adt <’

DUM LAOGHAIRE

Development of an OCR Web Application with
Tesseract.js and MERN

Clemente Gonzales

N00193107
Supervisor: Cyril Connolly
Second Reader: Catherine Noonan

Year 4 2022-23
DL836 BSc (Hons) in Creative Computing

Abstract

The overall aim of the project was to study OCR (Optical Character Recognition) and learn
how to develop a web application that contained this functionality. This involved an
application that allowed users to take notes from various platforms and transfer those notes
into one central application.

Various steps were taken to accomplish this goal, which includes requirements gathering,
design, implementation, testing, and project management. These steps are explained in
greater detail and documented in the report.

Various tests were carried out after the implementation of the application, which resulted in
finding underling issues and allowing these issues to be fixed before deployment.

Further work that could potentially be done would be to allow the application to work with
React Native and have a mobile version available.

Acknowledgements

I would like to thank my supervisor Cyril Connolly for providing great assistance and
guidance and for pushing me towards creating a polished product, as well as being very
encouraging and understanding throughout the duration of this project.

| would like to thank my peers for participating in surveys and testing whenever possible,
giving needed criticisms on the usability, and finding underlying problems within the
application.

Finally, | would like to thank my family for giving me the opportunity to study and complete
this degree.

The incorporation of material without formal and proper acknowledgement (even with no
deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you should
document this in your submitted work and if you have any doubt as to what level of
discussion/collaboration is acceptable, you should consult your lecturer or the Course Director.

WARNING: Take care when discarding program listings lest they be copied by someone else,
which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk
where they can be accessed by other. Be aware that removable media, used to transfer work, may
also be removed and/or copied by others if left unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to
the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook.
Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment. This
would include jointly developed solutions as well as one individual giving a solution to another who
then makes some changes and hands it up as their own work.

DECLARATION:

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own
work.

Student : Clemente Gonzales
Signed

Clemente Gonzales

Failure to complete and submit this form may lead to an investigation into your work.

Table of Contents

1
2

[aidgoTe [¥To1dTo o WU PSP PP OUP T PPROPR 1
Researching Optical Character RECOZNITION........ccviviiiiiie e 2
2.1 Introduction to Text RECOGNITIONcciviiiiciee e e et 2
2.2 Optical Character RECOGNILIONuuiiii it ee e ecrere e e e e ee e e e e e e e e e ennnes 2
2.2.1 A Brief Introduction to Optical Character Recognition........ccccccoeeeciiiieeeeiecccciiiiee e 2
2.2.2 Overview of The General OCR AlOrithmccccveiiiiiiiiiciee e 3
223 A Brief Overview of OCR LiDraries........ccoeiveereernierieenieeieesteesee et 11
2.3 User EXPEIIENCE / INTEITACESiiivieeteectieetie ettt ettt ettt e st etreeneeeteebeenbeeteesenenans 14
2.3.1 INtroduction t0 USer EXPEriENCE.......ccvviiieeee ettt ettt e e etre e e e e e e nraaeaeeaeea 14
2.3.2 UX / UL DESIGN PrINCIPAIS....eiieeeeieieeeeeee ettt ettt et ettt e eaee e 14
2.3.3 0= oo] g 1Y/l D LT F={ o PP PP PPPPPPPPPPPRt 16
234 DR F=d I A (=] 1 KPP PPPPPR 17
2.4 A Comparison of EasyOCR and T@SSEraCtcccvirieiieiiiecciiiieeee e et te e e e eeccrnree e e e e e et aaee s 18
24.1 INEFOAUCTION ..ttt st e st e s e b e e meeesaree e 18
2.4.2 CompParisoN Of the tWO ...euieei i e e e e e naraae e 18
2.5 CONCIUSION .ttt et b e st e st s bttt ea e e bt e bt s b e e be e b e sbeesatesaneeaneeane 23
2.6 U100 0 =1 VOSSPSR ORPROPPRPRRE 24
LY=o T8 L= 0 0= 0 3SR 25
3.1 TaidgeTe [¥To1dTo] o WP PSP UP PSP 25
3.2 RequiremMents athering i e e et e e e e e e rraaaae s 25
3.2.1 SIMIlar @PPlCAIONS .o et e e e 25
3.2.2 INEEIVIEWS. .ottt e 31
3.2.3 SUTVBY ..ttt te ettt ettt ettt e e e e e e e e e et eeeeaeeaeeeeeeeaeeeseaeeeaaeeseaeeesaaeaaaaanaan 32
3.3 Requirements MOAEIIING. et re e e e e e e errraaeaeeas 41
331 PISONAS ...iiiiiiiii ittt e 41
3.3.2 FUNCLIONAl r@QUITEMENTS...cccuiiie ettt et sae e e e ere e e s btae e s etaeeeeanes 45
3.3.3 Non-functional rEQUIFEMENTSccuiiiiiciiee et rae e s erreeeeaes 46
334 (0L O T =T D1 =Y = - | o Nt 47
3.4 =Y Y| 111 Y 2SR 49
35 CONCIUSION .ttt et s b e st s e s ettt eat e e sr e e bt e b e e b e e be e sreesatesarenaneeane 49
[DT=E 1= o 1SS PP PP PP PP PPPPUPPPPPPPN 51
4.1 TaiageTe [¥To1dTo] o NPT PSR UP PSP 51

4.2.1 B =Tol 1Yo [o =41 USSR 51

4.2.2 SErUCLUIE OFf REACT ... s st s 52
4.2.3 Model View Controller Design Patternoocciiiiieii it 56
4.2.4 AppPlication arChitECLUIEcovi i et e e e e anees 57
4.2.5 Database ESIZNccciiiiiei e e e e ae e e e re e e e 58
4.2.6 Y e 1T = o USSR 60
4.2.7 o Tol T o [Ty 1] [USRS 61
4.3 UL T T U= g = (o= [T 1= o IS 62
43.1 WITETTAME .. ettt sre e e st e e b e e sre e e sane e sareeeaneas 62
4.3.2 (Ol o (o X D114 =T o USRSt 64
433 Y Y [N =TT Lo [T U SR 64
4.4 (60 3 Tol [To] o DU TP TP TPRPPRTN 69
[FaaY o] (=T 0 =T o) =4 o o T PSSR 70
5.1 TaiageTe [¥To1dTo] o N T PPV ST UP PSP 70
5.2 =Tl oL g Y] To =TT USRS 70
53 IMPIEMENTALION ROIES....uiiiiciiiie e et ae e e etr e e e e sataae s seeaeeenaees 71
5.4 Yol U1 0 Y/ =3 o g Yoo o] o =V SRS 71
5.5 Development ENVIFONMENT.......coii et e e e e e e s e eabtrar e e e e e e e e naraaeeeas 74
55.1 ViSUL STUAIO COUE ...ttt s st e s 74
55.2 GITHUD @Nd Gt ettt s s s 74
5.6 Sprint 1 - Research and REQUIrEMENTSc..veiiiiiiieeiiiee ettt e e e e e 75
5.6.1 LCTo T | USSR PPPRPT 75
5.6.2 ltem 1 — Researching Project [deas. ... ittt 75
5.6.3 Item 2 — Researching OCR Technologies in REaCt........cccceeveciieeiiiiiee et 75
5.6.4 Item 3 — Gather User REQUINEMENTSuieiiiiiieecciie ettt ettt e e ertae e sare e e 76
5.6.5 [tem 4 — Creating USEr PEIrSONAS.uuuuuuuuuureruueeeuuereneueeenreesenereserersrerrrnrererrerrerrrrmreerrene 77
5.6.6 Iltem 5 — List of Functional and Non-Functional Requirements of the application....... 77
5.6.7 ltem 6 — Creating Use-Case diagrams.ceeeeeeccirieiieeeeeeeiiiieeeeeeeeeesinvrre e e e e e e eeernnsneeeaeeeas 77
5.6.8 (00T o Tol (V1] oY WY Y 1 [} e SRS 77
5.7 SPIINT 2 = DBSIBN i eieiiiiiie ettt aabare 78
57.1 LCTo T | U PO T ST PT O ROUPPRR 78
5.7.2 Iltem 1 — Researching the Technologies.cooouiiiiiiiiee e 78
5.7.3 [tem 2 — Database DESIZNc.uviiiiciieeecciee ettt ettt e e re e e eaes 78
574 [£E€M 3 — PrOCESS DESIZIN .uvvvuieiiiiiiiniiiiiiieiiiiitiattiatiteeaareaeaeaeereeeereeereeseereerrseerrreereseeerseesenee 79
5.7.5 [tem 4 — User INTerface DeSISN.....cuuiiiiiieie ittt eete e e e erta e e e ste e e e eearaeeenans 79

5.8 Sprint 3 — IMPlemMeNntation L. e a e e e 82

5.8.1 GO it 82

5.8.2 Item 1 — OCR Functionality Prototypeccccuveeieiieieeiiiie ettt e e 82
5.8.3 [ltem 2 — Notes Taking Prototypec.euiiiiiiee ettt e e e 84
5.8.4 Iltem 3 — User Register and LOgin Prototypecccoeeeeieiccciiiiiee et 93
5.9 SPHINT A —DESIBN 2 oo sttt aaabaae 97
59.1 LCTo | PP U TP P PP UPOTPRPRPRRPI 97
5.10 Sprint 5 —Implementation 2 and TEStINGcceviiiiiiciiiiiiee e e 107
T8 0 I R T T | TP TP UUTOPRROTR 107
o0t I Y o o oY STl =] T Ut 134
70 0t R T T | OO PP PP PR PPRURPRPRPIN 134
LT A o T o | A I 1YY USRSt 156
T8 R Lo T | T PP TP PRTOPRROUR 156
T8 R B 0] o Tol [V 1T o DTS U PP PPN 167
B I3 41 F = 168
6.1 INEFOAUCTION ettt st et sb et s he e st et s ean e enreenre e e 168
6.2 U Tg Vot o) o F= 1IN =T o =R 168
6.2.1 N =LY~ 1 d [o TSP 168
6.2.2 CRUD e e n e ennnees 172
6.2.3 Discussion of Functional Testing RESUILSccoveuiiiiiiiiei et 174
6.3 OCR Reader ACCUraCy TESTINGuvieciieeeiiiieeecctee ettt e et e e e e e e eabaee s e te e e s nreee e eneeas 175
6.3.1 NO PrE-PrOCESSING ..uuvuuuuieiiitiiiiiiiiiiittttuteiterare et ee st rareterreeeeresesteeseaeeeeeee 176
6.3.2 GAUSSIAN BIUT...ciiiiie e s s e 178
6.3.3 Taa =T D1 =Y o o T UPRN 179
6.3.4 COlOUT INVEISION ..ttt ettt st et st be e bt st s saneennees 180
6.3.5 THreShOId FIlLEr ..ottt e s s s 181
6.3.6 YT Y= o =Y RSN 182
6.3.7 CONCIUSION ..ttt ettt et e e s bt e e sbe e e saneesareeeneeennneesane 184
6.4 L LYY =T =P SPR 185
6.4.1 APPIICALION OVEIVIEW ...eeiiiiiiiieccieeee ettt tee e et e e e etae e e e etae e e ssabtaeesetaeeesnnseeeeenes 185
6.4.2 USEE TASKS ettt st e st st e st nr e 185
6.4.3 Usability Testing PartiCipants.......cocc ettt e e e 187
6.4.4 (U=] o111 AV - [o] U URRRR 187
6.5 [6fe] ool V1o T3 F TSSO PP PRTPRIORPPIN 189
o) [=Tol a1\ =T F=FoL=] 0 =T o | PP PPPPPUPPPPPRY 190
7.1 INEFOAUCTION ettt st e st sb et sre e st e e s sabeenreenne e 190

7.2 oY T=Tot fl od o F= 1 1R UESRNt 190

7.2.1 o] o T 1Y | USSP 190

7.2.2 Y=o 01T =T g =T 0] KPP PPOPPPPPPUPPPRE 190
7.2.3 D] = o PSSP 191
7.2.4 TaaY o] (=10 g U= o = 1 Lo o [PSRN 191
7.2.5 LIS AT 7= SR PP PUPPPPPPPPPPPPTPPRE 191
7.3 TEAMWOIK ..ttt et b e st s e sat et e st e e s bt e bt e be e beesbeesaeeeatesarenane 192
7.3.1 20o] [PO VPP PPRPTI 192
7.3.2 10%eT0 0] 0 10T o1 o= 4 o T o [P UT TP 192
7.3.3 DIfFICUITIES .ottt st e e st e s b e e sre e e sreeeeareeeneeennreas 192
7.3.4 RESOIVING DIffiCUIIES ... et e e eaaa e 192
7.4 SCRUM MEthOUOIOZYcceuiiiiieiiie ettt ettt et re e e e e e e bae e e e bt e e e e s nte e e e sabaeeeenns 193
7.5 Project Management TOOIS.cuii ettt e e e e bre e e e e e e e e eanbeee e e e e e e eeannnns 194
7.5.1 PEN aNd Paper NOTES.....ccoeceiiieieee ettt e e e e e et e e e e es et e e aee e e e e nanrseeaeaaeenns 194
7.5.2 G112 1T USRS 195
7.5.3 JOUNAL .t ettt be e e s s 195
7.6 REFIECHION ..ttt st ettt ebe e e e et ne e 196
7.6.1 YOUr VIeWS ON the PrOJECE ..uuuii ittt e e e e e e e ennrare e e e e e e e eanens 196
7.6.2 Completing a large software development project........ccccceeeeeviiieeeeeeecccciiieeee e 196
7.6.3 WOrking With @ SUPEIVISONceiiiiiiie ettt e s e te e e e brae e e etaaeeenes 196
7.6.4 TECHNICAI SKIllS..c.neeiniieiiee ettt s 197
7.6.5 Further competencies and sKillsccveiiriiiiiiiiiie e 197
7.7 (600} 3Tl [To] o H USSP PPTPUPRRTRRUPRON 197
(6073 Vol [To] o H OO PP U PR PP ST 198
8.1 FINATWOIAS ..cneeeee e sttt et sr e st st st e e e e 199

Y] LT L= 1 (ST R 200

1 Introduction

The overall aim of this project is to study OCR and discover methods in allowing developers to
implement this functionality in a web-based application.

This document will discuss and display the process shown in developing this system, as well as
studying OCR as a technology, with the various ways to use it.

The final application will be web-based, which will act as a note taking app, with functionalities that
allow users to extract text from images.

The technologies that will be used in the application consist mainly of the MERN Stack, which will
mainly be used to develop the full stack application, TesseractOCR.js which is a library for the OCR
functionality, and Quill.js which will be used for the notes taking section. Various other technologies
will also be used but will be discussed in their respective chapters.

Management of this project was done with various tools such as Git and GitHub. These tools were
used for version control and show the progress that will be made and what will be completed at
each stage of development.

A to-do list will also be used to take care of the different tasks that need to be completed on that
day.

The project is separated into different stages, which consist of Researching OCR and UX/UI,
Requirements Gathering, Design, Implementation, and Testing.

Requirements gathering will gather any relevant information from users / other applications, etc.
and gather any relevant functionalities that should be included in the project.

Design will be covering both the program design and the user interface design.

The Implementation will be displaying how the application will be developed and will cover in detail
how functionalities were created.

Once this is completed, the next step will be to perform both user testing and functional testing, to
test the application and see if everything works as intended.

We will now discuss the requirements gathering.

2 Researching Optical Character Recognition

2.1 Introduction to Text Recognition

A system with the ability to recognize text within natural images have many practical
applications that can be useful for society. These systems, for example, can be essential for
users who are visually impaired to allow them to go through different environments, such as
a small shop, or simple navigation through different roads and streets within the city.

Text recognition can allow for this kind of usage, as text within natural images provide a
large amount of information within it, however despite this usage, it is difficult to process
text within natural images.

While there are methods to read different characters using machine learning. There are
many problems when reading images from text. Font variation, backgrounds, textures, and
lighting can provide challenges to the system, and are present within every image (Wang,
(2012, November)).

The goal of this research report is to investigate potential methods to help develop a system
that can read text from different images, and the methods used to develop them. One of
which, is Optical Character Recognition.

2.2 Optical Character Recognition
2.2.1 A Brief Introduction to Optical Character Recognition

Optical Character Recognition (OCR) is a heavily researched area in the field of machine
learning, artificial intelligence, and computer vision (Ranjan, (2021)). The way OCR works is
that a piece of software takes an image as an input, and reads the text and sentences within
that image, and converts it into digital text, such as ASCIl or Unicode (Matei, 2013). This
allows the computer to understand the text being presented to it.

There are many applications that can be endearing for the further study of OCR. Companies
within a paper-intensive industry can benefit greatly from the use of this kind of software,
where a large collection of forms and documents can be found. This can include the legal
industry, banking, healthcare, captcha, optical music recognition, and automatic number
recognition (Singh, 2012), and can provide great benefits to these industries.

Despite these benefits, there are still limitations. Such examples consist of the speed and
accuracy of an OCR program. Many OCR programs will suffer from either being a fast but
inaccurate program, or slow but highly accurate one (Matei, 2013). Two examples of this
will be looked at later.

This is because OCR software uses Neural Network models to recognize new characters and
texts based on previous training. These models are trained from large datasets, consisting of
thousands of samples to “learn” how a specific character will look (Ranjan, (2021)).

Due to this, there is a large amount of research in finding ways to improve OCR algorithms
to create better accuracy, with lower load times (Matei, 2013).

2.2.2 Overview of The General OCR Algorithm

Figure 1 displays the general overview of the algorithm. Each of these steps have their own
tasks required for the algorithm to predict what the image is representing to text:

Figure 1 General Overview of the Algorithm

Image Acquisition: Is the process of retrieving the image using a hardware system such as a
camera from a phone (Ong, 2016). This can consist of a photograph being uploaded to the
system and retrieving the image through there, and the image is fed to the system as an
input (Ranjan, (2021)). The image should also contain the text that the user wishes to
extract, and display on the computer (Matei, 2013).

Pre-Processing: Is the steps that are required to enhance the image for segmentation
(Ranjan, (2021)). This can consist of the image being changed to a monochrome colour to
allow for easier readability (Matei, 2013).

Segmentation: This is where the document is segmented into rows, and columns, to extract
the words that are within the document (Ong, 2016).

The angles within the segments will be inputted to the neural network, and for the
algorithm to confirm it (Matei, 2013).

