to improvise while
in a specific emotive state, in doing this they can find a correct sound for expressing the
feeling they currently feel, which grants a process of introspection.

2.2.3.3.4 Feedback
Feedback includes developing skills that produce real-time adaptations in response to
events. They are made to render the improvisation more logical and reliable. This can
include both external and internal feedback. External feedback involves communication
between performers, whereas internal feedback involves the performer themselves
focusing on their performance.

Feedback is vital for improvising because it allows the performer to react to any
changes, this could be rhythmic, melodic or anything else that the performer should be
aware of, and be ready to react to.

Possible exercises to develop this skill could include getting the student to perform with
their eyes closed to enhance concentration or to enhance risk-taking within a
performance, like having a “conversation” between two improvisers.

2.2.3.3.5 Flow
Like speaking a language, improving requires a flow, this regards ensuring the entire
performance has a natural and smooth progression to it.

Flow is a particularly difficult skill to develop as it requires all other dimensions to be
well practised.

Possible exercises to develop flow could involve setting concise objectives for the
student during their performance while understanding the difficulty level of these
objectives.

If the objectives are too easy for the student they will find the activity boring, and if they
find the objectives too difficult they will struggle to perform with a natural-sounding flow.

(Biasutti, 2017)

2.3 Conclusion
This section goes through understanding the current problem of how piano students are
currently taught and comparing them to how guitar students are taught.

It investigates how a piano student is taught the fundamentals of music theory as they
learn piano, but can never apply this knowledge to improvise, while a guitar player, who
usually has little to no knowledge in music theory can improvise at a strong level.

This section subsequently goes on to identify the problems that may be encountered
with music pedagogy, and breaks the process of teaching a student how to improve into
three fundamental problems:

● Fundamentals of music theory
● Teaching a key
● Improving

These three problems are investigated in-depth, and all terminology is described along
the way in the hope to educate the reader with a basic understanding of music theory.

By applying the knowledge learnt from all three sections, two Chord Progressions were
developed using the structure provided.

These progressions were subsequently played by an experienced musician who had
never seen them before, to prove the above information is correct.

It is believed that the musician must have a basic understanding of music theory before
they are taught to improvise, so the application aims to separate music theory and
improvisation lessons. Improvisation lessons will only be available to the user once they
have completed the appropriate prerequisites.

3 Requirements

3.1 Introduction
The purpose of this project is to develop an application that can help the user
with learning music theory using a piano. The aim here is to take inspiration
from educational gamified applications such as Duolingo, which make
learning something difficult fun and rewarding.

Learning to improvise on any instrument is an incredibly difficult task. The
goal of this idea is to make it possible for anybody to start with basic music
theory and build their level of knowledge and improve their skills.

From the outset, a huge emphasis was placed on performance. The
application was designed to be fluid and easy to use on all devices. The
primary reason being once a user encounters something slow or broken, they
can lose all motivation to continue learning.

With that in mind, the following technologies were proposed to build the
application:

● Frontend
○ Flutter

● Backend
○ Node.js
○ Express.js
○ TypeScript
○ GraphQL

● Database
○ MongoDB

3.2 Requirements Analysis
This section considers the requirements for the application. Similar
applications are considered for inspiration. The advantages and
disadvantages of similar applications are reviewed for inspiration. In addition,
a survey is conducted to understand the needs of the user.

3.2.1 Existing applications
A review of similar applications was carried out to determine the functionality
provided by those applications’. Some of the features were included in the
project plan.

3.2.1.1 Duolingo (iOS, Android & Web)
Duolingo is an intuitive language learning application capable of teaching the
fundamentals of over 37 languages.

Fig. 3.1 - Loading screen provides
interesting facts and cute animation

Fig 3.2 - Profile page provides
tracking statistics and social options

Fig 3.3 - Skill Tree Fig. 3.4 - Selects correct translation

Fig. 3.5 - In-Game - Tap the pairs Fig. 3.6 - In-Game - Translate

● Features
○ A native built application on each platform, resulting in very high

performance
○ Elegant U.I., professional and friendly brand
○ Ability to learn a language either from the very beginning or

from a certain level after taking an introduction test
○ Makes learning easy by rewarding the user
○ Targets skills in small minigames e.g. listening, speaking and

translating as shown in Figures 4-6 above.
● Advantages

○ Very fluid and easy to use
○ Smooth animations and strong design
○ Multiple mini-games to target all types of learnings
○ Social option to compete against your friends
○ Rewards users for watching advertisements, but does not

enforce it
● Disadvantages

○ If you get 5 questions wrong in the free version, you need to wait
a few hours to keep going

3.2.2 Piano by Yousician (iOS, Android)

Fig. 3.7 - Learn Tab Skill tree

Fig. 3.8 - Challenges Tab

Fig. 3.9 - Songs Tab

Fig. 3.10 - In a lesson

● Features
○ An application built in C# / Unity, resulting in game-like fluid

speeds and animations
○ Relatively easy to use UI
○ Ability to learn the piano either from the very beginning or from

a certain level after taking an introduction test
○ Makes learning easy by rewarding the user
○ Targets skills in small minigames e.g. listening, speaking and

translating as shown in Figures 4-6 above.
● Advantages

○ Relatively easy to use
○ Ability to improve your music theory skills or just learn songs
○ Voice over recording talks to you and walks you through lessons

● Disadvantages
○ Quite a complex UI
○ The design feels a bit cluttered and overwhelming
○ The first thing you see as a free user is in-app purchases which

generally feels a little cheap
○ You must always be by a piano to use it

3.2.2 User Profile
It is important to build a profile of the user to help understand the users’
requirements.

A series of studies were carried out in an attempt to understand what would
be useful to the client. Firstly a Persona was created. Then a survey was sent
to over twenty people with varying skill levels in music.

3.2.2.1 Personas
A fictional character was created to understand who the relevant users are,
and their needs.

Fig. 3.2.11 - Persona of Meghan Kolb, built using Adobe Photoshop

3.2.2.2 Survey
This section will provide an overview of the decisions made based on the
survey. The survey was purposely aimed at all types of musicians, even
though the application is focused solely on pianists. Other musicians could
still provide useful feedback.

The results of the survey were overwhelmingly positive. Twenty-one
responses were received, and the feedback was extraordinarily useful.

https://www.adobe.com/

Fig. 3.2.12 - Survey Question built using Google Forms

Based on Fig 3.2.1.2, there was a good variation of musicians, the majority
had played the piano (50%). Only one person who took the survey had not
played an instrument.

Fig. 3.2.13 - Survey Question built using Google Forms

The average level of knowledge with music theory was 5.45. The application
should take into account the user’s level., It should allow the user to skip
ahead should the lessons be too easy.

https://www.google.com/forms/about/
https://www.google.com/forms/about/

Fig. 3.2.14 - Survey Question built using Google Forms

Based on Fig 3.2.13 and Fig. 3.2.14, there was a good mix of users with
varying levels of knowledge of both music theory and improvisation.

Even though a lot of users are well versed in music theory, it is clear from Fig.
3.2.14, that the majority still struggle to improvise higher than the basic level.

Fig. 3.2.15 - Survey Question built using Google Forms

From the responses to the above question in Fig 3.2.15, 60% of the people do
not practise the instrument they play. This is a clear indication that the app
requires some sort of incentive to ensure the user feels rewarded to
consistently use it.

https://www.google.com/forms/about/
https://www.google.com/forms/about/

Fig. 3.2.15 - Survey Question built using Google Forms

Fig 3.2.16 - Survey Question built using Google Forms

Based on the responses of 2.15 and 2.16, it is clear most users are looking
for some sort of help when it comes to practising in general. Music Books
and Youtube Videos are popular, but they provide no feedback on
improvement or mistakes. Existing apps do exist but some have either a bad
user interface (UI) or encourage the user to upgrade before offering anything.

https://www.google.com/forms/about/
https://www.google.com/forms/about/

Fig. 3.2.17 - Survey Question built using Google Forms

Based on Fig 3.2.17, 100% of submissions had thought the application would
be useful.

Fig. 3.2.18 - Survey Question built using Google Forms

Based on the responses of Fig. 3.2.18, the majority of users search for a
practical application, based more on interactivity, with real-time feedback
whilst rewarding consistency.

Link to the Survey - https://forms.gle/jj9JHxrFZJvDMoRY7

3.2.3 Requirement Modelling
This section discusses the functional and non functional requirements based
on the research and requirements analysis that was carried out in the
previous chapters.

https://www.google.com/forms/about/
https://www.google.com/forms/about/
https://forms.gle/jj9JHxrFZJvDMoRY7

3.2.3.1 Requirements
A series of functional and non-functional requirements was compiled
non-functional to understand what the application should offer to users. The
functional requirements are purely technical functionality, whereas the
non-functional are more of a general idea.

3.2.3.1.1 Functional Requirements
● User Authentication
● User skill tree
● Pitch detection
● Music theory lessons
● Improv lessons
● Lessons a user can do with a piano
● Lessons a user can do without a piano
● Progress tracking to show the user how much they’ve improved
● Streak/reward system

3.2.3.1.2 Non-Functional Requirement

Requirement Description

Performance The application should be fluid, have quick response
times from the server

Usability The application should offer an easy to use navigation
and have a satisfying, friendly UI

Reliability The application should be reliable and there should be
contingencies in place should the server crash.

Scalability The application and server should be able to handle a
growing number of users

Security All data submitted to the application should be
protected and stored securely

Maintainability The applications’ codebase needs to be easily
maintainable for all devices it is deployed to

3.2.3.2 Use Case Diagram

Fig. 3.2.12 - Use Case Diagram - Built using Draw.io

3.3 System Model and System Requirements
A system model was developed to identify the primary components of the
application and to consider how these components will communicate with
each other. The section provides a diagram representing the system model
and a discussion about its components.

https://app.diagrams.net/

3.3.1 Possible Technologies

3.3.1.1 MERN Stack
The MERN stack consists of MongoDB, Express.js, React.js & Node.js.
However, if this stack were chosen, it would be an intelligent decision to swap
out React.js for React Native, allowing the application to be deployed to the
iOS App Store, and the Google Play Store.

Fig 3.3.1 - The MERN Stack - mongodb.com

3.3.1.3.1 Advantages
● Express.js and Node.js go hand in hand and are very powerful together
● The MERN stack is a very popular technology stack. There are a lot of

online resources available to aid with the development.
● MongoDB is a NoSQL document database, which allows the developer

to work with JSON throughout the technology stack.
● All components of this stack are open-source

3.3.1.3.2 Disadvantages
● Although non-relational databases are hugely popular, they still do not

compare to relational databases. The latter is still used by large
technology companies like Facebook, Google etc.

https://www.mongodb.com/mern-stack

3.3.1.2 Laravel, Vue.js & MySQL

Fig 3.3.2 - Laravel, Vue.js & MySql - Built using draw.io

Using Laravel, Vue.js & MySQL together is not only very powerful but also
quite straightforward to set up. Since Laravel is built in PHP, it goes
hand-in-hand with MySQL. It provides ease of use, flexibility & scalability. The
same goes for Vue.js, which is a very developer-friendly JavaScript
Framework.

3.3.2.1.1 Advantages
● Very developer-friendly
● Clean Architecture
● High performance and steady reliability

3.3.2.1.2 Disadvantages
● Data must be converted from SQL to JSON format for frontend

manipulation
● Vue.JS can only be deployed to the web unless it is used as a tool like

NativeScript to run on a mobile device.

3.3.1.3 Flutter, GraphQL, Express.js, Node.js & MongoDB

Fig 3.3.2 - Flutter, GraphQL, Express.JS, Node.JS & MongoDB - Built using
draw.io

https://app.diagrams.net/
https://app.diagrams.net/

It is possible to combine the server-side of the MERN stack, with a more
reasonable technology for the frontend. Since the primary requirement of this
application is performance, it is a good idea to use Flutter, as it offers Native
performance on Mobile Devices.

The Flutter team show their architecture layers in their documentation, the
technology runs on a C/C++ engine. They also mention the embedder
provided, which is written in the language appropriate for the running platform
- e.g. for Android: Java and C++, and for iOS / macOS: C / Objective C++.

