

[bookmark: _Toc102936431][bookmark: _Toc102937680][bookmark: _Toc102938063]Can spaced repetition and UX design be used as a support to knowledge acquisition?

by Yvan Monod
Supervisor: John Montayne
Second reader: John Dempsey
Submission date: 8th April 2022

	DECLARATION:
I hereby certify that the following material is entirely my own work and has not been taken from the work of others unless it has been properly cited and acknowledge within the text of my own work.
I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own work.
Student: Yvan Monod
Signed: Yvan Monod

[bookmark: _Toc102938064]Abstract
This document covers the research on spaced repetition and tries to answer if spaced repetition is a relevant tool to help users acquire knowledge. The development started by searching how people learn, how memory works and how learning can be made easier. The research paper also looked at how UX design can help the process. The underlying idea of the project was to come up with a spaced repetition algorithm that would make learning more efficient and effortless while technically improving and removing the flaws of the algorithm from which it derives.
The final application is built using the MEVN stack. Users can create sets of cards, and decks, add public decks to their profile, review flashcards, and manage their cards and decks collection. While the algorithm schedules flashcards next review session and predicts the probability of when users forget the moment when they will forget information.

[bookmark: _Toc102938065]Acknowledgments
I would like to thank my project supervisor: John Montayne for his guidance throughout this year. His opinions, criticism and honesty were invaluable, and if the project is what it is today, it is largely thanks to him. I would also like to thank John Dempsey, my second reader whose foreign look at the project brought fresh air to the thinking and development of the application.
I want to thank all the lectures that I had the chance to learn from during the time I spent at IADT, as well as my fellow students who were genuinely friendly toward me.
Lastly, I would like to thank my family, who pushed me to study overseas, which turned out to be a lifetime experience, and my friends from Les Glandus and Club mansonges & trahisons for their everlasting support.

Table of content
Abstract	3
Acknowledgments	4
Table of content	5
Introduction	9
2 Research	10
Introduction	10
2.1 Second Language Acquisition (SLA)	11
2.1.1 How infants acquire language	11
2.1.2 Cognitive psychology	12
2.1.3 Mental openness	16
2.1.4 Integration of technology to learning	16
2.1.5 A new spaced repetition algorithm	18
2.2 Design to help practitioners	20
2.2.1 A brief introduction to UI	21
2.2.2 A brief introduction to UX	22
Conclusion	25
3. Requirement Analysis	25
3.1 Survey	26
3.2 Existing applications	28
3.2.1 Anki	28
3.2.2 Duolingo	30
3.2.3 Babbel	32
3.3 User Persona	34
3.4. Requirements	35
3.4.1 Functional, user and technical requirements	35
3.4.2 Non-functional requirements	36
3.5. Feasibility study	36
3.6. User Case Diagram	37
3.7. Hi-Fi prototypes	38
3.8 Test plan	40
3.9 Project plan	41
4. Design	42
4.1 System Architecture	42
4.2 Application Design	43
4.2.1 Technologies	43
4.2.2 Design Patterns & Programming Concepts	45
4.2.3 Database Design	49
4.3 Process Design	50
4.3.1 Flowcharts	50
4.3.2 Sequence diagram user login in and deck creation	54
4.3.2 Sequence diagram of the deck’s review	55
4.4 Front end	56
4.4.1 Wireframes	57
4.4.2 Style guides	62
	63
4.4.3 Design system	63
4.4.3 Inspiration	66
5. Implementation	67
5.1 Development Environment	67
5.1.1 SCRUM methodology	67
5.1.2 Kanban board	67
5.1.3 GitHub	68
5.1.4 Insomnia	68
5.1.5 Mongo Atlas	69
5.1.6 Firebase and Heroku	69
5.1.7 Webpack	69
5.2 Spaced Repetition Algorithm	70
5.3 Application’s Implementation	74
5.3.1 Back-end	75
5.3.2 Front-end	83
6. Testing	96
Introduction	96
6.1 Spaced repetition testing	96
6.1.1 The objective	96
6.1.2 Test conduction	97
6.1.3 Success measurement	98
6.1.4 Results	98
6.2 Usability testing	99
6.2.1 The objective	99
6.2.2 Test conduction	99
6.2.4 Results	100
Conclusion	102
Appendix A	105
Appendix B	106
Usability test tasks	106
Link to the usability test form	106
Link to the users’ survey	106
References	107

[bookmark: _Toc102938067]Introduction
As globalisation grows in complexity and cultures once limited to their country of origin get a new kind of publicity (take for example Korea and its recent world hit Squid Game), the demand for learning a foreign language has kept increasing. They were 30 million in 2020 during lockdown to take a course with Duolingo alone. Learning a new language is often a tedious task, requiring dedication, motivation, and time, a resource becoming increasingly scarce in the life of many. Furthermore, learning a language as one did in school might not be the ideal solution for everybody. Some still debate on what methodology is the best to retain information.
This project is not there to give a definite answer to this question. Rather, it tries to offer an alternative to the institutionalised methods of schools that is not intrusive and maintains a high degree of motivation. To do so, the project explores how spaced repetition offers viable support to those self-learning a language (or any kind of information), and how the algorithm of the application tackles the issues of its predecessors. Another key aspect the project focuses on is the UX design, or how the interface can be made to make learning agreeable.
The report is structured as such: Chapter 2 focuses on the research that was conducted on language acquisition, how spaced repetition works and what are the flaws of the current algorithms, and why is UX important and can be made useful for an application. Chapter 3 discusses what are the requirements for the application to work and the feasibility of the project. Chapter 4 looks at the system architecture, how components work together and the design system behind the application. Chapter 5 outlines what tools were used for the development and highlights how parts of the code work. Chapter 6 defines the tests that were conducted during the development, their objectives, requirements, success measurement and conclusions. Ultimately, chapter 7 concludes this project and explores some of the possible future development ideas.

[bookmark: _Toc102938068]2 Research
[bookmark: _Toc102938069]Introduction
The research chapter aims at defining which elements should be considered to build a flashcard application (Kram) whose objective is to help self-learning students acquire a second language via a flashcard approach. To do so, the chapter looks at first how individuals, starting with infants then adults, learn a language, and then how technology may support the process. The first section looks in depth at cognitive linguistics and the perspectives it offers to help implement Kram. In other words, how empirical data may help understand why and how memorisation can be hacked using learning tools and cognition, e.g.: flashcard anatomy, writing, mobile learning, and mental health. The first section ends with a short description of Artificial Intelligence (AI) and Machine Learning (ML) to introduce Probase, a ML model that uses semantic analysis to obtain knowledge of the world from words and probabilities so that Kram may offer customized review sessions. The second part of the chapter aims at defining as best as possible broad concepts essential to user-to-interface system design: Use Interface (UI) and User Experience (UX), and how they may help to build an application relevant to e-learning.

[bookmark: _Toc86830961][bookmark: _Toc102938070]2.1 Second Language Acquisition (SLA)
This first section of the research is dedicated to understanding how language is acquired by infants and how adults may acquire a second one. To develop how the former happens, the first part explores what cognitive psychology teaches us about learning and what are the methods it advocates to assist memory. Then it defines what requirements should be considered when making flashcards and how mental health may impact the learning process. The second part looks how technology can support students, yet why it may also fail at doing so. The second part of the section covers why writing remains superior to e-learning from a psychological perspective and what tools technology must overcome its natural flaws. In addition, the second part details the reasons why mobile learning isn’t necessarily the go-to option when making a learning application. Finally, it finishes on a description of Probase, a machine learning model that is used by the application to provide users context to the learning process, an essential aspect of learning as it is further discussed in this section.

[bookmark: _Toc85372599][bookmark: _Toc86830962][bookmark: _Toc102938071]2.1.1 How infants acquire language
As easy it seems for infants to learn their native language, much of the process is yet unsure. For Emberson, Richards, and Aslin (2015), hardwiring language is facilitated by the infants’ young neural network, a necessary condition for the integrational process. Yet, Kuhl (2007) adds that the commitment to the mother’s tongue comes from a mix of physical and social inputs. They involve (among many) innate capabilities to compute phonemic sequential probabilities as confirmed by Soares, Gutiérrez-Domínguez, Vasconcelos, Oliveira, Tomé, and Jiménez’s (2020) research stating that transpositional probabilities, is performed by infants to discriminate word sequences as early as 8 months old (in other terms, infants are capable to determine the probability of a syllable to precede another one), discriminate phonemes frequencies of any given language during the first year of life, the exposure to social interactions such as person-person-object plays, adult-infant directed speech (or motherese tone) assisting infants by exaggerating phonemes pronunciations, higher pitch, and slower pace, etc.
Shoaib, Wang, Hay and Lany (2018) add that 17 months old infants can innately learn from HTP (High Transitional Probabilities) and LTP (Low Transitional Probabilities) sequence of words. It later reflects on their capacity to learn new languages (as attested by Kuhl, 2007). Infants with a small English vocabulary seem to be more efficient with HTP words (words perceived as labels of things), and on the contrary, those with a large pool of words tend to be more efficient with LTP sequences and reluctant to learn HTP words. It is stated as well that adults perform transitional probabilities instinctively yet less efficiently if the words are not breaking their mother's tongue phonology rules.

[bookmark: _Toc102938072]2.1.2 Cognitive psychology
At the time Meeder and Seetles (2016) authored their paper, Duolingo managed to increase by 12% the daily user’s engagement, and reduce prediction errors by 45%, thanks in part to their novel approach to spaced repetition: Half-life Regression (HLR, Settles, 2016), in continuity to the Pimsleur and Leitner models. The two models prior to HRL introduced spaced repetition (SR) techniques (1967 & 1972) for SLA, respectively via audio recordings and flashcards. SR is an effective strategy for adults to attain foreign language proficiency as they require special attention SLA (Oxford & Nyikos, 1989). SR is defined by Sander (2021) as a cognitive technique improving the memorizing of information via multiple learning sessions. During each session, learning objects are evaluated, for each correct answer the time interval between each object review is increased. If a review fails, the time interval is set back to its original value. This learning approach could be defined as naturalistic in that the brain is made to retain information by an iterative process of memory trigger, in opposition to cramming, a formalistic approach trying to brute force memory. SR proved to be efficient methodology (Seibert, A. H., & Brown, C., 2019) by promoting active work from the learner to recall information. And as time progresses, the delay of retention gets longer, meaning each recall length proportionally augments. To this aim, HLR was created to include machine learning (along with the data of millions of Duolingo users) to refine the prediction of the memory threshold by which one forgets the target information known as the forgetting curve (Ebbinghaus posit stating that memory decreases exponentially over time).
[bookmark: _Hlk92892974]However, to leverage learning, cognitive psychology can complement SR through “encoding specificity” and “situated cognition” (Edge, Searle, Chiu, Zhao and Landay, 2011). Situated cognition won’t be discussed as it postulates that knowledge relates to reality, and thus learning continues as learners engage with speaking partner outside the learning environment (Brown, Collins, & Duguid 1989). Encoding Specificity could be defined as bringing contextualization to the learning process and improve information retrieval by mixing information to perceptual backgrounds (e.g., learning the word “plane” relating to the context of “airport”. When making flashcard, the perceptual background could be a drawing). To this aim, Edge, Searle, Chiu, Zhao and Landay (2011) evaluated the app MicroMandarin, which provides context to learning sessions by dynamically bringing words in relation to the users' location, using an API (Application Programming Interface) tracking their location. In their post-evaluation survey, the authors prove how efficient adding context to learning is, with an overall 73% good appreciation against 9% of bad appreciation (and only 18% being “ok”).
[image:]
Figure 1 Bringing context to words
Another key point for SLA is brought by Seibert, A. H., & Brown, C. (2019) who conducted tests on the effectiveness of SR flashcards on university level students with the application Anki. Starting from the posit that cramming leads to a loss of motivation and that SR is proved to be efficient at enhancing long-term memory retention, they found that even though the app provided low interaction enjoyment, the positive results of the students increased their motivation to keep learning during second semester, proving that condition towards learning is a key variable for SLA, especially motivation. To the authors own words motivation is “the strongest and most consistent predictor of success in second language acquisition”. It relates well to Edge, Searle, Chiu, Zhao and Landay (2011) findings. During their pre-test survey, some of the attendees reported troubles learning Chinese, feeling frustration and embarrassment for not being able to speak with the natives. All had in common that their primary motivation for learning Chinese was because they lived in China in contrast to those learning it for work or education. Thus, mental state towards learning will determine students’ proficiency in the long term (Lin, 2011).

2.1.2.1 Memory retention
Memory works from a selective process based on the importance of information (Notiv, 2019). If information isn’t deemed as important, it may well be forgotten in a very short span of time. According to cognitive science ("How Memory Works", n.d.), memory is a ‘dual-process’ of interaction between both consciousness (a slower, effortful type of process) and subconsciousness (a faster and automatic form of conscious). Whether it is walking or handling a mathematical problem, the brain calls one or the other to encode information (the process of thought that learns information: visual, acoustic, etc.), store it in either short- or long-term memory (the former being quick but limited, and the latter slower but unlimited), and retrieve information. Such dual nature of memory, essential for skill acquisition and automation is well described in the philosophical allegory of Butcher in the Zhuangzi from the eponym author (Billeter, 2002). For Zhuangzi, everyone experiences a similar switch of task consciousness as the butcher did when mastering his craft, such as biking. At first, the conscious is aware of each step involved in biking as memory engraves the process until the moment the mind offers no more resistance as the long-term memory alone is sufficient for biking.
Yet, forgetting is an integral part of memory as much as the integration of information ("How Memory Works", n.d.). Memory isn’t static and forgetting can happen simply due to natural decay of memory (often due to a lack of review of information), the interference of new memory overstepping older one, failure of storage or stressful events repressing memory from storing. Hence rehearsal is the most efficient way to overcome storing defects that will happen as it uses memory by tricking it into memorising information perceived as important instead of brute forcing it.

2.1.2.2 Flashcard anatomy
When self-studying, a key factor as discussed above is motivation, hence the challenge for the platform to provide proper learning support for the students to engage actively (Nilson, L., 2018). Before thinking how to make flashcards, the first step concerns the creation of a meaningful system. A good deck intrinsically possesses context to which the cards relate to. It is necessary for a deck to match a class or a subject, yet decks shouldn’t be super-detailed for fear of losing effectiveness and efficiency (Casey, J., 2019). Tags are thus an efficient way for bringing relation between decks and cards.
When making flashcards, the key point is to promote active memory recall. To do so, the anatomy of flashcards must follow a few sets of rules to avoid detrimental effects. Badly designed cards promote visual recognition instead of actual knowledge of the information (Casey, J., 2019). The objective of a card is to create a perceptual background assisting visual memory. To this purpose, the best cards are concise; namely each card should be limited to a single fact or idea. Put differently each card must hold the smallest piece of information for a specific learning objective. If the cards respect the rule of conciseness, the card’s value is reinforced by enabling two-way learning, allowing learners to switch both questions and answers. Nevertheless, if cards can’t be simplified, a mnemonic strategy might be the way to go for assisting memory by adding colors, shapes, diagrams, images, etc. Finally, Frank, T. (2020) recommends users to make themselves flash cards to create a memory precedent, helping the process. Thus, the platform must supply an efficient system for users to create their own flashcards.

[bookmark: _Toc102938073]2.1.3 Mental openness
A large corpus of studies show that motivation can highly decrease as the perceived difficulty of language gets bigger (Wang 2014) and then affect engagement. For Wang (2014), it is necessary to reflect on ‘task engagement’ when creating learning environments to foster learning, and understanding the former concept is the first step. Task engagement helps understand how and why students are learning. It could be defined in many ways, such as entering the “flow” (a deep state of concentration), the joy felt during learning, etc. Yet Lin (2012) seems to offer a definition that encapsulate most of the ideas covered by Wang (2014). For Lin, learning is a “dynamic engagement system” made out three components. First, cognition or how emotions and behaviors involve in the learning process control the psyche of an individual. Second the feedback of a student’s performance (behavioral). And third, the student’s attitude toward the task (emotional). Based on her research, Wang (2014) lists a set of requirements to produce engagement towards a task: immediate feedback in the learning process, balance challenge and skills, focus the attention, promote collaborative work connection to the student’s life, etc.

[bookmark: _Toc102938074]2.1.4 Integration of technology to learning
Big data enables substantial gains in learning performances as proved by Duolingo’s HLR model (Settles, 2016). But technology taken as an all can do much more. For the linguist Menrill Swain (Motteram, 2013) SLA requires a proactive engagement towards the language instead of learning about a language. To this end, writing for example eases the process by enabling learners to practice the language, showing spelling and grammar errors, etc. In other words, Motteram (2013) sees the integration of technology to SLA as the enactment of trial and error, helping end a process of assimilation.

2.1.4.1 Writing
Among the challenges the application needs to answer is a design capable of easing the information synthesis and retention. Many studies show that writing on paper is a better than typing for that process. The latter suffers from a lot of defects compared to the latter, records Frisch (2016). Writing is better at helping the brain to retain and synthesize information, which requires self-awareness while typing doesn’t involve as much. The first approach is a multisensory method (Horowitz, 2018), forcing the learner to enter a proactive mindset to select meaningful information and summarize it, using multiple parts of his brain (eyes tracking what is written, ears listening to the pronounced words, the space in which movements are performed, etc.). Furthermore, paper is permanent and easily accessible. It promotes synthesis, later reviews, strengthening conceptual and contradictory thinking, etc. (Frisch, 2016). It also helps short- and long-term memory by creating cues helping information recall. In contrast, typing promotes verbatim. The inner thoughts become shallow, and the learner becomes a passive receiver, resulting in passive thinking. Furthermore, while the learner benefits from instant feedback when writing, the auto-correct reinforce the student’s passiveness. Thus, it is essential for the project to provide a solution for the students to benefit as much as possible from the benefits of writing since the intermediary between the interface and user is typing and it can’t be expected from the average users to have a drawing tablet since they more task specific (Lewis, n.d.).

2.1.4.2 Mobile learning against computer learning
E-learning could be defined as the use of ICT (Information and Communications Technologies) and data to enhance learning (Phung, 2020). Mobile learning would be a sub-field of e-learning looking to deepen student’s learning engagement as mobiles are accessible anywhere and nearly anytime. That ease of access is reinforced by an extensive usage of mobiles among students, even at the time Taleb and Sohrabi (2012) published their paper (up to 59% of the interviewees report to be likely doing mobile learning). Furthermore, it is a cheaper alternative to laptops and overcomes Wi-Fi struggles more easily (thanks in part to its large availability). Gangaiamaran and Pasupathi (2017) deepen Taleb and Sohrabi (2012) reflection by defining learning’s mobility over three points: first mobility of technology got rid of the space constraint. Mobiles fit in one’s palm and with their Wi-Fi capacities, they can deliver content anywhere the Internet is accessible. Second the mobility of learners. Learning has become more flexible, can address each user’s needs, and fit as well to real life activities. At last, mobility of learning ensures that learning can be done anytime, excluding the time constraint (e.g., review sessions can take place during commuting).
Yet, it is worth asking whether mobiles are the solution for e-learning or are a bitter-sweet pill. For Christodoulou (n.d.), smartphones have inherent flaws limiting their value as learning tools. The biggest challenge comes from the same reason as why it enables mobile learning, the format. People engage twice as much time per day with their mobiles than their computers, yet their usage come rather as “checking habit”, where working sessions are both short and mindless, instead of intensive. This is due in part to the emotional attachment people have toward their phones. They are much likely to check their phones in times of stress or for leisure, and performances are still defective even when turned off. If both mobiles and computers appeal distractions to the users, Christodoulou notes that laptops are the least bad solution. In general, people tend to use mobiles for shorter sessions of work and less specific ones in contrasts to laptops which are better made for content creation and not just consumption (Ferriman, 2020). At last, the screen size could foil the work in progress as it is harder to perform intensive work such as reading ("Smartphone Vs Laptop - Which Should You Get? 2021 | MedCPU", n.d.).	Comment by John Montayne: Not sure what you mean here…Carry?