Feature Extraction: Feature Extraction is when the features of different symbols are
extracted (Matei, 2013). Symbols are characterized and meaningless features are left out of
the algorithm. These extracted features are used to train the system (Mithe, 2013).

Classification: The tested image is added to the program for classifying. There are several
techniques that can be applied to classification. These methods can include artificial neural
networks, support vector machines. During classification, the tested image’s features are
compared with the pattern that is in the training dataset (Ong, 2016).

Post-Processing: Is the process that helps to improve the accuracy of the recognition. This
can consist of the analysis of the syntax and the semantics (Ong, 2016).

Grouping, error detection and correction normally occur within this phase of the process
(Eikvil, 1993).

2.2.2.1 Image Acquisition

The OCR program requires an input of an image, and within that image containing text, that
can be extracted. The image quality and resolution are essential for a clear reading, and an
accurate answer (Ranjan, (2021)). Parameters such as colour, fuzziness, lighting, and clarity
can affect the reading and answer.

Acquiring the images can come from a variety of sources. These can range from:

1.) Photographs: These can come from mobile phones, that contain the required text
that the user wishes to extract (Ranjan, (2021)).

2.) Scanned Documents: Documents that have already been scanned and stored as an
image can be inputted to the system (Ranjan, (2021)).

3.) Screenshots and digital images: Mobile phone or computer applications allow users
to take screenshots of their screen. This can be used to inserted into the OCR system
and be processed the same way as other photographs can be too. Digital images are
the same in the sense that they can also be processed through the system to extract
text (Ranjan, (2021)).

Through the scanning process, an image of the original document is captured, and optical
scanners are used. These optical scanners normally contain a transport mechanism and a
sensing device that can allow the system to convert light intensity into grey levels (Eikvil,
1993). This allows the system to read the text in a monochromatic way, ensuring that it
remains more accurate than with colour.

It is important to have a clear reading of the image, including the light levels and readability
of the text, as the text gets converted into black and white for the program to read. Like less
noise, a focus on the text, and lighting should be taken into consideration (Ranjan, (2021)).
The result of the reading can be heavily affected if these aren’t taken into consideration.

This process of converting an image to a bilevel image of black and white is often referred to
as thresholding. This process is essential as the quality accuracy of the result is dependent
on the quality of the bilevel image. The best forms of thresholding are generally ones that
are adaptive and can take into consideration the properties of the brightness and the

contrast of the image to result in a better and clearer image. These methods however
generally are dependent on multilevel scanning and requires much ore computational
capacity, resulting in less usage (Eikvil, 1993).

These papers allude to fact that the image should be clear and readable for the best
possible effect, as image processing applications are done using grey scale images, to make
the processing efficient (Ranjan, (2021)).

2.2.2.2 Pre-Processing

The result of the image that has been scanned through may contain a certain amount of
noise, depending on how clear and readable the image is, as the characters may be
smudged or broken. Some of these defects can be eliminated using pre-processing, to
smooth out these digitized characters (Eikvil, 1993). This process can help optimize the
reading and allow for a clearer answer.

During this phase, smoothing and normalization occurs. Smoothing allows rules to be
applied to the image, with the help of filling and thinning techniques. Filling removes the
small breaks, holes and gaps in the digitized characters, and thinning reduces the width of
the line. A technique that is commonly used in smoothing is to move a window across a
binary image of that specific character, and while this is there, it applies certain rules to
what is inside of the window (Mithe, 2013).

Normalization handles the size, slant, and rotation of the character. For example, if the
letter “)” is off centred, and leaning more towards the right, normalization will fix this issue
to allow for easier readability and centre it (Mithe, 2013).

The image is also sharpened to enhance the high frequency details. This is to emphasize the
edges in the image, to make it easier for the machine to pick out the patterns and letters
(Matei, 2013).

The reason for pre-processing is to allow for easier classification for the program to detect
the different strokes and classify which belongs to which letter in the alphabet (Ong, 2016).

Another step-in pre-processing is applying adaptive thresholding, which is used to segment
the image. This is done by setting the pixels whose values are above a certain threshold to
the front value, and all remaining pixels, who do not meet this threshold to the background
value (Matei, 2013).

Once pre-processing is complete, it is now ready for the next stage.

2.2.2.3 Segmentation

Segmentation is the process of locating sections of printed or handwritten text.
Segmentation distinguishes text from figures and the image. When segmentation is applied
to text, it isolates characters or words that are within that text (Mithe, 2013).Text lines are
first segmented, then within these lines of text, the words are then further segmented, and
finally from the words, the characters are segmented (Rao, 2016). It is essential to locate the
sections of the document where text have been written and identify them from figures and
graphics. For example, in the process of automatic mail-sorting, the address must be located

and separated from other print on the envelope like the stamps or company logos, before
we get to recognition (Eikvil, 1993).

Most OCR algorithms will segment words to isolated characters that gets recognized
individually. In general, this form of segmentation is done by isolating each connected
component, that is each connected black area. It is easy to implement, however there are
some problems that occur if the characters are touching or are broken and consist of
multiple parts (Eikvil, 1993). These can lead to the system recognizing a completely different
word or leading to inaccuracies.

According to (Eikvil, 1993), there are a few problems within segmentation, and are as
follows:

e Extraction of characters that are touching or fragmented. These distortions can lead to
multiple joined together characters being understood as one single character, or that a
piece of a character is thought to be an entirely different symbol. These joints can occur if
the photograph or document is a dark photocopy or if it is scanned at a low threshold. Joints
are also common if the fonts are serifed. If the document has a light photocopy or is
scanned at a high threshold, it is also possible for a split to occur due to the circumstances
of the scan (Eikvil, 1993).

e Distinguishing noise from text can also be an issue. Dots and accents might be
misinterpreted as noise, and vice versa, causing inaccuracies to the finished product (Eikvil,
1993).

* Misinterpreting an image or geometry and seeing them as text. This can lead to non-text
being sent to recognition and being unable to read it (Eikvil, 1993).

* Misinterpreting text as an image or geometry. In this scenario, it is possible that the text
will not be passed to the recognition stage. This often occurs if characters are attached to
graphics.

2.2.2.3.1 Segmentation methods

Document segmentation is a key pre-processing stage in applying an OCR system. It is the
process of classifying a document image into homogeneous zones, i.e., that each zone
contains only one kind of information, such as text, a figure, a table, or a halftone image. In
many cases, the accuracy rate of systems related to the OCR heavily depends on the
accuracy of the page segmentation algorithm used (Rao, 2016).

There are three categories of Algorithms of document segmentation according to (Rao,
2016). These are as follows:

e Top-down methods, which is when a document is segmented from large regions into
smaller regions recursively. The segmentation process will stop when it reaches a
stage that meets a criterion, i.e., it reaches the final range of segmentation (Rao,
2016).

e Bottom-up methods will search for interest pixels, and groups these interest pixels.
They manage the interest pixels into associated elements that represent characters
that are combined into words, or lines, or blocks of text afterwards (Rao, 2016).

e Hybrid methods is an integration of both approaches seen from above (Rao, 2016).

2.2.2.4 Feature Extraction

Feature extraction is the process of extracting relevant features from objects or alphabets to
build a feature vector. The objective of this step is to capture vital traits and symbols (Eikvil,
1993). These vectors are used by classifiers to identify the input unit with the objective
output unit. The easier the features are to determine; the more effortless classification
becomes (Rao, 2016).

According to (Rao, 2016), there are many methods in which feature extraction can be
accomplished. For example, one such method consists of a directional chain code feature,
and zoning for handwritten numerical recognition. It consists of a feature vector of length
100 and have a high level of accuracy, however it proves to be time consuming and complex
(Rao, 2016).

Another potential method that was seen in (Rao, 2016) is that the end points are the
potential features towards recognition. These features use horizontal/vertical strokes and
for handwritten numerals obtained a recognition accuracy of 90.50%. Despite this, the
method uses the thinning process which can result in a loss of features.

However, according to (Eikvil, 1993), the techniques of feature extraction can be
categorized into three different groups, where the features can be extracted. This can
consist of:

e The distribution points.
e Transformations and series expansions.
e Structural Analysis

In both (Rao, 2016) and (Eikvil, 1993), we see that noise and distortion can skew the results
that are given. (Eikvil, 1993), however, goes into more detail, we can see that noise,
distortions, style variation, translation, and rotation can all effect the speed of the
recognition, the complexity of implementation and whether the system will need further
support to recognize the text. The following table can display an example of feature
extraction.

.) ., Rohusiness Practical use
Feature extraction technigue | % % 4 % 1 2 3

|_Template matching 9000 O8O0
| Transformanons o N N N] OO0 @

| Distribution of points: Zoning V0008 | 8800
_Moments LA ReE K | e 0
n-tuple el NeN LB N
Charactensic loc o N N N [N W=

| RO 1 OO *00
| Structural features N N B N e

® High or easy ® Medium O Low or difficult

Figure 2 Feature and Extraction techniques from (Eikvil, 1993)

2.2.2.4.1 Distribution Points

As seen in article (Eikvil, 1993) and (Rao, 2016), the distribution points are key features in
identifying the essential components of the character. These different techniques can be
listed below as:

e Zoning — The rectangle covering the character is divided into different regions and
densities of black points (Eikvil, 1993).

e Moments — The moments of black points being chosen as a centre (Eikvil, 1993).

e Crossing - The features are found through the number of times the character shape
and the vectors along certain directions are crossed (Eikvil, 1993).

e N-Tuples —The joint occurrence of the foreground and background (black and white)
points in a certain order being identified as features (Eikvil, 1993).

e Characteristic Loci — Vertical and Horizontal vectors are generated. The segments of
a character that intersects with the vector is used as a feature to describe the
character (Eikvil, 1993).

e Transformation and Series expansions - reduce the dimensionality of the feature
vector and the extracted features can be made invariant to global deformations
(Eikvil, 1993).

2.2.2.4.2 Structural analysis

Structural analysis allows features that describe the geometric structure of a symbol to be
identified and extracted. These can include the physical characteristics of the character,
commonly identifying loops, strokes, intersections, lines, bays, and endpoints. Structural
analysis is a technique with a large tolerance to style of the character and noise variations
but are not very tolerant to rotation and translation (Eikvil, 1993).

2.2.2.5 Classification
The classification state is when the features are extracted to identify the text segment that
is according to the rules. Classification is generally accomplished by the comparison of

feature vectors that correspond to the input characters with the representative of each
character class (Lehal, 1999).

Before doing this however, the classifier should possess a range of training patterns (Verma,
2012). There are many classification methods, that have been proposed by different
researchers, and some of them will be looked at in a later section. These techniques can
consist of statistical methods, template matching, syntactic methods, artificial neural
networks, and kernel methods (Verma, 2012).

According to (Lehal, 1999), the nearest neighbour classifier (statistical method as mentioned
in (Verma, 2012)) and binary classifier trees have been the two most common classifiers.

2.2.2.5.1 Statistical methods (K-Nearest Neighbour)

The reason behind using the statistical methods is to determine which category the pattern
belongs to. This is done through the observation and measurement process, where it
prepares a set of numbers that is used to prepare a measurement vector (Lehal, 1999).

The K-NN rule is a non-parametric recognition technique. The method compares unknown
patterns received from the feature extraction stage to a set of patterns that have been
labelled with class identities during the training stage. A pattern is then recognized to be of
the class of pattern, to which it has the closest distance (Verma, 2012).

This technique is effective for classification problems where the patterns consist of a limited
number of variations. For clear and specific machine-printed text, the patterns of each class
tend to be clustered tightly towards the patterns that represent that class. The nearest
neighbour approach can be effective method of classification; however, it can suffer from
memory and size issues if more fonts are added (Lehal, 1999).

Other common statistical methods are Bayesian classification, which assigns a pattern to a
class with max posteriori probability, Quadratic Discriminant Function (QDF), Linear
Discriminant Function (LDF), Cross Correlation, Regularized Discriminant Analysis (RDA) and
Euclidean Distance (Verma, 2012).

2.2.2.5.2 Artificial neural networks

A neural network is an architecture that contains a massive interconnection of flexible node
processors (Rao, 2016). The output from one node reinforces the next one in the network,
and a result is garnered from the complex collaboration of all nodes. Feed-forward and
feedback neural networks can be considered as a categorization of a neural network
architecture (Rao, 2016).

Hidden

. \
It
I 1 Chutpul
" ;
w
4
o ul
|| -
P
| !
i . - '
1 II
I
N :

Figure 3 (Lopez, 2017), Basic ANN Structure

In (Lopez, 2017), we can see the basic structure of an artificial neural network. The network
contains of an input, hidden, and an output layer. Training is done using a method known as
back-propagation.

In (Eikvil, 1993), we see the use of back propagation, where it mentions that within this kind
of network, which consist of many layers of interconnected elements, when a feature vector
enters as an input through the input layer, each element of the layer calculates the
weighted sum of the input and transforms it into an output done using a non-linear
function. While the neural network is training, the weights are adjusted until the required
output is achieved. The problem with a neural network in OCR is their limited predictability
due to training, however they are very adaptive which provides to be a general advantage.
Therefore, libraries such as OpenCV, who uses CNN for OCR is widely used, because of this
adaptability.

According to (Verma, 2012), the most used neural networks for OCR and the pattern
classification task is the feed-forward network, the Radial-Basis Function (RBF) networks,
Convolutional Neural Networks (CNN), Vector Quantization (VQ), Learning Vector
Quantization (LVQ), and auto-association networks.

10

An interesting study that was found in (Matei, 2013), shows that combining the two
methods of using K-NN and Neural networks can provide staggering results. Their study uses
Artificial Neural Network and K-NN as a confirmation algorithm, combining the two, and
bases the vectors on the angles of digits rather than pixels. Some advantages found within
their system consist of the ability to work in different light levels and exposure conditions,
insensitivity to rotation and being able to deduct and use exploratory character recognition
which provided great success with moderate levels of training.

2.2.2.5.3 Template matching

One of the simpler methods towards pattern recognition, template matching is the
approach where a prototype of the pattern that must be recognized is available. The pattern
that is to be recognized is compared with patterns that are already stored and ignores the
size and style of these patterns (Verma, 2012).

2.2.2.6 Post-Processing
Post-Processing is the final stage of the program, where it is used to make corrections
towards spelling errors, and the grouping of the words together (Eikvil, 1993).

e Grouping: The result of the symbol recognition on a document will result in
individual symbols. Grouping will take these symbols and group them together
where they each belong with each other, making words, numbers, and sentences.
This process is known as grouping, where symbols that are found to be adequately
close are grouped together (Eikvil, 1993).

e Error-detection and Correction: In advanced OCR problems, a system consisting only
of single-character recognition will not be sufficient. Errors will often occur, and a
correction must be provided. One of these approaches is done using syntax, where it
follows the rules of grammar, for example a capital after a full stop. Another
approach is done using dictionaries, where it can provide to be the most efficient
method for error detection and correction (Eikvil, 1993).

The next section will discuss how the general algorithm is used in OCR libraries.
2.2.3 A Brief Overview of OCR Libraries

2.2.3.1 Tesseract

Tesseract is an open-source OCR engine developed in 1984 — 1994 at HP. Tesseract uses the
Line Finding algorithm. This algorithm is designed so that a skewed image has the capability
to be recognized without having to de-skew the image, which saves the image quality. Blob
filtering and line construction is some of the key parts of the process. More details of the
process can be found at (Smith, 2007, September). However, the process is like what is
described in the general overview of the algorithm section above.

In short however, the program first reads the text and converts it into black and white
outlines, which are then converted into Blobs. These Blobs are arranged into text lines,
where the lines and regions are then analysed for some fixed area or are of equal text size.
Text is divided into two words, with these being definite space and fuzzy spaces.
Recognition is also started as a two-pass (Patel, 2012).

11

Input Image

Adaptive
Thresholding [\m__
. 1
W Binary Image
Connected |
Component [
Analvss l::
[] N
- b ./ Character outlines
Find Lines and [~
words
[‘x._ Character outlines
| Organized into words
Recognize word __' Recognize word ; Extracted text
{Passl) | (Pass2) y from image

| ==
i

Figure 4 Tesseract Architecture (Patel, 2012)

Tesseract can provide better accuracy to grey-scale images rather than coloured ones, seen
in the experiment conducted in (Patel, 2012). Tesseract works best when it comes to grey-
scale images, and as a result works best when working with these kinds of images, with very
high accuracy, however, falls short when it comes to images with colour.

This method can be effective in capturing hand-written documents, where it is a simple
monochrome colour, and there is not much on the written paper being presented, using
tesseract can provide to be an effective solution.

2.2.3.2 OpenCV

Open-Source Computer Vision (OpenCV) is a library with programming functions for real-
time computer vision. The library has over 2000 algorithms and has been widely used
around the world. Programmers can implement many digital image-processing algorithms
for mobile phones (Ma, 2000).

The use of OpenCV can be beneficial in OCR. This is because OpenCV can detect and factor
in the different noise levels, and colours that occur when using OCR is regular day-to-day
life.

A study in (Goel, 2019), shows a process where it uses Convolutional Neural Networks (CNN)
and the OpenCV Library to develop an accurate OCR system. It extracts natural scenes from

images, where there can be a wide range of colours, fonts, textures, lighting conditions, etc.
and can use the two methods effectively to accurately capture the text from an image (Goel,

12

2019). From this, it can be safely assumed that it is possible to use OpenCV in open areas,
for example a street road, in attempts to examine a sign to see where a user is, and is more
accurate than using something like Tesseract, despite taking longer to process.

2.2.3.3 A Comparison of The Libraries

The reason for discussing these libraries is to see their different benefits and advantages.
From researching the Tesseract, KerasOCR, EasyOCR, and OpenCV, a conclusion can be
drawn that there are many benefits for the use of each library and can be highly effective
depending on the goal of the software a person is developing needs to accomplish.

Tesseract is highly effective when used in document reading, where the image and font
presented is in a monochromatic colour and noticeably clear to read. This can work best
with handwritten documents, where the ink and the paper are highly contrasted. Pairing
this with the high accuracy, and lower loading times, it can prove to be the most effective
method of OCR in a system, where the main goal is to read notes on paper rather than in
the outdoors.

OpenCV however, can be used for recognition in the wild instead, with the drawback of
slower loading times is much more optimized for OCR in the wild. The capability of this is
mentioned above, where it uses CNN to look at many images and interpret the text.