3.3.2.3.1 Advantages
● Easy to use coming from a background in web development
● Native device performance
● The flexible development environment and hot reloading
● Built-in component libraries (Material UI + Cupertino)
● Multiple platform deployment from one codebase
● Options to later implement web/desktop applications
● GraphQL offers lightweight queries and relatively straight forward

implementation
● Very strong documentation

3.3.2.3.2 Disadvantages
● Very little documentation on Flutter, GraphQL & Node.js combination
● Flutter is still a relatively new Framework, so some documentation may

be lacking

3.3.2 Conclusion
After an in-depth study of multiple technologies and technology stacks, it was
decided to use Flutter as the frontend technology, and a combination of
GraphQL, Express.JS, Node.JS as the backend technologies, and MongoDB
as a database.

Although the developer is well versed in web technologies like React.JS &
React Native, there was an inclination to try a different programming
language. Considering what Flutter has to offer compared with the other
languages, it presented as a clear winner.

3.4 Feasibility
The technology being implemented into this project are as mentioned in the
introduction:

● Frontend
○ Flutter
○ Material UI

● Backend
○ Node.js
○ Express.js
○ TypeScript
○ GraphQL

● Database
○ MongoDB

In the development of this project, it is feasible to create such an application
using the technologies stated above. There is a strong emphasis on
performance from the ground up. As a result, Flutter will be used to deliver a
native frontend performance and GraphQL for high-performance database
querying.

The main issues are believed to be in the Frontend, building the application
using Flutter which is a relatively straight forward technology, The idea to
implement such functionality as pitch detection in a programming language
that is unfamiliar to the developer is ambitious.

Although Flutter is very developer-friendly, it is still a new technology for the
developer. In an attempt to overcome these issues, the developer enrols in
several tutorials to become proficient with the technologies.

The server will be written using TypeScript. The reason for that is that it is
extraordinarily powerful to use. Although it does result in more time declaring
attributes and types, It can immediately capture errors by the developer. The
result is in saving time, in the long run, debugging poorly written code.

3.5 Project Plan
This project will be approached using an agile methodology. It is impossible
at this stage to predict what exactly will be needed to be done each week, so
the project plan is to have a weekly meeting with the project supervisor, to
discuss what has been done, and what should be done for next week.

All meetings will be logged, and all tasks will be added to Trello to aid with
project management.

The following is a proposed project plan but could be subject to change.

Fig. 3.5.1 - Project Plan built using Google Sheets

The above diagram shows a preview of the project plan, which was built using
the Gantt project management methodology.

The full project plan can be previewed from this link:
https://docs.google.com/spreadsheets/d/1gVTDwOJfBWc7Ms1rhW8vOj6u8
8FkRh5OSfAc-FHSdbA/edit?usp=sharing

3.6 Test Plan
A series of tests will be conducted on an application of this magnitude. As
the emphasis is on performance, it is important to ensure each component of
the application operates at maximum efficiency.

The following are the different types of tests that will be performed on the
application:

http://sheets.google.com
https://docs.google.com/spreadsheets/d/1gVTDwOJfBWc7Ms1rhW8vOj6u88FkRh5OSfAc-FHSdbA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1gVTDwOJfBWc7Ms1rhW8vOj6u88FkRh5OSfAc-FHSdbA/edit?usp=sharing

3.6.1 Unit Testing
Unit testing is a type of automated testing, usually written by the developer
after writing a certain piece of code. It ensures that builds run smoothly, and
aids with preventing crashes at runtime.

Unit tests must be performed on both the front and back end of the
application, and it is also a good idea to set up a continuous integration
system using a service like Github Actions, allowing for automatic
deployment after all tests have passed.

3.6.2 User Testing
The purpose of User Testing is to get real users to test your application,
without the developer interfering with their choices. A User test usually
contains a list of tasks that the tester needs to complete. They should not be
helped in any way, but rather observed on how they go about completing
those tasks. If any of the tasks are particularly difficult for the tester to
complete, they should be reviewed and changed if needed.

It is intended that user testing will take place in the design phase (with
prototypes), and the implementation phase with an Alpha or BETA release of
the application.

3.6.3 System Testing
The purpose of System testing is to test the entire system, including how its
components communicate with each other, and the speed at which this
happens.

System testing will take place in the implementation phase of the project, to
ensure the entire system will perform at high speeds.

Various types of System tests will take place, including Profile Analysis on the
mobile app opening speeds, using tools like XCode Instruments and Android
Studio.

Network request tests will also be performed to ensure data can be retrieved
quickly from the server

3.6.4 Integration Testing
Integration testing is also known as functional testing. Its primary purpose is
to test certain CRUD (Create, Read, Update and Delete) services on the
application. A perfect example of this would be if the user wants to update

their username. It is intended that integration testing will take place during
the implementation phase of the project.

4 Design

4.1 Introduction
This chapter describes the design of the application. It aims to resolve the problems
proposed in the research and requirements chapters. The primary focus of the
application is to educate users in a gamified manner in music theory, and subsequently
with improvising on the piano.

Due to music theory being so dense, it is essential to present the information in a
consumable way to the user, so the problems presented in the research chapter can be
solved. Educating the user in a gamified way means the user should be rewarded for the
activities they part-take in, and they should be given a reason to return to the application
and use it consistently.

The design of an application is divided into:
1. Program Design
2. User Interface Design
3. Content Design

4.2 Program Design
The program design refers to the design required to make the task of programming and
coding of the application more straightforward. Due to the nature of the idea, the
application must be fluid and easy to use for the user. This means all components of
the application should communicate efficiently.

This chapter includes:
● What technologies were chosen
● Why the technologies were chosen
● The structure of the technologies
● The architecture of the application
● Database design

4.2.1 Technologies
The technologies are originally chosen, as defined in the requirements section, to build
this application were:

● Frontend
○ Flutter
○ Material UI

● Backend
○ Node.js
○ Express.js
○ TypeScript
○ GraphQL

● Database
○ MongoDB

After further research was conducted, it was concluded that some backend
technologies would need to be altered to build the server more efficiently. The
technology stack was restructured as follows:

● Frontend
○ Flutter
○ Material UI

● Backend
○ Node.js
○ Apollo-Express
○ Mikro ORM
○ Type-GraphQL
○ TypeScript
○ GraphQL

● Database
○ MongoDB

Type-GraphQL, Apollo and Mikro ORM were added to the technology stack because it
became clear that building a GraphQL server using Node.js & Express.js resulted in a lot
of code being repeated.

When building a GraphQL server, it is important to define definitions for each type of
data the server will process and store.

const typeDefs = `
type User {

id: ID
firstName: String
lastName: String
password: String
email: String

}
`

Code Block 4.2.1 - A sample type definitions using GraphQL

Along with this, there is also a need to define a schema for data that will be stored in
the database (MongoDB):

const userSchema = new mongoose.Schema({
firstName: { type: String },
lastName: { type: String },
password: { type: String },
email: { type: String },
});

const User = mongoose.model("user", userSchema);

Code Block 4.2.2 - A sample mongoose schema to store in a MongoDB instance

The above code blocks (4.2.1 & 4.2.2) are simplified for example, but the server
architecture contains a lot of configuration, and building the entire server using this
method would result in a lot of repeated code.

For that reason, Mikro ORM & Type-GraphQL were implemented, which allows the
definition of both user type definitions and schema in one go:

@ObjectType()
@Entity()
export class User extends Base<User> {
@Field()
@Property()
public firstName: string;

@Field()
@Property()
public lastName: string;

@Property()
password: string;

@Field()
@Property()
@Unique()
public email: string;
}

Code Block 4.2.3 - A User entity sample, which merges a schema and type definition

The use of these technologies aims to simplify the development of the backend by
aiding with defining relationships between different entities - e.g. A user could have
multiple completed lessons, which can be added as an OneToMany relationship to the
user entity. However, Mikro ORM & Type-GraphQL are new technologies that need to be
learned to be used correctly.

@Field(() => [Lesson])
@OneToMany(() => Lesson, (b: Lesson) => b.user, { cascade: [Cascade.ALL] })
public completedLessons = new Collection<Lesson>(this);

Code Block 4.2.4 - A OneToMany relationship defined within the User entity

Type-GraphQL was also useful for the validation of data being sent to the server. As
shown in Code Block 4.2.5 below, we can ensure that all data being sent to the server to
add a user, for example, is in the correct format, and contains all the required
information to create said user.

@InputType()
export class UserValidator {
@Field()
@IsEmail()
@IsNotEmpty()
public email: string;
}

Code Block 4.2.5 - A UserValidator sample using type-graphql and class-validator

Apollo Express would be used instead of Express.js because it integrates nicely with a
GraphQL & Mikro ORM environment. It is a community-built package built with high
performance in mind, along with ease of use with express.js. (apollographql, 2021,
January 16)

For the Frontend of the application, a decision was made to use Flutter, along with
Material UI as a component library. The reason for this is Flutter offers Native
performance on Mobile Devices, resulting in a very fluid optimized application. Material
UI was chosen as it is built into Flutter out of the box. It also is relatively straightforward
for a developer coming from a background in Web technologies like JavaScript.

4.2.2 Structure of the Technology Stack
As mentioned in Section 4.2.1 above, the following technologies were chosen to build
this application:

Fig 4.2.2 - Chosen Technology Stack Breakdown - built using draw.io

The front end would need to communicate with the server using a dart package named
graphql_flutter. This allows the application to make GraphQL queries, mutations and
subscriptions to the server. It is an open-source package built to operate similarly to
Apollo’s client package, which is very useful for development as a lot of the
documentation and code is structured similarly to Apollo.

GraphQL supports queries, mutations and subscriptions. Queries and mutations work
quite similar to how REST API would operate, but subscriptions work similarly to how a
web socket would operate.

Table 4.2.1 below displays the supported GraphQL methods, what they are similar to
and an example of each:

GraphQL Method Similar to Description Example

Query REST GET Request Retrieving data
from the server

Retrieve a list of
lessons

Mutation REST POST
Request

Posting data to the
server

Creating a new user

Subscription Web Socket
connection

Real-time
information from
the server

Viewing a list of
users who are
online in real-time

https://app.diagrams.net/

Table 4.2.1 - GraphQL methods compared to traditional data transferring methods

Having subscriptions built-in is extraordinarily useful to the developer, as, without it, one
would normally need to install a package on both the frontend and backend, which
would communicate with each other. This results in a much simpler way of displaying
real-time data.

4.2.3 Design Patterns
The application is designed similar to the Model View Controller (MVC) Design pattern.

Instead of Models, the application uses entities to represent the data. e.g. A user would
be an entity, and it would contain information like name, email password etc.

The view would be where Flutter comes in, it is everything displayed to the user where
GraphQL is used to fetch this information.

Instead of a controller, a resolver is used. This is where all of the business logic for a
certain user would happen. e.g. Creating, viewing, updating and deleting a user would all
happen within the resolver.

4.2.3 Application architecture
Fig 2.3 below includes a diagram of the application architecture

Fig 4.2.3 - Application Architecture - built using draw.io

As shown in Fig 4.2.3 above, all requests to the server can only be done via the GraphQL
Client installed within a Flutter Application. This application can either be an iOS device,
an Android device, or a web browser (Dependent on sufficient development time). The
GraphQL Client communicates directly with the GraphQL EndPoint on the server, which
in turn only exposes a single endpoint from the server.

The server will check any requests with the appropriate validator to ensure the
requested data is in the correct format before executing any business logic e.g. creating
a user.

https://app.diagrams.net/

After the validator passes, the resolver will create a new user using the user entity and
will store that in the MongoDB Cloud Cluster, which is hosted in the MongoDB Cloud.
The server communicates with the Database using a Uniform Resource Identifier (URI).

4.2.4 Database design
This section discusses the structure of the database. An Entity Relationship Diagram
(ERD) was developed to understand each entity, its appropriate data types, and its
relationship with other entities.

The User entity is the most complex, as it contains two arrays of foreign entities;
Completed Modules - to track which modules the user has completed and Incorrect
Questions - which is intended to ask the user these questions again at a later lesson, in
a hope that they have learnt from their previous incorrect answer.

A Module contains a collection of lessons and an appropriate level. A User cannot
partake in a module if their level is below the level of the module. It also contains a type
of either Music Theory or Improvisation, which distinguishes the type of module it is.

To complete a Module, the User would need to complete all lessons associated with it.
Once completed the users level will be incremented.