[bookmark: _Toc102938075]2.1.5 A new spaced repetition algorithm
Modern spaced repetition algorithms are as old as the 60s, and the Leitner system is one methodology that remains relevant to this day despite being invented in the 1970s. It uses flashcards, boxes, and a scheduling system to improve memorization by showing the cards requiring more attention (Tamm, 2021).

2.1.5.1 SuperMemo2
SuperMemo2 is the first computer-based algorithm that takes back the Leitner methodology, invented by P.A. Wozniak (1982) (Wozniak, 1998). What makes SuperMemo2 interesting for this project is its unique position as the foundation of many algorithms used by modern applications today, such as Anki ("SuperMemo - Wikipedia", 2022). Just like the Leitner system, the algorithm aims at finding a card's next reviewing interval after a previous review. To do so, the algorithm works in two steps (Wozniak, 1998). First, it calculates the new interval when receiving four inputs from the client:
· q: is the user grade (total blackout, incorrect response but familiar, incorrect response but seems easy, correct response but required efforts to remember, correct answer but was a little tedious and correct answer)
· n: the repetition number, or the number of days the user successfully remembered the card in a row
· EF: the ease factor, or inherent difficulty of the card to learn
· I: the interval
The interval is calculated as such:
If the grade is superior to 3 and if n = 0, the interval equals 0, or 6 if equals 1. Would n be superior to 1, the interval is the product of the past interval by the ease fact. Otherwise, n is set back to 0 and the interval to one.
Then the ease factor (where EF' is the new EF):
EF' = EF + (0.1 − (5 − q) × (0.08 + (5 − q) × 0.02))
The issues of the algorithm are many. First, the use of the variables 0.1, 5, 0.008 and 0.02 are not detailed by Wozniak in his article, and no other ones to the author's knowledge detail their usage. Thus, part of the function cannot be explained and used in a cartesian philosophy that would aim to understand what is being used. Another problem is the grading system, shared to this day by Anki. Indeed, it may be hard for users to give honest feedback on their reviews and giving them too much choice might lead to erroneous results.

2.1.5.2 Anki flaws
While SuperMemo2 has its share of issues, Anki suffers from the ones described by MIA or Mass Immersion Approach (The Ease Factor Problem, 2018 and Eshapard, 2017) and Eshapard’s respective blogs.
The problem that both SuperMemo2 and Anki try to tackle is predicting the exact moment when one forgets information. To do this, Anki starts from the hypothesis that the difficulty of each card in a deck is heterogeneous. To adjust the interval prediction, Anki asks for feedback, giving four choices: Again, Hard, Normal and Easy. Each feedback modifies the EF. Hitting normal, the EF remains at 250% (the original value). Hitting hard takes 15% from the EF, fail removes 20%, and hitting easy adds 15% plus an additional 13%.
Anki should theoretically push the EF towards an ideal number. But this system is flawed, as expressed by the bloggers. Hitting fails continuously push the card to what is known as the ease hell. A situation in which the card will not grow as it should be, because its maturation is impeached by a low EF. Thus, it will result in the card showing up more often than necessary if the card came to be properly learnt by the user.
A better solution according to Eshapard (Eshapard, 2017) and MIA (The Ease Factor Problem, 2018) would be to look at the cards or deck's history.
On the opposite, hitting continuously the easy button may result in the opposite effect. By increasing too quickly the EF, the card might show the way after information was forgotten as it is uncorrelated from the forgetting curve. The inaccuracy of the EF then makes the failure of the next review most likely to happen instead of offering proper learning.
[bookmark: _Toc102938076]2.2 Design to help practitioners
The second section of the research chapter aims at introducing the reader at essential concepts of designing a web interface User Interface (UI) and User Experience (UX). In doing so, each part subpart looks first at each notion and bringing the most accurate definition as of now. Then in a second time, a reflection is made to understand how these concepts can be applied in the context of e-learning, when they should be considered and when their usage might disrupt the learning flaw.

[bookmark: _Toc102938077]2.2.1 A brief introduction to UI
[bookmark: _Toc86830966]UI design could be referred as the sum of visual elements, their looks and feel in relation to a user-to-interface system. It consists of an array of visual cues such as buttons or icons, and non-visual cues such as how the user interacts with the interface (Umbach, 2018). It must start with the understanding the users’ profile, such as their sex, age, education, etc. To fail at designing a good interface could result in the student feeling frustrated, demotivated and perhaps dropout the lesson, regardless of all the functionalities it exhibits (Faghih, Katebi & Reza Azadehfar, 2014). To build an efficient UI is to help users accomplish their goals or solve their problems as easily as possible (Umbach, 2018). To meet such objectives, Faghih, Katebi & Reza Azadehfar (2014) list three must dos: first to let the user in control; second lessen his memory load and third to make the designing consistent. So far, this section has talked about UI referring implicitly to screens but designing an UI may also mean to design other types of interactions such as ATMs, virtual reality or simply a mouse (Churchville, 2021). To carefully consider UI may determine the success or failure of application. For this reason, it is necessary to reflect on how students will interact with the application’s interface for the reasons discussed in part 1.

2.2.1.1 Designing a learning friendly UI
The design of an e-learning interface must be able to trigger students’ engagement and willingness to support them achieve their learning objectives (Faghih, Katebi & Reza Azadehfar, 2014). A good e-learning interface must then be able to render the learning process proactive. 75% of the learning happens with the sight, 13% by hearing, and 6% by touch. The perk of a computer interface is its capacity to be able to easily assemble human perception in a single system. Thus, for Faghih, Katebi & Reza Azadehfar (2014) if the designing manages to grow the motivation of its students, the goal may be considered successful. To do so, the research registers a list of issues to consider: the Curriculum, the display of learning materials, tools, and the training objectives. To help dealing with those requirements, the paper advocates for a series of measures to assist the students. Among many, using a large panel of colours can help trigger attention by bagging related information together. Caution is nevertheless necessary as too many colours night create distortion. White space can bring balance to the layout by ordering the learning material. Knowledge of the real world can help LTM retention by providing contextualised elements to the lessons which in turn helps the students make bridges between information and tangible cues. Multimedia material may as well help LTM memory and engagement by triggering verbal and visual memory. Since both are two distinct, to trigger them is to ensure that two channels different processes analyse and store information at the same time.

[bookmark: _Toc102938078]2.2.2 A brief introduction to UX
Don Norman defined UX at its early stage to encapsulate a large array of concepts interacting with a user-to-interface system such as “industrial design, graphics, the interface, the physical interaction, and the manual” (Hellweger & Wang, 2015). However, a unified definition of UX tedious due to the vast number of aspects UX seems to englobe. At best, according to Hellweger & Wang (2015), a critic of UX would consider a multi-dimensional definition. Thus, this section tries to summarize as best as possible a definition of UX, disregarding the least popular definition for the benefit of definition acting as a reference in the domain. The authors of “What is User Experience Really: towards a UX Conceptual Framework” restrain UX to three plausible definitions. First UX encompasses usability, forcing the reflection on what the designing of an interface should be. In other words, what are the consequences of making an interface that happens to be appealing (pleasure, joy, frustrations, etc.). Second, UX is a complement of usability. It suggests that as interfaces become more and more entertainment driven rather than work focus, UX asks for a redefinition of usability in which UX is emphasized. Lastly, UX is part of usability as one of its many aspects. Designing systems becomes a task of finding the right balance between UI and UX, the former focusing on discharging the users from dissatisfaction while the latter brings “pleasure, beauty, challenge, stimulation, etc”.
Yet, UX can further develop the definitions from above by engaging the individual itself as part of the experience. By doing so, UX could be broke into three points (Hassenzahl & Tractinsky, 2006):
· UX is the consequence of the users understanding towards an interface (e.g., “its expectations, needs, moods, etc.”)
· The properties of an interface (e.g., “the complexity, usability, functionality, etc.”)
· The environment in which the user-to-system interaction occurs (e.g., “the socio-cultural setting, meaningfulness of the activity, voluntariness of the user, etc.”)
Hellweger & Wang (2015) thus proposed a definition of UX summarized on Figure 3 to present what affects UX, its characteristics and the effects is creates.
[image:]
Figure 2 Conceptual representation of UX design by Hellweger and Xiaofeng (2015)

2.2.2.1 How to make learning enjoyable through UX
Some languages are increasingly harder than others to learn as they deviate from one’s mother tongue, increasing the minimum time required to become proficient (Language Difficulty Ranking, n.d.). One strategy that could be devised to help learners enjoy the revisions is gamification, an approach to user-to-system interactions made in the late 60s. The intrinsic idea of gamification is to apply game elements to non-game activities to strengthen performance, trigger the sense of competition, encourage learning, rewards to acknowledge achievements, better engagement, etc., (Tunc, 2018). For McCarthy (2021) gamification could help students enhance their learning experience by triggering the feeling of accomplishment of mastering of the language. Duolingo is a prime example of a gamified interface designed to helps users gain language proficiency (Brown, 2021). It offers questions with multiple choice, sets goals, badges, and rewards, etc. The efficiency of gamification is due to its capacity to trigger powerful positive emotions such as happiness, excitement, sense of achievement, etc. The latter specifically is a powerful psychological drive. Achieving an objective triggers the production of dopamine, a hormone responsible for the feeling of pleasure (Brown, 2021), which in turns increases user retention. Furthermore, creating a goal, the application forces the user to imagine a journey with a clear objective, thus, the student enters in a narrative, an adventure in which the journey is more important than the reward (Brown, 2021 & Salmon, 2008).
In his research, Udjaja (2018) chose to analyse how learning the Japanese writing systems can be improved due to the Japanese writing system inherent toughness for foreign speakers (Japanese cumulates no less three writing systems). The author analyses how students perform with an educational game to learn Japanese characters using a point cloud algorithm (the algorithm draws dots on a 2D graph), rendering characters’ blueprint that students must reproduce. The closer the student’s character matches the original drawing, the better the score. When looking at the results, the game shows clear evidence of enhanced results, with the pre-test recording 36 players scoring an average of 30 to 50% of wrong answers, while 104 users (over 150) have all the answers wrong. After a week, the latter group fell to 6 players, while 134 users scored between 20 to 100% of average correct answers.
Nevertheless, it is important to consider that gamification could also harm the platform. In his research, Phung (2020) concluded that depending on the individual characteristics, gamification, could affect learner’s attention, confidence, satisfaction, volition, etc. Such remarks were expressed during his research due to, for example, poorly designed interface or because competition isn’t what they are looking for, or because rewards did not feel consequent, hence the motivation feeling would not be triggered. To Phung (2020) conclusion, such dissatisfaction could lead the students to feel useless, stressed, annoyed, stupid, if not eventually giving up. Another point worth noting is that a lot of e-learning platforms aren’t good at user retention, recording a high rate of user dropout.

[bookmark: _Toc102938079]Conclusion
In conclusion, the research chapter covered a large array of perspective relating to learning such as age, memory, or how mental health. Among other topics the author found that even though technology is a reliable tool to help learners self-study, it has flaws that must be considered to prevent the students from feeling distressed, unmotivated of thinking to dropout due to a poor learning environment. Furthermore, a big challenge for the application will be to create engagement with students whose habits are to write down their learning content instead of typing on a computer and move along memorisation to enhance LTM. A long discussion was made as well to discuss about Probase and its possible utilization to provide contextualised learning to review sessions. In a second time, the author went through the best definition possible for UI and UX to encapsulate as many aspects as possible of those wide concepts and how their thoughtful thinking can help the application be a tool that users rely on to help them study.

[bookmark: _Toc102938080]3. Requirement Analysis
The chapter aims at synthesizing the data gathered by the author that later helped build a frame for the development process of the application.
The report delivers the conclusions of a survey conducted by over 25 participants, providing the picture of the average user who wishes to learn a foreign language, then compiled in the persona of William Harris, and whether spaced repetition was relevant to the project.
In addition to the survey, the author brings an analysis of three competing applications in knowledge acquisition and memorization: Duolingo, Babbel and Anki. The data gathered was then used to list the required functionalities for the project in contrast to those deemed non-essential, all summarized into a Use Case Diagram (UCD). To visualize the project at that stage of production, the author made Hi-Fi prototypes to convey to his supervisors his vision of the application.
The project plan sub-part provides information on the production route, what work was planned for each sprint (a sprint lasting two weeks), and how it went when confronting the production. The testing part aims at presenting the application testing phase, its objectives, and which kind of testing was retained against others.
The chapter ends with a discussion on the perception of the project's feasibility. What seemed to be essential and what was abandoned mid-course.

[bookmark: _Toc102938081]3.1 Survey
The survey was passed to define what someone learning a language or planning to other than his mother tongue would look like. However, it is essential to note that the pool of interviewees had flaws. First, most of the interviewees seemed educated, having completed at minimum secondary school. Yet, the survey did not ask what their current occupations at the time were. Furthermore, a substantial part of the pool comes from the author's social circle, most of them being students. The other part is foreign to him. Second, since most of the interviewees were at minimum an acquaintance of the author, the average age was low, revolving around 20 to 25 years old. By looking at the profile of its interviewees, the author was able to draw the persona of William Harris. It helped determine what a most viable product (MVP) would look like and what should be tested during the user testing phase. Another objective of the survey was to see whether SR would be a relevant subject of study for the project. And if features such as a dictionary or the possibility for users to customize their cards engaging ideas.
According to the survey, most users that answered the survey were undergraduates or had at least passed secondary school. A third of them wished to live in a foreign country (its native language being different from their mother tongue). The last third was thinking of living overseas. Of those who answered ‘yes’ to the previous question, 50% declared speaking the language of the country they either lived or wished to live in, and 57,2% of them declared being somewhat or very proficient. The rest mostly said to either plan or still think about learning that language. The interviewees mostly spoke English as their first language, another 30% were French, and the last 20% were mixed. Half of the people spoke at least one foreign language, while only one interviewee spoke four or more languages. The survey highlighted that living in a specific country overseas would not necessarily determine a language choice. Furthermore, it may be assumed that the target countries language could match one's mother tongue, as would Canada with Irish people. Hence, rendering the need to learn the language useless. Most of the primary languages recorded are either on a Germanic or Latin basis. However, the mother tongue group seems to have little impact on determining what language the interviewees are interested in. Most of the interviewees show their intention to learn either French or Spanish. Yet, when looking at the least popular choices, the choice becomes more eclectic (e.g., Swedish, Russian, Korean, Attic Greek). The main reasons recorded for learning a foreign language were ‘to communicate better when travelling’, ‘to improve or maintain mental fitness’, ‘out of pure intent for the language’, and ‘to understand a culture’s heritage. This came as a surprise as it was expected that the question ‘for my job search’ would get more votes (only five positive answers). Thus, it seemed that people are looking to learn a language primarily for entertainment and challenge instead of as a calculated move. Thus, the first part of the survey helped determine some of the primary characteristics of the persona. A typical Kram user would be most likely a student seeking to learn a language out of passion and the challenge it represents rather than self-serving motives. That knowledge itself led the UI direction to something mostly user friendly and susceptible to catching one's attention in contrast to Anki (see next section).
The second part of the survey intended to scope technology usage. 70% of the interviewees either confirmed or thought of using an online application. However, the attention span they were ready to give per week to learn a new language is low. Only 5% of the participant said to be ready to dedicate six or more hours per week to study. While 65% of them would learn for one to two hours. In other words, one of the big challenges the application faced was first to get user retention and second to provide motivation. All the participants were ready to use machines to learn, with mobiles coming at the top (44%) as expected, laptops coming at the second place with six points of difference (38%). Thus, the second challenge of the application as anticipated was to bring users to study on a computer.
80% of the interviewees answered positively to the question: Thus, knowing what spaced repetition is, would you consider using a flashcard application? Therefore, the application if well-made could get users to use it. Indeed, they saw SR as relevant to learning easily and quickly new vocabulary as it proposes to review only failed cards (some noted that they used SR in the past, and it did work well for them). Visual interaction came as another important element to consider, especially to make learning fun.
The survey highlighted that some features such as a dictionary could well fit the application. But the latter did not make it into the production stage to avoid time and technical difficulties. Another key element worth mentioning was the comment of an interviewee about Anki. The comment said that even though SR was interesting the application looked blended, thus making it hard for the user to focus on the review sessions.

[bookmark: _Toc102938082]3.2 Existing applications
[bookmark: _Toc102938083]3.2.1 Anki
Anki is an open-source program aiming at making remembering easy using SR. Its working principle is to create decks (fig. 1) holding flashcards (fig.4) of any kind (vocabulary, math formula, poems, etc.). Each day, the application prompts a list of cards to review (fig. 2). A flashcard consists of a question and an answer. The goal of the user is to remember the card correctly. If successful, the card will then be reviewed later determined by the SR algorithm of the card (fig. 3), either short (e.g., 2 days) or long (e.g., 1 year). A failed card is reviewed ten minutes after failure, then the day after onwards. The core concept is that users see the information they have trouble remembering as often as necessary. A key point to note is that Anki is not pushing the users to do active recall. To see an answer, users press a button. Thus, it could be assumed that Anki promotes information recognition instead of testing actual knowledge, placing the user in a passive mode. This problem could perhaps be fixed using user input to challenge the user's spelling.
2

[image:]
Figure 3 Deck
[image: Une image contenant texte, périphérique, capture d’écran, panneau de configuration

Description générée automatiquement]
Figure 4 Question

[image: Une image contenant texte

Description générée automatiquement]
Figure 5 Answer
Moreover, if users have issues remembering cards, or judge a card as not effective, Anki offers the possibility to edit or delete the card (fig. 5). Cards on Anki support multimedia content such as audio clips, images, videos, scientific markup, etc. In addition, if cards are still not relevant, they can change the format of the card by changing its font size, colour, etc, (fig. 6). However, customization on Anki has one major flaw. It requires the user to know how to use CSS (Cascading Style Sheet), a styling language used in web development. In other words, a skill that is not very common outside the likes of developers. It might be safe to assume that most people using Anki do not take the time to learn and edit cards on Anki. Thus, for those who seek to customize their cards, Anki would perform very poor and need to rethink its system. Another major flaw of Anki is its poor interface. Note that the figures come from the mobile application. Yet, it has little to no difference from the desktop application, the main difference being the native interface. As mentioned in the previous chapter, Seibert, A. H., & Brown, C. (2019) recorded that “students were reluctant to use the app and reported low enjoyment”. If that didn’t affect their overall motivation, it is nevertheless important to think of an interface that could tackle this issue to trigger pleasure when using the application and be more appealing to potential users.
[image: Une image contenant texte, tableau de points, moniteur, noir

Description générée automatiquement]
Figure 6 Card list

[image: Une image contenant texte, capture d’écran, moniteur, écran

Description générée automatiquement]
Figure 7 Edit card

[image:]
Figure 8 Card customization
[bookmark: _Toc102938084]3.2.2 Duolingo
Duolingo is the most popular language-learning application, cumulating with more than 300 million users. It teaches using exercises arranged in thematic lessons. Its interface overly relies on a gamified experience, to the point where the gaming elements (fig. 8) such as the gem chest (the application’s currency) or experience heavily imply a fantasy type narrative. It emphasises the notion of a goal to achieve (daily) and highlights the learner's (or hero) progression so that he comes every day back to an unending quest (learning the language). The student is rewarded after each review session (fig. 9). Rewards come as experience (essential to unlock future lessons), gems, badges, etc. The progression mechanics seem so effective that completing goals might be more addictive than learning. It raises the question of whether students interact with a game instead of a language learning application if they get actual knowledge or train their visual recognition. The streak mechanic seems to corroborate that idea. When a daily goal is achieved, the streak counter stacks one point. The higher the streak counter is, the longer the user managed to meet the daily goals without failing. However, if the user happened to fail a lesson, the learning streak is set back to zero. Users may pay to freeze the streak and protect it. Yet at this point, the application seems to catch users' interests by providing a ‘winning’ feeling instead of a ‘learning’ one. Duolingo states on its website that having hearts (or life points) forces users to be more considerate when learning. Yet users can get around the mechanic by paying for unlimited hearts or can wait for a set amount of time. This tactic of ‘checking habit’ as discussed in the previous chapter (Christodoulou, n.d.), might then happen at the expense of actual learning. Another consequence of such mechanics is that users may be more likely inclined to buy the premium version of the application to avoid feeling frustrated, losing motivation, dropping the lessons, etc.