Overall, the two libraries both provide benefits for different goals, and can compensate for
each other’s weaknesses in OCR.

13

2.3 User Experience / Interfaces
2.3.1 Introduction to User Experience

The concept of User Experience (UX) and User Interface (Ul) is a term that is used within
many platforms. Specifically in this dissertation, the UX and Ul for the web will be reviewed
to understand and implement the best user experience possible.

Poorly designed Ul can spoil a user’s experience with a website, and to avoid this, research
will be done to implement standard design practices and foundations that can be globally
applied to many websites.

The goal is to give the user the best potential experience when interacting with the website,
as well as be an aesthetically pleasing website to look at, and to retain their attention and
consistently keep returning.

The next section will be focused on discussing the UX and Ul Design Foundations, to help us
understand the reasoning and psychology behind these design principals.

2.3.2 UX/ Ul Design Principals

In this section, the essential design principals will be discussed and researched. The steps
and goals for each design principal will be looked at here, starting with the look of the
website.

2.3.2.1 Aesthetics and Clarity

As design and aesthetics and visual composition is attractive to the eye, it is possible to
convey the idea of your website quickly and clearly through the design alone. Graphics
design principles that include contrast, hierarchy, spacing, alignment, and using colour
effectively provides the overall look and feel of an interface (Bhaskar, 2011). These elements
are essential when creating a web application, as these concepts can also be applied to web-

apps.

Based on previous experience, it is effective to build a design system, where the designer
chooses a fitting colour palette that suits the feel of the website, choses the typography
which complement the website, and each other, and the style of the icons and buttons to be
used to help keep the look of the website consistent.

2.3.2.2 Visual Structure / Hierarchy

Visual Structure and Hierarchy is an essential part of designing an interface. A visual
hierarchy allows users to organize information into clear categories that can be repeated
throughout the website (Fleming, 1998). This allows users to better understand what they
are looking at, providing clarity when analysing the body for information. It allows users to
separate their relevant goals from irrelevant information that is provided within a body of
text (Johnson, 2020).

14

Create a Cloar Visunl Hesrarchy

DOrganize and prortize the conbonis
ol a page by using sire, phominence
and contord relationshins. Lof's ook
il thoesd relabionshios mon Chobishy
Thia mang imponant & haading S, the
largor s loni sxe should Do, Eeg

Create a Clear Visual Hierarchy

Organizes and prioritize the contents of & page by
using size, prominence, and content relationships.

Let's lofk al thése relationships more closely:
+ Skza. The more important a headline is, the tanger

its font size should be. Big bold headlines help 10
bokd headlings holp 10 grab the usor's j
ationtion as they scan the Web page grab the user's attention as they scan the Web

The more important the heading or page _
contont, the hights up the page i * Prominence. The more important the headling or

should be placed The most content, the higher up the page it should be placed.
important of popular oonbon? should The most important or popular content shoukd
abways Do positionod promencntly always be positionad prominently near tha top of
near tho 1o of the page. SO users can the page, S0 USers can view it without having to
vigw 1 without having 10 scroll 100 far scroll too far.
Group simidar oonton typod by ,

vy e contend I & sl . mmmh Group similar content
visual stylo. Of in @ cleary defined types by dispiaying the content in & similar visual
arca styla, or in & clearly dafingd ansa.

Figure 5 (Fleming, 1998) Visual Hierarchy

Looking at fig. 5, it is easy to better distinguish the relevant information on the text on the
right. The use of bold and large font for the title, while using smaller text however still in
bold for the subheading shows the main ideas that the article provides.

Relevant size can help communicate the relevance of the information provided, as seen in
the previous figure. Large items, position of element, and colour and contrast, can help
draw a user’s attention (Fleming, 1998). This can allow for the communication of
information to be more easily done and is not simply font size, but all the other elements
listed above can help draw a user’s attention.

2.3.2.3 Requirements

The requirements gather phase is an essential part of the design progress. It finds the needs
and the subject matter of the application that is being developed. It is essential to
understand what is being developed and the plan the functionalities that the system will
have.

There is a plethora of different methods to accomplish the requirements gather phase.
Those which can be listed below:

2.3.2.3.1
Observing user behaviour while interacting with the website can provide to be beneficial
when planning the design of the application. Through observing their behaviour, it is
possible to see what the users do, and what they like and dislike about the application
(Stone, 2005). This can allow the developers to discover flaws that is found within the design
and allow the developer to make changes where necessary to provide a better end-product
overall.

User Observations

Direct observation is when a developer is watching a user interact with their system and
taking notes on any issues that the user is facing. This is normally done on the user’s system

15

(Stone, 2005).1t is however easy for a developer to overlook an important issue when doing
direct observation, as the process is not recorded, and cannot be studied after it is over. This
is where it is possible to instead record a user’s actions for further study.

Indirect observation allows just that, where the user can provide a video recording that
allows the developers to watch and analyse the recording to find issues, they might deem
necessary to fix (Stone, 2005).

Both methods have their own benefits and are excellent ways to find issues within the
design to fix for a much better product.

2.3.2.3.2 Interviews

Interviews can also be conducted when gathering requirements. The interview process is
done to find the different features that a user would like to see in an application that the
developer is creating. There are generally two types of interviews; a structured interview,
where questions are generally pre-written and contains little scope in exploring different
topics that arise in conversation, and a flexible interview, where the questions are more
broad and can explore and dive deeper into a certain topic within that interview (Stone,
2005). Both provide different benefits. The structured interview can allow developers to
gather data on different functionalities on the system of something that has a clearer goal,
while the general interview can allow developers to gather more ideas on what kinds of
functions a system can have, as well as what the different users would like to see.

2.3.2.3.3 Surveys and Questionnaires

Surveys and questionnaires are like interviews, where they can be used to gather
information and is flexible and friendly in gathering more precise information (Stone, 2005).
The use of surveys can be used to mass gather information as tens to hundreds of people
can take part in a short survey. This is good when gathering requirements, as it allows users
to show developers what they wish to see within their program.

There are two kinds of questions when creating a questionnaire or a survey. One of which
are known as “closed questions”. These consist of closed-ended answers, for example “yes”
or “no” (Stone, 2005) and can be used for specific topics that can be answered easily.

The second set of questions are “open questions” where they are open to what the user has
to say. These questions can provide rich data from what a user has to say due to the
openness of the question (Stone, 2005). For example, this can be used to gather feedback
on a certain feature and see how a user would like that feature to be improved upon.

2.3.3 Responsive Design

As technology continues to evolve, responsive design becomes more and more crucial in the
role of web development. Many people will own a wide range of screens, where websites
might not be optimized for. This problem can be resolved with responsive design.

Responsive web design attempts to mix HTML5 and CSS3 features with new design
methodology to website architecture, where it the website will adapt to a browser with

16

varying screen sizes (Gardner, 2011). This allows websites to be flexible and compatible with
almost any device and provides to be a great tool for accessibility to a website.

According to (Gardner, 2011), responsive design contains three parts:

e Afluid layout is the use of a flexible grid, that allows a website to scale to the width
of a screen / browser. These layouts are responsive and can change to whatever
screen it fits. Popular practice can consist of using grid systems which consist of
columns, gutters, and rows (Gardner, 2011). A fluid layout can allow for a website to
be seen and accessed using many different devices and can potentially lead to more
people viewing it

e Images and media being flexible and adapt with the website to the browser that it is
being viewed through is also essential. Images should be sized accordingly,
depending on the screen size. This can be done using CSS, and it is also possible to
keep the resolution by using the “max width” property in CSS (Gardner, 2011). Doing
this however can lead to the website loading slower, as the images are mostly kept
in high resolution and can provide potential performance issues.

e Media Queries can be used to address usability issues. A common problem that can
occur when attempting to develop for all devices is that components are not as
optimized as they could be in the location that they are in. For example, if we take a
side nav and translate that to a mobile device from a desktop, the side-nav will
shrink in width in the mobile version. To combat this, the use of media queries is
available, where it can alter the viewing experience and style depending on the
device that it is being viewed upon (Gardner, 2011).

All these concepts regarding design can be streamlined using design systems, which we will
look at in the next section.

2.3.4 Design Systems

A design system is a group of requirements that manages design through the maintenance
of consistency and reduction of redundancy (Kumar, 2022). Design systems aim to keep the
look of a website to be consistent and follow rules of good practice in graphic design.

These design systems are commonly very consistent in look and can help when developing a
web application. They can also prove to be useful, as they are very user friendly and clear to
read.

Examples of design systems are Material Ul design, Fluent Design Systems, Atlassian, and
Polaris. These design systems are well respected and commonly used throughout the web.
Material Ui Design for example is used by Google.

17

2.4 A Comparison of EasyOCR and Tesseract
2.4.1 Introduction

Before beginning the development of the application to be built, a direct comparison was
done to test the accuracy of both EasyOCR and Tesseract. The code for EasyOCR was written
in Python, and developed by using Anaconda, and the code for Tesseract was written in
JavaScript, more specifically React.js and developed using Visual Studio Code.

This comparison was done to determine the accuracy of both libraries, as both provide great
benefits and help to decide on which library is preferable to use. The test will be done with a
list of the same images to provide a fair test.

2.4.2 Comparison of the two

The first image to be examined was found in Google Images, with a quick search of a
random image to use of a bank sign. In figure 6, the words detected are accurate, however
the spacing is slightly off. Nonetheless EasyOCR provides an accurate reading of the sign
shown in the image.

Figure 6 Bank of America (EasyOCR Reading)

The same cannot be said however for Tesseract’s reading. As expected, due to the different
colour, the Tesseract library struggles with the reading of the letters and displays a very
inaccurate result as seen in figure 7.

18

REALT

Figure 7 Bank of America (TesseractOCR Reading)

The next image that was then examined was a simple paragraph, again found with a quick
Google search. In figure 8, the letters and words detected are highly accurate, as the letters
are clear to read and are not distorted in any way. EasyOCR results are seen in figure 8.

'-'h' '|| srogrant of a

Intrndu::tur',r Faragraph of a Flay anlnw :

e Al - bt o b bt T

flm:.antljr 'l 'had the plaaaura nf _seeing one of
wyu:m Ehlhﬂipiﬂri s mut hnh;l-u'ad cnmaﬁiu.ﬁl '
L llllidsumrrlir H!ﬂht - pmam. Parl'un'ned hnutl:iullgr_
al the Lm Aﬂgalas Hu-purmry Thaatra in :Inwntn-wn

--4-'\- v-h

jspan:n Imha mare Illm an mﬂustrial warahnusa H'nan:

B T e BT P alarroed

an ?r; huu u.n,_ I]:l.l!l_ In.lllra.lltinll;l in yrﬂu arn- tra mifurmﬂd

to the magma! land of Midsummer.

Figure 8 Paragraph EasyOCR result

The same can also be seen in figure 9, where Tesseract is then used. It is important to note
that the use of Tesseract proved to be much faster than using EasyOCR, and provides highly
accurate results in this format, as the words are easy to read and very clear to see.

Introductory Paragraph of a Play Review : 4 i

.E-lﬂ-l-nll‘r.l.hldlhlFl-l-l.'lllr.l-lﬂflﬂll'lnl:lnlﬂ" i Lo by I L g pfionti
Wilklgm Shakpepasrs’s most beloved comadies - = =
A Midgummar Might's Dress, partormed bestilully
ol the Lea Angeled Repariory Thastn n downtown
| Los Angeles, At first glance, this pericemance
BP0 boendim o Lk an indusinal saershouse tham
e i hoapia, Bl walliing in oo dre lranaledmiad

val

1o the magical land of Mideussmer,

Figure 9 Paragraph Tesseract Result

19

The next test was to test the accuracy of the application when reading letters and
paragraphs through common household objects, in this case from a swimming pool box. In

figure 10, EasyOCR again proves to be highly accurate when reading letters, as it has very
little inaccuracies as seen in the figure below.

Figure 10 EasyOCR Reading of Swimming Pool Box

TesseractOCR also proves a very accurate reading of the paragraph seen in the bottom of
the box. Although it cannot read “Tango”, as it is in colour and struggles to read it, the
paragraph at the bottom of the pages shows its accuracy as it is a clear, black font and easily
seen against a contrasting background.

Figure 11 TesseractOCR Reading of Swimming Pool Box

Although TesseractOCR struggles with different colours and typography, a test was done
with both libraries to see how the two would compare against regular fonts from a novel.

EasyOCR was tested first and can be seen in figure 12. Although it is quite difficult to see,
the reading was highly accurate with the use of EasyOCR. This process however took around
one to two minutes to load, showing that it takes a very long time to return results.

Figure 12 EasyOCR Book Reading

TesseractOCR on the other hand only took around 20 — 30 seconds to read the following
paragraph and provided highly accurate results. These results can be seen in figure 13.

18l

!
|
i
F

'
L
[
|
|
i
I
I

Figure 13 TesseractOCR Book Reading

Both results provided clearer readings when using a black and white background with a
clearer to use font. TesseractOCR showed the accuracy it can perform when used in this
specific scenario, however from previous examples can struggle when reading things used in
the outside world such as signposts and is where EasyOCR then shines.

A final set of tests were then performed, this time testing different handwritten texts with
the use of pens, markers, and pencils.

The first library to be tested was EasyOCR, and it once again proves to be highly accurate in
the use of an outside environment, and the results can be seen in figure 14.

Figure 14 Handwritten EasyOCR Results

These results are to be expected with EasyOCR as it has shown throughout the testing phase
that it is highly accurate, with some mistakes here and there.

TesseractOCR is then used, and again struggles to read some of the results, due to the font
being hard to read, as it is handwritten text. Although it can occasionally read some words,
it struggles to read handwritten texts and lettering, as it is not incredibly accurate, but can

still read some of the presented letters. These results can be seen in figure 15, 16, 17 and
18.

Figure 15 TesseractOCR Results for Handwritten Text with a Pencil

22

i ol i W e 0 e T P,

Figure 16 TesseractOCR Results for Handwritten Text with a Pen

Figure 17 TesseractOCR Results for Handwritten Text with a Coloured Marker

Il

R

e W T e W - S Wi . W

Figure 18 TesseractOCR Results for Handwritten Text with a Black Marker

2.5 Conclusion

From these tests, it’s clear that EasyOCR is the optimal library to use if factoring in accuracy,
despite this the benefit of speed provided by TesseractOCR can be show in these tests, as it
is far faster than EasyOCR and accurate when presented in the correct circumstances.
Tesseract can also be used with React and JavaScript and can provide an easier
development process than using EasyOCR.

2.6 Summary

In short, OCR is a character recognition system that can be used for computers to recognize
characters from an image. There is a general algorithm that requires to go through the steps
of image acquisition, pre-processing, segmentation, feature extraction, classification, and
post-processing, where the general algorithm of OCR is discussed.

Different libraries can be used to make this process easier and follows most of the steps
with the general algorithms, although would contain some differences. These libraries can
work well with certain functionalities, for example Tesseract OCR works well with
documents, where the image is generally black and white, while KerasOCR and EasyOCR
works well with images with many parameters although slightly slower.

A comparison of Tesseract.js and EasyOCR was conducted to see the benefits of both
libraries and concluded that it would be for the best to use Tesseract.js for the project.

In the Ul and UX section of the report, the basic design principals were discussed. These
consist of how a developer can design a website and good practices to follow when doing
so, including contrast, hierarchy, colour, and structure, following a user-friendly design.

Requirements gathering was also discussed to help developers understand flaws in their
design or discover the user’s needs and the different functionalities that the website will
contain.

Responsive design was also covered for more compatibility options. Media queries, grid
systems and fluid layouts are ways to allow for a website to be more compatible with more
than one system, for example accessibility for mobile users.

Finally design systems were briefly covered, with their benefits and examples were given of
good design systems.

Overall, the research project allowed for a better understanding and insight in the topic of
OCR and discover methods of developing an OCR system for the web, with a brief insight to
web-design and compatibility with different devices.

24

3 Requirements

3.1 Introduction

The purpose of the requirements phase is to allow for developers to work out what the
application should be able to do. It is important to understand what the users would like the
application to do rather than the developer deciding what is required.

The project area that will be looked at will be a progressive web application, with OCR
functionality, and an adaptive Ul that can allow for mobile compatibility.

Several methods were used to gather information on how the product will be presented.
This includes looking at similar applications, conducting interviews, surveys, and
guestionnaires to find the functional and non-functional requirements that the application
will have, as well as gathering opinions on the design of the application.

3.2 Requirements gathering
3.2.1 Similar applications

The research of similar applications is essential in finding the features that the web-app will
be using. When looking at similar applications, the advantages, disadvantages, and
descriptions of each website will be examined. The first website that will be looked at is
Notion.

3.2.1.1 Notion

[g — PSR S—— —— o e (D)
One workspace.

Every team.

e

Figure 19 Notion Homepage

Fig 19 displays Notion, which is a productivity application that is designed to boost
productivity. The application contains a list of many features that include: the organization
of notes into different folders and sub-folders to organize their workspace, to-do lists to

25

display different tasks, a note taking feature, where users can take notes of what they need.
This note taking feature also allows for users to customize the font size, colour, background
colour, etc. It is also possible to share notes with other users. It is also possible to add
widgets to further customize and personalize the look and feel of their workspace.

Advantages of Notion:

e The application contains a detailed notes taking feature that allows users to edit
notes and customize the look, such as the font size, the background colour, etc.

e The application has a clean look to it and is designed to be user friendly.

e A user can fully customize the folders and the folder structure, allowing for very
detailed customization.

e The user can personalize these folders by adding images, icons, and names to them.

e Users can sort, filter, and add tags to the notes and folders that they are using.

e ltis possible for a user to share their notes with other people.

e Users can add bullet points, headings, to-do lists, and even tables to their notes.

e Users can also upload images, links, files such as CVs, and widgets to the notes page
that they are using.

e Users can search for a note or folder that they are looking for.

e Creating a new page is easy to do and can be immediately accessed at the bottom of
the side-nav bar.

e You can import pages to use the structure of other users. This can have new widgets
and features such as a clock in the page dashboard.

e When sharing a notion folder, it is possible for other users to comment on the page
you are viewing.

e Users can collaborate with each other and create folders where an entire group can
use them.

e Users can choose to have a certain folder to be private.

e When deleting a page, you can view the deleted pages in the bin folder.

e A help button is always displayed in the bottom right corner as a “?” sign.

e Notion has a mobile version that functions the exact same as the desktop version.