A Question entity is the most flexible entity, as it can be one of four enum types; Scale,
Chord, Sign Reading or Chord Progression. There is also a boolean, requiresPiano, which
separates questions into ones that do or do not require a piano. The reason for this is if
the user is in a position where they don’t have access to a piano, they can continue to
partake in Lessons.

Fig 4.2.4 - Entity Relationship Diagram V5 - built using draw.io

https://app.diagrams.net/

4.2.5 Data Design
A strong benefit of GraphQL is when you query the server, you specify how much or how
little data you want to be returned. Queries can be combined into one to prevent
subsequent requests for similar data.

Take code block 4.2.5 below as an example:

{
get {

id
name
email

}
}

Code block 4.2.5 - a get user graphQL query

The above query requests the current logged in user on the server, by their JSON Web
token (JWT). The user decrypts this token and can see which user is currently logged in.

If no token is provided, the user returns 401 Unauthorized. Otherwise, it will return the
requested information above - id, name and email.

{
"data": {

"get": {
"id": "5ff0a833e20d78000431491d",
"name": "test",
"email": "test@test.ie"

}
}

}

Code block 4.2.6 - Query response

Code block 4.2.6 displays the response on a successful request. One can see that it
gives only the information requested, and nothing more.

This also works for relational data. For example, if one wanted to request all lessons the
current logged in user has completed one could run the following query:

{
get {

id
name
email
completedLessons {

id
level

}
}

}

Code block 4.2.7 - a get user and completed lessons graphQL query

The query above in code block 4.2.7 requested the id and level of all lessons the current
logged in user has completed. This will return an array of lessons within the user object.

Selecting as little or as much information as required makes the server extremely
flexible for all sorts of applications to connect to it. For instance, the mobile application
can request this information easily, but there could also be an admin panel that
connects to it, requesting data that is shaped in an entirely different way.

GraphQL accommodates this in a very easy way. All of the queries and data schemas
can be viewed in the development environment, using the GraphQL playground, which is
provided and can be used to test all queries.

4.3 User interface design

3.3.1 Wireframe
A wireframe shows the content and functionality for the layout of a page. A wireframe
usually does not look at typography or colour.

Fig 3.3.1.0 - Music Theory Screen Fig 3.3.1.1 - Improv Screen

Fig 3.3.1.2 - Profile Screen Fig 3.3.1.3 - Profile Screen on Scroll

Fig 3.3.1.4 - Lesson Variation 1 Fig 3.3.1.5 - Lesson Variation 2

Fig 3.3.1.6 - Lesson Variation 3

3.3.2 User Flow Diagram
This shows how the user will navigate from one page to another page within the
application.
A flow chart was created to understand how a user would interact with the application.

Fig 3.3.2.1 - User Flow Chart built using draw.io - built using draw.io

Fig 3.3.2.1 above portrays how a user will flow through the application. The application
first checks whether the user is existing or not. This will entail some key-pair value

https://app.diagrams.net/

stored within the phone’s storage to tell the application whether it has been opened
before or not.

If the user is non-existent, they would be directed straight into an induction, where the
user’s level would be determined. This is done by asking a series of questions with
varying degrees of difficulty. The intention here is to capture the user’s interest
immediately with a reward for answering questions, Another approach is to make the
user register immediately, which may result in them losing interest.

Once completed, and the user has been successfully authenticated, they will be brought
to the main screens (The blue boxes in Fig 3.3.2.1 above). From here they can see a
variety of lessons between music theory and improvisation, depending on how they
performed in the induction.

3.3.3 Style guide
This shows the colours, typography and layout for a single page. Often the theme for
this page will be used for all pages in the app. Within this section, the colour scheme is
explained and why that colour scheme has been chosen. This section also covers which
fonts are being used, why they have been chosen, grids and spacing.

The application uses Material UI as a component library. There are multiple reasons for
this including developer experience, the strong standard of documentation and the fact
that it is built into Flutter, so it requires no additional packages to be installed into the
application.

Using Material UI involves following their design guidelines on typography, colour, shape
and sound.

3.3.4.1 Colour

Fig 3.3.4.1 - Colour Palette V2 - Built using coolors.co

Fig 3.3.4.1 above is the selected colour palette for the application. The primary and
secondary colours will be the most prominent, but following Material UI’s colour

https://coolors.co/

guidelines, it is suggested that to have both light and dark variations on both primary
and secondary colours, which are automatically generated within the theme.

The colours were generated using Material Design’s Color Tool, which gives a full
selection of all of their recommended colours, their variations, and what type of text
colour is legible on each.

Fig 3.3.4.2 - Primary Colour variations and legible text using Material Designs Color Tool

https://material.io/resources/color/

3.3.4.2 Typography

Fig 3.3.4.2 - Typography, generated using Google Fonts

As shown in Fig 3.3.4.2 above, Quicksand Bold was chosen as the heading font for the
project, and Open Sans Regular was chosen as the body font.

Quicksand was chosen as it functioned well with the rest of the design of the project.
The font has sold edges and reflects a friendly tone, which fitted perfectly within the
educational minimalist design approach.

Open Sans Regular was chosen as the body text because Google Fonts had
recommended it as a popular pairing. It was believed that the combination looked good
together, and the presented information is clear, concise and modern.

3.3.4.3 Shape

Fig 3.3.4.3 - Shape as defined by Material UI’s Design guidelines

https://fonts.google.com/
https://material.io/design/shape/about-shape.html#shaping-material

Fig 3.3.4.3 displays a default Material shape. This will be used for Cards throughout the
application, to present a sense of emphasis and hierarchy.

The Shape will be adjusted to have slightly rounded corners of about 4dp or 8px. It is
believed that giving the shape a softer edge provides a friendlier and more educational
approach to the design.

3.3.4.4 Sound
Material Design defines sound as a method to communicate information that improves
the user experience (Google, 2020)

It is broken up into three sections within an application; sound design, music and voice.
All of which portray brand identity in different ways.

For the application, it is intended to use sound design for actions the user takes, e.g.
correctly answering a question, or completing a lesson. The aim is to associate
successful actions with a specific sound, which can reinforce the meaning of the
interaction, and the satisfaction of the user.

Material Design describes the sound as feedback as “Earcons” as is considered an
important aspect to implement into your application, despite it often being overlooked.

It is also mentioned, however, that silence is just as important as applying sound. There
are many instances when sound is not required and using too much sound can have a
negative effect on the user experience. Research has shown that sound should not be
implemented on frequent actions, as the user will quickly grow tired of them. (Google,
2020)

Therefore, it was concluded that sound would be applied to rewarding actions, and
potentially non-rewarding actions, e.g. answering a question incorrectly, to give the user
a satisfying user experience.

3.3.4 Environment
Both the frontend and the backend of the application will be developed using Visual
Studio Code. The reason for this is Visual Studio Code is a flexible development
environment, with support for many extensions to aid the developer in building all sorts
of applications.

For the frontend, the Dart & Flutter extensions were installed, which allow you to run,
debug and build a Flutter app on either an Android Emulator, iOS Simulator, or a physical
device directly from Visual Studio. It also auto-formats dart code and highlights errors in
real-time before compiling the application.

While running the application in development, the extension also supports hot reloads.
This is extraordinarily useful as changes to the code, the application will reload these
changes in real-time.

For the backend, Visual Studio Code integrates very nicely with TypeScript. This results
in a very smooth development experience. Visual Studio Code presents pre-defined
code-snippets, IntelliSense code completion, specific information when you hover over
functions and properties and type errors before the code is even compiled.

3.3.5 HiFi Prototype
A High-Fidelity prototype was created from the Wireframe shown in Chapter 3.3.1. It
was built using Origami Design, built by Facebook.

The prototype is fully interactive allowing a flow through the application, which will
become useful during the development of the application.

Fig 3.3.5.0 - Welcome Page Fig 3.3.5.1 - Register Page Fig 3.3.5.2 - Login Page

Fig 3.3.5.3 - Lesson /
Induction 1

Fig 3.3.5.4 - Lesson /
Induction 2

Fig 3.3.5.5 - Induction
Complete

Fig 3.3.5.6 - Music Theory
Screen

Fig 3.3.5.7 - Improv Screen Fig 3.3.5.8 - Profile Screen

Fig 3.3.5.9 - Profile on Scroll Fig 3.3.5.10 - Edit Profile Fig 3.3.5.11 - Lesson
Complete

The wireframe displays a full flow between the pages of the application. It begins by
prompting the user to take an induction, to determine the level of the user. This will ask
a series of questions before the user is prompted to register for the application.

Once completed, they will be prompted to register so their results will be saved. The
user is then brought to the main screen, which presents three tabs:

● Theory Lessons
● Improvisation Lessons
● Profile

The theory lessons tab displays a list of lessons within a tree view. Once a certain
amount of these are completed, the user will then be able to part-take in lessons in the
improvisation tab.

On the profile tab, the user can see information on their current statistics, and goals that
they can achieve by continuing with lessons. They also have the option to edit their
profile by clicking the settings icon on the profile screen.

4.4 Content Design
The content of the application is particularly important because as mentioned in
previous chapters, music theory is an extraordinarily dense subject. So the user must
not be overwhelmed. The presented information must be easily digestible in small
segments, and it is important not to have the goals too broad.

With this in mind, it was decided that the lessons would be broken up into:
1. Music Theory Lessons in a certain Key
2. Improvisation Lesson in a certain Key
3. Improvisation Lesson between two Keys

A user cannot part-take in an Improvisation lesson in a certain key before they complete
the theory lesson for that key. This is done because the theory taught in this lesson is
important and applicable to the subsequent improvisation lesson.

Once the user has completed a music theory lesson in C, for example, they will be able
to do the improvisation lesson in that key. After this, the user can continue to complete
a music theory lesson in another key, e.g. G. Once this is completed, and they complete
the improvisation lesson in G, they will be able to do an Improvisation lesson between
the two keys.

An Improvising lesson between two keys can only be completed once the user has
completed the appropriate prerequisites; both the theory and improvisation lessons for
both of those keys.

4.4.1 Music Theory Foundation Content
Before approaching any keys with the music theory lessons, the user will first need to
complete the foundation lesson.

The foundation lesson will cover all the bases for things they need to know:
1. Describing a Stave
2. Clefs - Treble and Bass
3. The type of notes, the names and values
4. Time signatures
5. Counting and Rhythm

These lessons will involve asking users questions on these, with increasing difficulty
each time. An example of this will be asking the user which notes on the stave this is:

Fig 4.4.1.1 - F letter on a Treble Clef Stave

The user will be asked which letter it is, what Clef it is on and the value of that note.
Should they progress and answer questions correctly, the note name will be removed
and they will be asked to show which note is where on a stave without seeing the letter
below.

When it comes to rhythm, the user will be prompted to play (or clap) a single note along
with the rhythm specified in a time signature. This will allow them to adapt to certain
time signatures and will come to their advantage later on within the improvisation
lessons.

4.4.2 Music Theory Key Content
Once the user has the foundations down, they will move on to a lesson in a particular
key. This will start on the Key of C, but the intention here is to program this section
within a dynamic structure, allowing additional keys to be easily added later on without
having to add additional code to the project.

The structure of a key lesson will be as follows:
1. Teaching the scale of that key
2. The chord of that scale
3. Inversions of the chord

To teach the scale, it will begin with prompting the user in the structure of how a scale
can be understood, and they can then be walked through a scale with the application.
This means as they play a scale on the piano, the application would be able to tell the
user which notes are played correctly.

The intention here has pitch detection functionality, which could understand the pitch of
what note is being played by the user on their piano. It is also intended to present a
“Can’t Play right now” option, which will then show a piano on screen for the user, in
case they are in a position where they cannot play the piano.

Once the scale has been taught, the subsequent stages should not be as difficult. The
Chord consists of the 1st, 3rd and 5th notes in the scale, and a chord usually consists of
three inversions, which entail playing the notes of the chord in a different order.

Root Position C E G

First Inversion E G C

Second Inversion G C E

Table 4.4.2.0 - Chord inversions in C Major

Table 4.2.0 above displays different inversions in the C Major Chord. These are used to
help smooth out motion from chord to chord, and can often have a slightly different
sound than the root position chord.

4.4.3 Improvising
Once the student has learnt the foundations of music theory, and the appropriate scales
and chords of a certain key, they can then unlock an improving lesson for that key.