[image: Une image contenant texte

Description générée automatiquement]
Figure 9 A question can be answer via a word bank
[image:]
Figure 10 User progress

[image:]
Figure 11 Learning reward

Speaking of the lessons, Duolingo has an efficient approach to mixing exercises and switching the contexts in which words are used. Some of them include listening to audiotapes, looking at images or retrieving matching words and pronunciations (fig. 7 & 10). Doing this ensures that the mind is constantly kept interacting with the application, but the process has some flaws. First, some of the exercises ask for the user to either input an answer by typing or selecting an answer from a bag of words. The latter isn’t promoting a spelling reflection, while the former might be complicated for languages such as Chinese that require special keyboards. To take Chinese as an example, when writing, the user must enter the phonetic pronunciation known as ‘pinyin’ to get a selection of plausible characters at the top of the screen. The process is long for those not used to it, and it assumes the learner has installed the Chinese keyboard on his machine. Another design issue is the time it takes to evolve the interface. This might not be a problem on a mobile, but on the desktop, switching from one exercise to another requires the user to either drag the pointer to a button at the bottom of the screen (fig. 10). Or use a complex key binding (depending on the keyboard type).
[image:]
Figure 12 Visual feedback
Finally, Duolingo leaves no place for customisation and offers no flashcards or equivalent material for post-lesson reviews. The former could be problematic if some users are looking for an interface that reflects a ‘studious’ feeling instead of a childish one, reinforced by its flat design as if learning shouldn’t be treated seriously. In addition, not providing any kind of medium for revisions outside the study time forces the user to either rely on other applications, thus poor user retention from Duolingo, or paper, not necessarily the most practical type of medium.

[bookmark: _Toc102938085]3.2.3 Babbel
Babbel is yet another self-study application for language e-learning. Like Duolingo, the application offers courses for its users to learn a new language. In addition to the lessons and tests, babble offers the possibility to get a teaching experience by the means of real-life teachers. Figures 11 to 13 offer a good understanding of what Babbel offers at its core. Lessons to teach new words with images (unlike Duolingo) to provide context to its users. Even though the interface is gamified (e.g., badges in figure 13), its use is much more moderate and emphasises learning instead of playing. Figure 12 is a good example of an exercise that mixes an e-learning interface with teaching (the user must retrieve the order in which the word is written). The application offers tests as well to review the vocabulary learned.
[image:]
Figure 13 User dashboard
Overall, the application has an appealing interface, less bloated than Duolingo with little to no animations. Rewards are not as exciting as the previous application, which helps focus. Finally, to ensure user retention, the application offers features such as games and grammar lessons. Nevertheless, like Duolingo, Babbel has no room for customization.
[image: Une image contenant texte, capture d’écran

Description générée automatiquement]
Figure 14 Redo the word
[image: Une image contenant texte

Description générée automatiquement]
Figure 15 Badges on Babbel

49

[bookmark: _Toc102938086]3.3 User Persona
The persona of William Harris was created (see index) based on informal discussions with people planning to or learning a language alongside the survey. And elements from the article "Who Uses Apps to Learn a New Language?" (2020) to better grasp who the average language learner is and give a direction for the designing process.
It appeared that most people eager to learn a language come either from a polyglot family or because of an intellectual fondness for a foreign language. Some of the reasons cited were to be understood, better grasp the foreign culture, change its viewing perspective, and language structure (as confirmed by the survey). In all cases, the envy of learning a new language came without an external constraint. All the interviewees declared they wanted to live and work overseas, even though some did not mean necessarily in the country of the language they are currently learning.
Some disparities were highlighted when speaking of the tools used to assist the learning process. Most of them declared using apps such as Duolingo and Babble. When someone stopped using an app, it would either be because the design of the interface was poor or the price. The latter was exacerbated due to poor time management which did not make the investment profitable. An interviewee mentioned that she did not rely on applications because she preferred writing her lessons. Eventually, the article helped structure the persona, adding general information, such as gender and age, as well as the average hobbies of a typical language learner.
Thus, William Harris (his name reflects a high socio-cultural group) portrays a male student, in his mid-twenties, urban, and polyglot. His interest in foreign languages came from his cultural background as well as the intellectual challenge learning a new language represents. Among his hobbies, travelling is at the top of his list. His ambition is to be able to live overseas, perhaps even work there. He sees it as essential to have an app that centralizes features along with the flashcards, such as a dictionary. In addition, that app must help him manage his time. Finally, he feels that writing is good enough for learning. Thus, bringing him to use the application might be a big challenge alone.

[bookmark: _Toc102938087]3.4. Requirements
[bookmark: _Toc102938088]3.4.1 Functional, user and technical requirements
1. Users can create, view, edit, and delete decks.
2. Users can create, view, and delete cards.
3. The application uses a spaced repetition algorithm managing review sessions based on a review_date variable common to all flashcards.
4. Users can authenticate to their online account and edit their profile.
5. Users may import and export decks to an online deck repository.
6. Decks on the repository must have a description (like those on GitHub).
7. Decks can be switched to public in the deck repository. Doing so turns them to be visible to anyone.
8. Users may search for decks and cards using a search bar.
9. Cards can support images.
10. Users may sort content views (showing only public decks or cards belonging to a deck).
11. Burry failed cards and mark them a leech.
12. Adding a public deck to one’s profile creates new cards data attach unique to the given profile ensuring data unicity even though cards are shared among users.

[bookmark: _Toc102938089]3.4.2 Non-functional requirements
1. Users may customize their flashcards properties (font size, colour, etc.,).
2. Users may choose to review their cards either by looking at words and pressing a button or typing their answers.
3. Review sessions should have key binding to interact with the interface rapidly.
4. Provide word pronunciation from the International Phonetic Alphabet (IPA) to new cards.
5. Generate ‘a failure’ deck made of cards that users constantly fail and come off with sentences that typically use those words.
6. Special Latin character keyboard.

[bookmark: _Toc102938090]3.5. Feasibility study
Kram's original concept went through several changes as the production moved on, some features got discarded, and others were added.
The application provides its users with the tools to create decks of flashcards to learn a new language (or any kind of information if the information can be summarized as a single piece of information). To manage the daily review sessions, a SR algorithm determines when will a card be reviewed next time based on user feedback. Another core element is its open-source database. Each card is unique, yet each user may choose to add cards to their deck(s). By doing so, the content of a card remains unchanged. Yet, its inherent difficulty being specific to each user resets as it is new to the user. This pattern of creating and sharing repeats itself with the decks. One may add a deck to his profile with all the cards that sit in that deck, thus getting rid of the time usually required for a new user to create a deck from scratch.
After the mid-term presentation, it was decided that some features would not make it into production to refine the MVP with its core functionalities (as described above). Side features (i.e., dictionary or notepad) were forgotten to avoid falling into a rabbit hole. The application was also supposed to use the Probase model and its database to generate contextualised decks when given a category. Yet, for efficiency purposes and time running short, the idea was also thrown away. Alongside the model, the idea for the application to filter cards from a deck and generate a failure deck that would let its users review the cards with no date limit was forgotten.
Both the author and his supervisors assessed that the application would run using Vue. The former is more found in Vue than React. Nodejs and Express would then make the backend API, a choice dictated by the fact that they are industry standards. Finally, the images are stored on Cloudinary, an easy and free solution for image hosting.
Because the SR algorithm would have not been sufficient by itself to make the project engaging, it was agreed that the UI/UX would take a significant role in the production.
[bookmark: _Toc102938091]3.6. User Case Diagram
[image:]
Figure 16 Use Case Diagram
The use case diagram summarizes basic operations users can perform on Kram. When creating an account, they must provide an email and a password, necessary to login into their account, access the decks' repository, edit their profile, or review their decks. Their data is hosted on a MongoDB server (see design chapter). Users may toggle their decks' privacy so that other users may add them to their profiles. Users may create decks and flashcards. When viewing cards, they may also choose to add or remove them to one or many decks. Users may upvote or downvote decks. Doing so will modify decks' visibility so those collecting more votes will appear at the top of the page. When a user reviews a deck, he sees only the cards that are either due the day of the revisions, those he failed the previous day, the new ones and those whose review date is passed yet he skipped. It is the SR algorithm that takes charge of the inherent difficulty of each card. When a review is completed or stopped, the application sends a query to update the user's information.

[bookmark: _Toc102938092]3.7. Hi-Fi prototypes
The Hi-Fi prototypes are the first blueprints of the application. They depict a plausible interpretation of the application to help build the backbone of the application (e.i. database architecture) by listing its functionalities, figure 17 was a plausible representation of the home page. It acts act as a hub for the users to move in. From here, are accessible the decks for revisions and a create button to add decks. Other links include the online repository, dictionary, notepad, and profile page.
[image:]
Figure 17 Home page
Figure 18 depicts the online repository. On the left panel is a table holding the public decks while on the right is a panel that displays a deck's metadata, such as its rating, author, or description. The online repository is accessible to anyone having a Kram account. The page is also meant to have buttons adding decks to one's account.

[image:]
Figure 18 Online repository
Finally, the last prototype represents a review page. From top to bottom, the first element of the page is the question on the card. Then, when revealed comes the answer. Because the user failed to give the proper answer, it is coloured in red. The third element is the input field, where users type their guesses. Finally, users can either click on the matching button or decide to type the keyboard's matching key. However, this page is a variation of what Kram shows today. Instead of an input field, users either type or click buttons, depending on their screen size.
[image:]
Figure 19 Reviewing a card

[bookmark: _Toc102938093]3.8 Test plan
The testing of the applications is divided into two phases, each one with its objectives. The first one aims to test whether users can learn a language using the application. The test lasts five days, with each session lasting about 10 to 15 minutes, with ten testers. Users are asked to learn 18 words (given in groups of six over three days) in Esperanto. It is a constructed language that was intended to be international. Its simple structure (Germanic and Latin basis) with no exceptions makes it easy to learn. The words that testers learned were picked based on their utility in a foreign country (e.g., he, sorry, I need, etc,). The test will be considered successful if the success rate is on average between 80 to 90% (about 12 to 14 words). If the scores fall under 80%, the application is at fault. And if it goes above 90%, it is either that the cards are useless, or the challenge was not hard enough.
The second phase tested the application's interface, its agreeableness, ease of use, engagement, motivation, etc. Testing sessions were conducted online and recorded using OBS and tasks were delivered via a form. The interviewer will monitor the tests, giving any explanations required by the users via teams. Once a task is completed, users will be asked to provide feedback.

[bookmark: _Toc102938094]3.9 Project plan
The project follows the SCRUM framework to assist the production. It manages the process by breaking the project into a timeline of sprints lasting two weeks. Each sprint sets a list of tasks, that may or may not be respected based on the productions flow. A sprint follows a consistent pattern of implementation or research, testing (if the sprint is concerned with programming), and integration into the project. Each week is a set of objectives picked by the developer who works on it until completion. Furthermore, it is expected that he and his supervisor will arrange meetings to discuss the tasks completed and the eventual issues encountered by the developer. The main role of the former is to help the developer focus on his tasks and provide aid and help if need be. The week-by-week program goes as such:
· Sprint 1: project research, requirements, and prototype development.
· Sprint 2 & 4: first and second design phases (which include some coding).
· Sprint 3 & 5: first and second implementation phases (designing remains relevant at these stages).
· Sprint 6: testing the application (coding will occupy half the time of this sprint).
· Sprint 7: all the work is compiled in a thesis (coding and testing still occupy half the time).
· Sprint 8: the thesis is handed back. The application is deployed, and final testing will happen at this moment.
· Sprint 9: Presentation of the application

[bookmark: _Toc102938095]4. Design
The design chapter covers how the research and requirement analysis helped creating Kram’s architecture, from its database to its system interface. The first section consists of covering the architecture of the application from as a system perspective, how components are split, what are their roles, and at what time in the process they are triggered. The second section describes in depth each component of the application. First is discussed the tech stack that make up the application. Second, programming paradigms that frame the coding architecture (MVC pattern) and JavaScript as an OOP language. The third section is a description of the database architecture, the relations between the tables. Finally, the last sub-section summarizes in an abstract way what classes are used to create the application, how is the application works when a user collects/fetches data view from a sequential ad flow chart point of view. The last section of the chapter is concerned with showcasing the models made for the UI and the decisions that led to such results.

[bookmark: _Toc102938096]4.1 System Architecture
[image: Diagram

Description automatically generated]
Figure 20 System Architecture
A system architecture is defined as the interactions between the components making the software system, often illustrated as diagrams depicting components, layers and interactions (see fig. 20). Kram’s architecture emphasises usability and engagement for its users on its front end. While on the other hand, the back end focuses on scalability and security. The system architecture is divided into two parts. First is the client-side or the View module of the MVC pattern (cf., next section). This is where the user-to-system interactions take place. In short, it is the browser’s representation of the application. It is built using HTML, CSS/SASS, and JavaScript (JS) alongside Vue.js (a JS front end framework).
The server-side contains the application's logic (Model and Controller components of the MVC pattern), built with JavaScript back-end frameworks: Express and Node.js. Both act as the application's middleman that bridges communication between the view component and the database. They are thus never to be seen by the users. Their goal is to parse HTTP requests sent or received by both ends of the application, check their validity, and manage the data flow. The database is managed by MongoDB, a non-relational database service that is often used alongside Express and Node.js. MongoDB stores data using JSON files, providing better flexibility and scalability for data storage in comparison to SQL tables. In parallel to MongoDB, images are stored using a third-party storage service: Cloudinary. It enables the application to store images for free (up to 1GB of data). In return, MongoDB stores URLs linking to the images. Ultimately, the system uses another two third party services for file storage and online hosting. Firebase handles the front-end hosting, while Heroku does it for the back end. Thus, the application becomes accessible online through its URL.
Thus, the system works as a dialogue between the server- and client-side of the application. When a user imports a new deck from the online repository, the first step is to enter the login details. A request holding the user's credentials is sent to the database via the backend that parses the login information to check the profile's validity. If correct, a JWT token holding the user's credentials is sent and acts as an identifier throughout the application. With the token, the user is then able to perform the queries that require the token to testify the profile.

[bookmark: _Toc102938097]4.2 Application Design
[bookmark: _Toc102938098]4.2.1 Technologies
The MEVN stack (MongoDB, Express.js, VueJS, and Node.js) is the technology stack behind Kram. It is an alternative to MEAN and much more popular MERN stacks (respectively Angular and React for the front end). VueJS is a front-end JavaScript progressive framework created by Evan You in 2014, totalling 1.6 thousand stars on GitHub, making it the third most popular front-end JavaScript framework to this day, and the largest with no large company backup. It was retained against its competitors due to its agreeableness of use, a simple learning curve, its philosophy (it is open source), and lastly because the author wished to become specialized with VueJS rather than React after having tried both. Angular was not considered due to its downfall in popularity, steep learning curve, and bloated syntax. Svelte was considered as well due to its development environment and ease of use (application build happens at compile-time and gets rid of the virtual DOM). Yet, because of inherent flaws (like Vue yet in an aggravating way): lack of plugins, small ecosystem & community, job offers, and application scalability, Svelte was abandoned. Even after considering its defects, and in addition, to being the smallest and youngest framework out of the three, VueJs was still retained to make Kram.
VueJs is often used single-page applications interface relying on a virtual or shadow DOM (Domain Object Model), a lighter version of the DOM. The DOM itself depicts a tree-structured representation of the data in the browser. Each component (e.g., a paragraph represented as <p>) may be itself a child element of a parent one and may in turn be the parent of a grandchild element. In other words, each element is either descendant or ancestor of another one, enabling easy and structured navigation through each element. Nevertheless, this top-to-bottom architecture causes a slow rendering speed. To bypass this issue, VueJS uses a virtual DOM or an abstraction of the DOM. Using declarative rendering, the virtual DOM renders updates at a greater pace by pinpointing specifically the components subject to a modification. It usually consists of a double curly braces syntax that interpolates data in the virtual DOM. In other words, the virtual DOM avoids re-rendering the DOM each time a change occurs by updating specifically the littlest possible entity that is being modified. Rendering thus becomes much faster, even faster than React.
Vue benefits from an ecosystem of frameworks tailored for it, including Vuex for state management and Vue Router to manage single-page routing. Its syntax is also flexible, supporting JSX, ES6, typescript and other types of syntax. It may also easily be integrated into an existing project using a CDN link directly into HTML. It also offers better documentation compared to its competitors.
In addition to Vue, the front-end development is aided using SASS, a CSS framework. It enables efficient CSS writing by providing variables, operators, and reusable chunks of code within the CSS code. Yet, SASS becomes truly interesting when using its capability to nested properties, making CSS development faster and easier.
The front end also manages HTTP requests using Axios. It is an HTTP client used by browsers and NodeJS to send asynchronous promise-based requests to REST endpoints and retrieve their responses. Using Axios enables the users to manipulate the data located in the database from the view components and perform CRUD (Create Read Update Delete) operations.
Kram uses a RESTful application (Representational state transfer application) or API (application programming interface) to access the servers. It was built using the NodeJS run time environment, and the framework Express.js. It enables data transfer from a client who requested the server for information and vice-versa. Put differently, when the user logs in to the application, the API fetches his credentials and gets him back. Both Node.js and Express.js were chosen due to their large adoption by the developer community. 80% of the State of JavaScript survey interviewers (2020) declared using them to develop server-side applications and are today's de-facto industry standard. NodeJS is a JavaScript runtime environment that makes building network applications fast and scalable. It is event-driven and a non-blocking I/O model, firstly meaning that it registers functions. In other words, instead of memorizing actual data, it stores an event that is called when the event cycle frees the space previously taken by the last event. Non-blocking, I/O model means that it doesn't wait for a function to carry its task until completion, thus freezing the application. Instead, it processes a function or an event and runs it. While the former performs its task it goes on with the next event (cf. next section with asynchronous programming). Express.js is a framework built on top of Node.js. It helps manage the flow of data between the server-side applications and servers.

[bookmark: _Toc102938099]4.2.2 Design Patterns & Programming Concepts
4.2.2.1 MVC design pattern
The foundation of the application is the Model-View-Controller (MVC) architectural pattern. It breaks the application into three logical components: the model, view, and controller. Each one of them handles a specific duty such as information representation or data control and is nowadays an industry standard for scaling projects.
[image: Diagram

Description automatically generated]
Figure 21 MVC architecture
The model is the middleman between the application and the database. It is responsible for dealing with the data logic. Any operations that deal with data manipulation are done through the model component since the controller never talks to the database. Information is taken back and forth via the model while it is processed by the controller. Furthermore, it never communicates with the view component.
The controller is the bridge between the view and the model. It listens to the events triggered by the view or any external sources and executes the adequate response. Generally, it will call a method located in the model.
The controller is the bridge between the view and the model, allowing interconnection between the components. After processing data, it tells the model what to do (overlooking the data logic) and how the view should handle information.
The MVC pattern is an efficient standardised system that splits front end logic from back-end logic. Ifs relative ease of use makes components reusable and easy to maintain independently from one to another. However, it also means that developers are required to get familiar with the architecture, and the model may involve multiple technologies (e.g., the MEVN stack). Furthermore, the model can become increasingly difficult to maintain as the application grows bigger.