Disadvantages of Notion:

e The user interface is quite intimidating to learn when just starting to use the
application, as it is filled with features that can put off new users.

e The images a user chose for their folder picture is only limited to images from
Unsplash.com.

e Thereis no way to directly message other users in the team.

From an examination of this web app, the advantages of notion far outweigh its
disadvantages and has many features that can prove to be beneficial to the web app that
will be worked on. One major benefit of Notion is that it can also be used on a mobile
application, and functions the exact same as the desktop version, although slightly slower.
Similarly, we can see such benefits in the next application, which is going to be Google Keep.

26

3.2.1.2 Google Keep
Google Keep

Save your thoughts,

wherever YOU dle

Try Gisnghe: Ko

Figure 20 Google Keep Homepage

Figure 20 shows the homepage for Google Keep. This is Google’s notes taking application,
and to-do list, although focuses more on being a simple to-do list application, rather than a
notes taking app. Google Keep also has a mobile version that functions similar to the
desktop application. This is an easy and highly effective web app, that is user friendly and
very easy to use.

Advantages of Google Keep:

e Google keep has an incredibly simple Ul, and as a result is very easy to use.

e Users can use Google Keep as a notes taking application, or use it’s to-do lists
featues.

e Users can organize and sort their notes by using tags to show which folder they
belong to.

e The web app also uses a side-nav for easy access to all notes.

e |tis easy to create a new note.

e Auser can indent their to-do checkbox and have a multi-layered to-do list.

e Users can change the background of a note, and can also upload an image of their
choice to use a background.

e Users can pin their notes, and functions similarly to a favourites feature. These
pinned notes will be immideately brought to the top of the page.

e Users can archive, or delete notes.

e Ausersis also able to use a draw feature, where they can draw in the application.

e Users can also add a collaborator and share their notes with other users.

Disadvantages of Google Keep:

e Google Keep is primarily a to-do list app, and as a result does not have many features
for the notes taking section of the application.

27

e Due to the simplicity of the app, the features are not as detailed as other
applications.

e When writing long paragraphs while taking notes, it can be difficult to see them as it
is hard to separate into headings and general paragraphs.

e The notes and does not have a way to make the screen larger when reading them.

e You cannot add sub-folders to further organize them.

Despite the disadvantages, Google Keep is an effective web app that acts as an effective to-
do list tool. The indentation of checkboxes to further organize their tasks is incredibly
effective and can prove to be a very useful feature when using it. It is primarily a to-do list
app, hence why the notes taking features are somewhat lacking, but can prove to still be
functional and effective.

The Ul of Google Keep is also incredibly easy to use. The simplicity can entice users to use
the web app over others that are more complex and confusing to use. A good balance of
both notes taking and to-do features are also seen in Evernote, which will be the next
application that we will be discussing.

3.2.1.3 Evernote

q r_“l..'i'-fllﬁte W DETIEOTE TLETEET [- SO TN Pl Ly b

Find your productivity happy place

Saw whal's posasdle with Emmote

F b

Berwrw Bi-evegy

‘IEI -

Figure 21 Evernote Homepage

In figure 21, evernote is another productivity app that is commonly used. It proves to be a
highly effective app to take notes, and contains many useful featues that can allow for easy
of use to the users.

Advantages of Evernote:

e Contains a draw feature, where users can draw an image, or for hand-written tasks.

e Evernote has a to-do list feature, where users can set custom due-dates, set the task
to be re-occuring or set the due date to “today” or “tomorrow”.

e Auseris able to add shortcuts to allow for quick access to their most important
notes.

e Auser can also organize them into folders, called “notebooks”.

28

It is easy to navigate through the website, and all folders and notes are accessible
through the side-nav.

e Thereis a “recently viewed” tab that can show the recently viewed.
e The notes display the time where it was last edited and viewed.

e A user can share their notes with other members as a shareable link or an invite
through email.

e Users can add reminders of tasks they have to do that day.

e Users can duplicate a note that they have.

e Users can search for something they need in a specific note.

e Evernote has a version history, where a user can view each version of their notes.

Disadvantages of Evernote:

e Again, the notes taking features are not as elaborate and deailed when compared to
something like Notion.

e Not every feature is availble in the free plan, for example the version history of the
notes.

Some of the features listed above are locked by a premium plan, however despite this
Evernote proves to be a very good balance of both applications, with complex enough
features and an easy to use Ul.

29

3.2.1.4 Text Scanner OCR
B Goooe

Figure 22 Text Scanner [OCR]

Figure 22 shows Text Scanner OCR, which is a mobile app used to extract text from images.
It is a simple app and focuses on the OCR functionality.

Advantages of Text Scanner [OCR]

Easy to use interface.

Text extraction is fast.

The returned results are accurate to the text presented.

The app can access your gallery or take a picture with the camera.
Settings can be configured to increase brightness or zoom in and out.

Disadvantages of Text Scanner [OCR]

Contains too many ads.

Cannot save results returned.

No web version.

Limited number of uses, as it can only be used ten times before needing to refresh
tokens.

30

3.2.2 Interviews

Interviews were conducted towards a variety of users to gather information and data on the
kind of people who would be using this application. It was also done to see their notes-
taking habits and how frequently they would use notes taking applications, and similar
tools. The interviews provided great insight into the different user’s habits and provided
some interesting features that they would have wished to see in the application.

The first interview conducted was with a 22-year-old student, who is currently studying in
their final year of college. This interviewee normally has multiple ways of notes taking,
ranging from flashcards to general computer notes, to notes on their phone. The
interviewee also finds organizing of notes into folders to be slightly tedious and would
prefer if they were more in-depth to allow for further organization.

When asked if the user enjoys making their notes look nice, the user says that they find it
beneficial, although they don’t normally spend too much time on it. They would use the
basics such as bolding, italics, changing the font size to represent a title, etc.

The interviewee uses a flashcard app known as Anki, and in this app, the interviewee has
several folders setup, one for college, one for their own personal development, one for
language learning, and one for an archive. The most important folders are set to the top of
the list, and in each folder, contains a set of folders including college material, modules,
lectures, etc, with each one containing an individual card. A feature that Anki has is to allow
for users to add tags to a card and organize those cards into tags to allow for easy sorting of
these cards, as all you need to find them is to search.

In this application, the user mentions that it does not have an archive feature built in with
the app and mentions that although it is not the most necessary, it would be nice to have
that kind of feature in an application for a better ease of use.

When asked what their favourite features were from this application, they mentioned Anki,
Notes on I0S, and Trello. In Anki, their loved how there was no paywall, and that it was
feature-heavy while remaining free to use, and the gamification of the application, allowing
them to constantly return to the application, as there is a daily streak feature that it has.

In the “Notes” app on I0S, they liked the straightforward Ul that it has, the autoformat, the
checklist, the ability to add checklists, draw, the fact that it automatically arranges by date,
and that a user can share notes with other users, and lastly has a global search feature,
which allows users to search for a certain thing, and the search feature will look through all
the notes to find it.

Finally, the features that the interviewee loves in Trello consists of the checklists, and the
priority sorting found in the application.

When asked if an OCR feature would be handy in a notes-taking application, the interviewee
replies with “yes, but | would be quite concerned about its ability to read handwritten
texts”. They find that it would be handy for other users but note so much themselves as
they tend to simply take notes on other devices.

31

Features they would like to see on a similar application being built would be the
gamification of a system like this, spaced repetition, add folders / subfolders, and easily
customizable, an archive feature and a global search feature, like the one in the Notes app,
and finally a daily notes section.

The second interviewee is a 23-year-old graduate. The interviewee generally didn’t really
take notes, even during their time in college, they would often only listen to lectures and
rarely take down notes, however when they do, they would always organize it, although it
can be mentioned that they would potentially use a notes application in daily life outside of
work reasons to bullet journal / consistently journal their tasks.

The interviewee used multiple notes taking applications, however Notion and CollaNote
proved to be their personal favourite.

Initially, they originally found Notion to be confusing, with overwhelming Ul as there are a
lot of features that Notion provides its users and great variety in customization. CollaNote
on the other hand was very easy to use and provided many features such as the possibility
of exporting as a PDF file, a collection of different templates and designs. CollaNote also
contains features such as public rooms, where anyone in the world can write things down,
the possibility to insert pictures, draw and even add stickers too.

When asked about their favourite feature, the interviewee quickly brought up CollaNote
again. This time discussing a feature that allowed documents to be turned into a PDF, and in
this PDF the user is allowed to edit things and highlight things that are written in the PDF
too, which the user found to be very helpful.

The next question the interviewee was prompted with was to see if they would make their
notes look nice and decorate their notes. The interviewee only uses the simple tools, such
as highlights, bold and italics, and bullet points.

The interviewee also thought that an OCR feature would be helpful in an application, as they
were very fond of the PDF feature found in CollaNote.

The interviewee is then asked for recommendations on features that they might like to see
in a similar application being built, and they replied with a calendar, a section that allows a
user to focus on certain tasks for the day, a schedule to make organization easier, that is like
a timetable, and a to-do list widget or section in the application, to help with the
productivity.

3.2.3 Survey

A questionnaire was carried out to determine the functional and non-functional
requirements of the application. It was conducted to find out how users would take notes,
and the methods they require to do so. This questionnaire also establishes what features
and functionalities that user would like to see in the application, and ways to figure out how
to improve upon the flaws found in similar applications already being used.

32

Microsoft Forms was used to create the questionnaire and was shared on various social
media platforms such as discord, Instagram, and Facebook. The survey managed to reach up
to 34 participants, with 23 out of the 30 participants consisting of 18 — 24 years old, and 3
participants being 25 — 34 years old. These participants were mostly in college / university,
with 64% of them being in a fulltime course.

These results can be seen in the figure below:

¥ Plmidi nebnil o il Bt desdi s you

Figure 23 Question 1 and 2 Results

33

In the next question, the user was asked to state how they feel about the following opinions
and can be seen in the figure below:

Elscgh bhpsd Bdper o lwbord B Damssi 0 ooy Gkt
- . _-
B L m
% 0 ey . _-
T St OO g PO ST
am wmd pEcd
& iy 13 Camle PanderneEn st 4 i

mn
v ity il e Ve i ol e by i
=i

Figure 24 Question 4 results

From these results, we can gather information that most users answering the questionnaire
find that organisation of their notes would be a great benefit towards the application. We
can also see that most users would like to see a to-do list feature, personalization and giving
them control over how the notes will look when looking through them.

With the user results being collected, it can be agreed upon that these features should be
included upon the development of the application.

The next question then asks the user to describe their experiences with notes-taking
websites / mobile apps and can be seen in the figure below.

S Can yoas Gesoribhe you eeseniancy with nobe- Blong seebaies Cmchde sppe”
3_.1 Vg Bl i e sl gl el
L i
Toalp B vy APl D0 T OFRR ST i LT TR A o7 Pl
B rprpomdm=t) M%) g=raares el For s goeies

probably we o -

general notes b AP

onling spps raga - b b v byped ke
Apps sech as trelfe easlen “ﬂtES L T p—
ni take motes: H
NOWEAPE oemal note Mboreselt moed TUVTT U0
At are dhunikoy app o sof b

Figure 25 Question 5 results

From the results gathered, and reading through the answers, a lot of respondents would
often organize notes into different folders to allow for ease of accessibility. Some also found
that the Ul of certain notes-taking websites were also a little complicated. E.g., a user found
notion to be complicated to use, seen in the figures below.
| used Motion but using it was very complicated and had to search how to usa
4 ANOEYTTIOUS some of the features which took time. | dont put much effort in note taking like
making it pretty so Word or normal note taking app usually would sutfice

Figure 26 User Results of Notion (1)

For me, thors was way 100 much clutter, and with thors 1o be more of &
minimalistic feel to note-taking. Though | don't use notes to study. For general
notes, | like to use Microsoft's To-Do app. For note-taking in class, | use
Mierasoft word

14 ANOIYTIOLS

Figure 27 User Results of Notion (2)

From these results, it should be noted that the app being developed should be easy to use
and user friendly, as that was a common flaw found in most of the answers. It should also
have an ability to save a user’s notes so that they won’t be lost.

The next question then asks what kinds of features a user would like to see in a notes-taking
application, seen in fig 28.

S VT Testured moubd g wigh 13 G i 4 noned-Laking weldine?
34 T B B bt 5 el off Aited s Bodds h ensi
Resncrdia A Spatung Fo mahe o loodr oyp o sritng lob of S
[aee muak of gty
12 respondinti [R5 srawiesd notis for el Gueifon
notes are retevant
Al |-|:I- b shyle Phﬂtg 'ﬁ motas iole lilel poles unded h“dlllgﬁ
categorise the notes
; LIy ﬂﬂtES option notes and folders
track of notes miultiple

foatlres oo ves in general

x computer notes

notes with friends changes o0t fomts
FI'I' I. | " AGlE il

Figure 28 Potential Features

This question gave a great insight on different features that could be applied to the
application. One of which included the ability to customize the look, adjusting different font
sizes, bolding and italics, colours, inclusion of images into the file etc. to allow for
customization.

Another set of ideas suggested is the ability to link different notes sections to each other, a
to-do list feature, a “sort” feature, bullet points and numbers option, and a clean Ul.

35

The user was then asked whether a “share” feature would be useful when using the
application, and as seen in fig 29, 100% of users agree that it would be a great addition to

the application.

7. Do you think it would be helpiul IF a user can share notes to other users In a web-applicaticn

Figure 29 Question 7

Followed up by this question is question 8, where the user is asked why they think it would
be a useful feature, to allow for teamwork and co-operation with other users. Potentially
friends and classmates. These can be seen in fig 30.

12 ANONYMOUS Would be easier to compare notes and maybe to kearn from others,
13 ANoNYMous For group projpects
14 AMOMyMoUS Would be super handy as students share each time

Figure 30 Question 8

Question 9 then asks whether a user would take notes on paper and wishes to transfer
them to the desktop device, seen in the figure below.

9. Do you tend to take notes on paper and wish 10 transfer these notes o a computer?

Figure 31 Question 9

Around 56% of users answered “yes”, showing that potentially developing OCR functionality
could be beneficial to the application, as more than half the users could potentially use this

functionality.

36

Question 10 then asks why the user would find it to be a helpful feature, seen in figure 32.

19 .
2 v i ¥ "] A
i i g
aifparad fo i Rt
W o accmisibbe nobr in iPed cemiputeipad
’ : likady
cumputer Pﬂperﬂﬂtﬂﬂ o
wificient way BT BT k L pen and pugar s

peinanal savenabong T

Figure 32 Question 10

From the answers seen, those who answered “yes” state that paper can be easily destroyed,
and that it would be more convient to have it saved on a device such as a mobile phone, to
have easier access to those notes, as well as for organization purpses. This can be seen in

figure 33.

Figure 33 Respondents of Question 9

The respondents who answered “no” to question 9 were also asked for their reasoning
behind their answer in question 11. Seen in figure 34.

37

11, i mot, can you provede a reason wny'!

15 Latest Reqponmes

- g o b
Retponses Writing in o rodeboak i equally or oopesclhle do me
*2 Update

6 responderits (40°8) answened meoles for this museston

n't really take notes Papers can go missing
Writing

computer “DtES pa per

notebook . sk effort expenditure
faster than | can write

mental tasks

Figure 34 Question 11

Where most users state that they already take notes on their computer, and don’t
necessarily need to transfer, however it is also important to note that there are users who

simply prefer notes-taking on paper, as they find it easier to retain information that way
rather than through desktop.

Question 12 asks if the participant uses any notes taking websites / mobile applications,
seen in figure 35. We can see that there are more users who answered “no”, with 44%
answering “yes”.

12 D ey wrie vy ather rotes-taking webdes?

Figure 35 Question 12

Question 13 then branches, and first asks the users who answered “yes” to list off the
applications that they use, seen in figure 36.

38

hor erdy i 3F = amer= | Pelarfiee e (Vo o par
Todoist

Miro and Waord

iPhone notes
Notion

Microsoft one note |,

Microsoft Word
Google docs

best i

phone Docs
Figure 36 Question 13

The users answered mostly with Notion, Microsoft Word and One Note, Google Docs, and
Trello. These applications are very commonly used and contain functionality that can
provide to be useful when taking notes.

Question 14 asks users if they are satisfied with the functionalities that are in these
applications, with most users answering with “yes”. This can be seen in the figure below.

. Ade yord wafnfed with the Featuret picyvided in thewe sppbcatorm !

Figure 37 Question 14

Question 15 asks users what they were dissatisfied with, only retrieving one answer where
the users “needs internet to use them”. Seen in the figure 38.

15 Can you say what you were dissatisfied with, whether this be features, user interface, etc

1 Retpormes

D+ Mams Responies

Figure 38 Question 15

Question 16 then asks users what they were most satisfied with, and the answers range
from cloud accessibility, support for multiple devices, ease of use, and allowing for the notes
to look nice. Some of these responses can be seen in figure 39.

39

Figure 39 Question 16

Question 17 then asks if there are any features that the user wishes to be improved upon,
and a common answer was to make the Ul simpler to understand and less cluttered. Some
also mention to have more functionality such as a built-in timer and music player, the ability
to make notes offline and allowing users to attach files, seen in figure 40.

Figure 40 Question 17

From the results gathered in the surveys, we have a better understanding of the types of
functionalities that the user can be expecting from an application such as this one, and the
Ul should also be easy to use and easy to understand.

40

3.3 Requirements modelling
3.3.1 Personas

Personas are fictional characters that are made to help developers understand what the
user’s needs are. These characters also help in identifying the target audience that the
developers are aiming for.

The data collected from the survey and interviews help with the creation of these user
personas. These personas contain the goals of that character, and their frustrations in what
they are currently working on.

The personas created are:

e Sally
e Anya
e Deniji

The personas can be seen in more detail in figure 41, 42, and 43.