Improvising like any other skill entails a large amount of practice before it can be
executed smoothly. So it is important to take things very slow with the student.

They will first be presented with Chord Progressions in the key they are learning to
improvise in, and will be taught the structure to follow when playing a chord
progression. This is mentioned in the research chapter at 4.2.3.1 - Chord Progressions.

The student must have a basic understanding of this structure because the sounds
resonate within a human brain as either sounding good or bad. An example of this is the
Perfect Cadence, which has a very final sound to it, this is typically used to complete the
progression, and a human brain would be happy to hear that. If the user was unaware of
this and decided to finish on something seemingly random, the piece would sound less
like music and more like a random sequence of notes being played.

With that in mind, the user will be walked through various progressions and will be
taught various endings they may use to complete their pieces.

Once they become more familiar with this, the application aims to listen to the user as
they play, and display various options of chords they can go to from the one they have
just played, whilst keeping in time.

Continuing to practice like this would improve the user’s knowledge of progressions and
rhythmic ability. Both of which are essential to improve their skill of improvising.

4.4 Conclusion
This section goes through understanding the design of the application from the ground
up. The application aims to educate users in a gamified manner, teaching them in small
segments, which feel rewarding and satisfying for the user.

The program design describes the chosen technologies, and how they had to be
changed from the requirements chapter due to additional research. It discusses the
structure of the technology stack, and how the entire application will communicate.
GraphQL is also discussed, including its advantages within such a large application. The
different types of GraphQL methods are stated, described and a valid REST API
comparison was given for ones that could be compared. The chapter then goes on to
describe the design pattern of the application, and how it is similar to the MVC Design
pattern in certain aspects.

The architecture of the application is discussed, and how the frontend, backend and
database will communicate with each other. The server flexibility is also discussed, and
its various modules including its endpoint, validation rules, resolvers and entities.

The design of the database was discussed, along with an entity-relationship diagram
(ERD), which describes all data collections, and their relationships with one another. The
flexible structure of GraphQL is described, and sample queries and provided to explain
how efficient and accommodating it can be in many circumstances.

This chapter then goes on to describe the User Interface Design, which includes
wireframes, User flow diagrams. This gives an idea of how the UI will look to the user,
and how the general structure of the application will be.

After this, the style guide of the application was discussed, which includes the colours
chosen, typography, shape, sound and how they follow the design guidelines specified
by Material Design. Combining all of these, a HiFi prototype was created using Origami
Studio, which will be used during the development of the application.

Finally, the content design was discussed, which goes through the structure of lessons,
and the order in which certain lessons will be presented to the user. It is broken up into
music theory lessons, improvisation lessons and finally an improvisation lesson
between two keys.

The induction will determine how prepared a user is for these lessons by assigning
them a level, and if they don’t perform well in the induction, they will begin at the
foundation music theory lesson, and work their way up to improvisation through various
lessons.

5 Implementation

5.1 Introduction
This chapter discusses the implementation of individual sections within the application.
It aims to resolve the problems proposed in the requirements, research and design
chapters.

This chapter goes in-depth into each section of the project, which includes the server,
the mobile application and the admin content management system. It also discusses the
development environment, and how various development challenges were approached
and resolved.

5.2 Development Environment
The project was developed using Visual Studio Code and various extensions to assist
with the development of the project.

XCode was also used to run and test iOS builds, analysing build code and shipping
them to TestFlight, which is Apple’s BETA testing software. This will be discussed more
in the deployment section.

5.2.1 Dart
A Dart extension was installed to extend the Dart programming language in Visual
Studio. It provides tools for effectively editing, refactoring and running Dart code, along
with an IntelliSense feature to display code and type errors before the developer runs
the code.

This is particularly useful because the Dart language is type-safe. Meaning it uses a
combination of static type checking to ensure the variables used always match the static
types (Dart.dev, n.d.)

It is particularly useful to the developer that Dart can catch these type-safe errors before
the application is even run, because developing mobile applications usually results in
long compile times, so it is a much better developer experience to catch these errors
before compiling the code at all.

5.2.2 Flutter
A Flutter extension was installed and used during the development of this project,
allowing the developer to run, debug, and build the application directly from Visual
Studio via either a Mobile Device Emulator or directly to a physical device.

This extension requires the Dart extension mentioned above as a prerequisite and
offers a lot of additional functionality on top of Visual Studio’s base functionality for rapid
development of Flutter applications.

One feature, in particular, is the ability to trigger a hot reload while running the
application in development. As mentioned above, compile times can quickly become a
problem while building mobile applications, so Flutter allows you to quickly change
colour for example in your code, and once you hit save it will appear immediately on the
screen.

5.2.3 GraphQL for VSCode
Just like in Dart, GraphQL is strongly typed. Every entity defined needs an appropriate
type to run. Although this results in more initial work to specify every detail, it pays off in
the long run as the IDE can quickly spot any mistakes or type errors immediately after
they are written.

The extension also offers validation, autocompletion, linting and syntax highlighting to
improve the developer experience. (Harsh, 2021)

5.3 Database
The application uses MongoDB for its database, which is a NoSQL object-oriented
scalable database. It stores documents in Binary JSON format (BSON) to increase
efficiency and support more data types (mongoDB, n.d.-b).

The database is split up into sharded clusters, which splits read and write operations
along with several nodes. The method of sharding can be compared to horizontal
scaling, as it devises datasets and distributes the data over multiple servers.

Fig 5.3.0.1 - Sharding in MongoDB (mongoDB, n.d.-a)

This can drastically reduce the overall CPU usage and RAM within a single machine,
particularly on larger data sets which can quickly exhaust CPU when querying
databases that store huge amounts of data. (mongoDB, n.d.-a)

As discussed in the design chapter, the database structure was defined by an ERD
(Entity Relationship Diagram). There were several iterations of this diagram during the
implementation of the project.

Fig 5.3.0.2 - Entity Relationship Diagram V9

The design chapter contained V5 of the ERD, but throughout the process of
implementation, several iterations were made due to the increasing complexity of the
server.

The relationships between these collections will be discussed in more detail in the
Backend section.

5.4 Backend
The application’s server is built using the following technologies:

● Node.js
● Apollo-Express
● Mikro ORM
● Type-GraphQL
● GraphQL
● TypeScript

The server contains several endpoints during a production build, and during
development, it opens up an additional endpoint a GraphQL playground.

4.4.1 Serving Static Assets
The server has a static express directory which is where all images are served to the
client. These images would typically be used within a certain question.

The static function is a built-in middleware to express. It transforms a particular directory
into a static directory, which is defined as a directory that contains any content that can
be delivered to an end-user without having to be compiled, modified or generated.
(Gibb, 2016)

There are several benefits to serving static content, the content will not change which
will assist in caching on the user’s end devices. Serving images is one of the more
power-hungry tasks for a server to do.

An image can often be much bigger than any amount of data requested by the frontend.
Serving these images statically also means the server doesn’t require a layer of logic to
run before serving an image, it only needs to pull a file from the disk.

A particular question in the database would contain an optional field called “image”. If it
exists, it would fetch this asset from the server once the question is displayed on the
front end. This can be seen in Fig 3.0.2 above under the Question entity.

4.4.2 Structure
The backend has been structured into small individual components. The goal here is to
keep each file minimal, to only execute functions related to the folder it is in.

As the codebase grows, this becomes increasingly important with debugging and
maintenance.

/music-theory-backend/src

|-contracts

|---validators

|-----enums

|-entities

|-middleware

|-resolvers

|-utils

|---interfaces

Code Block 4.4.2.0 - Tree view of the backend folder structure

Code Block 4.4.2.0 above displays the structure of the server. It is divided into various
subdirectories in an attempt to maintain order within the server. For example, the
resolvers directory above, contains a resolver for each collection within the database -
e.g. user, lesson, question etc.

Each directory will contain an index.ts file, its only job is to import every other file within
that directory, and export all modules from those files. This is shown in Code block 5.2.1
below;

export * from "./user.resolver";

export * from "./lesson.resolver";

export * from "./auth.resolver";

export * from "./question.resolver";

export * from "./questionText.resolver";

export * from "./module.resolver";

export * from "./note.resolver";

Code Block 4.4.2.1 - src/resolvers/index.ts - exporting modules within index.ts

Although this makes no change in terms of functionality, it cleans up any necessary
imports on other files, so all of the modules can be imported within the same statement,
as shown in Code Block 4.4.2.2 below;

/**

* Resolver modules

*/

import {

UserResolver,

LessonResolver,

AuthResolver,

QuestionResolver,

ModuleResolver,

QuestionTextResolver,

NoteResolver,

} from "./resolvers";

Code Block 4.4.2.2 - src/application.ts - importing modules in one statement

Fig 4.4.2.0 - Backend Design Pattern V2 - built using draw.io

Fig 4.4.2.0 shows a detailed architecture of the backend and the general flow of data
throughout it. The Apollo Server acts as the entry point for the server, which is a
community-maintained open-source GraphQL server. (apollographql, 2021)

The server will run from the application.ts file, connect to the database, register and
process all entities, and wait for any incoming requests.

https://app.diagrams.net/

4.4.3 Validation

As shown in Fig 4.4.2.0 above, any requests that hit the GraphQL endpoint, will go
through the process of being validated, and then will execute some business logic within
the resolver.

The validator will ensure every piece of data sent along with a request is exactly what it
is supposed to be.

@InputType()

export class AuthValidator {

@Field()

@IsEmail()

@IsNotEmpty()

public email: string;

@Field()

@IsString()

@IsNotEmpty()

@MinLength(6, {

message: "Password must be at least 6 characters",

})

public password: string;

}

Code block 4.4.3.0 - ./contracts/validators/auth.validator.ts

Take Code block 4.4.3.0 as an example, this validator handles authentication when a
user wants to sign in. It requires two fields, an email, which must be a string, and a
password, which also must be a string, but also has to be at least 6 characters.

Should a user attempt to send anything to the server that is not within the confinements,
the validator will reject the data, and return an error.

This keeps security tight within the server and prevents any type of NoSQL injections.

4.4.4 Resolvers
A Resolver is defined as a collection of functions that generate responses for a
GraphQL query (tutorialspoint, n.d.). It handles any business logic and queries with the
database.

Code block 4.4.5.0 below contains a single mutation (the other functions were removed
for simplicity). This mutation expects input from the client, which uses the AuthValidator

to validate it, as mentioned in section 4.4.3 above. Once validation is passed, it
attempts to find a particular user by the provided email address.

If a user is found, it will run a verify function provided by the Argon2 library, which allows
us to compare the plaintext password provided by the user in the input, with the
encrypted password currently stored in the database.

Once verified, an authentication JWT (JSON Web Token) is created, along with an
expiration date of when the token will expire. These are both sent back to the client to
be handled.

@Resolver(() => User)

export class AuthResolver {

@Mutation(() => LoggedIn, { nullable: true })

async login(

@Arg("input") input: AuthValidator,

@Ctx() ctx: MyContext

): Promise<{ token: string; expiration: number; user: User }> {

try {

const user = await ctx.em.findOneOrFail(User, { email: input.email });

if (await verify(user.password, input.password)) {

const { token, expiration } = generateToken(user.id);

return { token, expiration, user };

}

throw new ClientSafeError("Incorrect Password", 403, "AUTH_ERROR");

} catch (err) {

throw new ClientSafeError(

"Incorrect Email or Password",

403,

"AUTH_ERROR"

);

}

}

}

Code block 4.4.5.0 - ./src/resolvers/auth.resolver.ts - the auth resolver and login
mutation

Should the user make any subsequent requests that require authentication, the token
will be attached to the request and is verified within the request middleware.

The server can decipher the user’s unique ID from this token, so the server can
understand who is making the request, and respond with relevant information.

@Query(() => User, { nullable: true })

async get(

@Ctx() ctx: MyContext,

@Info() info: GraphQLResolveInfo

): Promise<User> {

try {

const user = await ctx.em

.getRepository(User)

.findOneOrFail({ id: ctx.auth._id }, [

"completedModules",

"completedLessons",

"incorrectQuestions",

]);

return user;

} catch (err) {

throw new ClientSafeError("Not Authenticated", 403, "AUTH_ERROR");

}

}

Code block 4.4.5.1 - ./src/resolvers/auth.resolver.ts - the get query

The Query in Code block 4.4.5.1 above is used to get the current user. It requires an
authentication token, which has already been verified before this function is run. Should
it be verified successfully, the server can find the user by ID.