4.2.2.2 Asynchronous programming with JavaScript
Asynchronous programming is a technique that enables a program to keep running and carry on with tasks without freezing all the operations, in contrast to sequential programming. With the latter, if a function requires an output, the application waits for the method to return an output ("Making asynchronous programming easier with async and await - Learn web development | MDN", n.d.). It is especially problematic for web applications as users may face what is known as blocking, a state when web pages freeze. For example, if a web application uses an API to fetch data online, the response time could take ten seconds as well as an hour. Because users will unlikely wait for a response to occur if the time exceeds their patience, JavaScript comes with asynchronous programming solution to bypass such issues. Its concept is to have multiple threads of code performing a unique task running in parallel, thus avoiding code freeze. To do so, JS uses promises to invoke asynchronous programming ("Making asynchronous programming easier with async and await - Learn web development | MDN", 2022). A promise represents a JS operation that holds two states: completed or failed. When a promise is sent, JS knows that a response will come back and proceeds with the next task. When the latter is completed, JS parses the data, terminates the method to completion and reiterates the process. The built-in functions .fetch(), .then(), and .catch() allows to call asynchronous functions but may sometimes bloat the code. The recent additions of the async and await keywords make asynchronous programming easier for developers. When put in front of a function, async declares that the function is thereby asynchronous, waiting for a response. While await is retrieved inside async promised-based functions, pausing the method until a promise gets fulfilled. Await may also be in front of methods that return a promise.

4.2.2.3 JSON Web Tokens (JWT)
JWT are a web standard for information transfer between parties in a self-contained and compact object ("JWT.IO - JSON Web Tokens Introduction", n.d.). When successfully logged in, the server emits a JWT token that testifies the authenticity of the user’s profile, thus granting him access to the application's protected routes. A token consists of three elements separated by dots: a header, a payload, and a signature. The header usually provides the type of the token (e.g., JWT) and its hashing algorithm (e.g., RSA). The payload holds a user’s credentials, such as his mail address and extra information (e.g., expiry date of the token). Finally, the signature is there to verify if the message was not changed along the way and ensures the user's identity.

4.2.2.4 Application Programming Interface (API)
APIs are the middleman of many web applications. They are responsible for the back-end logic and responsible for data exchange between the user and the server, and for processing it ("What is an Application Programming Interface (API)", 2020). They may also provide an access to third-party applications and their functionalities using a URI (Uniform Resource Identifier), thus ignoring the logic under the hood. An API works in steps:
1. A client makes a request (e.g., retrieve a user profile).
2. The API calls an external application or database,
3. The server sends back a response,
4. The API transfers the data to the original request application.
Furthermore, APIs offer an extra layer of security to applications first by adding abstraction to the functionality of an application, second by usually requiring authorization credentials to access data or functionalities.

4.2.2.5 Vue lifecycle
Hooks are functions enabling developers to run code at different stages of a component's life. Some are executed automatically like Mounted, while others must be called, such as errorCaptured. Their names hold a semantic value which indicates when they get triggered in the cycle. For example, a function contained beforeCreate is called after the instance (the core of a VueJS app that holds data, properties, templates, etc.) but before the options are processed.

4.2.2.6 NoSQL databases & MongoDB
NoSQL (non-relational database) drift apart from their cousins, which organize data as tabular documents. The former benefits from better flexibility and scalability compared to the latter. When SQL database builds relationships using keys known as primary and foreign keys (enabling greater stability), NoSQL databases use documents of key-value pairs to store data, bypassing relationships between documents. Furthermore, due to its inherent scalability, it is easy for NoSQL documents to grow in complexity as the development moves on.
Kram relies on MongoDB to store its data, which itself uses JSON (JavaScript Object Documents) document format that derives from JS. It manages data storage and exchange using human-readable text.

[bookmark: _Toc102938100]4.2.3 Database Design
[image: Diagram

Description automatically generated]
Figure 22 Database Architecture
The Entity Relationship Diagram represents the structure of Kram’s database. The central node is the users document that holds users' information. When a user logs in, a JWT token is created and saved in the sessions table and deleted when logging out. Each user may create one or more decks saved in the deck table as well as cards stored in the card document. Cards are unlike decks, accessible to each user. Each deck has a set of data from its name to its category. Each deck is related to the deck_card document. A deck_card object holds three essential pieces of information. First, the user_id is essential to check the deck's ownership. The deck_id enables the application to recover the information related to that deck. Lastly, card_ids is an array listing the ids of all the cards kept in that deck. The user_card document is responsible for storing all the information related to the inherent difficulty of a card and is unique to each student. Data comprise the next session of a card's review, its ease factor, etc.
The application is built in a way promoting open-source knowledge. For example, a user may create a deck for himself using cards that were created by the community. He may choose to publish his deck to the public, releasing its content. A second user importing a deck will then get access to the content of that deck. Yet, the original inherent difficulty of the cards remains attached to the first user without affecting the second user. Furthermore, the same card may also be added to several decks, and its inherent difficulty will remain the same among those decks.
It may seem weird to use a relationship design pattern as if MongoDB was a SQL database. But after reflection, the user offered the best solution to create relationships between users and their cards and decks to gain maximum scalability and the detriment of simplicity.

[bookmark: _Toc102938101]4.3 Process Design
Process design offers an illustration of a system’s workflow, defining its various tasks, criteria and duration.

[bookmark: _Toc102938102]4.3.1 Flowcharts
A flowchart depicts a process, system or algorithm. They are used to communicate on a textual system the flow of an action. The shapes of a flowchart depict an action, state or item of the process
4.3.1.1 Review session process
[image: Diagram

Description automatically generated]
Figure 23 Review session process flowchart
The flowchart from fig. 23 describes how Kram performs a review session. The users start by looking at its interface. If the user has at least one item, he starts the review session. However, if the user has none, he must either login to import a deck or create a new one. If the user decides to create a new deck, he must fill in the metadata of the deck and enter new flashcards. Otherwise, he may import a deck from the public repository. He must have at any point an account. If he does not, he must create an account on the application. Once he either imported or created a deck, the student selects the deck, and the review sessions may proceed. When a card is reviewed, the result is either a failure or a success. If it is a failure, the card comes back after 15 minutes. That process iterates until the review is successful. If successful, the card reappears after an interval determined by the algorithm. After the user finished reviewing all the cards, the session ends. He may then proceed to another deck. A card that is shared among many decks can get only one review on a given date. Thus, assuming that if a card is reviewed during a session with deck A, and the user reviews deck B the same day which holds the same card, that card will not be reviewed a second time.

4.3.1.2 Spaced Repetition Algorithm
Figure 24 covers a review session and how the spaced repetition works. When a card gets reviewed, the user may either give feedback to the client or save and exit the session. When giving feedback, the algorithm checks which cue the card belongs to. If the card is in the learning cue, the ease factor attached to the card stays still, and the interval gets updated according to the feedback, either pass or fail. A card reaching the 30 days threshold graduates to the mature cue. If the card is in the matured cue, the ease factor gets either a penalty if the user failed to remember the card or a bonus if the success streak number is even. A card cannot get an interval greater than 10 years. Once every card of the array got reviewed, the client updates the cards’ data, and the review is completed.
[image:]
Figure 24 Spaced repetition algorithm

[bookmark: _Toc102938103]4.3.2 Sequence diagram user login in and deck creation
[image: Timeline

Description automatically generated]
Figure 25 Sequence diagram of a login request and deck creation
The sequence diagram (fig. 25) describes the process of user login into his account and creating a new deck. Whether he managed to log in or not, and the creation of a new deck from the MVC perspective. The diagram details the function names and parameters expected in the process. When the client sends an HTTP request, it provides login credentials passed to the controller. The parameters then are handed over to the model, which queries the database and testifies the validity of the credentials. Depending on the accuracy of the information, the view updates either successfully or unsuccessfully. When logged in, the user may send a request to the view asking to create a new deck via the interface, which passes parameters to the controller, which in turn checks the identity of the user based on the token provided by the form, and if correct, passes the data via a method to the controller. The controller sends the query to the database, either returning a 200 code (meaning the task was carried out successfully) or any other code meaning something went wrong. The controller gets the result from the model and parses the results. Whether carried out successfully or not, the view is updated, and the client gets notified of the result. Such a process is iterated throughout the application. The methods' names and parameters change depending on the tasks a user undergoes.

[bookmark: _Toc102938104]4.3.2 Sequence diagram of the deck’s review
Data transformation happens before a review session is conducted. First, it determines what cards get selected based on their session date and whether they are buried or not. Once the user enters feedback, the flashcard's data updates via the updateCard() method and the spaced repetition algorithm. The data is then saved in a first array for a later database update and saved into another one. The second one serves to keep in memory the previous state of the card so that if the user undoes its choice, he can revert to the previous state. Information is kept in instead of calculating the reversion to gain time efficiency. Whether the user clicks the save & exit button or finished his review, the cards are pushed to a JSON file, which is then carried by the API to update the database.
[image:]
Figure 26 Methods involved in the review process

[bookmark: _Toc102938105]4.4 Front end
Data is required for the application to display information when needed, which is supplied by the back end. Storing data uses a combination of two outcomes. Data such as JWT tokens are stored using local storage, while data that is component focus, gets stored at a component level. This report may refer to data as states, or information to which data can be read from or written to. Vuex is a prime example of a framework dedicated to state management, allowing to transfer of states from one component to another bypassing the tree component hierarchy.
A major aspect of the front-end reflection is its interface. Colours, layout, hierarchy, font size, etc., help craft functionalities and signifiers, to render a positive experience for the user, both intuitive and usable. Its goal is to ensure user retention. Due to both technical ad time restrictions, the front end ended up focusing primarily on UX design to the detriment of UI.

[bookmark: _Toc102938106]4.4.1 Wireframes
 The wireframes helped the development by framing the work done at that time and planning what would come up next during the implementation phase. Firstly, it helped order the ideas by listing the functionalities that would make it to production and those discarded during the development process (AI-generated decks, the styling of the cards, etc.). When the work of determining what would be feasible from what would not. The wireframes aided in organizing a vision into blueprints. They did not aim at being a perfect replica of the application on paper, but low fidelity plans leaving flexibility to the design as features would move or be removed, and requirements added. Therefore, it was evident from the beginning that the wireframe would not look like the final product, but rather be a guideline to the project.
A key element of the wireframes was to reflect the author's vision to benefit as much as possible from VueJS's capability to give single-page applications. The challenge was to treat elements as much as possible as substitutes for one another, and thus facilitate code reusability.
Lastly, among the design criterion, the application had to be easy to move around, with a low learning curve, and most importantly, the application aimed to provide a learning environment that would be a midway between a game and a tool tailored for memorizing words, thus exaggerating visual contents (like Duolingo), but not austere as with Anki.

4.4.1.1 Review page
The review page was the first page to be designed. It gave the frame for the rest of the design process. The overall structure went primarily from UI driven interface to a UX design to ensure an experience that would be flawless instead of a beautiful, but unusable application. Thus, the application ended up relying more on its item hierarchy and colours to bring texture and balance to the black and whites. Compared to the actual review page, the one from figure 26 got a few changes. The most identifiable change is the navigation bar which was removed for legibility. The interface was also adapted for smaller screens by adding buttons to replace the key bound interface. Furthermore, two buttons were added during the development: a save & exit button enabling users to save their current session and close the page, and an undo button.
[image: Une image contenant texte, tableau blanc

Description générée automatiquement]
Figure 27 Review page
Figure 27 depicts the review page when the answer was revealed. It testifies that since early in the development, the review page would rely on signifiers to get itself comprehensible. The buttons under the answer convey two pieces of information: which key is an action bound to and what is the interval of time getting applied to the card based on the feedback given by the user. However, unlike the current application, the wireframe shows four types of feedback, while the actual one only provides two to better reflect the philosophy behind the algorithm.
[image: Une image contenant texte, tableau blanc

Description générée automatiquement]
Figure 28 Review page when the answer is revealed
The card repository shown in figure 28 looks entirely different from what it looks like today. The design heavily implied an email-like interface, not suited for cards, especially those with an image. Yet, most of the interactions were kept and rethink later, such as the sort buttons, or the ability for one to add any card to any deck.
[image:]
Figure 29 Card repository
Figure 29 was never made into development due to time constraints. But the idea of having a modal form to modify some elements of a deck made it through to production. The add to deck form and modify deck forms are the logical conclusion of the idea to restrain as much as possible the clicks to a single page (the application has four pages, the home page, main page, profile page and review page).
[image: Une image contenant texte, tableau blanc

Description générée automatiquement]
Figure 30 styling a card
Yet again, the form page shows Kram's underlying idea to reuse its components as much as possible, as proved by the sidebar navigation on the right side. This form depicts the profile page and looks close to what the applications have today, with little differences in the layout.

[image: Une image contenant texte, tableau blanc

Description générée automatiquement]
Figure 31 A form

Figure 31 represents the decks' page. The thing that strikes at first is how the interface looks different compared to the actual application in UI terms. The decks' page as it is now less cluttered, is a lot more understandable and has less information. Thus, the main difference remains in how data is now represented in contrast to what was designed at first. Furthermore, the add deck button was taken upwards and takes less place now than it used to.
[image:]
Figure 32 Decks page

[bookmark: _Toc102938107]4.4.2 Style guides
The style guide reflects the minimalism of the application. It was made so that its use would be flexible ad simple, allowing changes during Kram's development. The font guide is a prime example of that philosophy. One should see it as a guide rather than a rule. The font family and font sizes remain constant throughout the application, yet the weight is interchangeable, depending on the context of use. As for the colours, beyond the whites and blacks, the red, green and blue are there to add contrasts to the page and highlight the signifiers (i.e., buttons, forms, etc.). However, the application is rich in examples where they are modified. Usually, the colours get their opacity changed to render exceptions, prohibitions, etc.

[image:]
Figure 33 Font guide
[bookmark: _Toc102938108][image: C:\Users\Knut\Desktop\palet.PNG]
Figure 34 Colour guide

[bookmark: _Toc102938109]4.4.3 Design system
A design system is defined as a collection of UI components that are reusable and whose visual style promotes unicity among the system. It aims at providing rules for the developers to bring coherence throughout the services of a given company, that relies upon such a system.
Carbon UI was first retained as the design system that Kram would use. However, it appeared during the production that some components of the system did not work or were simply not available. That is certainly because, in 2021, Vue moved from Vue 2 to Vue 3. Thus, some parts of design systems or all design systems were rendered useless (such as Vuetify, a design system tailored for Vue2).
Thus, it was decided that the application would retain some visual elements of Carbon UI and Material Design. While Element Plus (a Vue 3 design system) would provide some of the elements that are hard to style such as the options dropdown.
Because Element Plus design system did not match the overall feeling of the application or because they were too hard to customize, most of the components used in the application were designed based on the moodboard collection.
Figure 35 shows a carbon UI design system. If Kram is taking all the elements of the form, it took is buttons sytle due to its simplicity and elegance.
[image:]
Figure 35 Carbon UI form
Figure 36 shows a card in Material design. Yet again, Kram did not copy all the elements of the card but took its layout hierarchy and made up its own based on the former.
[image:]
Figure 36 Material Design card
Element plus provided some minor elements to the application, mainly dropdowns and inputs, mainly because a large part of the application was already done, but some elements needed urgent implementation. Thus, Element Plus provided an easy alternative to designing from scratch as figure 30 shows it.
[image:]
Figure 37 Element Plus dropdown
Instead of focusing on the UI aspect, the application's development ended up focusing on the user experience aspect to offer a flawless interaction, easy to understand, but with a lot of attention to the review, page to find a balance between the technical and time difficulties. For example, the colour code heavily implies a component’s page affiliation: orange for the cards page and green for the deck one (fig. 37 & 38).

[image:]
Figure 38 A card in the decks page
[image:]
Figure 39 a card in the cards page

[bookmark: _Toc102938110]4.4.3 Inspiration
The design process was thus aided by many online sources, each one aiding in designing a component of the application. The moodboard (figure 39) gives samples of the inspirations used for the application. Some sources include Awwwards, Pinterest, Google Image & CSS awards. The moodboard was created using Figma to organise and arrange it legibly the ideas.
[image:]
Figure 40 Moodboard

[bookmark: _Toc102938111]5. Implementation	Comment by John Montayne: Make sure to place a page Break before each chapter
The chapter covers first what tools were used during Kram's. Secondly, it explains how the spaced repetition algorithm is implemented, how it works, and what were the choices and concessions that led to its current version. Lastly, it covers individual pieces of implementation of the front- and back-end.

[bookmark: _Toc102938112]5.1 Development Environment
This section goes over the software, processes and services that helped organize the workflow and development of the application.

[bookmark: _Toc102938113]5.1.1 SCRUM methodology
SCRUM is a product development framework that helps teams, people, and organizations deliver a product by offering an adaptive environment for complex problems ("What is Scrum?", n.d.). The SCRUM paradigm is to provide the highest possible value product, yet not necessarily the most optimal, through a heuristic methodology to offer the flexibility for its people to solve unpredictable issues within the workflow. Typically, a SCRUM unit consists of a small team, neglecting hierarchy to focus on a single goal: the product. The framework works in phases, usually lasting between two weeks and a month. A phase is known as a sprint which invariably starts with a set goal phase. The team then undertakes the development. Those elements are recorded via a backlog. When ending a sprint, the team review the implementation, issues that arose and a retrospective of the sprint. The process iterates until the product is sent to production.

[bookmark: _Toc102938114]5.1.2 Kanban board
To help keep track of the project’s progress and help the supervisors up to date, the author used GitHub’s integrated Kanban board. While SCRUM and Kanban boards answer to different product development paradigms, the former managing the project over a long period (five months) and the latter on a daily schedule, the author used both to structure his project’s commitment. A Kanban board is an agile project management tool (Rehkopf, n.d.), an alternative working framework to SCRUM. It helps visualize the work-in-progress, ensures it is still reasonable and maximizes work efficiency. A board is typically made of columns such as ‘to-do’, ‘in progress’ and ‘done’ (alternatives may have more columns) that track the work. Users usually drag task cards around the columns to assign daily tasks, record bugs, update the work done, etc. Boards also include visual elements to catch one’s attention (e.g., urgent tasks).

[bookmark: _Toc102938115]5.1.3 GitHub
The source code of Kram application and API are hosted on GitHub, a for-profit service company for cloud repository hosting. It helps developers manage code versions, track changes, share code and open issues via Git. Git is an open-source version control system built by Linus Torvalds in 2005. It enables its users to work on separate code versions independent from one another in a process known as branching. Merging refers to the fusion of two versions in one, thus applying the changes from both branches within a single entity. As code versions are tracked, it is feasible for the developers to revert to an older version of the code if need be.

[bookmark: _Toc102938116]5.1.4 Insomnia
Insomnia is a software used to test if HTTP requests from the API are working as expected and track errors that would arise otherwise during the development phase (Mitra, 2021). It is a tool that enables the developers to check the security, performance, functionalities, and reliability of the applications via a GUI (graphical user interface). Such an interface is useful as it provides a sandbox environment other than the IDE (Integrated Development Environment, i.e., Visual Studio Code) to run tests on the API queries.

[bookmark: _Toc102938117]5.1.5 Mongo Atlas
Mongo Atlas is a software that comes on top of MongoDB. It eases database management and deployment, providing a GUI for the user to connect to their cluster using a URI. It also comes with an integrated sandbox environment to test queries before production.