41

Bio

e

Motivations

Cemeographics
Ager 38
Tatun k4
FOETT
Railex Br
LT iIeIN E L
Characters
Wants
L]
Personality
--II
o
=
. (I

Figure 41 Persona 1

42

Tech
T T
Sl Hefrworion
LA
GrTa
kvl EhOapeng
¥ #enn
Frustrations
.
L]
¥

RS
-
R
LR]

Stucent

J1

Bio Cemeographics Tech
A I i i M R
Satun Focial Hefworks LR R R]
Fioamdy 1 AR TR S
Raler &2 i o EEEREERE
(Bl g 1 el Ehaerag [

] Characters

Wirmisllsctunl EP T MCepnnasd st

Goals Wants Frustrations

- L] N

L]

Motivations Personality

Figure 42 Persona 2

43

Hiﬂ Demographics Tech

¥ il I § A 19 A e R
Tdrtum: P Social Hefworion LR R
- ._,. Formdly: tsmiang VAR S
: 1 l... i o Rl 'Wut Cevaleps raTia -
LosC ooy L2 Onlne Ehopen ®sssew
gpaling m] Characters

imisllsctunl BPmpcical BFonchuo II‘I'".:|-'||-.'-"-'. W Thaenr g

Figure 43 Persona 3

44

3.3.2 Functional requirements

The functional requirements contain a list of functions that users should be able to do in the
application. The list contains a set of requirements that range from high priority to low
priority.

Functional Requirements Priority

1 | Users will be able to sign up or log into the application

2 | Users should be able to create a notes folder

3 | Users should be able to edit a notes folder

4 | Users should be able to delete a notes folder

5 | Users should be able view notes folders

6 | Users should be able to create a new note

7 | Users should be able to update notes

8 | Users should be able to view all notes in a specific folder

9 | Users should be able to delete notes in a specific folder

10 | Users should be able to open notes

11 | Users should be able to access OCR functionality

12 | Users should be able to upload an image and read using OCR

13 | Notes can auto-save

14 | Users should be able to save an image to a specific note

15 | Users should be able to change their email

16 | Users should be able to change their password

17 | Users should be able to change their name

18 | An information icon to show how to use the website should be available | Low

19 | Users should be able to verify password Low

45

3.3.3 Non-functional requirements

These are requirements which if not met do not stop the application from working, but
which mean that the application is not working as well as it should. They are usually based
on issues such as:

o Usability

o Performance

o Security
Non-functionality Requirements Type
1 | The application should be compatible to mobile screen sizes Usability
2 | The application should work in multiple browsers Usability
3 [The application should have information of how to use some parts of the Usability

website
4 | Users should be able to navigate the website easily Usability
5 | The application should be user friendly and accessible Usability
6 | Users can access all their notes through a side-nav Usability
7 | Users will not be able to view another user’s account Security
8 | User password will require at least 8 characters and contain a number Security
9 [User password will be encrypted Security

46

3.3.4 Use Case Diagrams

There are two main users of the web application. These consists of visitors and registered
users. The use-case diagram is meant to represent what the users can do once they access
the website. The use-case diagram for the application and its potential users can be seen in
figure 44, and fig 45.

View Landing Fage

Visitor 4>[Create Account

Figure 44 Visitor Use Case Diagram
Visitors:

e Avvisitor can create an account.
e Avisitor can view the homepage and sign-in / login page.

47

Figure 45 User Use Case Diagram
Registered Users:

e Auser can login and log out of the application.

e Auser can view all their notes folders.

e A user can create a new notes folder.

e Auser can edit a notes folder.

e A user can delete a notes folder.

e A user can open each notes folder.

e Auser can view all notes in that folder.

e A user can create a new note.

e A user can edit a note.

e Auser can delete a note.

e A user can access the note and edit its contents.

e A user can change the notes font size.

e A user can change the colour of the note font.

e Auser can add italics and bold to a note font.

e Auser can add a checklist in the note.

e A user can access the OCR feature.

e Auser can use the OCR feature to upload an image and read the results from that
image.

e Auser can discard or save the results to another file.

e Auser can add a note to favourites.

e Auser can access all notes from the sidebar.

e A user can access notes from their mobile device.

48

e A user can save their notes through autosave.
e Auser can change their email address.

e A user can change their password.

e A user can change their profile picture.

3.4 Feasibility

The feasibility section looks over the different technologies that are to be used together in
the development of the application and looks at any technical issues that can arise during
development, e.g., compatibility issues.

The application will be developed using the MERN stack, and because of this, the
technologies that are to be used are very commonly used together.

The technologies used to develop this application consists of:

e React.js which will provide the frontend of the application.
e Express.js which will be the node.js framework.

e MongoDB which will provide the database.

e Node.js will act as the web server.

These technologies should be very compatible with each other, and technical issues
shouldn’t occur when working with this stack because of this.

Due to mobile compatibility being an important feature from the data gathered in the
interviews, the application should contain this feature. Mobile compatibility should be
accomplishable with the use of React Native to allow for this feature to be implemented.
Although due to time factors, it is possible that only a barebones version of this feature will
be accomplished, as other more important features are being developed.

Tesseract.js will allow the project to contain OCR functionalities. This library was studied and
compared with Easy OCR to see which library can be most effective in a web-application in a
previous section of this document. Due to Tesseract.js being a JavaScript library,
implementation of this library will be feasible and compatible with the other technologies
used in this project.

3.5 Conclusion

In this chapter, the developers are given a better understanding of what features are to be
seen in the application, as well as examining user’s needs before starting development and
design of the app.

This was done through several methods, including surveys and questionnaires, interviews,
and researching similar applications to gather the functional and non-functional features
that the application should have.

49

The survey conducted provided information on what users find useful about notes-taking
apps, and to gather general information about a user’s opinion of these apps. This ranged
from what they found to be advantageous, what they found to be a disadvantage, etc.

Interviews were then conducted to gather a better insight of a user’s opinions of these
applications and gather further information on what they would like to see more of.

The list of functional and non-functional requirements was then listed out, showing the
functionalities that the application should contain, ranging from high to low priority
requirements, where non-functional requirements showed what extra features the web
application can have that will improve the application.

A use-case diagram was also created to show how different users were supposed to interact
with the web application, and what they can access as a visitor, and as a user.

50

4 Design

4.1 Introduction

The chapter is to show the development of the design of the application. The design section
covers the Ul of how the app will look, covering the style guides, typography, wireframes
etc, allowing for the developer to view the finish product and where the functionalities will
be placed. It also covers the program design, which covers the technologies used and the
structure of the code, as well as the database design of the application.

The application that is going to be developed is going to be a web app, that will be
developed using the MERN stack. It will act as a text editing application where a user will be
able to store notes into folders and take down and save notes. Users will also be able to
upload screenshots of notes with text on them and read the text on that note using OCR.

4.2 Program Design

The program design section is essential to make the programming and coding of the
application to be better planned and more straightforward, following potential patterns
when structuring the code and API.

4.2.1 Technologies
The technologies that will be used to develop this application will be:

e MongoDB
e Mongoose
e Express.js

e React

e Node.js
e HTML
e C(SS

e Axios

e AWS

These technologies were chosen because they generally work well with each other. This
functionality helps with the compatibility of the application and can help minimize issues
when developing the app.

React

React.js is a JavaScript framework that is used to develop frontend web-applications. It is
commonly used to quickly develop the frontend of a website and would take much less code
than it would when using vanilla JavaScript. (David, 2022)

51

React was chosen for the reasons listed above, as you can create components that can be
reused throughout the website, providing a potentially quick development of the Ul of the
website.

MongoDB

MongoDB will provide the database of the application. The database will be in a JSON-like
format and as it is a NoSQL database, the fields and data structures of the database can be
changed and provide scalability (What Is MongoDB?, 2022). MongoDB is also easy to work
with and is highly compatible with the other technologies that will be used to develop this
application, one of which is Axios, which is what will be used to call data from the API.

Express.js

Express.js will be covering the backend of the application. The backend APl will be written in
Express.js, as it is a web-application framework that allows developers to build RESTful API’s
(Express - Node.js web application framework, 2017). It is flexible and lightweight allowing

for quick development and is compatible with the technologies available in this application.

Mongoose

Mongoose is an ODM (Object Data Modelling) library that is used for MongoDB and Node.js.
It Is used to manage the relationships between data, provides validation for the schema,
and can act as a translator of code for MongoDB. (Karnik, 2018)

It will act as a translator between React.js, Express and the MongoDB, to translate the code
and its representation in MongoDB.

Node.js

Node is an asynchronous JavaScript runtime engine and is used to develop scalable network
apps (Node.js, 2023). It will act as the server of the application.

AWS

AWS will allow developers to store the images, with the use of AWS S3 Buckets. This is
because MongoDB cannot store images and will need to be uploaded to a different method
of storage. In this case, it is S3 buckets.

Another set of technologies that could be used is the Django Framework, although this
would have been ideal when developing the OCR application, the time it would have taken
to become comfortable with learning Python and the framework would have been too long,
and setback progress on the application.

4.2.2 Structure of React

The structure of React consist of different folders, used for different purposes to keep it
organized. This section will be using the folder structure of a previous project and can be
seen in fig 46.

52

* M config

< . pages

Figure 46 React Folder Structure

Root Directory:

The root directory consists of all the folders that was used in the previous application. This
included the deployment, the build, node modules, public folder, packages, etc.

SRC Directory:

The SRC directory contains the many folders used to develop the application. It is where the
code is held, and contains the code and where the different components, assets, pages, etc.
are held.

Assets Directory:

The assets directory contains the images that are used throughout the program, and general
assets that can also be considered. It also contains the styling files, where the global styles
can be stored.

Layouts Folder:

Although not available in Fig 46. the layouts folder is where it contains layouts for the entire
project. For example, it stores headers, footers, nav-bars, etc.

53

Components Folder:

The components folder is where the components used throughout the entire application is
stored. Using a pervious project as an example, figure 47 shows what is inside the
components folder.

W O OO panenls

Figure 47 React Components

As seen in the fig 47, the different functionalities are stored in this folder, and contains
components such as cards, buttons, and forms. These components are globally available
throughout the entire application and can be called and used in the different pages
available.

Config Folder:

The config folder contains a set of configuration files, that can be used to store environment
variables. These variables are accessed throughout the entire application.

Pages Folder:

Figure 48 React Pages

Figure 48. shows the pages folder, which contains all the pages that the application has.
Within this folder is a sub-folder that organizes the characters page towards their
components. These pages normally contain components grouped into one.

App.js:

App.jsis used to display the application. It contains all the folders, routes, pages, and
components within the application.

54

Index.js:
Index.js displays the app.js file.

Routes Folder:

This folder contains the many routes of the application, ranging from private and protected
routes, and all other types. It can be seen in the figure below.

5 characters_to_comi..

Figure 49 Routes Folder

The backend of the application also contains the “controller”, the “data”, and the “models”
folder, which is used to store the schema, controllers and data of the application.

Figure 50 Controllers Folder

Controllers Folder:

The Controllers folder holds the CRUD functionalities of a specific object in the application,
e.g., CRUD of a specific character in the case of the previous application.

55

Models Folder:

The Models folder holds the schema of the application, and how this object will be stored in
the database, containing the attributes of e.g., a character for example.

Utils Folder:

Finally, the Utils folder contains the utilities used throughout the application. E.g., the
database

4.2.3 Model View Controller Design Pattern

The Model-View-Controller is a design pattern that is used to split an application into 3
different components: the Model, the View, the Controller. These components handle
specific requests throughout the application. It is efficient, and scalable, and is an industry
standard.

e The Controller receives the requests from the user and sends it to the model.

e The Model responds to actions that are requested and returns it back to the
controller. Once this is done the Controller sends it to the View.

e The View then responds with the data back to the user.

The diagram seen in Fig 51 displays the Model-View-Controller design pattern.

L1208
7 g
[Sanding Requosd | r Resporsn |
\\

! Eers pencing ¥Wikh Daba |

Bepairalivg Dala

!

Figure 51 Model-View-Controller Design Pattern

56

4.2.4 Application architecture

A web application architecture is a guide on how an application’s software are used
together, and how that application reacts with each other. This can allow for scalability and
reliability as they display the interactions are between things like middleware, databases,
and the frontend (Ferguson, 2021).

In this application, the application is using the MERN stack, which consists of MongoDB,
Express.js, React.js and Node.js. In this stack, React.js acts as the frontend of the application,
it is used to quickly build Ul and allow for the components that the website will be using.
MongoDB will then act as the database for the application, taking in the requests sent by
the user and sending back a response to the user with the requested data. It is used with
components consisting of JSON and uses JavaScript. Express and Node.js will then act as the
backend and server of the application, taking in API calls and requests and placing the data
requested to the webpage.

The diagram below (figure 52) displays the application architecture for this project,
displaying the frontend, the server, and the database, as well as showing the requests and
responses that is returned from the database.

Application Architecture

il Erudl’ Caiivl Bathived’ Effwer D labuiris

ﬂ@dﬂ' . .'mnngnI)B

Figure 52 Application Architecture

57

4.2.5 Database design

The figure below (figure 53) shows the embedded data models. These data models are seen
in the JSON file in MongoDB and are shown to represent how it looks in the database. These
embedded data models are required to store a set of related data in a singular database

record.

User Collection
usasrs: |{
i Objectid
nam: S1ring
amad; SIring
paEEswand: SiFing
imge [
_id; Ojectid
img_name: String
imag_link: 8ring (image link is rom AWE)
H
foldars: [{
_wd: Dibjoctid
folder_name: 53ring
Favouriles: Bookesn
il Okt
fith; Saring
body: Siring
loon: [{
id: Otjsciid
IGOn name: Sarng
icon_ink: String (Staned in AWS or loeal)
H
fimag_haesasd: [
i Cibjectid
img_name: String
iy _link: Saring (Scead in AWS]
H
seanned_images: [{
_id: Objectid
scanned_ img.name: String
scanned_img_lnk: 5tring (Stored in AONS]
H
chacklials: [|
_Hi: Dinctid
fite: String
complefed: Boolean
H
1
il
archivo: [[

notes: ||
Miotes ibems and details sem to archives
H

H

Figure 53 Database Design

58

ERD’s (Entity relationship diagrams) were also created to better display the relationships
between each item in a diagram. The ERD of the project is displayed in the next image
(figure 54) and can be better seen in Figma:
https://www.figma.com/file/8wushDYxUM3YNyoGIC2RUW/Final-Project?node-
id=0%3A1&t=vzfT2FTUSNURtNsh-1

L ¥ ol 4= carew

Figure 54 Entity Relationship Diagram

59

4.2.6 APl design

REST Endpoint Description
Method
GET Juser/ :id Get User
POST /register Sign Up
POST /login Log In
PUT /edit/user/ :id Update user details
POST /folder Create Folder
GET /folders Get All Folders
GET /folder / :id Get Single Folder
PUT /edit/folder/ :id Update user details
DELETE | /folder/ :id Delete Single Folder
POST /note Create Note
GET /notes Get All Notes
GET /note/ :id Get Single Note
PUT /edit/note/ :id Update note details
DELETE | /note/ :id Delete Single Note
POST Jocr_img Create OCR Image
GET / ocr_img Get All OCR Images
GET / ocr_img/ :id Get Single OCR Image
DELETE | /ocr_img /:id Delete Single OCR Image
POST /checklist Create Checklist
GET / checklist Get All Checklist
GET / checklist / :id Get Single Checklist
PUT /edit/ checklist / :id Update Checklist details
DELETE | / checklist / :id Delete Single Checklist

60

4.2.7 Process design

To show different sequences that the user might be going through while using the
application, a sequence diagram was created to display the process of what can be done
while using the application. The sequence diagram can be seen in figure 55.

FrontEng Back-End Danabase
Login : A :]
n 1 = H
= L Store Ulser Detals
Ditsplary Hioems pags :
User & - Load Homapags . Raten Oetails
|
Croate Folder . Fakier Dolal :
" fl f Datnis — —
P E Stovw Folder
Disglay Foldar
+ ..| Lasd N Foldar Figburn Foldar
i - ':'-. -
B Create Mole E : E
hd * gt Mote Cataits]]
E Slore Mole "
Dimplay New Hole "
- Lod Note) Retum Mot
— Upload COR Image . : :
8 e . = Aead Image m -
- Stere Regults and Imags -
Displey Results i}
4 ey - o Lowd Resuls N Ratum R asuls

R |
s
A——

Figure 55 Sequence Diagram

61

4.3 User interface design

This section discusses the design of the user interface. This is done through a set of steps
that look at the different requirements that were initially found in the previous section and
implemented with the functionalities and design in mind.

The app will first look at paper prototypes, wireframes, user-flow diagrams, and style
guides.

43.1 Wireframe

A wireframe is used to display the content and functionality of the layout of a page. These
wireframes usually do not consist of colour, or typography or much detail to begin with. We
start the development of the wireframes by initially creating a set of paper-prototypes that
are used to develop ideas on where to put different pieces of functionality and how to use
the system.

Figure 56 Paper Prototypes

Paper prototypes are generally done before building the wireframe, and are seen in the
figure above (fig 56)

One the development of these paper prototypes is complete, having a slightly more
developed version (without detail) is then created. The lo-fidelity (lo-fi) wireframes are then
made with the use of paper-prototypes as a guideline. The lo-fi wireframes show a better
look of how the application will look and provide a closer look into how the final application
will look.

The wireframes are provided in figure 57 below and was designed in a prototyping tool
known as “Figma.”

62

A by

Figure 57 Wireframes

63

4.3.2 User Flow Diagram

The user flow diagram shows how users will navigate from one page to another within the
application. It can be seen in figure 58.

i
A
1

Figure 58 User Flow Diagram

The full diagram can be seen in:
https://www.figma.com/file/8wushDYxUM3YNyoGIC2RUW/Final-Project?node-
id=0%3A1&t=Cc2mS5tSz8jgz3fE-1

4.3.3 Style guide

The style guide shows the colours, typography, layout, form elements, buttons, tabs, and
cards for how the website is going to look. Style guides are often used to keep the website
looking consistent. It also covers the grids and spacing of the application and how they are
used throughout the website. The full style guide can be seen below in figure 59.

64

Typography

Headen Heading 1
Headen Heading 2
lbeadey Hemding 3

IE EEELL

Forms

Typography:

Colour

Tabes

Figure 59 Style Guide

Hpacing Baattans

The font that will be used for heading will be Croissant One in several different sizes for the
headings to indicate importance. These headers will not be used often and will be reserved
for headings and areas of importance. The reason behind using this font is because it is easy
to read and suits the look and feel of the website. The paragraphs will consist of Roboto
Light as it contrasts well with the heading font and is also clear and easy to read, making it a
great choice for the body of the website. A screenshot of the typography can be seen in

figure 60.