If the token is not verified or is expired, the server will return a 403 Authentication Error.

4.4.5 Entities
An Entity is defined as a simple object type that is defined canonically in one
implementing service (apollographql, n.d.). It represents a single collection within the
database.

@ObjectType({ description: "Represents a user object" })

@Entity()

export class User extends Base<User> {

@Field()

@Property()

@Unique()

public name: string;

@Field()

@Property()

@Unique()

public email: string;

@Property()

password: string;

@Field(() => [Question])

@OneToMany(() => Question, (b: Question) => b.user, {

cascade: [Cascade.ALL],

})

public incorrectQuestions = new Collection<Question>(this);

constructor(body: UserValidator) {

super(body);

}

}

Code block 4.4.5.1 - ./src/entities/user.entity.ts - The user entity
Code block 4.4.5.1 above is an example of an entity within the application. A large
amount of code has been removed for simplicity. Whenever a new user is created, it will
inherit all of its properties from this class.

This entity also inherits a Base entity, which defines timestamps and a primary key to
the entity. This means it will have createdAt and updatedAt fields, and the updatedAt
field will change every time a change is made on the entity itself.

This is done within a mutation when a user would like to register for the application.

@Mutation(() => User)

public async addUser(

@Arg("input") input: UserValidator,

@Ctx() ctx: MyContext

): Promise<User> {

try {

const user = new User(input);

const hashedPassword = await hash(input.password);

user.password = hashedPassword;

await ctx.em.persist(user).flush();

return user;

} catch (err) {

console.log("Error creating user", err);

throw err;

}

}

Code block 4.4.5.2 - ./src/resolvers/user.resolver.ts - Adding a new user within the
addUser mutation

As shown in Code block 4.4.5.2 above, a new user is created using the validated input.
Their password is then encrypted, followed by the newly created user being persisted
and flushed.

Persisting and flushing are built-in functions with Mikro ORM, which manages the
entities within the server.

The persist function is used to mark a new entity for future persisting, and the flush
function is what then writes it to the database.

Another thing to notice within Code block 4.4.5.1 above, is the OneToMany relationship
the User entity has with the Question entity. The incorrectQuestion field within the User
object is a collection of questions that this particular user has answered incorrectly.

This is constantly updated as the user goes through various lessons, and the user will
later be presented with these questions on subsequent lessons. If the user answers
them correctly, they will be removed from the collection, if not they will remain there until
it is answered correctly.

4.4.6 Mikro ORM

Mikro ORM is a TypeScript data-mapper Object-relational mapper for Node.js. It
supports multiple drivers including MongoDB, MySQL, PostgreSQL and SQLite. It is
particularly useful for both performance and the usual of GraphQL (mikroORM, n.d.).

The usage of Mikro ORM’s persisting and flushing operations drastically aided the
performance of the server. Persisting something means it will eventually need to be
written to the database, but instead of being written in a single query, persistence will
add multiple database queries in one, to reduce the overall haul of database
transactions.

This is particularly useful when multiple database transactions must occur within single
function, for example in Code block 4.4.6.0 below:

@Mutation(() => Question)

public async addQuestion(

@Arg("input") input: QuestionValidator,

@Arg("lessonId") id: string,

@Ctx() ctx: MyContext,

@Info() info: GraphQLResolveInfo

): Promise<Question> {

const question = new Question(input);

try {

question.lesson = await ctx.em

.getRepository(Lesson)

.findOneOrFail({ id });

ctx.em.persist(question);

if (input.text.length > 0) {

for (const text of input.text) {

const newQuestionText = new QuestionText(text);

if (text.note) {

const note = await ctx.em

.getRepository(Note)

.findOneOrFail(text.note);

newQuestionText.note = note;

}

newQuestionText.question = question;

ctx.em.persist(newQuestionText);

}

}

await ctx.em.flush();

return question;

} catch (err) {

// Handle error

}

}

Code block 4.4.6.0 - ./src/resolvers/question.resolver.ts - Adding a new question within
the addQuestion mutation

Code block 4.4.6.0 above calls the persist function multiple times. Once when we
assign a lesson to the question, and subsequently within the loop that checks the
number of text items within the input.text array.

On an average question created, this would result in approximately six writes to the
database. But because Mikro ORM is used, and the flush function is called at the very
end of the addQuestion function, this results in all database operations combined into
one.

On a small scale, this might not seem significant, however as the user base grows, and
simultaneous database write operations are required amongst multiple users, this will
drastically aid the performance of the server and database.

Using Mikro ORM is also beneficial for reducing duplicated code, as discussed in
section 2.1 of the design chapter, the Mikro ORM entity is also used as a GraphQL
schema, allowing the types for the entity to be defined once, and to be applied in
multiple places.

4.4.7 GraphQL
As mentioned in section 2.5 of the Design chapter, GraphQL is very useful for specifying
exactly how much or how little data required at a single point in time. Compared to
traditional RestfulAPI’s, which requires the application to make subsequent requests for
data, a typical GraphQL query can have multiple requests of data combined into a
single query.

GraphQL also has a type system, which has every entity defined already. Just like with
using TypeScript, this is extraordinarily beneficial to the developer as they encounter
errors before the application is even run or built.

It also offers a full playground when running the server in development mode, which
allows to build and test queries, mutations and subscriptions with the server without
having to have a client built and ready.

The declarative model provided by GraphQL allows the creation of a consistent,
predictable API across all clients. Which is not only useful when building the frontend in
Flutter, but also useful for creating an Admin Dashboard using React.js (apollographql,
2015).

The server can be queried in entirely different ways from either client and deploy those
clients quickly. This is particularly useful for the admin dashboard, which will be used to
continuously add modules, lessons and questions to the server.

4.4.8 Deployment
The server is deployed to Heroku, which is a developer-focused cloud Platform as a
Service (PaaS). The reason why it was chosen is that it is used by developers to quickly
deploy scalable applications with eases of use (Heroku, 2020).

Heroku has a command-line interface (CLI) that allows you to quickly deploy a
production build. This was used frequently to deploy once the application was at a
deployment testing state.

A build script was implemented on the package.json of the server, which compiles all of
the TypeScript code into minified JavaScript, and runs it from the dist folder. A Procfile
was also created to tell Heroku how to run the application.

web: node dist/src/index.js

Code block 4.4.8.0 - ./Procfile - The Procfile informing Heroku how to run the server

The build script runs a few prerequisite checks before a successful build is done, this
script was written in the package.json, as shown in Code block 4.4.8.1 below:

//...

"scripts": {

"prebuild": "tslint -c tslint.json -p tsconfig.json --fix",

"build": "tsc",

"prestart": "npm run build",

"start": "cross-env NODE_PATH=./dist/src node dist/src/index.js"

},

//...

Code block 4.4.8.1 - ./package.json - The package.json build scripts

As shown in the above Code block, four scripts are written here, the rest of the code in
this file has been removed for the sake of simplicity. These four scripts are chained
together using the scripts prefixed with the word “pre”. So when the “start” script is run,
it first runs the “prestart”, which runs the “build” script, which first runs the “prebuild”.
This is clarified in the below table:

Script Prerequisite Corequisite

start prestart Runs the production build

prestart build

build prebuild Builds the application

prebuild Runs a static analysis on
the codebase to catch
errors early

Table 4.4.8.0 - Explaining the scripts and prerequisite scripts

Table 4.4.8.0 above explains the scripts and the order in which they are all called. The
pre-build command, in particular, is very useful, as it will run a static analysis on the

entire code base using TSlint. It checks TypeScript code for readability, maintainability
and functionality errors (Microsoft, 2015).

This is one of the large benefits of using TypeScript because the built-in powerful type
system prevents difficult issues and bugs during runtime. The Type system catches
them as the developer writes the code, and anything missed by the developer at the
point in time will be caught by the pre-build script above.

Once the application has been successfully built locally, it can be deployed to Heroku
using the CLI. Heroku will run a full build, optimize it, remove and develop
dependencies that are no longer required and run the application within an isolated
Linux container, which they call dynos.

The one downside to Heroku when you run an application on their Hobby plan (free
plan), they will put your server to sleep whenever it has not been used for over
approximately 30 minutes.

This means if somebody were to open the application and attempt to log in when the
server hasn’t been used for a while, they will have to wait for approximately fifteen to
twenty-five seconds for the server to wake up and run before it returns to its normal
operating state.

5.5 Frontend
The front end of the application is built in Flutter, along with Material UI as a component
Library. Flutter is an open-source mobile SDK that can be used to build native
performing applications for both Android and iOS from the same codebase (Software,
2019). It is based on the Dart programming language.

As discussed in the design chapter, it was chosen for its flexibility, performance and
ease of use for the developer. Material UI was chosen as the component library
because it is already built into the Flutter SDK, so no additional dependencies were
required.

The application’s frontend utilises the following dependencies:
● Flutter_midi
● Graphql_flutter
● Flutter_html
● shared_preferences
● Multi_select_flutter
● Google Fonts

5.5.1 Structure
Similar to the backend, the frontend was intentionally structured into small components
to keep the code maintainable and organized, particularly as the codebase grows.

/music-theory-frontend/lib

|-src

|---Widget

|---components

|-----question

|---config

|---data

|---model

|---screens

|-----lessons

|-----tabs

|-------dashboard

|---services

Code Block 5.5.1.0 - Tree view of the frontend folder structure

Code Block 5.5.1.0 above displays the structure of the frontend, and how it is divided up
into its various subdirectories depending on the components. The main entry point for
the application is the main.dart file.

This file registers Material UI and its associated theme, which defines the typography
using Google Fonts, the colours, and the primary routing for the application. It also
registers GraphQL by wrapping the entire application in a GraphQLProvider.

5.5.2 Authentication & Routing
The main.dart initially displays a Splash screen, which displays a progress indicator to
the user. While this is happening, the application checks if an authentication token
exists, and if it is not expired, it will allow the user to skip the login process.

If no token exists, or the authentication token is expired, the user will need to either
login or register to gain access to the rest of the application.

// ...

home: Splash(

redirect: redirect,

),

routes: {

'/welcome': (context) => WelcomePage(),

'/login': (context) => LoginPage(),

'/register': (context) => RegisterPage(),

'/dashboard': (BuildContext context) => Dashboard(),

},

// ...

Code Block 5.5.1.1 - ./lib/main.dart - Routing within the main.dart

As shown in Code Block 5.5.1.1 above, the initial screen is the Splash screen, and it
passes in a redirect as a parameter. The redirect is a string that will redirect the user to
either the “/welcome” or “/dashboard” route within the routes object above, depending
on if the user is authenticated or not.

The authentication token is stored within the user’s device, using the
shared_preferences package, which persists the token to the user’s device
asynchronously. This means the user can close the application and reopen it, and
remain logged in provided the token is valid.

Fig 5.5.1.0 - Frontend Router Flow Chart V3
Fig 5.5.1.0 above contains a breakdown of the general routing flow throughout the
entire application. It is divided into three sections:

1. Main Router
2. Dashboard Tab Navigator
3. Lesson Navigator

The main router handles the authentication for a user as described above. The initial
authentication check will determine whether the user is sent to the welcome screen, or
directly to the Dashboard Tab Navigator.

The Dashboard Tab Navigator allows the user to navigate between tabs, and the user is
presented with a bottom tab bar to allow them to easily switch between the theory
lessons, improv lessons and their profile page. The latter will display various pieces of
information about their profile.

Once a user begins a lesson from either the theory or Improv screens, they are brought
to the Lesson Navigator. This navigator will cycle through the various questions fetched
from the server, and once all questions have been answered, will display a lesson

complete screen, to show the user how they performed in the lesson, and how many
points they earned.

5.5.3 Models
Data that is fetched from the server is served in JSON (JavaScript Object Notation)
format. Dart cannot understand this format, and since Dart is a strongly typed language,
models need to be created for all types of dynamic data being utilized on the frontend.

These models were automatically generated using a tool called quicktype, which
allowed the developer to paste in a JSON response, and it automatically generated the
entire model in a strongly typed language of your choice.