[bookmark: _Toc102938118]5.1.6 Firebase and Heroku
The client-side of the project is hosted on Firebase, Google's application development platform. The platform provides a set of software development kits (SDKs), such as analytics, hosting, performance monitoring, authentication, etc. Enabling the developers to focus on the application experience and let Firebase manage whatever the developer would have built otherwise.
The back end, on the other hand, is shipped on Heroku. According to its website, Heroku is a service that, similarly to Firebase, provides a set of SDKs (fig. 41) to let developers spend their time developing their application, monitoring, and scaling it.
[image:]
Figure 41 Requests log parsed by Heroku

[bookmark: _Toc102938119]5.1.7 Webpack
In short, Webpack is a bundler. When building web applications, it is more than likely that the developers split their code into many files, or modules, to add more legibility to their code. So, for example, if a module needs a given method from another one, it only needs to import it. This is especially helpful for development, but it is far more efficient to have fewer files for production, hence Webpack. By building a dependency graph, or a list of all the modules the application needs to run, Webpack creates many, or often a single and smaller bundle of code for shipping.

[bookmark: _Toc102938120]5.2 Spaced Repetition Algorithm
As discussed in the second chapter, Anki's algorithm, which Kram's one is a derivate, suffers from many flaws that negatively impact the review efficiency.
First, it fails at predicting the probability (the term is important, as it is unlikely that any algorithm will ever be able to predict with certainty the exact moment even information is forgotten) of the moment when information splits out of the memory. By applying radical changes to the ease factor as early as the first review day, a card might suffer from different outcomes that negatively impact a user's learning experience.
Hitting the again or hard button repeatedly, the card falls into what is known as the ease hell. A state where the cards keep showing more often than necessary, even if information finally ends up being retained by the learner, thus resulting in a loss of time efficiency for him, a resource that should be redirected towards learning new content.
Hitting the normal button is the least evil solution. Cards deemed as easy end up appearing more often than necessary, but since they might account for at most 15% of the cards according to the author's own experience, this is a negligible issue compared to those seen as hard. The harder cards will show up as often as the easy ones are shown scarcely, but this time, because the inherent difficulty is greater and they show up before it is required, impacting the quality of the review, pushing the inevitable failure to a date further in time, way after needed. Finally, it leaves the card in between, which depending on the user's probability of remembering them or not, will anyhow filter them in one category or another. Hitting the easy button might conduct the user to misjudge the difficulty of a card, and yet again, next time the card shows up, the probability for the user to remember the card will be low.
[image:]
Figure 42 the ease hell representation
The main issue with this system is that it treats memory as a binary system; one either fails or manages to remember information. Memory is more of a grey area of memory fluke. For example, a user perceiving a card as easy at first might not be able to recall its information the next time he sees it. This biased perception then creates more harm to the user than benefits.
Thus, Anki's algorithm performs poorly at predicting the probability of when a user will forget the content of a card. Furthermore, the application gains again inefficiency by offering the user to give feedback over four choices. As described by Eshapard (Eshapard, 2017), the mental strain of giving multiple choices results in fatigue that falsifies feedback.
In a nutshell, the Kram algorithm must deal with two issues that Anki failed to tackle. First, how can it mathematically provide information at the right time, namely before the information is forgotten, as to trick the mind to process information as important data? The problem when facing probability, it is often, if not essential to acquire a large pool of data to construct an efficient model that reduces the error margin, as Duolingo does with its HLR model (see chapter 2). Secondly, how to ensure a good balance between spending time on reviews and the time in between so that learners suffer from the least possible pain of reviewing the cards but manage to recall as much information as possible to keep the motivation going in the long run.
Henceforth, Kram comes with a novel solution to tackle those issues at once. Instead of adjusting the ease factor right from the beginning, the algorithm promotes failure from the client's side to offer him the possibility to build solid foundations for his memory by filtering cards by their inherent difficulty pushing the easy cards out of the cue as soon as possible. Because Kram tries to achieve database storage and calculation efficiency for flawless navigation, time constraints limit the number of functionalities being implemented. It disregards the possibility of using users' history and carries on with the predictions once the cards reach a fixed time threshold: 30 days. In addition, the UX was rethought to ease users' mental charge so that they would choose either between fail and pass choices, forcing them to admit failure and move on as quickly as possible to the next step.
Kram's algorithm philosophy could be resumed as a tool that instead of optimizing every single aspect of the learning curve, looks to gain profile flexibility. In other words, it tries to blend in with the people learning patterns. This flexibility is achieved by a double cueing system that aims at filtering tough elements from easier ones, the latter staying, if necessary, in the learning cue to toughen the memory.
Unlike Anki which graduates a card as matured after the first day (meaning that the ease factor gets updated right away), Kram stretches the time required for a card to mature and graduate from the learning cue and effectively gives proper training. Unlike its predecessor, Kram gets rid during the learning cue of any boosts or penalties, not even touching the ease factor so that time is used efficiently.
When a card is added to the cue, the user will see it at least twice that day, one at the beginning of the session, then again after 15 minutes. If successful, the card is pushed to the day after. If successful again, the interval is pushed to 48 hours. Assuming the user will be successful each time, he will see the card after seven days, fourteen days and thirty days. This cueing has two objectives. First, the gap between two and seven days is so large that it gives enough time for the mind to rest and forget what needs to be forgotten, thus making the first filter between easy and hard cards. Would a card reach the 14 days threshold, it might be safe to assume then that the information is successfully remembered. It also ensures that there is a good difficulty balance. The easy cards pushed to fourteen days are perceived positively, thus creating a sense of accomplishment, feeding motivation.
If a user was to fail to remember a card during the learning cue, that card goes back to day one and the cue iterates yet again. The main point is then to offer no penalties that will determine a card's lifecycle too early in the process and offer users to be ready to face the matured cue whose lifecycle gets might get exponentially longer.
Assuming the student reviewed a card with no failure, after 54 days the card enters the second cue. It is assumed that this is an unlikely scenario for most cards as they will require more than 54 days based on the author's own experience. At this point, the algorithm starts updating the ease factor according to rules specific to this cue.
After thirty days, the interval is calculated as such: I' = I * EF, where I is the new interval. But beforehand, it is the ease factor that gets updated or not. Each card starts with an initial 250% ease factor, as recommended pas Piotr Wozniak. Now that the card is entered in the matured cue, intervals get increasingly linger, but the probability for a user to forget information is still there. Yet, reverting a card to day one even though the user has the feeling that he would remember it the next time he sees it would be counterproductive, a time loss and mental pain for the user. Thus, instead of reverting the card to day one, the new interval is 20% to 15% less than it would have been if successful. The worst-case scenario is easily predictable (the values are rounded up):
	Failed attempt
	Calculus
	Results

	One
	30 * 215%
	65

	Two
	65 * 175%
	114

	Three
	114 * 145%
	166

	Four
	166 * 130%
	216

Table 1 – Results of the worst-case scenario in matured cue

The ease factor is blocked at a minimum of 130% so that the intervals are not too close to the previous one, as recommended by Piotr Wozniak. If a card fails its duty five times in a row, then it is marked a leech and will not repeat into the deck. Such harsh penalties are supplementary incentives for users to be proactive in their card management by filtering bad cards out of the deck. After reaching this stage, the user has three choices, either put back the card in the learning cue, update it, or delete it. Yet, because memory is not an exact science, the algorithm puts on a safeguard. If a card failed thrice, but on the fourth attempt the user remembered the card correctly, the failure counter decreases by one, pushing back the threshold further back. On the other hand, the best-case scenario is made so that cards with no apparent difficulty are pushed to very long intervals as such:
	Failed attempt
	Calculus
	Results

	One
	30 * 250%
	75

	Two
	75 * 250%
	188

	Three
	188 * 270%
	508

	Four
	508 * 270%
	1371

	Five
	1371 * 295%
	3975

Table 2 – Results of the best-case scenario in matured cue

The maximum threshold is set to 10 years so that cards are not lost in eternity. Moreover, the ease factor is not increased systematically unlike when the failure button is hit, to avoid an exponential growth that would decorrelate from the forgetting curve. For an ease factor to gain 20 points, the learner must remember twice correctly the card.
Cards in between will not follow such a direct pattern, but rather fall in between.
Thus, the algorithm is done so that the cards not requiring any studies are buried at the bottom of the cue and those needing more attention reappear more often.

[bookmark: _Toc102938121]5.3 Application’s Implementation
This section goes in depth as how individual pieces were implemented in the application. Its first aspect deals with the API.

[bookmark: _Toc102938122]5.3.1 Back-end
The API It was built using Express.JS, a web application framework, and Mongoose, a library built on top of MongoDB. It provides a way for programmers to model their data using schemas instead of using vanilla MongoDB, whose syntax is closer to that of the Mongo shell.

5.3.1.1 The API
ExpressJS is the frame that makes the API (fig. 43). The first step to launching the server is to import the dependencies required the run the application (lines 1 to 4), then the routes holding the logic communicating with the database (lines 6 to 8). Line 10 executes the express application while line 12 fetches all the environment variables necessary to communicate with the database, such as the cluster's URI (line 14). Lines 25 to 27 are the route middleware, executing the functions whenever a specific route is called.
[image:]
Figure 43 Setting up the API
5.3.1.2 Models
A collection in MongoDB refers to what would be the equivalent of tables on SQL databases. Each collection holds a finite number of objects storing similar information from one another. Because NoSQL is naturally flexible, the objects' structure does not imply carbon copies. Some objects could very well have additional properties compared to others. The collections are created using Mongoose schemas, or object blueprints.
A schema holds the properties of an object and the rules it must abide by, such as the object's data type (line 5), whether it is required or not (line 6), or the maximum number of characters allowed (line 7).
[image:]
Figure 44 The users’ schema on Mongoose

5.3.1.3 Controllers
Controllers are responsible pull data from the collections, modifying it and providing the client with the information once processed. If the client updates the data, the controller is responsible to modify it.
[image:]
Figure 45 The controller responsible for adding a card to a deck
Most of the API's controllers work in sequential order as follows: first, data that comes from a JSON file is extracted and stored via variables. The user_id is often compared against the user id extracted from the URI. That line of code became obsolete once tokens were used for authentication but remained throughout the application as a safeguard during development. If the controller needs to send multiple queries at once, the API uses the Promise.all() method that resolves an array of promises. When querying the database, the programmer specifies what collection the query pulls the data from and what function it must perform (on line 16, the query retrieves only a single object as specified by the findOne method). Each method can get multiple arguments. The first argument is usually pointing out which objects must be retrieved (i.e., the id of a user). Other arguments can specify what kind of data is returned. Functions can be chained to queries like .limit() limiting the number of objects retrieved. Responses are then parsed by the controller which sends them to the client.

5.3.1.4 Routers
Routers refer to the application's endpoints. They are defined using the methods of the express app (line 1). Each method refers to an HTTP request: Get, Post, Put and Delete.
Each method takes two to three parameters. The first argument gives the URI endpoint. Slashes followed by a column expect a value such as an id. The last parameters call the functions dealing with the request sent by the client. Ultimately, the verify function is used in some cases to validate the authenticity of the profiles.
[image:]
Figure 46 User router
Table 3 – User routers
	Verb
	URI
	Expected action

	POST
	/users/register
	Profile registration

	GET
	/users
	Fetch all users profile

	GET
	/users/:id
	Fetch a single user profile

	GET
	/users/pic/:id
	Fetch a user’s profile picture

	PUT
	/users/:id
	Update a user’s profile

	PUT
	/users/pic/:id
	Update a user’s profile picture

	PUT
	/users/password/:id
	Update a user’s password

	DELETE
	/users/:id
	Delete a user’s profile

Table 4 – Session routers
	Verb
	URI
	Expected action

	POST
	/users/login
	User logs in and token is created

	GET
	/users/session/:id
	Fetch a user’s token

	DELETE
	/users/logout/:id
	Delete a user’s token

Table 5 – Deck routers
	Verb
	URI
	Expected action

	POST
	/decks/:id
	Create a deck

	GET
	/decks/repository
	Fetch all public decks

	GET
	/decks/repository/:id
	Search public decks

	GET
	/decks/:id
	Fetch a user’s decks

	GET
	/decks/table/:id
	Fetch a deck’s cards

	GET
	/decks/:name/:id
	Search for a user’s deck

	DELETE
	/decks/:id/:deck_id
	Delete a deck

	PUT
	/decks/:id
	Update a deck

	PUT
	/decks/add/:id
	Attach a public deck to a profile

	PUT
	/decks/vote/:id
	Update the vote count of a user

Table 6 – Card routers
	Verb
	URI
	Expected action

	POST
	/cards/:id
	Create a card

	GET
	/cards/:id
	Get the cards

	GET
	/cards/:text/:id
	Search for a card

	DELETE
	/cards/:id
	Delete a card (not implemented)

Table 7 – Deck cards table
	Verb
	URI
	Expected action

	PUT
	cards/add-to-deck/:id
	Add a card to a deck

	PUT
	cards/deck/:id
	Remove a card from a deck

	POST
	cards/deck/:id
	Fetch each card attach to a deck

5.3.1.5 Verify middleware
Some routes accesses are restricted to protect the app from unauthorized users accessing information. The verify middleware is there to check the profile's authenticity by deciphering the JWT tokens. Importing the methods where needed results in ensuring that the API respect the DRY (Don't Repeat Yourself) design pattern is respected.
When called, the function checks the validity of the token by comparing the secret key string in the signature against the secret key of the environment variables in the .env file. The If statement checks whether the token's expiration time and if it is already stored. If the token is outdated or a user logs in even though a token bound to him is already stored, the method sends a query to replace it before storing a new one.
[image:]
Figure 47 Token validation middleware

5.3.1.6 Validation Middleware
Joi is a schema validator for JavaScript accepting JSON objects used to test the validity of the request’s objects. When creating a Joi object, one may specify what criterion the properties must fit into, such as the required characters to create a password (lines 2 and 14).
[image:]
Figure 48 JSON object validation

5.3.1.7 Search Query
As the application grows in complexity, it is only natural for the number of decks to increase. The app comes with a search bar to make users' search faster and easier. When receiving a search request, the API parses the string of characters sent via the URI using a regex method (line 68), which then sends a query to the database in the hope of getting a response.
[image:]
Figure 49 Search query

5.3.1.8 Deck vote
The updateDeckVote is a method enabling users to vote positively or negatively for public decks. The gist is to offer the opportunity for collective intelligence to sort contents deemed as useful from lesser ones as public decks are freely accessible.
[image:]
Figure 50 Voting for a card

[bookmark: _Toc102938123]5.3.2 Front-end
The client is built using VueJS alongside libraries built on top of it: Vuex for state management, Vue Router for routing and Element Plus which offers a Vue 3 design system off the bat. Moreover, Luxon was added to deal with time management.

5.3.2.1 Components
[image:]
Figure 51 The public repository is composed of several components
Vue components designate individual pieces of code holding a logic independent from other ones. They are split into three sections: the template, carrying the HTML logic. The JavaScript deals with the scripting and the CSS for styling. They are usually arranged in a tree structure or interdependent components, i.e., a <navigation> component will be the parent component or a <searchbar>.
[image: Une image contenant texte

Description générée automatiquement]
Figure 52 A feedback component
Once a component is ready for use, a parent component or any other component imports it (fig. 49, lines 881 or 882). The component is then called in the template with a semantic tag name unique to him (fig. 50).
[image: Une image contenant texte

Description générée automatiquement]
Figure 53 Importing a component
[image:]
Figure 54 Declaring a component

5.3.2.2 States
[image:]
Figure 55 States are stored in a component
A state (fig. 51) refers to a unique set of data that can be read from and written to at a given moment. To display the data screen, programmers use a double curly braces syntax to call the state by its state name, bound to the value.
[image:]
Figure 56 And can be passed to a second component
Local state refers their scope of accessibility within the application. Most of them are exclusive to the components they belong to and are as such not accessible by other ones unless the states are bound to a global state (refer to section 3.2.8 Vuex) or passed as props between parent-child components.
[image: Une image contenant texte

Description générée automatiquement]
Figure 57 A component's states

5.3.2.3 Props and events
Components can engage a dialogue between each other to exchange data. For example, parent components can inject data into their child components by passing them via their component tag (see figure 50). The syntax is as follows: :card_id='this_id'. The child component then gets a property that may be called directly within the HTLMP using this.$props.prop_name or by saving it into a state.
Child components may as well communicate with parent components. They usually do so to trigger a function, not rewrite a state. Figure 49 shows a button that, if clicked, triggers an event called close, caught up by the parent component (fig. 50). The parent upon receiving the @close event triggers the popForm unction whose responsibility is to close the modal form by reverting the state add_card_fom value to false.

[image:]
Figure 58 A button emits an event
[image:]
Figure 59 The event triggered a function

5.3.2.4 Spaced Repetition Algorithm
[image:]
Figure 60 Once reviewed, cards get a new interval
Line 7 declares the learning cue. 0.60 is interpreted as sixty seconds and 0.150 as fifteen minutes. Doing do avoid misunderstandings from the program side as it may understand 60 and 15 days. Feedback is given either by a key-event or a button reflected by either _event or _if (line 10). If positive, the interval is calculated depending on the cue it sits on. If in the learning cue, the new interval matches one of the array values on line 5. If a card's interval is bigger than 30, the card is in the mature cue, and the rules to calculate the interval are henceforth different. Interval is then the product of the last interval by the ease factor, which gets a 20% bonus if the success streak's value modulo 2 is equal to 0.
If the feedback is negative, the interval is set back to 60 seconds if in the learning cue or calculated by the ease factor, which gets a 20% penalty. A card stacking five errors is marked as a leech.
Answering positively a card that was failed previously will decrease the fail counter. The underlying idea is that if a user fails four times a card, remembers once the card, and then fails it a fifth time, it is not put directly to the burry list to give him another chance.

[image:]
Figure 61 Spaced repetition algorithm

5.3.2.5 Infinite scrolling
For the application to be time and resource-efficient, an infinite scrolling feature is implemented, which voluntarily hides parts of the content fetched by the API. Upon receiving a response, the card components store the first split in the cards_inital array and prompt to the screen the first fifteen elements. When scrolling to the bottom of the screen (fig. 54, line 1060), the first fifteen elements of cards_initial are extracted and pushed to the cards array which automatically gets prompted to the client.
[image:]
Figure 62 Infinite scroll

5.3.2.6 Undo button
Miss clicks are always a possibility hence the undo button. When learning a card, its index gets pushed to state viewed_indexes which stores the order in which the cards appeared. When clicked, the button triggers reverseReview(), which then updates the card_index variable, responsible for determining which card gets prompt to the screen. The index is then taken out from viewed_index using the function pop() that removes the last item of the array.
[image:]
Figure 63 Undo button

5.3.2.7 Card Responsiveness
To ensure the best legibility the cards are split into columns. Each column renders cards based on their index property. Figure 56 shows the HTML structure of the left column for screens whose widths are between 500 and 900 pixels. If the cards index modulo 2 is equal to 0, then the right columns display them, otherwise, it is the right column that displays odd indexes.
[image:]
Figure 64 Card responsiveness

5.3.2.8 Vuex
Vuex is a state management library enabling programmers to access global states from any component using setters or action methods. The states (lines 5 to 8) are like any local state but have a global scope. A state stored within the store.js file can only be updated within the said file. To do so the client sends the data using an action method that sends passes the data as an argument to its matching mutation function. The getters function allows global state access from any component.
[image:]
Figure 65 Global states
5.3.2.9 Sorting Decks
[image:]
Figure 66 Users may sort cards as well
Cads and decks can get sorted to modify the order in which they are prompted using the ES6 method: .sort(). Taking line 360 as an example, if a card b's votes are greater than a card a, the former gets pushed at the beginning of the array. Indexes are updated as they reflect a card's position in the cards array, allowing the client to render the cards or decks in the right order.
[image:]
Figure 67 Sorting the decks

5.3.2.10 Vue lifecycle
Vue lifecycle allows programmers to know when a component is created, updated, deleted or mounted. During those intervals, the programmers can define methods that will run to perform a given task. Figure 59 depicts a component that runs functions at four stages of its lifecycle. Functions in the mounted state run once the screen renders the client. Create, BeforeUpdate track the window size while the unmounted state deletes the event listeners methods to avoid memory leaks when the component gets unmounted.
[image:]
Figure 68 Vue lifecycle
5.3.2.11 Routing
Vue Router is a Vue library that provides an efficient way to create single-page applications. When navigating to a URL stored in the router file, the application loads the adequate component and re-renders the virtual DOM without changing the page.
[image: Une image contenant texte

Description générée automatiquement]
Figure 69 Routing page

[bookmark: _Toc102938124]6. Testing
[bookmark: _Toc102938125]Introduction
The testing chapter aims to uncover any bugs or interface inadequacies in the application, and in addition, test whether the latter managed to fulfil its promise, namely, to help students acquire knowledge. To do so, a test recording the memory performances of seven testers was conducted and a usability test afterwards.