Colour:

Typography

Headen Heading 1

Headen Heading 2
Headen Heading 3

lieade ileading &

Faragraphs

Figure 60 Typography

65

Colour will be used sparingly throughout the website. It will be used to highlight important

objects that are seen throughout the website, such as buttons. The colour pallet will remain
simple, as the main use of colour throughout the application will be from images. Figure 61
shows the colour pallet of the application.

Colour

Black
Light

White Light Rad

Figure 61 Colour Palette

Spacing:

Spacing is used to keep the application consistent with the size and how far each element is
away from each other. The consistency of the spacing is essential to allow for a more
professional-looking application. The spacing is seen in figure 62.

Spacing

= SOOI Sp
B Spacang 10px
e -

il Spacang 150

Spacing 20px

f Spacing 30px
U Speating 400
L

-
N Spaeaty SOp

Figure 62 Spacing Size

66

Buttons:

Buttons are used throughout the entire website. The different buttons are for different
occasions, for example “return to homepage” will only be used in the sign up and log in
form. These buttons can be seen in figure 63.

Buttons
o D
Sign Up Discand

=+ Add New Motes

Upload Notes

T ting
ot

Figure 63 Button Variation

Forms:

The form will consist of the text area and the name, it will also contain the buttons that are
needed. This can be the “sign up” button, the “confirm” button and the “return to
homepage” button.

Forms

A

Figure 64 Forms

67

Tabs:

Tabs are used to display where the user is on the website. It is used for easy navigation and
is accessible through the side navigation. The tabs are kept simple and clean to allow for as
little visual clutter as possible when navigating the website. Figure 65 shows the tabs when
navigating the website.

Tabs

» College Notes

> College Notes

Figure 65 Tabs

Cards:

Cards are used to help distinguish the different notes that the user creates. The cards
available will contain an image and a name of the note to allow users to differentiate it from
others. It remains simple to prevent visual clutter, with a drop shadow to highlight the card
itself. The second card shows when the user needs to save a note after using the OCR
functionality. The two cards can be seen in figure 66.

Cards

Mame of Maote

College Noles
"

Figure 66 Card Variations

68

4.4 Conclusion

In conclusion, this chapter discussed the program design, and how it will be developed, as
well as the user interface design, which discussed the different Ul elements that will be seen
in the application.

69

5 Implementation

5.1

Introduction

The implementation chapter discusses how the application was developed, as well as the
technologies used to build it. This chapter will be discussing the different technologies used
within the project, and the sprints that occurred throughout the project, and the items that
were completed within each sprint.

5.2 Technologies

The technologies that were used to develop the application are seen as follows:

(@)

React.js

React is a JavaScript framework that is primarily used to develop the front-end of an
application. React is component-based and can be used to quickly develop an
effective and intuitive, web-based Ul (David, 2022). The reason for choosing React.js
was primarily for its components, vast number of libraries and resources, and it’s
React Native feature, to allow for mobile-compatibility, and its fast development.

Express.js

Express.js is a fast, and unopinionated web framework for Node.js that is used to
build RESTful APIs and will provide the backend for the application. (Express -
Node.js web application framework, 2017)

MongoDB
MongoDB will act as the database for the application. It is a very flexible database
and scales very well as the application develops.

Mongoose

Mongoose is an Object Data Modelling (ODM) and is used for MongoDB and Node.js.
It can handle the relationships between the data and can translate objects within
code and how it is represented in the database, as well as provide schema validation.
(Introduction to Mongoose for MongoDB, 2018)

AWS S3 Bucket

AWS S3 is an Amazon object storage service that can retrieve and store data. It will
be used in the application to store images. (Getting Started — Amazon Simple Storage
Service (S3) — AWS, 2023)

Socket.io

Socket.io is a library that allows for cross communication between a client and server
and is used in our text editor to share documents with other users. (Introduction |
Socket.lO, 2023)

70

o Tesseract.js
Tesseract.js is a JavaScript library port of the Tesseract OCR engine. The port will
allow developers to use OCR functionality in a web-based application. The library is
used to provide the OCR functionalities seen in the application. (Tesseract.js | Pure
Javascript OCR for 100 Languages!, 2023)

o Quill
Quill.js is a powerful text editor library, that will be used to provide for the notes-
taking feature that the application will have. It is powerful, easy to use and
customizable (Quill - Your powerful rich text editor, 2023). The reason behind using
Quill is because of the Delta feature, which allows developers to store the position
and style of that specific document in a backend.

o Figma
Figma is a free online web service that is used for designing UX / Ul applications.
Figma was used to design the wireframes, and Ul of the project, and to create the
design systems of the application.

The application that will be developed for this project is a note taking application that
contains OCR functionalities. The user will be able to create new documents, sort their
documents into folders and use OCR functionalities alongside the notes taking features to
help users take notes on different mediums and transfer it to the application.

5.3 Implementation Roles

The project consisted of a single developer, and a project supervisor and secondary reader.
The project will be developed by Clemente, including all the design, functionalities, and
testing that is seen throughout the project, while being supervised by Cyril Connolly. Weekly
meetings were held, where updates for the project progress and criticisms were exchanged
between the student and supervisor and were consistent during the development process.

5.4 Scrum Methodology

Scrum Methodology was used for the implementation of this project. The Scrum
methodology follows the Agile Development methodology, and divides the project into
smaller, manageable goals that are achievable throughout development. These goals are
generally accomplished within one to two weeks, called sprints, depending on the plan that
the developers have set out. (What Is Scrum Methodology? & Scrum Project Management,
2022)

The project is divided into different roles, which consists of:

e Scrum Master — The Scrum Master is to guide the developers and manage the
project. They will oversee the project, keeping the Scrum up to date and will provide

71

training and mentoring in case a team needs it (What Is Scrum Methodology? &
Scrum Project Management, 2022)

e Software development team — The team that will be developing the project and
following the Scrum goals.

e The product owner — Will be the clients that will use the software that is being
developed.

In this project, Cyril will provide the role of the Scrum Master, while Clemente will be the
software development team that will accomplish the goals set out to him.

Each sprint in the project will be completed every two weeks, and in total consisting of 7
sprints, and a set of goals will be accomplished within those sprints. The figure below shows
how the scrum methodology was used:

F
I.?.." ...:' .I - - -

L I3

- [}
Figure 67 Scrum Diagram (What Is Scrum Methodology? & Scrum Project Management, 2022)

The requirements for the application were broken into a product backlog, and each item on
the product backlog was broken down to smaller functionalities, which created the sprints.
The product backlog can be seen in the figure below:

72

1 | Wserswill be able te sgn up or log into the seoicrtion

I | Users should be sble to crewie 8 nobes folder

3 | Unary should B abie b0 eds o nobet folder

4 | Usevy should be abde to delete § notes folder

§ | Useri ihoudd B abie varer fedt foldet

§ | Usary shoukd B able S0 crewte @ nere ooty

T | sers dhould Be able 1o upstabe Sebes

B | Usery ihauld B abis va views ol nsten n g ipeids folder

5 | Users should be wbis o defete nobes in & speofic foider

10 | Users dhould Be pbhs bo 8000 Aobes o takders

18 | Users shosdd b shis f0 open nobes

13 | Users shoukd be abds to socess OCR dusmaaality

13 | Uners showld Be abie to uplosd an mage snd resd vaing OCR

14 | Mobes o Wb ive

148 | Upery should B able to curtomis the look of thair neted, @ ., changing font
sipes, paciground colowr, ebc

18 | Usery should e able S0 sarve a0 mage to 8 specific note

17 | sers thould B abls bo crewts & to-da BSE s they scbis

18 | Userti ihauld Ba abls %o ihare thes agbia

15 | & inbormaion D6 DS Shiwy B 00 UEe The webdibe thould be padabie

3 | isers dhould Be abie 1o chasge ther prafile pirtse

Bl | Users showld e abis to change ther emall

1 | Users should B able o chaege thew padsword

I3 | Uners shold B abde bo chamge ther neme

4 | Sechiving notes should be o feature
¥ || Unery sholdd B able 0 venify prigword

PlE[E|R|E|E|E

Figure 68 Backlog

These sprints were accomplished over the course of two weeks and encouraged developers
to be productive to keep up to date with their work.

73

5.5 Development environment

5.5.1 Visual Studio Code

Visual Studio Code is a fast code editor that supports developers by syntax highlighting,
bracket-matching, auto indentation and many more. It allows developers to inspect and
debug their code and add many other plugins that is created by the community. (Visual
Studio Code, 2021)

The reason Visual Studio Code is being used is because it runs well with web development
and JavaScript and can highlight different errors that can occur during the development
process. It is fast, easy to use and highly customizable to run with different plugins.

Visual Studio Code is where most of the code will be written. It is compatible with React,
JavaScript, Mongo, Mongoose and works very well when also using Node to install the
packages that will be used to develop the application.

5.5.2 GitHub and Git

GitHub provides a method of version control. It will be used to create the many commits
that will be created and tracks the different changes that a developer makes within those
commits. It can also provide for different branches and merging. (What Is GitHub? A
Beginner's Introduction to GitHub, 2022)

The version control system was essential during development to help save progress or
revert to a previous version in case the current version is too broken to salvage.

The way these versions are uploaded to GitHub is using Git commands, which allows for the
different features and commits to be saved.

74

5.6 Sprint 1 - Research and Requirements

5.6.1 Goals

The goal of Sprint 1 is to research project ideas, view similar applications, and conduct
surveys and interviews to gather information on a user’s needs.

e Item 1: Research the ideas for project in a similar area.

e Item 2: Researching OCR Technologies in React.

e Item 3: Gather User Requirements

e Item 4: Create User Personas

e Item 5: List Functional and Non-Functional Requirements of application
e |tem 6: Create Use-Case Diagrams

5.6.2 Item 1 —Researching Project Ideas

The goal of this item was to perform research for the project area and find out what will be
built towards the end of the application. Due to the nature of OCR being heavily committed
with writing, developing a notes-taking application with OCR functionality was decided early
into the project. The idea of the project was to allow users to take notes on pen and paper
and transfer those notes to a desktop application to give them flexibility in where they can
store their notes.

5.6.3 Item 2 —Researching OCR Technologies in React

Technologies were then researched to see if this application was feasible to develop. As it
turns out, there are available libraries for React.js to that will allow developers to build an
OCR application. One of these being Tesseract.js, a port of Tesseract OCR to a react library,
usable within JavaScript.

A prototype was then developed in React.js to see if it is possible to add this feature.

Prototypes for the notes-taking side of the application was also developed during this time.
A library called “Quill.js” was used to develop the notes-taking part of the application, as it is
a very powerful notes taking library with the ability to store the properties of what is in the
documents.

Tutorials were used and altered for both the OCR prototype and the Notes taking prototype.
The notes taking tutorial can be found here: (Simplified, 2021) and the OCR Reader
prototype can be found here: (basarat, 2022)

75

5.6.4 Item 3 — Gather User Requirements

Gathering the user requirements was to find the different functionalities and features that a
user would be able to use within the application. The requirement gathering process was
done in three ways to maximize the usable functionalities within the application.

These steps consisted of:

e Researching similar applications
e Surveys
e Interviews

5.6.4.1 Item 3.1 —Researching Similar Applications

Similar applications were looked and examined to find the advantages and disadvantages of
that specific application. High quality applications were looked at to ensure that the
functionalities of the program that is being built will contain the essential features of a notes
taking application.

The applications that were researched were:

e Notion

e Evernote

e Google Keep

e Text Scanner [OCR]

The advantages and disadvantages of these applications can be found in Research Section of
this report.

5.6.4.2 Item 3.2 —Surveys

Surveys were conducted to gather mass data on the application. The surveys were sent to
gather data on whether the common person uses notes taking applications, what they like
about these applications, and the different features that they would like to see on an
application like this.

These surveys returned a variety of responses and helped further determine the
functionalities that the application will possess.

The results can be seen in the research section of the report.

5.6.4.3 Item 3.3 — Interviews
Users were also interviewed to find what features suit them, what they would like to see
and how they interact with these kinds of notes taking applications.

In these interviews, the users were asked what their favourite features were from notes
taking application that they have previously used, and the results were listed in the research
section of the report.

76

5.6.5 Item 4 - Creating User Personas

A set of user personas were created to showcase the potential users who will be using the
application, and to display their needs and wants that the application should provide. These
personas can be seen in figure 69 and is shown in greater detail in the research section.

]
r
I
|
I

Figure 69 Personas
5.6.6 Item 5— List of Functional and Non-Functional Requirements of the application

Functional and Non-Functional requirements were then listed. These requirements were
gathered from the needs that has been provided from the information that was gathered
from the surveys, interviews, and personas. The requirements were listed from high to low
priority to show the developers what to prioritise during the development of the
application. The list can be seen in the research section of the report.

5.6.7 Item 6 - Creating Use-Case diagrams.

A use-case diagram was then created to showcase what certain users can do. These
diagrams show the registered and un-registered users and what the application allows them
to do.

5.6.8 Conclusion of Sprint 1

The overall goals of this sprint were accomplished and gave a clear end-product on what
should be built towards the end of the project, showing the functionalities and needs that
should be implemented towards the end of the project.

77

5.7 Sprint 2 — Design

5.7.1 Goal

The goal of Sprint 2 was the design the different parts of the application. These included
both the Program Design, and the User Interface Design, showcasing how the project will be
developed in its design systems, as well as the look of the application.

e Item 1: Research the Technologies
e Item 2: Database Design

e [tem 3:Process Design

e Item 4: Wireframes

e Item 5:User Flow Diagram

e [tem 6:Style Guide

5.7.2 Item 1 —Researching the Technologies.

This item consists of performing research on the technologies that will be used in the
application, the design patterns that will be used and the architecture of the overall
application.

e Technologies and Structure

The technologies that will be used for this application was displayed in this section,
showcasing the stack that will be used and explaining the reasoning behind using them.

The structure of how React.js is used was also discussed, showing the different folder
structures, and explaining the reasoning behind that structure.

The Model View Controller (M.V.C) design pattern was also discussed in this section,
showing how the stack uses M.V.C and a diagram to compliment it too.

Application Architecture was also in this section, it is to show the connections between
the technologies and how they all worked together to create the finished product.

These can all be seen in further detail in the design section of the application.

5.7.3 Item 2 — Database Design

The database design section then showcases the structure of the database. Diagrams were
created to show the relationships between data, and how they will connect with each other.
These diagrams include a Database Record and Entity Relationship Diagram and can be seen
in the figure below (figure 70), and in greater detail in the Design section of the document.

78

Figure 70 Database Design

5.7.4 Item 3 — Process Design
The APl and Process Design were created in item 3.

The API design shows how the calls should look in the backend of the application, and what
calls a specific entity should be able to perform.

The process design then shows a sequence diagram that show the process of what is being
performed.

These diagrams can be seen in the design section of the report.

5.7.5 Item 4 — User Interface Design

Iltem 4 then shows the creation of the User Interface Design of the application. This is done
through a series of steps that allows for a final design to be created, which includes:

e Paper Prototypes and Wireframes
e User Flow Diagram
e Style Guides

5.7.5.1 Item 4.1 — Paper Prototypes and Wireframes

Paper prototypes were produced to quickly lay down ideas for a potential Ul design. This
was done to allow for mistakes and fast creation, and to give ideas on how the webpage will
look before wireframes are produced.

Once a paper prototype was completed, a wireframe is then created. The design of the
wireframe is based on the design of the paper prototype; however, the wireframe is built in
a design tool. In this case, the wireframe was built using Figma.

These paper prototypes and wireframes can be seen in the figure below (Figure 71) and can
be seen in greater details in the Figma board, or the design section.

79

Figure 71 Wireframe

5.7.5.2 Item 4.2 — User Flow Diagram

A user-flow diagram was then created to show how a user will interact with the website,
and the pages that they are to be led to, after clicking a specific button, or nav component.
This was done to show how they will interact with the design and for navigation purposes.
The user-flow diagram can be seen in figure 72.

Figure 72 User Flow Diagram

80

5.7.5.3 Item 4.3 — Style Guide and Finished Design

Finally, a style guide and the finished design was created. The style guide was built to give
the Ul of the application a consistent look, and to choose the colour scheme, iconography,
font and font sizes, etc.

With the style guide completed, the finished design was then constructed, and built with the
use of the style guide and the wireframe.

The finished design and style guide can be seen in figure 73.

= D o W - .
— =1

H =

..... C EEn
=]

Figure 73 Final Design

81

5.8 Sprint 3 —Implementation 1
5.8.1 Goa

The goal of sprint 3 was to begin the implementation of the application. During this sprint,
prototypes were further developed separately to see if the different parts of the application
can work together. The items that were developed during this phase of the project were:

e Item 1: OCR Functionality prototype.
e Item 2: Notes taking prototype.
e Item 3: User profile.

5.8.2 Item 1 — OCR Functionality Prototype

A prototype for OCR functionality was developed in React. The tutorial used to develop this
prototype was found on YouTube and uses a library for React known as “Tesseract OCR”, a
library that was ported from Python to JavaScript.

The prototype that was developed took in an input from the user and uses Tesseract to
read the text and return it back to the user.

const Home = () =» |
i tores data, progress label and result
3 const |pr P P = 5
const [progressiabel, = idl
const [ocrResult, setOcrResult] = usesta y
const [imageData, setImageData] = useState(null
loads the file that the user 1r puts
const i file =>
] const 3l = Mew ler(
16 reader.onloadend = () => {|
] const nagedata = {
tIm ital I
28 re; | RL{file}

Figure 74 OCR Prototype (1)

In figure 74, the data is first stored using useState, setting it to its initial value. The file that
the user inputs is then loaded with the use of the “loadFile” method. When the file is then
read, the result is set to the image data using the “setlmageData” function.

82

{ O E workErget ine@eti full

kerilelf , current - &l

I ERTAER =)

Tln mESLaEe
B L SARe. Progress
BEEEAEE progross == 1 ¥ " Den ¢ meesagpe.status

foourrent? .

f.current = nuall

Figure 75 OCR Prototype (2)

Figure 75 then shows a new worker being created, coming from Tesseract.js. The worker ref
then logs the progress message, setting the status until it is complete. Once it has been
completed, it then terminates the workerRef.