Code block 5.5.3.0 below represents the Module model within the frontend:

class ModuleItem {

ModuleItem({

this.id,

this.title,

this.level,

this.type,

this.lessons,

});

String id;

String title;

int level;

String type;

List<LessonItem> lessons;

factory ModuleItem.fromJson(Map<String, dynamic> json) => ModuleItem(

id: json["id"],

title: json["title"],

level: json["level"],

type: json["type"],

lessons: json["lessons"] == null

? null

: List<LessonItem>.from(

json["lessons"].map((x) => LessonItem.fromJson(x))),

);

Map<String, dynamic> toJson() => {

"id": id,

"title": title,

"level": level,

"type": type,

"lessons": lessons == null

? null

https://app.quicktype.io/

: List<dynamic>.from(lessons.map((x) => x.toJson())),

};

}

Code Block 5.5.3.0 - ./lib/src/model/ModuleItem.dart - The Module Model

The module model contains a constructor, showing all data that will be contained within
a module, and two functions; fromJson and toJson. These functions convert data either
from or to JSON format.

Converting data served from the server into a typed object like this gives the data more
structure, and results in it being easier to maintain. This is also considered common
practice in strongly typed languages like Dart (Mackier, 2019).

5.5.4 GraphQL
This application utilizes the flutter_graphql dependency, which allows it to make
graphQL requests to the server. To do this, the entire application needed to be wrapped
in a GraphQLProvider, which is initialised GraphQL in the application entry point.

The initialize function is defined within a Config class, which is where the server URL is
defined, where the connection to the server is initialized and passes the authentication
token into all requests. It also is where the application is set up to handle web socket
requests, but this was not fully implemented into the application.

After initialization, any graphQL query or mutation requests can be made from any
components that are called within the GraphQL Provider, which in this case, is all
components.

5.5.4.1 Querying data from the server
Querying the server is how dynamic data is displayed on the application. An example of
this is the theory page, which displays a list of theory related modules that are queried
from the server.

Fig 5.5.4.1.0 - The Theory tab displaying modules from the server - iOS build 1.1.1

These modules are queried from the server and are cached on the user’s device to
reduce subsequent network requests.

class _TheoryModulesState extends State<TheoryModules> {

@override

Widget build(BuildContext context) {

return Query(

options: QueryOptions(

// Query defined in /src/data/Module.dart

documentNode: gql(Module.getModules),

// Parameters to the query

variables: {"type": "THEORY"},

),

builder: (QueryResult result,

{VoidCallback refetch, FetchMore fetchMore}) {

// Handle errors

if (result.hasException) {

return EmptyState(message: result.exception.toString());

}

// Handle loading

if (result.loading) {

return Center(child: CircularProgressIndicator());

}

final List<LazyCacheMap> items =

(result.data['getModules'] as List<dynamic>).cast<LazyCacheMap>();

if (items.length == 0)

return EmptyState(message: 'No Theory Modules Found');

return ListView.builder(

// Render Modules in a list

);

},

);

}

}

Code Block 5.5.4.1.0 - ./lib/src/screens/dashboard/TheoryModules.dart - A simplified
version of the TheoryModule

As shown in code block 5.5.4.1.0 above, the entire component is wrapped in a Query,
which is specified in the QueryOptions. Here we have specified the getModules query,
which gets a module by its type.

class Module {

static String getModules = """

query getModules(\$type: String!) {

getModules(type: \$type) {

id

title

level

}

}

""";

// ...

}

Code Block 5.5.4.1.1 - ./lib/src/data/Module.dart - The getModules graphQL query

The getModules query will take the module-type parameter, and run it. The rest of the
component is set up to either receive the data, and render it into a list of modules,
display a loading indicator to the user, or handle an error and allow the user to recover
from it.

Any errors throughout the application are handled using the EmptyState component.
This component is designed to take a string and an action. It will display the string to the
user e.g. “Error: Could not fetch modules”, and an action, which will redirect the user
back to the homepage. The action is optional, and if not provided, will not display action
to the user.

Once the query successfully fetches modules, it will structure them using the data
model explained in the previous chapter and will display the data in a list format, as
shown in Fig 5.5.4.1.1 above.

5.5.4.2 Running Mutations to the server
A mutation is an action to post data to the server. It usually results in some sort of
modification of data. An example of this is when the user completes a lesson.
class Lesson {

// ..

static String completeLesson = """

mutation(\$lessonId: String!) {

completeLesson(lessonId: \$lessonId) {

id

}

}

""";

}

Code Block 5.5.4.2.0 - ./lib/src/data/Lesson.dart - The completeLesson mutation

Code block 5.5.4.2.0 above displays the mutation that runs when a user completes a
lesson. It requires the lessons’ unique identifier as a parameter, and in response returns
that same ID. No additional data is required on the frontend since the application
already has all the data it needs, but it is mainly to tell the server that this user has
finished this lesson.

Each user has a streak system attached to their account. This tracks the number of
consecutive days that they participate in lessons. When a lesson is completed, the
user’s streak is incremented by 1, if their last lesson was within 24 hours. The server
also keeps track of which lessons a user has completed, which would become useful
later if some sort of rewards system was implemented into the application.

5.5.5 Services
There are two services implemented into the application; The SharedPrefenceService,
which manages local device storage, and the MidiUtils service, which handles the
sound for playing Piano notes.

The SharedPrefenceService is used primarily for storing the authentication token, and
expiration date of the token within the end user’s device. This is used to allow the user
to remain logged in even after closing the application.

The MidiUtils service is used to handle all Midi controls. It prepares a SoundFont file,
which contains all 88 notes of the piano. After the SoundFont file has been prepared,
this service is responsible for playing, pausing and unmuting.

5.5.5 Lesson
A lesson comprises a collection of questions, which is handled by the
QuestionController. When a user starts a lesson, it cycles through each of these
questions and renders them depending on the Question type, which is either a
multiple-choice answer or a single choice answer.

Fig 5.5.5.0 - Single choice Question Fig 5.5.5.1 - Multiple choice Question

As shown by Figs 5.5.5.0 & 5.5.5.1, the frontend will render the answer options based
on the type of question it is given. Fig 5.5.5.0 is a single choice question, so the user
can only select a single answer. But Fig 5.5.5.1 gives the user the option to select
multiple options.

Multiple choice answers also play the piano note associated with the letterpressed. For
example, by selecting the C option, the user will hear the C note being played on their
device.

Particular words in a question will be highlighted in orange and underlined. These words
have notes attached to them. The goal is if the user does not know the answer to the
question, they can tap the highlighted word, and read a note that contains the answer to
the question.

Fig 5.5.5.2 - Selecting the word Clef in FIG 5.5.5.0 displays the Clef note

The note is inputted in markdown, which is converted to sanitized HTML on the server
when created. The frontend renders this HTML, and the images are fetched from the
server as soon as the note has appeared on the screen.

If a user answers a question incorrectly, the QuestionController will keep track of this,
and send a notification to the server. The server confirms the answer against the
question-answer and saves the question to the user’s account. When the user starts a
subsequent lesson, they will be asked the incorrectly answered questions first, before
being asked any new questions.

Fig 5.5.5.3 - Answering a question
correctly

Fig 5.5.5.4 - Answering a question
incorrectly

As shown in Fig 5.5.5.4, the user is shown what the correct answer was, and is also
given a hint on the question. This is useful for the next time they encounter this
question, they may answer and learn from their previous mistake and answer differently.

Fig 5.5.5.5 - Lesson Complete Screen

At the end of a lesson, the user is shown their full score, and the number seven-step of
points they earned for that lesson.

5.5.6 Deployment
Due to the nature of Flutter, the application can be built and deployed to both iOS and
Android devices from the same code base. This is extraordinarily beneficial as it
drastically reduces the workload, compared to building a native application for both iOS
and Android. The performance is also close to native on each device, which will be
discussed in the testing chapter.

The application was deployed to Apple’s TestFlight service, which allows BETA test
applications before launching to the App Store. From here it was possible to grant users
access to the application and test it on their device.

The process for building, validating and reviewing the application for TestFlight is very
similar to publishing to the iOS App Store, so if the development process were to
continue, the majority of deployment work has already been done.

The application was also deployed to Google’s BETA testing system, via the Android
Play Console. From here internal testing could take place where the Application could
be downloaded to Android user’s devices to use the application, and see how it
performed.

Similar to Apple’s TestFlight service, building for Android Play is similar to launching the
Android Play store, so the majority of deployment work has been done should the
application make it to production.

5.6 Admin Dashboard
The applications front end is designed from the ground up to be completely dynamic.
This means any content added to the server will reflect in the app as new content,
without having to ship another update through the iOS / Android App stores.

The primary reason for this is deploying a new update to either the iOS and Android
store are lengthy tasks, so keeping the majority of data dynamic results in fewer
updates being shipped to each App store.

Throughout the implementation of this application, the number of collections of data
grew significantly, so it was decided to build an Admin dashboard, which would act as a
CMS (Content Management System) for the application.

The Admin Dashboard is built using React and utilises Apollo Client, which is a
comprehensive state management library that enables the management of both local
and remote data using GraphQL. It integrates nicely with the Apollo Server and allows
fetching, caching and modification of application data (apollographql, 2019).

The application allows the creation of modules, lessons, questions and notes, from
either mobile or desktop. This is particularly useful for creating questions since it had
previously become a lengthy process.

Creating a question on the admin dashboard was implemented to be a seven step
process, where the user is asked for information piece by piece to prevent it from
becoming overwhelming.

Fig 5.6.1 - Adding a Question Step 1 via
the Admin Dashboard

Fig 5.6.2 - Reordering question text by
dragging and dropping

Question text is divided up into sections to allow the admin to attach notes to particular
words. Because of this, the order of the words became very important. So a drag and
drop system was implemented using the Framer Motion API, which allows the user to
drag to reorder question text in an elegant user-friendly way.

When creating question text, you can optionally attach an existing or new note to this
piece of text by hitting the link icon as displayed in Fig 5.0.1 above.

Fig 5.6.3 - Searching and attaching an
existing note to question text

Fig 5.6.4 - Creating a new note to attach
to question text

Once the admin selects the link icon, a dialogue appears with a list of existing notes that
the admin can choose and search from. They can also create a new note from here, as
shown in Fig 5.0.4. They are required to add a title, and some content, which will be
rendered as markdown, so the admin can add headings, lists, tables and even images
that will all be rendered in the mobile application.

Once the admin has completed all steps in creating a question, a preview is generated
which mimics how the question will appear in the application.

Fig 5.6.5 - Previewing a question after completing all steps

This dashboard allows the user to manage all content within the application from a
user-friendly, responsive web application that can also be installed as a desktop
progressive web application.

5.7 Conclusion
This chapter describes the implementation of the application. It aims to resolve the
problems proposed in the research, requirements and design chapters. The
implementation of this application resulted in a GraphQL Apollo Node server, a Flutter
hybrid mobile application and a React web application content management system.

The project was developed using Visual Studio Code and various extensions, and the
frontend Flutter application was deployed to both Apple’s BETA testing software
(TestFlight), and Google’s Android Play BETA testing software, built into the Google
Play Console.

This project utilised MongoDB as a database, which is a NoSQL object-oriented
scalable database solution, which connects the GraphQL Apollo server.
The server contains two endpoints, one for serving static images to both the client and
the admin dashboard, and a GraphQL endpoint, which manages all queries and
mutations going to and from the server, after the data has been validated appropriately.

The server uses Mikro ORM as a TypeScript data-mapper, which handles the
relationships between all entities within the server, and the server is deployed to Heroku
using continuous integration via the Heroku CLI.

The application’s front end was built using the Flutter SDK with the Dart Programming
language. It utilises Material UI as a component library, and various other dependencies
to handle sound, graphQL, rendering HTML, local device storage etc.

The frontend was designed in a dynamic way, which allows additional content to be
easily added to the application in future, without having to ship an update to the
application.

A Content Management admin dashboard was created to allow an admin to log in and
easily add content continuously to the system, using a user-friendly, responsive
progressive web application.

6 Testing
This chapter discusses the testing of the application, in each of its sections. The aim is
to uncover any bugs within the project, analyse the user experience by performing user
tests, monitor the overall performance of the project and ensure the application is fully
functional.

6.1 Usability Testing
Usability is described as how well a specific user can use a product/design to achieve a
defined goal effectively, efficiently and satisfactorily (interaction-design.org, n.d.).