[bookmark: _Toc102938126]6.1 Spaced repetition testing	Comment by John Montayne: This should be 6.1 and the next underneath should be 6.1.1. Not sure if you were consistent with this. Please check
The test aimed to prove that spaced repetition is an efficient methodology to retain knowledge and that the application works as a tool to support the learning process.

[bookmark: _Toc102938127]6.1.1 The objective
The objective was to observe whether students would learn a list of 18 words in Esperanto, a constructed auxiliary language using Kram: an international auxiliary language (a language used as a bridge between people who do not share the same mother tongue). Esperanto was retained for its many benefits.
First, none of the testers knew how to speak the language due to its negligible adoption (between 20 and 180.000 speakers worldwide). Its grammar is both easy to learn and understand. And lastly, due to its Germanic, Latin and Slavic basis, the language provides enough similarities for both the Irish and French testers to build connections against their own language.
The testers were expected to remember as much as possible the words. The list was thought to give students the minimum knowledge required to interact with speakers of a hypothetical country whose native language is Esperanto and have a difficulty balance between words harder to learn that others. The list was split in three, with each list provided to the testers over the first three days. Some words or sentences were strategically given at different days due to their similarities (i.e., what’s your name and how are you) or inherent difficulty so that the lists would not appear unlearnable by the students.
	Day one
	Day two
	Day three

	· I: mi
· You: vi
· He/She: Li/Shî
· To be: Esti
· To need: Bezoni
· Doctor: Kuracisto
	· Hello: Saluton
· Goodbye: Adiaŭ
· Yes: Jes
· No: Ne
· What’s your name: Kiel vi nomigâs
· Can I have: Ĉu mi povas havi
	· How much does it cost: Kiom gi kostas
· I am: mi estas
· How are you: Kiel vi fartas
· Sorry: pardonnu
· Please: Bonvolu
· Sorry, I don’t understand: Pardonnu, mi ne komprenas

Table 8 – List of words split by the days they were handed to

[bookmark: _Toc102938128]6.1.2 Test conduction
The tests were run individually online and recorded. The memory test lasted over a period of five days, split in two phases. During the first three days, the testers were given a list of six words per day. The interviewer would go through each list with the testers, give them their meaning and pronunciation. Each tester had five minutes maximum to learn the words before running the test. New words would popup twice at minimum as expected from the algorithm to ensure that the testers would be exposed as much as possible to the information the first time, they saw them. After seeing a first time each word, the testers had a one-minute maximum break to rest and remember the words if required, before going through another run. If a tester failed a card, he would see it as many times as needed until he got to remember it correctly twice in a row. After the third day, no other cards were added, and the testers would review solely the cards they had seen the previous days.
The tester pool covered as many different profiles as possible, from testers learning a foreign language for their studies, pleasure or speaking more than one language at home to testers speaking a single language.

[bookmark: _Toc102938129]6.1.3 Success measurement
The test was deemed as successful if the retention success rate exceeded a minimum of 80% during the last test. If the score was to be lower, then the application was considered to have failed to fulfil its mission.

[bookmark: _Toc102938130]6.1.4 Results
Out of the ten testers that agreed to conduct the tests, three of them dropped out during the week for various reasons, while the remaining seven conducted their tests until completion. The lowest score recorded at the end was a mere 78% success (four mistakes), while on average, testers scored a staggering 96,6% of success.
However, the lowest score must be placed into perspective. The tester was among the ones who showed the greatest difficulties in learning the words, as he spoke only English while those speaking more than one language did better. While it is not surprising for the latter to get success rates close to 100%, those who had greater difficulties (their test lasting sometimes more than 15 minutes) ended up doing much better the last day if they did not catch up to those with stronger profiles.
It comes clear however that personal background is a reliable metric to determine a person’s success in becoming proficient in speaking a foreign language, and spaced repetition is a reliable tool for different profiles to acquire a new language if adapted to their requirements.
It is worth noting that the weaker profiles did not feel confident at first in their capacity to retain information as they failed to remember or even differentiate some of the sentences and/or words. However, upon seeing their results on the last day, they unanimously commented their surprise at how good they performed were as they did not expect themselves to do as good as they ended up doing and felt confident that they would remember some of the words in the future.
It is similarly essential to highlight that the actual spaced repetition algorithm used in the application is not the one that was tested. Time restriction being a problem, both the author and supervisor agreed on testing spaced repletion over a five-day week period, instead of six to eight months, the time that would have been necessary to test the actual algorithm.
Overall, the test has a positive outcome. Those who performed poorly at first ended up making substantial progress. The tests also highlighted some usability issues even though it was not the main objective. Some users noted that the save & exit session was not intuitive, and the lack of an undo button forbid the users to go back would they click the wrong button.

[bookmark: _Toc102938131]6.2 Usability testing
Usability testing focus on looking at the users' behaviour when interacting with the application. It is necessary that users test the application to uncover flaws, and bugs and perhaps add criticism to what was done and could be done with a new perspective.

[bookmark: _Toc102938132]6.2.1 The objective
The objective of the usability testing is to confront the application against users and get a new perspective for both the developer and designer. Usability is the perfect opportunity for the date to get instant feedback and have an open discussion with people outside the project. Thus, it offers the occasion to see how people react to the interface and see if there was any point that would require improvement, modification, etc., before shipping.

[bookmark: _Toc102938133]6.2.2 Test conduction
 The tasks were carried out online individually, either on Teams or with Windows quick assist to grant the testers access to the machine. The tests were recorded using OBS, and the videos were uploaded on YouTube (see appendix). The list below enumerates the tasks (see the document in the appendix):
· Create a new account & change the profile picture
· Create a new deck and two cards
· Test the voting system and add two decks to the profile
· Review a deck and update a deck's data
· Retrieve a card
Before each session, the testers were given a consent form to fill in and a pre-test form. The questions aimed at getting a profile of the testers. Once they finished the tasks, they were asked to fill in a post-test survey to collect their feedback, impressions, and criticism.

[bookmark: _Toc102938134]6.2.4 Results
As for the profile of the testers, they matched closely to the ones recorded for the first survey of chapter 3. The age range is between 20 and 30 years old, with the participants being either students or self-employed. Moreover, all of them plan to learn a new language soon, using primarily a laptop and mobile devices to study. They also had an experience with apps like Kram, having used one in the past. It is then safe to assume to get around the application thanks o that experience.
The test went very bad from the interviewer's perspective. It appeared that when certain conditions were met, the application would start to break. It broke not to the point where the application would get unusable, but some elements, namely the cards page wouldn't work at all. Because the main account didn't break earlier in the development, it is safe to assume that the application broke with new user accounts when passing null states to the cards page.
· Furthermore, the tests helped to underline some UX defects, such as:
· The profile page breaks when the screen width exceeds 1200px.
· Visual feedback that is not popping up at the right place.
· The users did not understand what the view cards button meant on the decks' card, leading to a lack of understanding when they would read the message saying the deck has no cards.
· They did not use the sort buttons or search bar to retrieve a card.
Yet, surprisingly, the testers gave positive feedback on the survey. All of them noted how easy it was to navigate un the application, organise the decks and cards and how easy it was to study. Yet, the process of creating a card and updating a decks metadata put pain into the testers' minds, one saying that the second task was not providing enough feedback to understand whether the deck was updated. A tester also mentioned that the search bar could have been done better because he did not see it and thus ended up not using it. One of the comments also gave ideas to work on in the future. Someone regretted that he could not type the answer on the screen rather than reveal an answer by typing on his keyboard.

[bookmark: _Toc102938135]Conclusion
The purpose of the project was to create a flashcard application whose spaced repetition algorithm could help learners to acquire efficiently knowledge with both a friendly and intuitive interface and open-source content, available to all users so that new ones would not loos time in creating flashcards with basic information.
The project began by researching how learning works, what mechanisms are involved in memorization and what tools, from a psychological and design perspective, can help the processes. The design chapter covered the design of the application, its system architecture, and why and how the MEVN stack was used.
The implementation chapter covers individual pieces of code, either because they are generic components, reused throughout the application, or because their uniqueness makes them interesting to cover. It also covers what tools were used for the development and how the spaced repetition algorithm works.
There are plenty of missed opportunities worth mentioning for possible future works. And, elements that would need refactoring. If I had to pick three of the latter, I would choose without hesitation the inefficiency of the API. The API as it is has many methods that send two or more requests at once. My solution to avoid sending too many requests at once was to use Promise.all. However, mongo has pipelines that allow developers to manipulate data directly from the database, thus, bypassing the need for multiple queries. That miss-hit from my side is one thing I regret that I did not change on time. Secondly, the infinite scrolling is highly inefficient and will not able the application to scale up with thousands of words. That is due because the application loads all of the cards at once and splits the cards in two, rendering the first fifteen elements and hiding the rest, displaying other items if and only if the users scroll to the bottom of the page. A better solution that I thought of would be to directly request fifteen elements and upon reaching the bottom of the page, load the next fifteen elements. Lastly, I did a poor job in the front-end development. Some components are too big for what they are, and I should have thought of a way to break them into sub-components. I ended up doing this due to poor state management that I never corrected. If the routing system and properties passed from one component to another are so cumbersome to read, that is because the code became too bloated for me to patch the errors once I found my mistakes. Either way, I would often find those mistakes way after I implemented the code. I could also add the fact that I did not use any testing library such as jest to test proof my code. That is another thing I would consider using if I had to redo my code.
As mentioned earlier, the application also accumulated missed opportunities. At the project's beginning, I thought I could implement the natural language processing model Probase (ScarletPan, 2019) to help me generate automatically contextualized decks. Yet, due to technical and time limitations, I dropped that idea to give more time and reflection on the most efficient spaced repetition algorithm. One tester also confirmed my initial idea of giving the possibility for the users to choose between typing or clicking on buttons to reveal the cards' answers. Another element that I see as interesting would be to allow the users to choose a special review mode, tailored for cramming revisions over a given period. The voting system is something that needs a complete rework. The way it works at the moment is archaic. If a deck has more votes than others, it is certain to pop up at the top of the page. With thousands of decks, those with fewer votes would be buried in a hell of low scores. A solution that I came up with and which gives me promising outcomes is to use a logarithmic function so that after a certain vote threshold, a deck with fewer votes compared to another one would share the same weight, thus allowing discoverability. Another element that I dropped was the local storage. I still believe that the application would work just fine if decks were primarily stored in users' local machines, thus bypassing the need for constant requests and freeing memory space in the data centres. I also pushed aside the styling features that could have enabled users to customize their decks and cards due to time constraints. As discussed in the research paper, making cards is an essential step toward memorization, and I think that is something that will be missing from the project. Finally, I would rework completely the UI so its look would not look so bootstrapy.
The project covered many areas of web development and even more. The experience was rich in learning, and for this reason, even though I am not happy with the final product, I am satisfied with the invaluable lessons I got from it. If I had to name the most important one, I think it is that good professionals, not only programmers, are process driven. It is ok to fail, misjudge, etc., but if the process is correct, I do not think there are unrealistic solutions.
It was my first big professional project conducted by myself, even though I had my supervisor's guidance. And if everything did not end up as expected, I may at least confidently say that I would be comfortable setting up a project with the MEVN stack. Moreover, even if I am not the best technician out there, I believe now to be capable of having a good rational process.
Looking back at what I did, I think the most stressing part of the project for me was deciding how I would implement the spaced repetition algorithm. Even if the code is simple, what made the choice so hard was the fact that, to my knowledge, nobody did anything thing similar to what I made to back up my reasoning. But today, I believe I made the right choice. The application is not what I hoped for. It is far from perfect, yet I think that what it does, it does it well, both in technical and UX terms. The algorithm works and translates well my philosophy of learning and the UX, even if not looking very interesting, allows intuitive use and helps users take quick decisions.

[bookmark: _Toc102938136]Appendix A
[image: Une image contenant table

Description générée automatiquement]

[bookmark: _Toc102938137]Appendix B
[bookmark: _Toc102938138]Usability test tasks
1. Create a new account and change your profile picture. (20s to 2 min)
2. Create a new deck. Then create two cards that you add to the deck you just created. (2 min to 4min)
3. Go to the public deck repository. Upvote or downvote a deck. Add the decks Eng to Fr and User Test part 1 to your profile. Modify the Name and Category of User Test part 1. (2 min to 4min)
4. Review the cards for the deck Eng to Fr. (4 min to 6 min)
5. Retrieve the card Cu mi povas havi from the deck you renamed earlier. (30s to 2 min)

[bookmark: _Toc102938139]Link to the usability test form
https://forms.office.com/Pages/DesignPageV2.aspx?origin=NeoPortalPage&subpage=design&FormId=e5V92hEVQkqy9Xj4R_jIeg4nzmqvsfFLiIIsE6IgyvtUOVhHQ0ZTOTFFVDhKVThJUTNTVkpYSTJOTC4u&Token=49875afe19544435a0f6cd8ada368495

[bookmark: _Toc102938140]Link to the users’ survey
https://forms.office.com/Pages/ResponsePage.aspx?id=e5V92hEVQkqy9Xj4R_jIeg4nzmqvsfFLiIIsE6IgyvtURE5RTERDQzc2UE1ZSTVDREJKVkxIOU9HSS4u