{] I 1 13} 4
(i
tarting
netional ity 1 Ther erformsd, | 11ng Tl langauge that it 1
const b i #f . curTent
il k
t ki i .
ki
p = Ol i} it
const e = g i
reg the i |
1 H Lt [e i data. text)
consale, [e e.data

Figure 76 OCR Prototype (3)

Figure 76 then shows how the extraction of the text is handled with the “handleExtract”
method. The progress label is initially set to 0, then “starting” when it begins extracting text.
Line 48 shows the workerRef being received in its current state, then loading the worker and
setting the worker’s language to English in line 50 and 51.

Line 54 then shows the response after the worker recognizes the imageData variable. Once
this is complete the result is set in line 57 and console logged in line 58.

83

5.8.3 Item 2 — Notes Taking Prototype

The prototype for the notes taking section of the application uses a library called “Quill.js”.
The tutorial for this prototype was found on YouTube, and can be seen here: (Simplified,
2021)

The goal of this item was to develop a notes-taking prototype with a working backend that
connects to MongoDB. This database uses a prototype database and was not used in the
final product, when all the prototypes are connected to create one application.

These are all from Quill

B const SAVE INTERVAL M5 = 2000;
const TOOLBAR OPTIONS =
1@ { header: [1, 2, 3, 4, 5, 6, false] }],
11 font: [] }1,
19 { list: “ordered” }, list: “"bullet” }].

"bold", "italic”, “underline”],
14 [color: [] }, { background: [] }1,

L [script: "sub™)}, { script: "super™ }1,
Lt [align: [] },

) image” , blockquote”; “code-block” |,

LE “clean”],

Figure 77 Notes Taking Prototype (1)

Figure 77 displays the toolbar from Quill. Line 9 to 19 shows the different options that the

4

user can use, and all come from Quill.js, and stores it in a variable called “Toolbar Options”.

Line 8 just stores the save interval, saving every 2 seconds.

Figure 78 Notes Taking Prototype (2)

84

Figure 78 then shows the text Editor function, with the different use effects required to
work.

Line 23 to 25 first creates variables. The Line 23 takes the document ID from the parameter
of the URL. A socket and Quill variable is then set with a useState.

The useEffect in line 28 shows the connection being established, with the use of socket io to
localhost 3001. The socket is set to “s” and is disconnected when it’s finished.

The useEffect from line 38 to 48 loads the document. It first check to see if the socket is null,
and will return if it is, seen in line 40. If it is not null, the socket then loads the document and
sets the contents to the document loaded. Once that is completed quill is then enabled in
line 44. The socket then gets the document with the use of the document ID.

Figure 79 Notes Taking Prototype (3)

Figure 79 shows the use effect that saves the document. It first checks to see if the socket is
null and return if it is. The setInterval function then runs the save-document function every
two seconds, coming from the “SAVE_INTERVAL_MS” variable set earlier in the page.

Figure 80 Notes Taking Prototype (4)

85

Figure 80 then shows the updates for changes being made on the document. The first
useEffect will listen for changes being made by other users and presents the updates that
those users perform. The delta is then applied to quill using the updateContents method.
Delta simply stores the position and styling of the typography being used in the document.

The second useEffect listens for the changes being made by the current user. The handler
function is called whenever a change in the document is made, and the delta variables are
to show the changes made, the old version and who made the changes.

Figure 81 Notes Taking Prototype (5)

Figure 81 creates a function called “wrapperRef”, to render out one toolbar. The wrapper
first checks to see if it is null, then sets the inner HTML as an empty string. A div is then
created and appends a new quill editor. The new Quill editor takes in the theme, and the

toolbar.

The function will initially be disabled, seen in line 98, but will enable once it finishes loading.

The server side of the application was also built during this prototype. It is stored in
MongoDB and is written in express.js. The structure of the code consists of the controller,
the models, the routes, and the server. This can be seen in figure 82, the figure below.

Figure 82 Backend of Notes Taking Prototype

This kind structure will be found throughout the entire backend of the application and will
be explained in detail in this section.

86

We will first start by discussing the document model.

ot imdes eatEditor L Document.js X
"

1 const { Schema, sodel } = require('monpoose’)

const Document = new SCchemal{

4 id; Object,

L title: |

! iype: 5iring,
I

¥
1 data: Object

14 madule, exports = sodel("Document” , Document)

Figure 83 Document Schema

Figure 83 shows the document model and shows how it is supposed to be stored in the
database, consisting of an ID, a title, and the data, which is the quill.js document files being
stored.

It then exports the model as “Document” and is used in the document_controller.js file.

- B a1
- Do TDETORE | sl
i i const Docusent = regoire] . . model s Oocomsnt)
5
e -
& conet rasdbats = . FERl =% |
2 EacsC e L 1 Ll
. i : hes (data) =5 |
iy O THEL, CTHTT i conaole. logldata);
FRXT ACTCH. PROTETYE vl f (data.length » @) |
 seres a8 res. statos] Feb . sonddata) |
L 1§
i —— 3] LR
: 11 ret. s5tati S . il "R ol
£k 7
8
|
N o 14 ccateh{err) & |
15 LomRplE, lod[err)s
Frskoiar g LA T
.- '
w |
d ; e
; M 3 ponst readine = (Peg, res) =k |
! ' hi
W i 1
Aardil 5 50 ¥ ponst createData = (redq, ros) =n |

- const opdat+fista s [reg, res) =&

0 e et

ra
L k
el L R i1a ponst dilétedats = (g, reEs) =
PP (P T L1

Figure 84 Document Controller

87

Figure 84 shows the document controller and shows the different CRUD functionalities that
is being used, although this will be changed in a later section to suit the folders feature of

the application.

The readData function seen in figure 84 will return all the documents that is in the database.
The find() method is from MongoDB and will find all the data and return it to the user. The
if statement provided is for error handling in case no data was available.

Figure 85 Document Read One Method

Figure 85 then shows the readOne method. It first requests for the ID of the document from
the params, then it finds the id using the findByID method, passing the id as a parameter. It
then checks to see if the data is available, where it returns “Document with ID: ${id} was not
found” if that document doesn’t exist, and simply returns the document if it finds it.

A catch is then put in place as a method of error handling, to check if the ID is valid or not.

88

50 const createData = (req, res) =» {

51 let documentData = req.body;

52

53 ff accessing the mongoose model

54 Document . create(documentiData)

55 Jhen((data) =3 {

56 console. log("'new document created” , data);
57 res.status{281).json(data);

3 1)

59 Latch{{err) => |

il if (err.name === "ValldationError') {
61 console.error("Validation Errorl’, err);
6 res.status{422}).j50n({

63 "msg”: "Walidation Error”,
e Terror’: err.message

65 3 H

66 } else {

67 console.error{err);

63 res.status(508);

69 :I

i) 13

1

73 _“

Figure 86 Document Create Data Method

Figure 86 shows the create data method. This method allows users to create new
documents. It first requests for the body, then accesses the mongoose model and uses the
create() method from MongoDB and passes the data as a parameter.

It then checks to see if it is successful and returns the data with a status of 201. If it is not
successful, an error is thrown to the user.

89

Figure 87 Update Data

Figure 87 the shows the updateData method, which updates the document data. It first
takes in the ID and the body that the user decides to put in. It then uses the
findByldAndUpdate() method to update the data, through an error if it is unsuccessful or
invalid data was provided or returning it if it was successfully updated.

Figure 88 Delete Data

90

Finally, figure 88 shows the delete data method, where it takes in the ID that the user wants
to delete, and uses the deleteOne() method to delete it from the database, again throwing
an error if it is unsuccessful, and showing a message “Document with ID: ${id} was not
deleted”, and if it is successfully deleted it returns with a status 200 and a message saying it
was successfully deleted.

Figure 89 Exports of Functions

Figure 89 then shows the functions being exported, and it is then use in the routes folder.

.

Figure 90 Routes

Figure 90 shows the routes file and uses the functions that were exported from the models
file and matches the function with the route of the request, for example router.get(‘/:id’,
readOne) gets the id of the URL and uses the readOne method. The router is then exported.
To the server to be used.

91

Figure 91 db.js

In the figure above, it shows the Utils folder, where the db.js file is stored. The connection is
established to the MongoDB database here using an environment variable that stores the
URL called “DB_ATLAS_URL”.

The server.js file then uses all the components together to run the server for the
application.

Figure 92 Server.js

The figure above shows the connections being created and requiring all the different utilities
needed for the server to run.

92

We first require mongoose, express, and socket io. Then the server is then created with the
port of 3001, as well as the socket.io server. It then requires the dotenv file and the db.js file
for the database. The server then is changed to accept json and sets the view to html.

i |r]':=" 1
app.usel’ fapl/document’ , requirel’ . routes/document”));
app.use(” fapi/document ', require(’ ./routes/document2’));
app.usel " fapi/folder’, reguire(’./routes/folder’));
ef " . feervices/document service') {io);

-.'.|;.:::...r;.-l_ %

console. log(Example app listening om port &{port});

Figure 93 Server Port

Figure 93 finally shows the paths that is being used and console logs the server port. The
services folder will be discussed in a later section.

5.8.4 Item 3 — User Register and Login Prototype

Iltem 3 was to develop a prototype that allowed users to register and login to the

application.

The development of the user’s register and login were very similar to the document CRUD
functionalities, with some changes.

Like the document, the user contained a schema, a controller, a route, and was all placed
into the server.js.

93

Figure 94 User Schema

Figure 94 first shows the user schema, the user will need to input their name, email and
password in the schema, and the password becomes encrypted with the use of the function

seen inline 28 to 32.

The schema is then exported as “User”.

Figure 95 User Controller Register Function

The user controller is then seen in figure 95, where it displays the register method. It is like
the create method, however it encrypts the user password with the use of a library called
Bcrypt.js and saves the user into the database.

94

Figure 96 Login Function
Figure 96 then shows the login method and what is being exported.

The login will first check to see the user’s email address. It will then check to see if the user
password is the same as the password that was stored in the database, or if that user exists.
If it doesn’t it returns an error, otherwise it will generate the token with the use of JSON
Web Token (JWT), and sign the user in. The secret key from JWT is the
process.env.APP_KEY. It will then return a status 200 if it works.

95

Figure 97 then shows the authorization of the application. The login required is to ensure
that a user is logged in before proceeding with the rest of the application.

1
F

Figure 98 then shows the route of the user, and what it can do. Here it takes in a register

USeT_SCarmas

5 &
L

15

user_controllarjs

! checks to see if there is a user available
const loginRequired = (req, res, next) =» |

if (req.user) |
naxt])}

é]ap {

res. status (a@1).json({
msg: "Unauthorised user!!™

b

module.exports = {

loginfequired;

Figure 97 Login Required Function

const express = reguirel express”);
CONSE router = express. Router]);

ff import user _controller. curly braces is where you specify what ur importing

const |
reglater,
login

‘, B

b = reguire(®../comtrollers/user_controller');

rTer
post(" fregister” . register)
post("'flogin®, login)

module .exports = router;

Figure 98 User Routes

and login.

96

auth_controllerjs @

Finally, the server.js is mostly the same, however it adds a middleware that can be seen in
figure 99.

Figure 99 Middleware
This middleware checks for the JWT token and verifies it.

This item of the sprint allows users to login to view their profile and will be altered to show
users their own specific files and documents.

5.9 Sprint 4 — Design 2
59.1 Goal

The goal of this sprint was to update the design section, to cater for changes that were
made during the development of the application in Implementation 1. The backlog and
design of the application was updated to create a more user-friendly design of the
application. The items that were included in this sprint were:

e Item 1: Update Backlog.

e Item 2: Update user interface design.

e Item 3: Connect Prototypes (including backend).
e Item 4: Bug Fixes and problems.

5.9.1.1 Item 1 - Updated Backlog

The functional requirements backlog was updated slightly. Some features were removed or
placed in a lower priority to focus more on the development of the more core-features of
the application. The updated backlog can be seen in figure 100:

97

Users will be abde to sign up or log into the application

Users shauld be able 1o create a notes folder

Users should be able to edit a notes folder

Users should be able 1o delete a notes folder

Users should be able wiew notes foiders

Users should be able 1o create a new note

Users should be able to update notes

Users should be able to view all notes in a specific folder

Users should be able to delete notes in a specific foider

10

Users should be able to open notes

11

Usars should be able to access OCR functionality

12

Users should be able to upload an image and read wsing OCR

13

Hotes can auto-save

14

Users shouald be able to save an image to a specific note

15

Users should be able 1o change their email

16

Users should be able 1o change their passwond

i¥

Lizers should be able to change their naeme

18

An infarmation ican to show bow to use the website should be available

19

Uzers should be able 1o wverihy password

Law

Some parts included in the backlog were already included in other features, such as “The
ability to style the notes page” being included in the Quill.js library already being done. The
to-do-list and share notes feature were removed to focus on other parts of the project.

Some parts of the project were also increased in priority, such as a user being able to edit

Figure 100 Updated Backlog

their own profile, compared it initially being set to low.

98

5.9.1.2 Item 2 — Updated User Interface Design
The user interface of the application was also updated.

v RSMET

l:l ; v RSEATE

H e

N - h
| e

Figure 101 Updated Design

The updated design is seen in figure 101, this design includes the modals and pages that
were created while developing the application. The new design contains the modals for
when the user wishes to edit their profile or document.

The user can also view the files that was saved from the OCR reader in a modal and is seen
in its own separate page.

The title of the document or folder can also be seen when viewing either the document or
the folder.

99

5.9.1.3 Item 3 — Connecting All Prototypes Together

The goal of this item was to connect all the existing prototypes together to form a more
unified application. This was accomplished by combining the prototypes one-by-one,
starting with the login and register functionalities, then including the OCR Reader page, and
finally including the document editor.

2

Figure 102 Combined Frontend

Figure 102 shows the structure of the combined project, including pages and components,
showing all the prototypes combined.

100

2 Wort [Link, usdavigate | fros “react-routs fom"
CORET Mavhar = {@EropE] =>

const mavigate = esedavigate;

prFept . andat hint L ated] fale)

ErPrelatype

& iy
|
q k to="fregister s
kagister
Il Lnks
|
4 £ o= HihF
Logdn
oy ik
|
Lim" Rl LT - DO LA, " 1

G | g 1 - eheed Lmmei

ol T

[progs srthenticated) ¢

TS R . Fin vt & T A S

Figure 103 Navbar Component

Figure 103 shows the navbar. The inclusion of a Navbar was also included in this phase, to
allow users to navigate to the different pages that were created.

101

Figure 104 App.js file

Figure 104 shows the app.js file, which was also modified to include all the new pages for
prototypes that were combined, allowing for the baseline of the application to be created.

A similar procedure was also performed in the backend of the application, combining all of

them into one.

102

& 7

¢ OB

Figure 105 Combined Backend

Figure 105 shows the controllers, schemas, and routes, creating one central backend for the
application. A new MongoDB database was also created for the new data being made.

Figure 106 Server.js

Figure 106 shows the server.js file. This file now contains all the routes that were required
to combine the prototypes, although there were some slight modifications made to allow
for the server.js file to work alongside the document’s functionalities, which will be covered
initem 4.

103

5.9.1.4 Item 4 — Fixing the problem with the document’s backend.
The goal of this item was to fix a certain problem that was occurring with the backend for
the documents file.

As socket.io was running its own server, the actual server for the backend needed to be
restructured and altered to cater for this cause, as there were problems occurring when
both servers were running.

Unfortunately, a screenshot of the error was not taken during this process, however, to
allow this to work the socket.io server must be using the same server as express and use the
functions the document to save.

Firstly, the socket.io server was first initialized to use the same server as express.

L.

Figure 107 Initialization

Figure 107 shows the initialization of this, with the CORS option being set in the process.
Line 14 — 21 then creates the server location.

The next step to solving this problem is to use the required functions to allow the document
file to run. This is first done by separating these, and placing it into a services folder, which
held the document_service.js file.

104

N MR

. "
=
. -
- e
-
.
a
a 1
& . -
i
= -

Figure 108 Methods
This can be seen in figure 108, where the methods using socket.io are being used.

Finally, it is required to run these functions and get used in the server.js file.

A7 I SRR - Ty | & -y ———
18 app.usel’fapi/users’, require(’./routes/users'));
49 app.usel ' fapl/document® , require!’.froutes/document’));

S5 app.use(" fapiftolder’'; require(”./routes/folder’));

51 requirel ' . fservices/document service')(io);

52

53 server.listen{port, () =»

54 console. log{ Example app listening on port ${port});
= .

3 i

Figure 109 Paths
The figure above shows the document_service.js file being run, in line 51.

The result of this restructuring of the code allowed the document file to work again when it
has been incorporated with the rest of the prototypes, allowing for the application to work.

105

5.9.1.5 Item 5 - Bug Fixes and problems
Aside from the major problem shown in the previous item, there was only one minor
problem that occurred during this phase of implementation that was notable.

Figure 110 Problem 1

Figure 110 shows an infinite loading screen occurring, which didn’t allow users to use the
document editor, as it was disabled until the data was returned.

Jisten(port,

console. log

Figure 111 Result

Figure 111 shows the problem. The reason for this not working was because “app.listen” in
line 53 was not using app anymore, and needed to be updated to “server.listen”.

Jdisten(]

console. log

Figure 112 Result

Figure 112 shows the correct code, and the infinite loading for the documents page has
been fixed.

106

5.10 Sprint 5 —Implementation 2 and Testing
5.10.1 Goal

The goal of this sprint was to implement more features of the application, as well as
perform minor testing to help eliminate errors that were occurring during the development
of the application. The items for this sprint include:

e Item 1: Including CRUD in the Frontend for Document Editor.
e Item 2: Displaying the documents that is specific for each user.
e Item 3: Adding basic styling to project and pages.

e Item 4: Including an image upload feature.

e Item 5: Bug Fixes and problems

5.10.1.1 Item 1—Including CRUD in the Frontend for Document Editor.

The goal of this sprint was to include the CRUD functionalities in the frontend of the
documents. Currently a user is unable to create, read, update, or delete a document unless
it is viewing a single page with the id already available or using the backend to perform
these methods.

To start, TextEditorPage.js was created to display all documents. This was done with the use
of axios, retrieving all the documents from the database. This can be seen in figure 113.

const TextEditorPage = (props) => {

" pets all documents

18 const [documents, setDocument s useStatelnull):

12 seEffect({ () =3
axios.get(” /document/${props.userID}”)

v oa x4
Sdoc ument ")

14 [oaxios.get| ent ")

1 then((response) =
L& console. log(response.data);
setDo aent(response. data)l;

nilerr =%

Figure 113 Data Removal
Figure 114 shows the data being retrieved.