It is vital that users can easily navigate the application, no matter their level of technical
know-how. The navigation may seem obvious for the developer or designer, but this can
be entirely different for general users. Therefore, user testing was employed to test the
general flow of the application.

The main goal of this testing is to assign the user a finite number of tasks, which they
are requested to complete without any help from the developer. They are observed
throughout this process to see if the application’s interface presents any pain points.

The user test is an opportunity to highlight any areas of the application that are
particularly difficult to navigate, any bugs the developer may have not noticed, or any
additional features that would benefit the application.

6.1.1 User Test Prerequisite
Before the user took part in the user test, they were requested to fill out a consent form
based on Google Forms.

The link to the form can be accessed here - https://forms.gle/f2G6t4UB9riUDrLg6

They were also asked the following questions:
1. On a scale of 1 - 10, what is your current knowledge of music theory?
2. On a scale of 1 - 10, how comfortable are you with technology?
3. Would you find an application for learning music theory useful?

These questions were asked to understand the user’s level of music theory, their general
understanding of technology and whether they would find an application like this useful.

The aim of this process was to examine various users with a variety of music theory
knowhow and technical knowledge. Thus, this process offered an overview of the
user-friendliness of the application for both those of higher and lesser music
knowledge.

https://forms.gle/f2G6t4UB9riUDrLg6

6.1.2 Tasks
For the user test, the user was requested to complete the following tasks:

Description Prerequisite

1 Register as a user

2 Log in to the application Task 1

3 View your profile Task 2

4 Start a Theory lesson Task 3

5 Within a lesson, view a note associated with a question Task 4

6 Complete a lesson Task 4

7 Log out of the application Task 2

Table 6.1 - User Test Tasks

After the user completed these tasks, they were asked how difficult they found each
task on a scale from one to ten. This offered an insight for the development of the
application, identifying any tasks that were particularly difficult to complete.

6.1.3 Results
After the test, users were asked about each task individually and requested to determine
how difficult they found the task, on a scale between one and ten, where one is very
easy, and ten is very difficult. This offered a greater understanding of how the current
interface was to navigate for various users.

From the results of this test , an average was calculated for each user and displayed in
the table below, using the results of 5 users:

Description Average
Score

1 Register as a user 3

2 Log in to the application 1

3 View your profile 1

4 Start a Theory lesson 1

5 Within a lesson, view a note associated with a question 2.3

6 Complete a lesson 1.6

7 Log out of the application 1.3

Table 6.2 - Average scores of tasks from the user test

In general, the results from the user test are quite strong. The most difficult task was
task one, due to the user getting confused about the slow response from the server,
while it was waking up. This will be addressed later in section 6.3 - Performance
Testing.

6.2 Unit / Integration Testing
This section discusses the feature testing that was completed for this project.
Integration testing is defined as a type of test whereby a combination of all the modules
are tested as a whole. The primary purpose is to expose defects in the interaction
between these modules (Guru99, 2019).

6.2.1 Unit Testing
A total of 18 individual tests took place on the application’s server. Each entity was
tested individually with its Create, Update and Delete functions to ensure they function
as intended.

Fig 6.2.1 - Server entity testing using Jest

6.2.2 Manual Integration Testing

Test Expected Output Actual Output Status

Register The user is redirected to
the login page

The user is redirected to the
login page

Pass

Login The user is redirected to
the dashboard

The user is redirected to the
dashboard

Pass

Reopen app
after being
logged in

User can skip the login
process and is redirected
to the dashboard

The user is redirected to the
dashboard

Pass

Begin Lesson The user is asked the first
question in a lesson

The user is asked the first
question in a lesson

Pass

Answer
Question
Correctly

The user is shown the
“Answer Correct” dialogue

The user is shown the “Answer
Correct” dialogue

Pass

Answer
Question
incorrectly

User is shown in the
“Incorrect Answer”
dialogue, along with an
answer hint

User is shown in the “Incorrect
Answer” dialogue, along with
an answer hint

Pass

Complete
Lesson

The user is redirected
back to the dashboard

The user is redirected back to
the dashboard

Pass

Table 6.1 - Manual testing results

6.3 Performance Testing

6.3.1 Server Testing
As mentioned in the implementation chapter, the applications’ server is hosted on
Heroku. Rolling out an update to the server can be done via the Heroku built-in CLI which
pushes all objects to a Heroku container, and runs an appropriate pre-build test to
ensure the code can compile and run successfully.

The server is hosted on the free (Hobby) plan with Heroku, which puts the server to
sleep after approximately 30 minutes of inactivity. As a result of this, the first interaction
with the server from sleep requires some idle time before the server can respond to a
request.

An endpoint response time test was run on every query & mutation present on the
server using Postman. This allowed us to measure the response time to each function
available through GraphQL on the server.

Test Total Time (ms) Average Time (ms)

Endpoint Test from Sleep 20980 599

Already awake 8579 245

Table 6.3.0 - Results of endpoint testing using Postman

As shown in the above table, the average response time was over double the average
response time when the server has to run these requests from sleep. This suggests that
there could be issues in the future should the application be built for production. At that
point, it would be necessary for the developer to either switch to a paid plan on Heroku
or choose to host the server somewhere else.

6.3.2 Mobile Application testing
Various performance tests took place using XCode instruments and Android studio.
Using XCode Instruments, it was possible to measure the performance of the
application at various aspects of its lifecycle.

6.3.2.1 App Launch testing
App Launch is described as the time from when the user taps the app icon, to the first
interaction by the user on the application (Collino, 2020). The longer it takes, the less
likely a user is to stay on the application.

Fig 6.3.0 - Analysing the app launch using XCode Instruments

As shown in Fig 6.3.0, the app launch took a total of 5 seconds. The main component in
this is the Foreground - Active section, which alone took approximately 3.84 seconds.

This test has been run twice, once when a user is already logged in, which will skip the
welcome screen and head straight to the dashboard page, and send a fetch request for

a list of modules. The second test was run when a user was not logged in, so it simply
displays the welcome screen.

Although the first test required more network activity, both tests were almost identical
from the time it took to launch the application to the first interaction point.

6.3.2.2 CPU & Memory Testing

Fig 6.3.1 - Analysing activity throughout a full flow of the app

6.3.2.3 Memory Leak Testing
A memory leak is described as any portion of an application that uses memory (RAM)
without eventually freeing it. If this continues to happen consistently the application
would eventually crash, as its memory would be completely exhausted.

Fig 6.3.2 - Measuring memory leaks within the application

As shown in Fig 6.3.2 above, at multiple stages within the application memory leaks
were caught. As shown in Fig 6.3.2 above, during a one-minute session of using the
application, at four points memory leaks occurred heavily. This was primarily at points
of selecting an answer while playing sound, and successfully answering a question.

These memory leaks occurred primarily in conjunction with the packages being used at
this point in the application. As a result, the developer should analyse the currently
written code and implementation of these packages, to ensure they are used and
managed appropriately.

6.3.2.4 Broad Device Testing
The mobile application had been deployed to both iOS & Android’s internal testing
systems. Particularly in the Android market, there are a lot of devices to tailor for, and
many of these devices are different in unique ways. This means the mobile application
can run millions of devices, ranging from high end to low-end users (flutter.dev, n.d.).

Specific tests were performed to test the usability and performance of the application
on various iOS and Android devices, noticeably the application was fluid and high
performing on all devices it was tested on.

However, automated testing was performed on the Google Play Console, reporting a low
frame rate on Nokia 1 devices, which were released in February 2018. The test reported
20% of frames being frozen, and a device launch time of 2110 ms.

6.3.3 Admin Dashboard testing
Performance testing took place using Google Lighthouse, which is built into the Chrome
inspection tools. It tests Performance, Accessibility, Best Practices, SEO & Progressive
web application support.

Fig 6.3.3 - Lighthouse audit desktop Fig 6.3.4 - Lighthouse audit mobile

These audits give an idea of how websites will perform, whether they follow the majority of web
development standards, and due to ReactJS bundles, whether they are well optimized. Off the
bat the application has very strong performance.

The application also has progressive web application (PWA) support, which allows the
application to be downloaded as a desktop application, or an application straight from the home
screen on a mobile device.

Fig 6.3.5 - Admin dashboard PWA on Mac OS X

Fig 6.3.6 - Admin dashboard PWA on iOS

Fig 6.3.7 - Admin dashboard PWA App Icon
Mac OS X

Fig 6.3.8 - Admin dashboard PWA App Icon
iOS

Git was used for version control within all components of this project. For the Admin dashboard,
it was used to keep changes and the application was deployed to Github Pages.

An automatic workflow was set up to enable automatic deployment when a new commit was
pushed to the repository.

When a new commit is pushed to Github, it immediately runs an Action workflow, which builds
the new commit, ensuring it is error and warning free, and then deploying it to Github Pages.

The workflow was written using a yml configuration file. This workflow also gets the location of
the server URL from the repositories secrets, which is placed to store environment variables.

This workflow was implemented to automate the deployment & testing workflow, it also displays
a badge on the README showing whether the current commit is passing testing or not.

Fig 4.0.3 - README.md with Continuous integration badge

6.4 Conclusion
This chapter has discussed the testing of the application, in each of its sections. The
aims to uncover any bugs within the project, analyse the user experience by performing
user tests, monitor the overall performance of the project and ensure the application is
fully functional, have been thoroughly observed.

Various types of usability tests took place to measure how usable, efficient and
satisfying the mobile application is to end-users. User testing took place to measure
how effective the user interface was to various users, and how the application
performed on different devices. Based on the results of these User tests, this chapter
concludes that, in general, the application has a very strong UI, and is generally user
friendly.

Notably, some users that answered questions incorrectly and repeated the same lesson,
learned from their mistakes, remembering which questions they answered incorrectly,
remedying this the second time around. This displays the overall effectiveness of the
application, showing that if a user is willing to continue to use the application, they will
likely learn from the questions and resources provided.

Unit testing took place on the server to individually test the function of each entity within
the database, and manual integration testing took place to measure the combination of
all modules together, and how well they interact with one another.

In-depth performance testing took place on all three modules of this project. Endpoint
testing took place on the server to test overall response times, both directly from waking
up and from a server already running. The mobile application was tested from various
aspects, including overall CPU & Memory usage while using the application, app launch
testing, memory leaks and broad device testing, to check compatibility on various
devices, particularly on Android.

The Admin Dashboard was also tested from various aspects. A Google Chrome
Lighthouse audit was performed to check its performance, accessibility, best practices,
SEO and whether it offers Progress web application support. The audit resulted in a
significantly high score in each aspect, and the admin dashboard ran very fluidly as a
result.

Continuous integration was implemented on the Admin dashboard, to test the system
after each commit to Github. The code was tested for warnings and errors, and after
passing all tests it ran a new build, and rolled out an update to Github pages, where the
admin dashboard was hosted.

7 Conclusion

7.1 Project Management
This section discusses how the project was managed over 8 months. The initial
proposal was presented in September, but the project commenced in October 2020 and
went on until May 2021.

The main deadlines were as follows:

Week Beginning Research Project
21/09/2020 Proposal
26/10/2020 Requirements
30/11/2020 Research
07/12/2020 Interim Presentation
18/01/2021 Design Document
08/03/2021 Beta Code
22/03/2021 Implementation Document
01/04/2021 Testing Document
08/04/2021 Final Source Code
07/05/2021 Final project documentation
18/05/2021 Final Presentation
Table 7.1 - Project deadlines

The project was planned using a Gantt chart mentioned within section 3.5 Project Plan.
This Gantt chart was later converted into a Trello board, which was used throughout the
project.

Fig 7.1 - Trello board used for project management purposes

Trello was used along with the Scrum Methodology, which advocates for various sprints,
throughout the project.

Weekly meetings also took place with the project supervisor, to discuss what had been
done, what needed to be done, and any problems encountered. These meetings were
extraordinarily beneficial because they kept the project going in the right direction
throughout the year.

Git and Github were used throughout the entire project for version control. Each
component got its own Github Repository, to maintain order and structure between all of
the code.

At any point there were modifications made to the code, a commit was made to the
Github Repository.

Fig 7.2 - Analysis of code additions to the backend

Fig 7.2 - Analysis of code additions to the frontend

From the Github Analysis, it was noted that a total of 102,615 lines of code were written
for this project.