[bookmark: _Toc102938141]References
Arhippainen, L. and Tähti, M., 2003. Empirical Evaluation of User Experience in Two Adaptive Mobile Application Prototypes. [ebook] Available at: https://www.semanticscholar.org/paper/Empirical-Evaluation-of-User-Experience-in-two-Arhippainen-T%C3%A4hti/504b7d4ef693ffca26e52976382ed8d31dfc10d6 [Accessed 20 October 2021].
Barron, B., n.d. How Do Progressive Web Apps Really Compare to Native Apps?. [online] MobiLoud. Available at: https://www.mobiloud.com/blog/progressive-web-apps-vs-native-apps [Accessed 20 October 2021].
Billeter, J. (2002). Leçons sur Tchouang-tseu (15th ed., p. 15,16,17). Editions Allia.
Brown, B. (2021). The Psychology of Gamification: Why It Works (& How To Do It!). Retrieved 1 November 2021, from https://www.bitcatcha.com/blog/gamify-website-increase-engagement/
Brown, J., Collins, A. and Duguid, P., 1989. Situated Cognition and the Culture of Learning. [online] Sage Journals. Available at: https://journals.sagepub.com/doi/10.3102/0013189X018001032 [Accessed 12 January 2022].
Casey, J. (2019). How to Create and Review Flash Cards More Effectively. Retrieved 11 January 2022, from https://wax-trax.medium.com/how-to-create-and-review-flash-cards-more-effectively-e45e04a570cd
Christodoulou, D. Laptops vs phones: the learning difference - Daisy Christodoulou. Retrieved 14 January 2022, from https://daisychristodoulou.com/2020/05/laptops-vs-phones-the-learning-difference/
Churchville, F. (2021). user interface (UI) [Blog]. Retrieved from https://searchapparchitecture.techtarget.com/definition/user-interface-UI
Edge, D., Searle, E., Chiu, K., Zhao, J., & Landay, J. A. (2011). MicroMandarin: mobile language learning in context. ResearchGate, Retrieved from https://www.researchgate.net/publication/221516546_MicroMandarin_mobile_language_learning_in_context
Emberson, L. L., Richards, J. E., & Aslin, R. N. (2015). Top-down modulation in the infant brain: Learning-induced expectations rapidly affect the sensory cortex at 6 months. In Proceedings of the National Academy of Sciences (Vol. 112, Issue 31, pp. 9585–9590). Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1510343112
Faghih, B., Katebi, P., & Reza Azadehfar, D. (2014). User Interface Design for E-Learning Software [Ebook] (pp. 1,2,4,7). Retrieved from https://arxiv.org/abs/1401.6365
Ferriman, J. (2020). Mobile Learning Versus ELearning - LearnDash. Retrieved 14 January 2022, from https://www.learndash.com/mobile-learning-versus-elearning/
Forlizzi, J., & Battarbee, K. (2004). Understanding experience in interactive systems. In Proceedings of the 2004 conference on Designing interactive systems processes, practices, methods, and techniques - DIS ’04. the 2004 conference. ACM Press. https://doi.org/10.1145/1013115.1013152
Frank, T. (2020). 8 Better Ways to Make and Study Flash Cards. Retrieved 11 January 2022, from https://collegeinfogeek.com/flash-card-study-tips/
Frisch, S., 2016. 3 Scientific Links Between Handwriting Your Notes and Memory. [Blog] Redbooth, Available at: https://redbooth.com/blog/handwriting-and-memory 	[Accessed 15 January 2022].
Folsom, R. (2019). But, What Exactly Is AI? [Blog]. Retrieved from https://towardsdatascience.com/but-what-exactly-is-ai-59454770d39b
Gangaiamaran, R., & Pasupathi, M. (2017) Review on Use of Mobile Apps for Language Learning. International Journal of Applied Engineering Research, Retrieved from http://www.ripublication.com/ijaer17/ijaerv12n21_102.pdf
Hassenzahl, M., Law, E. and Hvannberg, T., 2006. User Experience-Towards a unified vie. [ebook] www.academia.edu. Available at: https://www.academia.edu/2880260 [Accessed 20 October 2021].
Hassenzahl, M., & Tractinsky, N. (2006). User experience - A research agenda [Ebook]. ResearchGate. Retrieved from https://www.researchgate.net/publication/233864602_User_experience_-_A_research_agenda
Hellweger, S., & Wang, X. (2015). [Ebook] (pp. 1,2,3). hat is User Experience Really: towards a UX Conceptual Framework. Retrieved from https://arxiv.org/pdf/1503.01850.pdf
Henderson, M. (2019). What is NodeJS and Why You need to learn it [Blog]. Retrieved from https://medium.com/@michaelhenderson/what-is-nodejs-and-why-you-need-to-learn-it-f0760ba9a76a
Horowitz, S., 2018. The unexpected connection between handwriting and learning to read. [Blog] Understood, Available at: https://www.understood.org/articles/en/the-unexpected-connection-between-handwriting-and-learning-to-read [Accessed 15 January 2022].
How Memory Works. Retrieved 14 January 2022, from https://bokcenter.harvard.edu/how-memory-works
JWT.IO - JSON Web Tokens Introduction. Retrieved 21 February 2022, from https://jwt.io/introduction/
Kuhl, P. K. (2007). Cracking the speech code: How infants learn language. Acoust. Sci. Technol., Retrieved from https://www.jstage.jst.go.jp/article/ast/28/2/28_2_71/_article/-char/ja/
Language Difficulty Ranking. Retrieved 25 October 2021, from https://effectivelanguagelearning.com/language-guide/language-difficulty/
Lewis, R., n.d. What Are Graphic Tablets Used For?. [Blog] Techwalla, Available at: https://www.techwalla.com/articles/advantages-disadvantages-of-graphics-tablets [Accessed 15 January 2022].
Lin, T., 2012. Student engagement and motivation in the foreign language classroom. [ebook] UMI, p.2. Available at: https://www.proquest.com/docview/1032540885 [Accessed 18 October 2021].
Lopez Yse, D. (2022). Your Guide to Natural Language Processing (NLP) [Blog]. Retrieved from https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
Making asynchronous programming easier with async and await - Learn web development | MDN. (2022). Retrieved 21 February 2022, from https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Asynchronous/Async_await
McCarthy, J. (2021). Using Gamification to Ignite Student Learning. Retrieved 11 January 2022, from https://www.edutopia.org/article/using-gamification-ignite-student-learning
[bookmark: _Hlk92877550]Meeder, B., Seetles, B (2016). A Trainable Spaced Repetition Model for Language Learning. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 1848–1858. Retrieved from https://research.duolingo.com/papers/settles.acl16.pdf
MIA, 2018. The Ease Factor Problem. Available at: <https://web.archive.org/web/20210118163849/https://massimmersionapproach.com/table-of-contents/anki/low-key-anki/the-ease-factor-problem> [Accessed 26 April 2022].
Mitra, D. (2021). Understanding Insomnia REST Client Made Easy 101 [Blog]. Retrieved from https://hevodata.com/learn/insomnia-rest-client/ 	
Motteram, G. (2021, October 11). The benefits of new technology in language learning | British Council. Retrieved from https://www.britishcouncil.org/voices-magazine/the-benefits-new-technology-language-learning
Mustafeez, A. What is Visual Studio Code?. Retrieved 21 February 2022, from https://www.educative.io/edpresso/what-is-visual-studio-code
Nilson, L. (2018). One Thing for All Learners. Retrieved 13 January 2022, from https://onlinelibrary.wiley.com/doi/abs/10.1002/tia2.20074
Notiv. (2019). How Memory Works: The Science of Memory [Blog]. Retrieved from https://medium.com/@notivhq/how-memory-works-the-science-of-memory-57d1d783e8d7
Phung, Q. (2020). The negative effect of Gamification in E-learning in the eyes of University students (Master Degree). Jönköping University.
Rehkopf, M. (2022). https://www.atlassian.com/agile/kanban/boards [Blog]. Retrieved from https://www.atlassian.com/agile
Salmon, C. (2008). Storytelling (2nd ed., p. 103). La Découverte/Poche.
Sander, T. (2021). Spaced Repetition: A Guide to the Technique - E-Student. Retrieved 31 October 2021, from https://e-student.org/spaced-repetition/
ScarletPan. (2019). GitHub - ScarletPan/probase-concept: A fast and neat API for Conceptualization of Probase. Retrieved 15 January 2022, from https://github.com/ScarletPan/probase-concept
Seibert, A. H., & Brown, C. (2019). Enhancing L2 learning through a mobile assisted spaced-repetition tool: an effective but bitter pill?. Retrieved 11 January 2022, from https://www.tandfonline.com/doi/abs/10.1080/09588221.2018.1552975
Settles, B., 2016. How we learn how you learn. [online] Duolingo Blog. Available at: https://blog.duolingo.com/how-we-learn-how-you-learn/ [Accessed 17 October 2021].
Shoaib, A., Wang, T., Hay, J. F., & Lany, J. (2018). Do Infants Learn Words From Statistics? Evidence From English-Learning Infants Hearing Italian. Cogn. Sci., Retrieved from https://onlinelibrary.wiley.com/doi/full/10.1111/cogs.12673
Smartphone Vs Laptop - Which Should You Get? 2021 | MedCPU. Retrieved 14 January 2022, from https://medcpu.com/smartphone-vs-laptop/
Soares, A. P., Gutiérrez-Domínguez, F.-J., Vasconcelos, M., Oliveira, H. M., Tomé, D., & Jiménez, L. (2020). Not All Words Are Equally Acquired: Transitional Probabilities and Instructions Affect the Electrophysiological Correlates of Statistical Learning. In Frontiers in Human Neuroscience (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fnhum.2020.577991
Song, Y. and Roth, D., 2017. Machine Learning with World Knowledge: The Position and Survey. [ebook] pp.3,4,5. Available at: https://arxiv.org/abs/1705.02908 [Accessed 17 January 2022].
Stage, J. (2006). Defining and Measuring User Experience: Are They Two Sides of the Same Coin? In Proceedings of the Workshop on User Experience, NordiCHI 2006. (pp. 146-149) http://cost294.org/upload/408.pdf
SuperMemo - Wikipedia. (2022). Retrieved 26 April 2022, from https://en.wikipedia.org/wiki/SuperMemo
Tamm, S. (2021). The Leitner System: What It Is, How It Works - E-Student. Retrieved 26 April 2022, from https://e-student.org/leitner-system/
Taleb, Z., & Sohrabi, A. (2012). Learning on the Move: The use of Mobile Technology to Support Learning for University Students. In Procedia - Social and Behavioral Sciences (Vol. 69, pp. 1102–1109). Elsevier BV. https://doi.org/10.1016/j.sbspro.2012.12.038
Target An 80-90 Percent Success Rate In Anki, 2018. https://eshapard.github.io/tag/anki/. Available at: <https://eshapard.github.io/anki/target-an-80-90-percent-success-rate-in-anki.html> [Accessed 26 April 2022].
Tunc, E., 2018. What is Gamification?. [Blog] Medium.com, Available at: https://medium.com/nyc-design/what-is-gamification-35ee8560f36 [Accessed 18 January 2022].
Udjaja, Y. (2018). Gamification Assisted Language Learning for Japanese Language Using Expert Point Cloud Recognizer. International Journal of Computer Games Technology, 2018, 1–12. https://doi.org/10.1155/2018/9085179
Umbach, H. (2018). What is User Interface Design? [Blog]. Retrieved from https://medium.com/fresh-tilled-soil/what-is-user-interface-design-d7bf8c4561dc
Wang, T., 2014. Exploring engagement in foreign language instructional design and practice. [ebook] Washington Satae University, pp.5,6,7. Available at: https://research.libraries.wsu.edu:8443/xmlui/handle/2376/5126 [Accessed 18 October 2021].
What is an Application Programming Interface (API). (2020). Retrieved 21 February 2022, from https://www.ibm.com/cloud/learn/api
What Is A Non-Relational Database?. Retrieved 21 February 2022, from https://www.mongodb.com/databases/non-relational
What Is GitHub? A Beginner's Introduction to GitHub. (2021). Retrieved 21 February 2022, from https://kinsta.com/knowledgebase/what-is-github/
What is Scrum?. Retrieved 21 February 2022, from https://www.scrum.org/resources/what-is-scrum
Who Uses Apps to Learn a New Language?. (2020). Retrieved 19 January 2022, from https://www.inmobi.com/blog/2020/04/06/who-uses-apps-to-learn-a-new-language

Wozniak, P. (1998). The true history of spaced repetition [Ebook]. Retrieved from https://www.supermemo.com/en/articles/history
Wu, W., Li, H., Wang, H. and Zhu, K., 2012. Probase: A Probabilistic Taxonomy for Text Understanding. [ebook] pp.1,2,3. Available at: https://www.microsoft.com/en-us/research/wp-content/uploads/2012/05/paper.pdf [Accessed 17 January 2022].

image1.png
(*Ah, now 1 can |
| ask if my fight |
| is delayed.. |

image2.png
meaningfulness of the activity =

~——— Characteristic

Composed By —f Produces —J- Affects || ~Prime Element

image3.png
0 @ i 4 m59% 09:37
— AnkiDroid
- 100 cards du...

==)"4 100

(WIS

+

Studied 0 cards in 0 minutes today

image4.png
0 100

i @ %' M m59% 09:37

CFY =] H
33 minutes ...)
00:04

%

SHOW ANSWER

image5.png
=] 0 @ % 4 m59% 09:37
= #X B o

33 minutes ...
100 00:07

5%

jiao ; ravioli

<10min 21d 2.3mo 57mo
AGAIN HARD GOOD EASY

image6.png
X -

i ¥ % 4 m59% 09:38

Q i

695 cards shown
Question v Answer v
s
Eh
%3 lianxi: exercice
— yr:un
=5 yiwan: 10000
—Z yiké : un quart d'heure
==p an: 1000
-2 yiji: oneself
—=JL un peu
—RR allittle bit
—B
—hg yiban: some, ordinary
it qi: sept
stk zhangfu: husband
= san : trois
i shang: dessus/monter/
(précédent)
5 matin
sl shangléu: go up
3 ban: goto the office,

image7.png
™ 0 9 % A w59% 09:38

< Editnote Voo
Type: Basic e
Deck: H3C A
Front e -~
ms
Back e A
lishi: history

image8.png
= 0 9 il 4 m59% 09:39

Card types
Basic

CARD 1

Front template

{{Front}}

v

Styling

RNV
font-family: lato ;
font-size: 24px;
text-align: center;
color: black;
background-color: white;

Back template

{{FrontSide}
<hrid=answer>

{Back}}

image9.png
Write this in Chinese

{ReF

image10.png
XP Progress EDIT GOAL

Daily Goal
G 75/50 XP

image11.png
Test Complete!

You unlocked 5% of the Chinese course!

image12.png
Select the correct character(s) for “hao”

ok B W
@

3 4

° CONTINUE

image13.png
My activity

Weekly goal
active
1/5 activities completed

€.

N

7

Congrats! You're an active learner.

Stay awesome!

JANUARY 2022

17

18 19

 lesson

™

20

21 22

(0]

® reviews

23

Achievements

My Courses

~
0
Qlo

Newcomer
-Course1

Seeall >

image14.png
Build the words

cia

hi/bye

image15.png
Achievements Seeall »

My Courses

. Keep learning to earn your

’ \\
i é)} first badge!
\ h

image16.png
Cient

view publ

lic decks

& upvote/downvote them

failed |«

successfull

create/add, customize,
delete cards & decks

review session

private to public

fenter password/mail

edit profile data

‘Authentication

importiexport

Database

image17.png
Decks

Dictionnary

notepad

Main deck 1

Main Deck 2

Al generated decks

image18.png
500+ essential words

Decks

Titles

Deck
attributes

Description

Ratings

Modified

image19.png
B

Question, problem, fault

<Quesﬁon, issues, thanks to.

image20.png
User

F——Collects da

What the users
sees and ineracts
wih:

HTML

App logics

Nodejs & Expressjs

cssisass

e—sencs resuts

Javascript

Vuejs

Front-end

Fie sytem

Database

Response
> Frebase

MongoD8

Heroku

Image hosting

Gloudnary

Back-End

image21.png

image22.png
sessions users user_card
P | P | P |
user_id emai user_id
oken password card_ia
profie_pic_ur next_session
usemarme inenval
deok ids fai_counter
=5 old_ease_factor
PR ease_factor
name, CERLET success_streak
added_date P | i e
last_upoate e A
category deckio
private card_ios
descrption card
stye ia P |
votesf voterid vote)] creator_id
img_ur
question

answer

image23.png
Customer
learning session

Has a deck(s)

Has an account) NO Isloggedin
No- es-
ves
Create an
X Enters log details
Have a deck?
No- Yes-
L2 L2

(Creates or import
adeck

Review is

‘Selects a deck

review the cards

lcard is given next Review is

Completed

review date succesful

image24.png
Anew card gete
reviewed

e
loaming ce.
o
es
s ol counter
eqaltos
s
EF gets 3 20% penaity (1
o seta ‘geta mmum cap o
eeth 130%) Interval gets
“Calcuiate
s review cue
empty?
es
Caras cata are updated

‘and sent o database.

image25.png
Controller View Model

Client

= it Request (login_data) —31ty

Request loginValidation(ogin_ data)

- retun logalid

*rr) upciateVien(sucosss) — 3

[logValig=true]|
retumviewg = = = = ;
it response - ; i
| updateView(fail) ————3r
retum viewq) = = = = |
ipresparse - | |
createDeck(data > ;
f€———nane event———| ;
request frocessed)H

PR createDeck(sicoess, dec) - = - - = - - = =

deckvalidation()

notityUser(-

image26.png
Client

= hitp Request (getCards) — %7

Controller View

Model

cards are fitered
" by date and fai counter ~ ~ ~

at

[click on feedback]

click undo bution

updateCard(_card

review states get update -

reverseReview

|- - review states conent are reverted back to theirprevious state-

click save and exit

f——carapcatecards——>
HTTP request update ser_cards-
- - - Retums aresponse - = - =
[———cardUpdate(cards)——>| ;
HTTP request update user_cards
- = - Retums aresponse- ~ = = = = = -

image27.jpeg
SHEBR

s

<spegasy

G Ax_gz

| Ao, ®

MAGe

0400

Ao\

image28.jpeg
Guesroy,
AvSwep —

Koy Bmone

|
Butng - | |

T o opss
i Byl

image29.jpeg
A — ~ N m— e— u
i R N comm— — O
-~ > v e e o
L > N e— —
r— x Y em— omm— 0 :
~— ® W enm— —
: Bt sy i £ = e : .
e 2l s \ e Sy —= il
N ey py | lsede = A—
A - = . m— —— 0
S 1 A — » ¥ m— —— V:;\,\
o b ~— - e .
21:;;}’:}; A — x R
bi i — n > — -— 0 &
B = = =
508G o b > <5 2 =
1o sono1ml = = =

uaney wea | B3MSNY NOILsaND - [)

) D
$) aden ey
R W 5530 W‘Tsum E

ey

N NRQ | wE i Or
awd O

Qavs aay

image30.jpeg
aks - 2 lDﬁK Naug ’ Aop capp
Question MusweR.

2 X

EXPoRT
A Deck

od iy

GUEsTIoN ol |
ANSWER 5
FELDS

image31.jpeg
.A_Sx Above @

P O
IMPORT A Ropue Peryre oegre #Ra

image32.jpeg
Noisas maidy
Sayyo o

®

p—

—

| Ay

0
=S

image33.png
Arial - 48px - 400 - Lorem Ipsum

Arial - 36px - 400 - Lorem Ipsum

Arial - 30px - 600 - Lorem Ipsum

Avrial - 24px - 400 - Lorem Ipsum

Arial - 18px - 400 - Lorem Ipsum
ARIAL - 16PX - 600 - LOREM IPSUM

Arial - 16px - 400 - Lorem Ipsum
ARIAL - 14PX - 400 - LOREM IPSUM

Arial - 12px - 600 - Lorem Ipsum

image34.png
#DDDDDD #222222 #DB3C3A

#29AB87 #0079C2 HE7AB3B

image35.png
Account X

Edit contact information

Email

tjwatson@ibm.com

Phone number

+1 (555) 555-5555

image36.png
Title goes here
Secondary text

Greyhound divisively hello coldly wonderfully
marginally far upon excluding.

ACTION 1 ACTION 2

image37.png
Dropdown List v

T

se

Action 1

Action 2

Action 3

Action 5

image38.png
Science

User testing part 1

User testing part 1 Esperanto. The deck
was made for user testing p.1. There are
18 words in total, see report.

Review 18 cards

image39.png
Question
Answer
Next session

Burry
reset interval

Dog

chien
24/04/2022
no

add to a deck

image40.png

image41.jpeg
2022-05-08T09:15:04.386387+00:00 app[web.1]: [nodemon] 2.0.15
2022-05-08T09:15:04.387045+00:00 app[web.1]: [nodemon] to restart at any t1me, enter ‘rs’
2022-05-08T09:15:04.387334+00:00 app[web.1]: [nodemon] watching path(s):
2022-05-08T09:15:04.387368+00:00 app[web.1]: [nodemon] watching extensions: js,mjs,json

2022-05-08T09:15:04.387702+00:00 app[web.1]: [nodemon] starting node build/index.js”

2022-05-08T09:15:04.870062+00:00 app[web.1]: Server Up in Port 22848

2022-05-08T09:15:05.089751+00:00 app[web.1]: Connection to server up and running.

2022-05-08T09:15:05.543225+00:00 heroku[web.1]: State changed from starting to up

2022-05-08T09:15:06.647186+00:00 heroku[router]: at=info method=OPTIONS path="/users/login" host=iadt-kram-api.herokuapp.com request_id=302c8978-3b71-49ef-a7fa-b5ba536cf8d0
fwd="86.242.56.40" dyno=web.l connect=0ms service=6ms status=204 bytes=301 protocol=https

2022-05-08T09:15:06.838027+00:00 heroku[router]: at=info method=POST path="/users/login" host=iadt-kram-api.herokuapp.com request_id=25346b7a-d501-4763-a505-9fa89b918324 fw
d="86.242.56.40" dyno=web.l connect=0ms service=160ms status=200 bytes=539 protocol=https

2022-05-08T09:15:06.983203+00:00 heroku[router]: at=info method=GET path="/users/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=9ale620f-8e5e-45f6-82
be-077d9136cb7a fwd="86.242.56.40" dyno=web.l connect=0ms service=8ms status=200 bytes=748 protocol=https

2022-05-08T09:15:07 .366089+0 0 heroku[router]: at=info method=OPTIONS path="/users/pic/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=87ac2482-d30d
-477f-8274-df7a95e9a9fb fwd="86.242.56.40" dyno=web.l connect=0Oms service=1lms status=204 bytes=302 protocol=https

2022-05-08T09:15:07.461195+00:00 heroku[router]: at=info method=GET path="/users/pic/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=c5595994-4a8f-45f
1-b523-a3e7c3d47a27 fwd="86.242.56.40" dyno=web.l connect=0ms service=5ms status=200 bytes=348 protocol=https

2022-05-08T09:15:07.310147+00:00 heroku[router]: at=info method=GET path="/users/session/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=f8db3076-7219
-4f56-a580-875e762727d5 fwd="86.242.56.40" dyno=web.l connect=0Oms service=4ms status=200 bytes=539 protocol=https

2022-05-08T09:15:07.526630+00:00 heroku[router]: at=info method=GET path="/decks/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=af69ee58-a54d-495f-bf
19-27cddc4bOadd fwe 6.242.56.40" dyno=web.l connect=0ms service=41lms status=200 bytes=2793 protocol=https

2022-05-08T09:15:06.891024+00:00 heroku[router]: at=info method=OPTIONS path="/users/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=el93e272-a2f9-493
c-becf-36e41e5c6050 fwd="86.242.56.40" dyno=web.l connect=0Oms service=4ms status=204 bytes=302 protocol=https

2022-05-08T09:15:07.457579+00:00 heroku[router]: at=info method=OPTIONS path="/decks/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=3cb88b68-8b0f-4bb
5-852a-d4eb940d7a7e fwd="86.242.56.40" dyno=web.l connect=0Oms service=1lms status=204 bytes=302 protocol=https

2022-05-08T09:15:12.270344+00:00 heroku[router]: at=info method=OPTIONS path="/users/logout/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=42a086e2-e
6b8-43bc-9252-6284c39e1798 fwd="86.242.56.40" dyno=web.l connect=0Oms service=1lms status=204 bytes=302 protocol=https

2022-05-08T09:15:12.308382+00:00 heroku[router]: at=info metho ELETE patl /users/logout/622898ffe59910a55a684dea" host=iadt-kram-api.herokuapp.com request_id=7ab36fde-ef
ﬁd-4261-8544-b0a85da8d65d fwd="86.242.56.40" dyno=web.l connect=0ms service=9ms status=200 bytes=257 protocol=https

image42.png
Don’t Get Stuck in “Ease Hell”

BRIl 12‘2.5‘1 30‘2.5‘1

image43.png
VENO VR WN R

»
10

11

»
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

const express = require(‘express');
const mongoose = require(‘mongoose");
const cors = require(*cors');

const dotenv = require(*dotenv’);

const usersRoute = require("./routes/users.router);
const decksRoute = require("./routes/decks.router);
const cardsRoute = require("./routes/cards.router");

const app = express();
dotenv.config();

const URI = process.env.DB_CONNECTION;
try{
mongoose. connect (URL, () => {
console. log("Connection to server up and running.”);
s
} catch (err) { console.log(err)}

app.use(cors());
app.use(express.json());
app.use(express.urlencoded({ extended: true }));

app.use(’/users’, usersRoute);
app.use(*/decks’, decksRoute);
app.use(*/cards’, cardsRoute);

const port = process.env.DB_PORT || 301
app.listen(port, () => {

| console.log("server Up in Port ${port});
DH |

image44.png
1, const mongoose = require(’mongoose’);
2

3" const Userschema = mongoose.Schema({
4 username: {

5 type: String,

6 required: true,

7 max: 99,

8 min: 6

9 1

10 email: {

1 type: String,

12 required: true,

13 max: 255,

14 min: 6,

15 1

16 passuword: {

17 type: String,

18 required: true,

19 max: 1024,

20 min: 8

2 1

22 profile pic url: {

23 type: String,

2 1

25 date: {

26 type: Date,

27 default: Date.now
2 1

29 deck_ids: [{

30 type: mongoose.objectId,
31 id: {

32 required: false
33 1

3 M,

ESI O H

36

37" [lodule.exports = mongoose.model("User’, Userschema);

image45.png
o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
EE]
34
35
36
EY
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(7]
63
64
65
66
67
68

module.exports.addcard = addCard = async (req, res, next) => {
let [user_id, card_id, deck id] =
[req.params.id, req.body.card_id, req.body.deck id] || {};

if (user_id I= req.user. id)
return res.status(401).json("Ids aren't matching");

try {
await Promise.all([
Deckcards. findone({ $and: [{ deck id: deck_id }, { card_ids: card_id }], }),
Cards.findone({ _id: card_id }),
1).then(async ([Deckcard, Card]) => {
if (Deckcard) return res.status(4e4).json("Error | Do not duplicate duplicate cards");

if (Icard) return res.status(44).json("Error | Card not found");

try {
const deck_card = await DeckCards.updateOne(
{ deck_id: deck_id },
{ $push: { card ids: card_id } }

if (deck_card.modifiedcount == @)
return res.status(4e4).json("Error | Coudln't not add card to deck");

if (deck card.modifiedcount == 1) {
const user_card = await Usercard.findone({
$and: [{ user_id: user_id }, { cards: { $elemvatch: { card_id: card_id } } }, 1,
bH

if (user_card) return res.status(200).json(deck_card);

const card = await Usercard.updateone(
{ user_id: user_id },
{
$push: {
cards: [
{
card_id: card_id,
next_session: null,
interval: null,
fail counter: o,
old_ease_factor: null,
ease_factor: 2.5,
success_streak: @,
style_id: null,
b
1
b
b
{ upsert: true }
s

return res.status(200) [json({ deck card: deck_card, card: card });

I

} catch (err) {
return res.json(err);
}
b
} catch (err) {
return res.status(400).json({ message: "Error | Deck is not found” });

}

image46.png
. [onst router = require(’express").Router();
const verify = require(’../config/tokenvalidation');
const { register, login, getUsers, getUser, updateUser, deleteUser, getUserPic,
logout, getSession, updateUserPic, updateUserPassword }= require(’../controllers/users.controller');

// USERS URT

router.post("/register”, register);

10 router.get("/", getUsers);

11 - router.get('/:id', verify, async function(req,res){

1
2
3
a

»
5

»
6
7
8
9

12 await getUser(req,res);

LEREHH

14 - router.get(’/pic/:id’, verify, async function(req,res){
15 await getUserPic(req,res);

6 });

17 - router.put('/:id’, verify, async function(req,res){

18 await updateUser(req,res);

19 });

20 - router.put(’/pic/:id’, verify, async function(req,res){
21 await updateUserpic(req,res);

2 1)

23 - router.put(’/password/:id", verify, async function(reg,res){
24 await updateUserPassword(req,res);

25 1)

26 - router.delete('/:id", verify, async function(req,res){
27 await deleteUser(req,res);

28 1)

29

30
31 router.post(”/login”, login);

32 router.get("/session/:id", getSession);

33 - router.delete('/logout/:id", verify, async function(req,res){
34 await logout(reg,res);

ESI O H

36

37 module.exports = router;

image47.png
LCENO VR WN R

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

const jwt = require(’jsonwebtoken');
const sessions = require(’../models/sessions.model");

module.exports = function(req, res, next){

const authHeader = req.headers ‘authorization'];
const token = authHeader & authHeader.split(' ')[1];
if(Itoken) return res.status(4e1).json({message: 'Error | Access Denied'});

jwt.verify(token, process.env.SECRET KEY, async (err, user) => {

if (err){
const expiredSession = await Sessions.findone({ user id: req.params.id });
if (expiredsession){

let sessionId = expiredSession. id.tostring()

const deleteExpiredToken = await Sessions.findByIdAndRemove({ id: sessionId });

return res.status(401).json({err: err, message: "login to your account”, deletion: deleteExpiredToken });

}

req.user = user;
next();

bH

image48.png
1, fonst Joi quire("joi');

2 const REG_PATTERN = "A(?=.*[0-9])(?=.*[a-zA-ZA-T])([a-zA-ZA-T0-9(),-_.,@]+)$";
3

2" module.exports.registervalidation = registervalidation = (data) => {

5 const schema = Joi.object ({

6 username: Joi.string()

7 .min(6)

8 .max(30)

o, .required(),

) email: Joi.string()

1 .email({ minDomainSegments: 2, tlds: { allow: ['com’, ‘met’, ‘org'] } })
12, .required(),

13 password: Joi.string()

14 .pattern(new RegExp("${ REG_PATTERN }))

15, .required(),

16 repeat_password: Joi.ref('password'),

17 s

18

19 return schema.validate(data);

image49.png
65
66
67
68
69
70
71
72
£l

// RETRIEVE AL E THAT ARE PUBLIC
module. exports. §EaREhPublicDecks = SearchPublicDecks = async (req, res, next) => {
try{
const decks = await Deck.find({ private: false, name: { $regex : new RegExp(req.params.name.split('+').join(" '), "i") } });
if(ldecks) return res.status(404).json("No public decks in the db");

return res.json(decks);

} catch(err) { res.status(400).json({message: err}) }

image50.png
329 // UPDATE DECK VOTES
330 module.exports.updateDeckvote = [fpdateDeckvote = async (req, res, next) => {

331 let [id, deck id, votes] = [req.params.id, req.body.deck id, req.body.votes] || {
332

EEES try{

334 await Promise.all([

EEL await Deck.updateOne(

336 { _id: deck_id }, { $pull: { voters: { voter_id: id }}},
EEY) { upsert: true }

EEE] o

339 await Deck.updateOne(

340 { _id: deck id }, { $set: { votes: votes },

341 $push: {

342 voters: {

EVE! voter_id: id,

344 vote: req.body.vote

345 Do

346 }

347 o

348 { upsert: true }

349)

350 1).then(voted =>{

351 if(lvoted) return res.status(404).json("Deck not found or not yours");
352 return res.status(200).json(voted);

353 H

354

355

356 } catch (err){res.status(500).json({ message: "" + err })}

357}

image51.jpeg
e

kram-app.web.app

Public decks ~ Sort by
oo t | t
Eng to fr f User testing part 1 © Malay King List :

User testing part 1 Esperanto. The deck was. this is a description

—— -

1

o

1 her 1
this is a privacy test 1 thisisa prvacy test descrption 2

<
pible dec This deck helps o test the grid systom._adding a
fow words.
=l this s a privacy test description
cards browser
_ T
[P—

s t
this is a privacy test 2 f

my decks

Grid tester

image52.png
LCENO VR WN R

10
11
12

Ntemplate>

<div class="feedback">
<p>
<svg width="24" height="24" viewBox="0 @ 24 24" fill="none" xmlns="http://www.w3.0rg/2000/svg">
<path d="M10.5858 13.41421L7.75735 10.5858L6.34314 12110.5858 16.2427117.6568 9.1716L16.2426 7.75739110.5858 13.41427"
fill="currentColor” />
</sve>
Saved
</p>
</div>

</template>

image53.png
881 import AddCard from “@/components/AddCard.vue";
882 import Feedback from "@/components/Feedback.vue”;
883

884 export default {

885 name: "Cards”,

886 props: [“deckId”, "query”],
887 components: {

888 Addcard,

889 Feedback,

890 1,

image54.png
<Addcard
@clicked="rendercard”

@elosel"popForn”

"add_card_form"

/>

image55.jpeg
dL

el O 3 kram-app.web.app,

E Kram Q search °

=

My decks

Language H Science H History H
Eng to fr User testing part 1 Malay King List

mygcks Eng to fr words deck User testing part 1 Esp_eranto. The deck this is a description
Q BROWSE DECK'S CARDS was made for user testlng p1 There are Q BROWSE DECK'S CARDS

18 words in total, see report.

<

blic deck: Q BROWSE DECK'S CARDS
publicdecks Review 2 cards beview } oo
& Review 18 cards
cards browser Culture H e ;

Grid tester ¢ this is a privacy test 2

Geography :

This deck helps to test the grid system.. Update test
adding a few words.

This is an awful description 2
/w No cards to review yet..
=

Other H

thic ic a nrivacryv fect

image56.jpeg
User testing part 1

Deck name

User testing part 1

Deck category

Science

Deck description

User testing part 1 Esperanto.
The deck was made for user
testing p.1. There are 18

Deck privacy

image57.png
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

data() {

1}

return {
form: {
question:

answer
img_url:

b

errors: [1,

file: null,

file name: *',
cloudname: “deedfkoow",
fileContents: null,

formbata: null,

image58.png
<button @clicl

close')">Cancel</button>

image59.png
(event) {
if (event — "Addcard”) this.add_card form = true;
else if (this.add_card form)

this.add_card_form = Ithis.add_card_form;

image60.jpeg
+

kram-app web.app.

Cat

image61.jpeg
const { DateTime } = require("luxon”);

function spacedRepetition(_card, _event, _id)f

let learning cue = [null, 0.60, 0.150, 1, 2, 7, 14, 30];

let is_learning - learfling cué.indexof(_card.interval, 0);

LENO VB WN R

let feedback;

10 (Levent — "Arrowleft’ || _id — 'fail®) ? feedback - false : feedback —true;
11 >

1 if (Feedback){

13

1’ if(_card.next_session = null || _card.interval = @.60){

15 _card.interval = 0.150;

16 Tet date - DateTime.local().plus({ minutes: 15 }).tostring();

17 let new_interval - date.slice(e,10) + " " + date.slice(11,16);

18 _card.next_session - new_interval;

19 }

20

9" else if (_card.interval <~ 30 & is_learning < [l6aFning/cue. length - 1) {

2 _card. interval - learning cue[++is_learning];

23 card.next_session - DateTime.local().plus({ days: _card.interval }).toTsoDate();
24 it

25

25: else if (_card.interval >= 30) {

27 _card. success_streak+;

28

2" if (_card.success_streak |- 0 & _card.success_streak % 2

30 _card.ease_factor += 0.20;

31 card.ease_factor. toFixed(2);

32

U if (_card.fail counter > @) _card.fail counter—-;

34

15" _card.interval - Math.round(_card.interval * _card.ease_factor);

36

s if (_card.interval > 3650) _card.interval = 3650;

38 "

30 _card.next_session = DateTime.local().plus({ days: _card.interval }).toIsoDate();

else if (Ifeedback){

if(_card.interval <= 30){
_card.interval = 0.60;
let date = DateTime.local().plus({ seconds: 60 }).tostring();
let new_interval = date.slice(,10) + " " + date.slice(11,16);
9 _card.next_session = new_interval;
50 I
51
52 else{
53 _card.success_streak = 0;
54 _card.fail_counter++;
55 _card.ease factor = 0.20;
56
57 if (_card.ease factor <= 1.3) _card.ease factor = 1.3;
58
59" _card.interval = Math.round(_card.interval * _card.ease_factor);
60 if (_card.interval > 3650) _card.interval = 3650;
61 _card.next_session = DateTime.local().plus({ days: _card.interval }).toIsoDate();
62 it
63
64 }
65 return _card
66 [}
67,
68" export { spacedrepetition };

T e e e e
&8 YEHRAERES

image62.png
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

infinitescroll() {
window.onscroll = () => {

b

b

if (this.sorting deck cards I= true) {
let bottomOfiindow =

Math.max(
window. pageYoffset,
document . documentElement. scrollTop,
document . body . scrol1Top

)+
window. innerHeight >=

document . documentElement. of fsetHeight - 300;

if (bottomofuindow) {
let cut = JSON.parse(
JSON.stringify(this.cards_initial.splice(e,
)5
cut. forgach((elem) => this.cards.push(elem));

15))

image63.png
reverseReview(){
this.cardIds.unshift(this. card_index);
// this.cardrds.pop();
this.card_index = this.viewed indexes[this.viewed indexes.length -1];
this.viewed_indexes.pop();
if(this.reveal) this.reveal = Ithis.reveal

b

image64.png
256 <!-- TABLETS -->

257 v <div class="decks-repo" v-if="windowWidth >= 500 && windowWidth < 9@@">
258 v <div>

259 v
260 1fcard

261 class="common-layout box-card"

262 shadow="always"

263 v-if="card.index % 2 == @"

264 :class="card.fail counter B: 8 ? ‘burried® : null™
265 >

266 > <div class="img-card">--

273 </div>

274

275 > <div class="card-data">

326 </div>

327

328 > <div class="repo-card-footer”>--

336 </div>

337

338 > <div--

376 </div>

377 </el-card>

378

379 </div>

image65.png
Vo NO U AW

10
11
12
EE]
14
5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
EY
38
39
40
2
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(7]
63
64
65
66
67
68
69
70
71

export default createstore({
state: {

b

sessionstate: false,
feedback: false,
cards: null,

page: null,
deckcardsTd: null,

nutations: {

b

SIGN_IN(state, payload) {
state. sessionstate = payload;

b

FEEDBACK (state, payload) {
state. feedback = payload;

b

CARDS_IN DECK(state, payload) {
state. cards_in_deck = payload;

b

PAGE(state, payload) {
state.page = payload;

b

CARDS(state, payload) {
state.cards = payload;

}

actions: {

by |

signin(context, payload){
const sessionUpd = payload;
context. comm:

b
feedback(context, payload){
const saved = payload;

context. commit('FEEDBACK®, saved);

b
cards(context, payload){
const setCards = payload;

context.commit('CARDS®, setCards);

b

page(context, payload){
const setPage = payload;
context.commit('PAGE’, setPage);

b

deckcardsTd(context, payload){
const setCardsDeckId = payload;

context. commit (*CARDS DECK_ID*, setCardsDeckId);

b

getters: {

getsession(state){
return state.sessionstate;
b
getFeedback(state){
return state.feedback;
b
getcardsInDeck(state){
return state.cards_in_deck;
b
getpage(state){
return state.page;
b
getcards(state){
return state.cards;

IGN_IN', sessionUpd);

image66.jpeg
Kram

SEECRCE O &

o

my decks

<

public decks

=

cards browser

dL

E Kram Q search

kram-app.web.app,

Cards repository

Question

Answer
Next session

Leech

Reset interval

v
Can | have

Cu mi povas havi
05/04/2022

no

Question

Answer
Next session

Leech

Reset interval

Cat

Chat
05/05/2022

no

v Sort decks v Sort cards

Question

Answer

Date

Burried
e

Question City
Answer Ville

new card +

image67.png
357
358
359
360
361
362
363
364
365
366
367

decksSort(){

P

this.loading = Ithis.loading;

if (event. target. className. substr(@, 8)
else if(event.target.className.substr(o, 8)
else if(event.target.className.substr(o, 8)
else if(event.target.className.substr(o, 8)

‘repo-ctg') this.decks
*repo-own') this.decks
*repo-upd') this.decks

this.decks. forEach((elem, i) => elem.index = i);
this.loading = Ithis.loading;

this.decks.sort((a, b)
this.decks.sort((a, b)
this.decks.sort((a, b)

‘repo-vts') this.decks = this.decks.sort((a, b) => b.votes - a.votes);

a.category > b.category);
=> b.owned < a.owned);
=> b.last_update < a.last_update);

image68.png
909 v mounted() {

10 this.getCards();

o11 this.infinitescroll();

912 1,

013 created() {

014 window.addEventListener(“resize”, this.myEventiandler);
915 window.addEventListener("scroll”, this.infinitescroll);
916 1,

017 beforeUpdate() {

018 if (this.$props.query.length I= 0) this.cards = this.$props.query;
019 this.windowhidth = window. inneruidth;

920

921 if(this.deck_cards) {

922 this.decks.find(elem => {

923 if(elem.deck_id == this.deck_cards){

924 this.deckSort(elem. card_ids);

925 1

926)

927 this.$store.dispatch(‘cards’, null);

928 1

929 1,

930 unmounted() {

931 window. removeEventListener("resize”, this.myEventHandler);
932 window. removeEventListener("scroll”, this.infinitescroll);
933 1,

934

image69.png
const routes = [

{
path: '/°,
name: 'Home',
component: Home,
b
{
path: */kram’,
name: 'MainCnt’,
component: () => import(’@/views/Kram.vue")
b
{

path: '/:pathMatch(.*)*",

name: ‘PageNotFound’,

/* route Level code-splitting: this generates a separate chunk (about.[hash].js) for this route
which is Lazy-loaded when the route is visited. */

component: () => import('@/components/PageNotFound.vue®)

o

image70.png
Name.
William Haris

Job / Role
Student in intemational business

TaglinelQuote
“Learning a language helps me dive into a culture, better understand the thinking
structure of its native speakers.."

Background Values
26 years od Open
Uban minded
Wealthy family Gurosity
Good university Efiot
Speaks 2 forcign Ambiton
languages

Behaviours

Goals (wants)

Stories & Scen:

s (use cases)

[once he gets his master, e wants to start
working & iving overseas. By doing so he would)
et the opportunity to vist foreign countries in
eptn, interact with locals, etc

liam s a millennial who comes from a family that always has foreign
influence. Back in the days he would listen members of his family discuss
i the language of his foreign grandparents and naturally grew a taste for
leaming new languages. He considers having an ease thanks to that
lcultural background. He started his studies in business but felt that
lsomething was missing.

Needs (must haves)

ne day he decided to start self-taught him a new language out of pure

[program that could centralze many features
Ito one instead of naving muliple 2pplication

e needs the application o offer him some sor]
of personaization to help him creating
Imeaningful memories. The app must help him
better manage his time as well

bie needs to create bridges betvieen
fnformation and real-world nformation

interest for the structure of the language, as well as its related history after
la trip overseas that changed his perception of lfe.

th his current goal to live overseas, William recently started an online
lcourse in parallel of his studies and registered to a messenger app to talk
ith natives to hone his language skills

Pain points (problems)

e i reluctant with badly, gamified nteriace
liam has some issue with time management
nd seeks for something that could help him.

b likes 1o take to write down hisfessons and
witching to typing might be 3 problen

bis more familiar with cramming than SR, and
Imight be reluctant at fist o use an app based
on that approach

Infrequent—————— X frequent

Discipline
un-experienced——¥—experienced

Skills Motivations & Influences
[Fe wants to be able to be understood by the
Language focals to immerse nimself into the cutture,

Totravel, Parties, Dating, social mecia, freate proximity vith the locas.
Networking & entertainment

[He strives to become proficient in a foreign
fanguage o s intellectual challenge, change is

w2y of thinking.

pisies:

Being taken by surplice, being speechless,

closed-minded people, losing his time IHe alo takes a ot of fun n earning a new

language