7.2 Future Development
This section discusses possible future developments of this project. The project began
as an idea which was much more ambitious than the end result. Although the outcome
is a fully functioning application, content management system and server, the research
covered music theory and improvisation at a much deeper level.

Improvisation
One item in particular was the implementation of improvising through the application,
which never made it to production. Although the structure was set up, and a lot of the
functionality was implemented, it was never at a state to be presented to the end-user.

The research and structure has been done for this section of the application, thus, it
requires implementation on the mobile application, which would include pitch detection
and modification of the existing lesson flow structure.

Rewards system
A method to retain users would be to implement some sort of rewards system. The
application already includes points, which are added up over time, but a type of currency
could be implemented, and a store concept, where the user can purchase cosmetics for
the application, would also be highly effective.

Social Aspects
Applications like Duolingo have many ways to retain users, one of which is the ability to
follow friends, see when they are online and compete with them on a week by week
basis in leagues.

Implementing these features would offer another method of convincing users to
consistently return to the application.

The functionality to view when another user is online is also already half-implemented
within the current application model. GraphQL uses a web sock system called
subscriptions, and the foundations of this were implemented at the beginning of the
project. It is believed that it would not be a huge overhaul to implement the rest of the
functionality for this.

Monetization
Should the application begin to gain traction with users, it would be worth considering
how to monetize the application. From the research, it was mentioned by the user’s that
they always have to pay for music learning applications, so it would be worth keeping
the application free, but offering some sort of benefit to users who pay a monthly fee.

Another possibility is to show the user’s advertisements or give the user the option to
watch an advertisement for an additional reward.

7.5 Learning Outcomes
This project covered a broad array of topics, including researching music theory at an
in-depth level, exploring the design of many mobile applications, particularly educational
applications, learning the Dart Programming language from scratch, and learning
GraphQL, Mikro ORM, Apollo and how it all integrates with TypeScript.

None of the technologies above were covered in the course curriculum, and thus were
self-taught outside of class hours. Linkedin Learning courses and many online articles
were utilized to understand how these complex technologies work and interact with one
another.

This project has taught me a huge amount about GraphQL, and building applications in
Flutter. I can now confidently work in these technologies at an intermediate level as a
result of this project and the extensive research put in.

7.6 Project Summary
The objective of this project was to explore and understand the pedagogy of Music
Theory and Improvisation through mobile applications. The overall goal was to see
whether this was possible at a basic level.

The project began as something much more ambitious. It not only aimed to cover
teaching a user music theory, a highly dense subject in itself, but also how to improvise.
Unfortunately, due to parsimonious constraints, the element of musical improvisation
within the application was never fully implemented.

The design of the project takes inspiration from applications such as Duolingo, which
turn learning a language into bite-sized chunks of gamified education. This method of
educational gamification was applied to this project.

The mobile application is built using Flutter and was written in the Dart programming
language. It offers high performance and fluidity and can run easily on hundreds of
different devices, all from a single code base.

The server was built using Apollo, Express, Mikro ORM and Node.js all written in
TypeScript. The application was designed from the ground up with high performance
and uses GraphQL as an endpoint for sending and receiving data between the server
and the client.

7.7 Final Words
The primary goal of this project was to see whether teaching music theory was possible
through mobile applications. It aimed to offer a fluid, high performing mobile application
from which a user could learn and develop knowledge in music theory.

From the user tests conducted, a highly encouraging observation noted that users who
initially got questions wrong, and went back to part take in another lesson, got those
same questions correct on the second time. Through reading the learning resources
and answer hints provided, the users learned from their mistakes.

From this observation, I can confidently say that the goal of this project was achieved. A
high performing application was built that can be deployed to millions of devices, which
is capable of effectively educating the user on the subject of music theory.

References
Amazon. (2019). About AWS. Amazon Web Services, Inc.

https://aws.amazon.com/about-aws/

Apache Software Foundation. (n.d.). Apache Kafka. Apache Kafka. Retrieved November

30, 2020, from https://kafka.apache.org/

Armstrong, S. (2018, October 5). The untold story of Stripe, the secretive $20bn startup

driving Apple, Amazon and Facebook. Wired UK.

https://www.wired.co.uk/article/stripe-payments-apple-amazon-facebook

AWS. (n.d.-a). AWS Solution Provider Program. Amazon Web Services, Inc. Retrieved

November 29, 2020, from https://aws.amazon.com/partners/solution-provider/

AWS. (n.d.-b). Financial Services Case Studies - Amazon Web Services. Amazon Web

Services, Inc. Retrieved November 29, 2020, from

https://aws.amazon.com/financial-services/case-studies/

AWS. (n.d.-c). Global Infrastructure. Amazon Web Services, Inc. Retrieved November 29,

2020, from

https://aws.amazon.com/about-aws/global-infrastructure/?p=ngi&loc=1

AWS. (n.d.-d). Storage - Amazon Elastic Compute Cloud. Docs.aws.amazon.com.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html

AWS. (2006). What Is Amazon S3? - Amazon Simple Storage Service. Amazon.com.

https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

AWS. (2019a). Amazon EC2 Pricing - Amazon Web Services. Amazon Web Services, Inc.

https://aws.amazon.com/ec2/pricing/

AWS. (2019b). Regions, Availability Zones, and Local Zones - Amazon

Elastic Compute Cloud. Amazon.com.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availabi

lity-zones.html

AWS. (2019c). What Is Amazon EC2? - Amazon Elastic Compute Cloud. Amazon.com.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html

AWS For Business. (n.d.). What are some Amazon EC2 use cases? AWS for Business.

Retrieved November 29, 2020, from

https://www.awsforbusiness.com/amazon-ec2-use-cases/

Back4App. (2019, November 26). Firebase vs Heroku|What are the Differences?

Back4App Blog.

https://blog.back4app.com/firebase-vs-heroku/#:~:text=Unlike%20Firebase%2C

%20Heroku%20developers%20can

Barr, J. (2006, August 25). Amazon EC2 Beta. Amazon Web Services.

https://aws.amazon.com/blogs/aws/amazon_ec2_beta/

Barr, J. (2008, May 29). More EC2 Power. Amazon Web Services.

https://aws.amazon.com/blogs/aws/more-ec2-power/

Bessie Chu. (2013, November 4). Amazon Web Services SWOT & Competitor Analysis.

SlideShare.

https://www.slideshare.net/BessieChu/amazon-web-services-swot-competitor-a

nalysis

Chapel, J. (2020, April 1). Who Is Leading Among The Big Three?: AWS vs. Azure vs.

Google Cloud Market Comparison - DZone Cloud. Dzone.com.

https://dzone.com/articles/who-is-leading-among-the-big-three-aws-vs-azure-vs#

:~:text=Cloud%20Computing%20Market%20Share%20Breakdown&text=As%20of

%20February%202020%2C%20Canalys

Clark, J. (2019, November 28). DigitalOcean vs Heroku | Which is better? Back4App Blog.

https://blog.back4app.com/digitalocean-vs-heroku/

Datanyze. (n.d.). Heroku Market Share and Competitor Report | Compare to Heroku,

Firebase, Google App Engine. Datanyze. Retrieved November 30, 2020, from

https://www.datanyze.com/market-share/paas--445/heroku-market-share

Dubsmash. (n.d.). Dubsmash - Customer Success | Heroku. Www.heroku.com. Retrieved

November 30, 2020, from https://www.heroku.com/customers/dubsmash

Google. (n.d.). PayPal Case Study. Google Cloud. Retrieved December 2, 2020, from

https://cloud.google.com/customers/paypal

Harvey, C., & Patrizio, A. (2020, October 22). AWS vs. Azure vs. Google: Cloud

Comparison [2019 Update]. Datamation.com.

https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-co

mparison.html

Hatton Enterprise Solutions. (2019, February 10). SWOT analysis - AWS.

Www.hattonenterprisesolutions.uk.

https://www.hattonenterprisesolutions.uk/blog/swot-analysis-aws/

Heroku. (n.d.-a). Dynos and the Dyno Manager | Heroku Dev Center.

Devcenter.heroku.com. Retrieved December 2, 2020, from

https://devcenter.heroku.com/articles/dynos#isolation-and-security

Heroku. (n.d.-b). Pricing | Heroku. Www.heroku.com. Retrieved November 30, 2020, from

https://www.heroku.com/pricing

Heroku. (2019a). Heroku Dynos | Heroku. Heroku.com. https://www.heroku.com/dynos

Heroku. (2019b). Heroku Security | Heroku. Heroku.com.

https://www.heroku.com/policy/security

Heroku. (2019c, July 24). About Heroku | Heroku. Heroku.com.

https://www.heroku.com/about

Heroku. (2020, July 13). Building an Add-on | Heroku Dev Center. Devcenter.heroku.com.

https://devcenter.heroku.com/articles/building-an-add-on

Illsley, R. (2020, May 7). SWOT Assessment: Amazon Web Services. Omdia.

https://omdia.tech.informa.com/-/media/tech/omdia/assetfamily/2020/05/07/s

wot-assessment-amazon-web-services/swot-assessment-amazon-web-services-

pdf.pdf

ITProToday. (2015, March 31). Why PayPal Replaced VMware With OpenStack. IT Pro.

https://www.itprotoday.com/iaaspaas/why-paypal-replaced-vmware-openstack

Li, A. (2020, February 27). PayPal migrating “key” parts of infrastructure to Google Cloud.

9to5Google. https://9to5google.com/2020/02/27/google-cloud-paypal/

Lindenbaum, J. (2009, October 14). Announcing Huge Growth and New CEO.

Blog.heroku.com.

https://blog.heroku.com/announcing_huge_growth_and_new_ceo

Motola, C. (2020, February 17). How Does Stripe Work? The Beginner’s Guide To Stripe.

Merchant Maverick. https://www.merchantmaverick.com/how-does-stripe-work/

Ortiz, J. (2015, October 13). AWS re:Invent 2015 Keynote | Jorge Ortiz, Manager of

Infrastructure, Stripe. YouTube. https://youtu.be/WmHineJiYqk

Papertrail. (n.d.). Papertrail - Add-ons - Heroku Elements. Elements.heroku.com.

Retrieved November 30, 2020, from

https://elements.heroku.com/addons/papertrail

Redis. (n.d.). Redis. Redis.io. https://redis.io/

Redis Labs. (2012, November 9). Six Things to Consider When Using Redis on Heroku.

Redis Labs.

https://redislabs.com/blog/six-things-to-consider-when-using-redis-on-heroku/#.

VtcXgpMrKL8

Rojas, A. (2017, August 31). A Brief History of AWS. The Media Temple Blog.

https://mediatemple.net/blog/cloud-hosting/brief-history-aws/

Stripe. (n.d.-a). Online payment processing for internet businesses - Stripe. Stripe.com.

Retrieved December 1, 2020, from https://stripe.com/en-gb-at

Stripe. (n.d.-b). Pricing & fees | Stripe. Stripe.com. Retrieved December 1, 2020, from

https://stripe.com/en-gb-at/pricing

Stripe. (n.d.-c). Security at Stripe. Stripe.com. Retrieved December 2, 2020, from

https://stripe.com/docs/security/stripe#:~:text=Encryption%20of%20sensitive%2

0data%20and

Stripe. (n.d.-d). Stripe Connect: Use Cases. Stripe.com. Retrieved December 1, 2020,

from https://stripe.com/en-br/connect/use-cases

Stripe. (n.d.-e). Stripe Partner Program: Become a Partner with Stripe. Stripe.com.

https://stripe.com/en-gb-at/partner-program

Techcrunch. (2010, December 8). Salesforce.com Buys Heroku For $212 Million In Cash.

TechCrunch.

https://techcrunch.com/2010/12/08/breaking-salesforce-buys-heroku-for-212-mi

llion-in-cash/

Wikipedia Contributors. (2020a, November 18). Amazon Web Services. Wikipedia.

https://en.wikipedia.org/wiki/Amazon_Web_Services#:~:text=The%20AWS%20pl

atform%20was%20launched

Wikipedia Contributors. (2020b, November 29). DigitalOcean. Wikipedia.

https://en.wikipedia.org/wiki/DigitalOcean

Wikisme. (2020, October 30). Stripe SWOT Analysis: What are the biggest Strengths and

Weaknesses of Stripe? Wikisme. https://www.wikisme.com/stripe-swot/