The data is then placed into a document card, which will receive the document id as a key.

107

Figure 114 Error handling
Figure 114 shows the that if there is no documents, it returns as “loading”.

Line 34 — 37 shows the documents list returning a card for each document that is within the
database.

The document card is a separate file, which contains its own properties, that can link users
to that specific document.

Figure 115 Document Card.js

Figure 115 shows DocumentCard.js. It uses the title as a link to the specific document, line
10 shows the route, using the document id to redirect the user to that specific document. It
also contains the edit and delete document buttons.

108

ChisTaxt Edltor Created/Fla

Lreate

Chivpisplay Documentsc/hils

L4 s

Figure 116 Document List

The document list is then placed on the page to display all the documents. This can be seen
in the figure above.

If the user clicks on one of the links, it brings the user to the single document page.

Figure 117 Protected Paths

Figure 117 shows the protected paths. On line 54, the route will take a document ID and
redirect it to that text editor page with that same id.

109

Home tczProtonps Bemeter Lowin Selec ooy g | Coge

Text Editor Create

I £ || I

Display Documents
1D TR e TR 12k

T St [T A0 070w | ey
1B AR Sty S0 ik v el Bl e
10 M St | e e 2 - b A St
100 W2 AT per o T i D T
10 1 TR B RS 4R Saks 0 Br L bebin |60
By bt BT 418 o] Th esdalifiide
1. St A TN] i bl 48 e Ba4ES Y
L. Ul ™ 2. 2R b | e L S
1D PRS- E AT 5 S M 0 N b
VEx. bty 8] 1 S s fl W Pl
[FeBR At P TR R R R B D T o
LR S) - P obi] - b 7 | e SR e]

10 el B4 T -mede - 2209] A0S

Figure 118 Displaying All Documents

Figure 118 shows the documents all being displayed, simply showing the ID of each
document.

Next, a create method was built in the frontend. A page was first created for the create
documents page, this contained a form for the title of the document, and later will add an
image.

110

axios from

URrfaV1gace | 1r i o
ot
£ s | r ;
Comst] i 5
et [.
piple: ™
=NET § B
| [FCec] P.TArEeT . Mabile
FET & target.valu
prevaiaie
Jprevitate;
URE] va lua
d =18 Flalds 5
et Error false}
Field £1 i
| Fleld
errorn Trusg
T prevstate
L s <iate
1wl
masage: Rifield} s Required|]
Error;

Figure 119 Form

Figure 119 shows the setup for the form of the application. The “handleForm” method is
meant to handle the different input fields in the form and is useful if there were more than
one input field.

The “isRequired” function is to state whether that specific field is required when creating a
new document.

111

Figure 120 Handler

The submit form is then used to handle when a user is submitting the form. It first takes the
token and user id from the local storage of the app. It then creates a form data and appends
the title from the form, meaning the title is now a part of the formData variable. Once this is
done an axios.post request is done, uploading the formData to the userld.

The content is specified to be a multipart/form-data as an image upload will be
implemented in a later sprint.

The data is then uploaded, and the user is navigated back to the select-document page.

Figure 121 Submission

Figure 121 shows the form and the submit button using the submitForm function.

112

The edit documents modal is like the create document function. The code will first contain
the modal styling, seen in figure 122.

Figure 122 Edit Document Modal
Figure 122 is a simple modal that will only be the styling for it temporarily.

The code then sets up the variables that will be used, and the isRequired and handleForm
functions, which can be seen in figure 123.

Figure 123 Is Required and Handle Form Functions

113

The axios.put method is then used in the submit form. It uses the documentID to update it.
This can be seen in figure 124.

Figure 124 Axios Call

The form itself is seen in figure 125.

Figure 125 Form

Finally, the implementation of the delete document will be done. Figure 126 shows the code
for the delete document function:

114

L |

i i importing t
lmpart axios fream ™. .0 ..) . fconflg/ Index™;
const DeleteBtn = (progs) = |

const useriD = JocalStorage.getItes{ userId’

he wrl and axics from configlindex File

const onbelete =) =&
& token = localitorage. petltes] " Token’ }:
axios.delete] Mh{props. resource)/ S{user D} 4 props. id) ", |
18 Feaderes |

11 “sgthorization™: “Bearer §{token)

13

L} 1]

¥ L (Feipaesa) =k |

fansale. [og[redponts . data))

1 props . Cal Lack{ props . 1d)
II

12 Latchi[err) =5 |

fosal e, error{ere i

F k] LoRale. Liog ﬂr'l'.I'F"ali‘l'ﬂ‘\l".du'l?ﬂ.il"'ﬁ"lﬁgl":
153

£ 1

1

1 FELurm |

i £ LSy
wanl § vt w " agt | fdl”

FT Colod-s " @ rorE

el

o £ this delete betton [s punna expect 8 funcbion
ok i clos (orDe Lete)

il o et e MRk Eons

d '

"
L

Euport default oel 4 =740

Figure 126 Delete Document Function

It first accesses the userld and the token and deletes the resource that is passed through. In
this case resource is “document”.

It is then returned as a button that can is used in the DocumentCard mentioned when
discussing the DocumentCard.

115

5.10.1.2 Item 2 — Displaying the documents that is specific for each user.

The goal of this item was to alter the code to allow users to see their own specific
documents. As of now, when a user logs in, they can see the documents for all users, and
the documents are not specific to their own.

The code was updated to cater for this problem and begins with updating the document
schema to be included with the user schema.

Figure 127 Document Schema in User Schema

Figure 127 shows the document schema being included in the user schema. This change was
performed to documents to be included in a user’s profile, rather than being a separate
entity.

Next, changes were made to the document_controller.js file. The CRUD functionalities were
updated in the controller. It no longer uses the previous version, and now uses slightly
altered functions to cater for the changes made when finding a document in a user’s profile.

116

const « require(”../sodels/Document *)

const er = ragquire” .. feodels/user schema®)
1t CONSYL Cregtellatla = (Feq, Fes) =»
i let documentData = req.body;
7 console. logireg. body
1F User. tinoiylasnduptate [req. parans. userld, | Spush: documents: doCumentData ; |
Lheni (data) =>»
if (data) {
) res. status] 20@) . json{data
res. status (488). Json| Document not Created)
catchi{lerr) =» {
ConSole. error| err)
reS. STatus {508) . Json] Unsuccoestul)
8)3

Figure 128 Using User Schema

In figure 128, it is shown that instead of using the “document” schema, it is instead using
the “user” schema to find the documents that are stored within the users.

In the “createData” function, it was altered to use the user instead of the document,
alongside the “findByldAndUpdate” function found within the express.js documentation.
The code will first request the userld and push the data to the documents inside of the user.
It will return with a status of 200 when successful, and a 404 or status 500 when it is
unsuccessful.

The “readData” function was also updated.

183 const readData = (MBg, Mes) =» 4

LY User. tindeyla{ req.paramns . userid

154 JTheni {data) =»

1 it (data)

1t RS STATUSE AU) . 15001 GATa QOCUMEAT S
| b el {

18 res.status(40d) . json('User has no documents’
1 i

L] Fl.catchi{err) = |

151 Consol e, error LErr)

L F, res . STatus|508]) , i Ere)

1 }

194 | &

Figure 129 Read Data Updated

Figure 129 shows the function requesting for the user first, then returning the documents.
This means that when a user is found, it will return the documents of that user with a status
200 when successful, and status 404 or status 500 when unsuccessful.

117

The “readOne” function is like the above “readData” function.

| const readineé = (Feq, res) = o

197 let id = ring.parasns,id;

148 let userld = req.params.userld;

19

L] User. f1nddmeg { fd: wserld by { docusents @ 4 feleabatoh: R T T F
Firh| Sthen (data) =>» |

283 if (data) {

203 res.status(208), json{data. documents)

Jiad } else |

P L Fes-status(4ed) 5o Document doesat exist)
2 }

Pl }ycatchf{{err) =5

Hiei} console.errorerr)

2 res. Status (580, jsonferr)

i1l }

Figure 130 User Id

Figure 130 shows that it will first find the userld, then search through the documents and
find the document that matches the id that was requested. It returns if successful, and
status 404 / 500 when it is unsuccessful.

118

The “updateData” function contains the most significant changes made.

el const updatedata = (req, res) =p |

214 let id = reg.params.id;

15 User. Findoneandupdate{{ “documents. id": id },
Il6 et
217 'documents.$.title’: req.body.title,
218 ‘documents.%.imgPath’: req.body.imgPath
219 I
P JEheEnl (data) =3 |
a2 1¥ {data) 4
res.status{28a). json{data
ra4 } else {
k] s - SEaT US| S |
"messapge”: Bad Request. ${id} is not a wvalld ID
22 ¥
L = I
Fio Latchi{{err) =3 |
11 if {err.name === "validationErrar’) |
232 cofidole, errar "Validation Erfrorl’ , eFr)i

res. status (413Y ; fsor

] ":1:-.5': "validation Error”,
735 "error”; err.sessage
238 glse if (err.name === ‘CastError’) |

19 res, status{asd). json|]
“mescage”: TBad Request. i3{id} is not a wvalid ID
241 ;
else |
console.error{err);
J4% res, STALUS [5900 5

14 I

Figure 131 Update Data

Figure 131 shows the update data function. To start, the code will first receive a req and res
as parameters. The id is then retrieved from the request parameters and set to the variable
“id”. It will then use the “findOneAndUpdate” method to find the specific document, and
update the corresponding fields to the req.body that the user choses to input. It will then
check to see if it is successful, with the use of error handling, and respond with a status 200
if it is successful.

119

Finally, the delete data function was also updated.

Figure 132 Delete Data

Figure 132 shows the delete data. It first takes the user and document Id, then removes it by
pulling that document from the user. If it is successfully deleted, it returns with a success
status of 200.

With these modifications made, the users can now perform CRUD functionalities on their
own specific set of documents.

It is important to note that a similar procedure will occur when developing the folder
structure of the application and will not be discussed in much detail in that phase of
implementation, except noting the changes.

5.10.1.3 Item 3 —Adding basic styling to pages.

The goal of this sprint was to add very basic navigation and Ul elements to the project. This
was implemented very quickly to allow the developer to navigate through the pages and
display the required information when developing. Further styling of the application will be
completed in a separate sprint.

The figures below will showcase the different pages that were built.

120

CH Reader!

Figure 133 OCR Reader V1
Figure 133 shows the first iteration of the OCR reader.
Home/OciProtorvpe/RegisterLogin'Select-document Edit User | Register | Login |

Login

email

newemal l@8gmail . com

password

| nenf
41 Submat | Regster |

Figure 134 Login V1

Figure 134 shows the first iteration of the login page.

121

Heine L Prgiorne Been i L oing Selei L dogument Fosgesisl | Logen

Text Editor Create
LexiEdac

Display Documents
1 87 A Tk M wlia " 0B L1

L #2aedrs fr S0 51 a7 e ans] daderin
I WA ey 4350 | 1 R R
1T VIR il oy 2 AT it | Caliit
1T 3TN ¥t A" Wl e}
T 7 L G el G 1 6] bl e
LE ADESEA S T4 0 0] ¥ gl TR
10y i il 4 i bt i |
[T R R T
Il o35 - gkl -ariied o BOAddaad0 it
[1F; Elaii el | 1 4458360 -aC B eriler
Th M ol 0T RASS il e

LEF, B e Bl |- 1 o PR, i

Figure 135 Displaying All Documents

Figure 135 shows the documents all being displayed.

Homal | Sam SesT g B = B Ir u a4 & g, 2 = [@ 7 T

oG

Figure 136 Text Editor V1
Figure 136 shows the original text editor design.

These pages contained the styling for the prototypes developed and will be further styled in
a later sprint.

122

5.10.1.4 Item 4 — Include an image upload feature for documents

The goal of this item was to allow users to upload images. The image upload feature was
used when uploading images for documents, thus it is a prominent feature that must be
developed.

A file is first created in the utils folder, called image_upload.js, seen in figure 137.

Figure 137 Utils Folder

In this file, multer-s3 and s3-client are initiated. These are packages that are required to be
installed and will allow users to connect to AWS S3 Buckets and use that as a place to store
their images, rather than the local desktop folder.

const { S3Client } = require(gaws-sdk/client-s3’)
const multersi = require('multer-si")
} const multer = require(multer’);
L const path = reguire(" path’);
Figure 138 Multer-s3

The figure above shows the code requiring multer-s3 and the S3-Client.

12 let storage;

14 f/f The if statement is to check to see if it's S3 or something else
L if {process.env.STORAGE ENGINE === '53") {

16 const 53 = new S3Client({

LS FE‘E‘_iUf‘l: process.enyv. s HEGLON ,

1€ credentials: |

19 accesskeyld: process.env.AWS ACCESS KEY ID,

20 secretAccesskey: process.env.AWS SECRET_ACCESS_KEY

Figure 139 "If" Statement

Figure 139 then shows an if statement, connecting to the AWS Storage system. It uses the
constants from “process.env”, which includes the storage engine, the access key, and the
secret access key that is given when creating a bucket in AWS.

Storage is also declared in line 12, and is used in the following code:

123

Figure 140 Second Half of "if" Statement

Figure 140 shows the second half of the if statement. It uses multerS3 as a storage, and uses
the settings given in the Multer documentation seen here: (multer-s3, 2022)

This was added with s3 adjustments in mind. The code defines the settings for uploading
files to AWS S3 Bucket using Multer Middleware, which includes the name, the content
type, the data, and the key, which generates a unique file with the date timestamp.

If it cannot connect to AWS, an else statement is created to store it locally.

elae
i Jrstores 1t in the disk storage 1t 53 15 unavallable
44 storage = multer.diskStor
1 lestination: | . g cb) =%
42 binull, "'public’ + process.env.STATIC FILES URL):
I' 1
4 IE
1.4 ::..u ama z 'F].].'l:'_, .'-:I =3 [
45 console.lop(file.path);
46 console. log{file.originalname);
a7
[iinull; Date.now() + path.extname(fille.orliginalname));
e .:
o ;
1 j-;

Figure 141 "else" Statement

Figure 141 shows this else statement, storing it to the local disk storage, instead of AWS
Server.

A file filter function is also required to ensure that the file is specifically an image and can be
seen in figure 142 below.

124

53 7 from multer s-3. We pass in details (reglon, credentials etc.) inm an object
24 const filerilter = (req, file, cb) => {

23

56 if (Ifile) {

57 req. imageError = “Image not uploaded!™;

58 return chi{null, false);

54 |

&8 else if (I1file.originalname.match(/\.(jpglipeg|prglgif)ss)) {
61 req. imageError = “Image must be jpg|ipeg|pnglgif”;
62 return cb{mull, false);

63 }

Bl

65 cbinull, true);

66 };

&7

68 module.gxports = sulter({({ fileFilter, storage });

Figure 142 File Filter

To allow for an image upload to be used, changes were made to the code of the
document_controller.js file to cater for this.

163 fifile systems
164 const s = require{’'fs');

Figure 143 File System
File systems were first added. This is seen in the figure above.

A deletelmage function was then created, which will be used with the updated functions.

[ot delaSeimape = sy (Filenoms] =3 |
bET I¥ (EPODEES. B S TORANE [RGIM e "557)

[] gk [S Rient, Delefelb s tiommend | = reguire] Bk climi-al)
(] oot ul & maw S0 LAmmS[{

i Figddns! predats .y, S REGDOA,

7l cradestialu;

(hr] atiEsEeyide process il AOTE%S WEY D,

1ra L FRTALOFA ARy | Oy S SLORET ACCSS EEY

Tl i

175 [F]

(R

T try |

i ot dita = amali o3, seni{aen eletmibisctiommand| Buckel! procadis. sy ais BERIT, Kep: Fllensss |0}
e] conand . Ing] ", Dhject deleted,”, duts)

LBO }

LEIL cali® (wer) |

(1] cmnande. Ing]err]

LN I

1"

(1 5] elwE |

L 1% pith = "] Lef] et . ol STATEC Vinds umL [0 F3 laviame i~ ¢
FET P acness (pagh, o F ox, (err) &3 |

L iF () |

LEw demiale, srror{err)

3.1 et

I¥l 1

14 fu, onlink{path, {err] =% |

(L] LF [orr) Eheow errg

(55 edreili, Dol ™ B Filavumm | wan Ssletind)

Figure 144 Delete Image Function

125

Figure 144 shows the deletelmage function. It first receives a filename as a parameter. The
if statement then ensures that the STORAGE_ENGINE is set to “S3”. It then deletes the
image that is found in the AWS SDK, or the local storage system. It then logs a success or
failure message depending on the result.

CreateData was updated accordingly, to cater for the image upload when creating a new
document. This can be seen in the code below:

o i TATA . sEFPAL [2 g=is L F

REARE: Mg, Imagefrror ||

Figure 145 Create Data Updated

Figure 145 now has an “if” statement that requests for the file, which will check whether the
STORAGE_ENGINE variable has “S3”, if it does it uploads it to AWS as a file key, and if not
uploads it to the local storage. Otherwise, it returns an error.

Line 215 onwards then uploads the data.

126

The ReadData function remains the same, and can be seen below:

228 const readData = (req, res) =» {

229 User. findById(req.params.userid)

230 Jthen{ (data) =» {

231 if (data) {

232 res, status (208 . 7s5on{data.documents)
231 } else { .

234 res.status{4ed) . json("User has no documents’)
235 }

236 Hcatch{{err) =» {

237 console. error{err)

238 res.status|588) . J50n{err)

239 })

248)

Figure 146 Read Data Updated

Minor changes were made to the “readOne” function and can be seen in figure 147:

242 const readone = [req, res) =» |

24 let id = req.params, fd;

244 let userld = req.params.userid;

245

246 User . tindone(| _j_n:l: userid }, { “documents’ ; { felematch: | '_|-::': 1d .' 1)
247 Jthen((data) = {

208 it (data}) |

240 let imp = "&{process.env.STATIC FILES URL}%{data.imgPath) ;
350 data. imgPath = img;

251 res. status(208) . json(data.documents)

153 } else

LT s STatus {404 . json(Document dogsnt exist)

254 }

251 Vicatchi (err) =3 |

254 console,er i err)

57 res.status{5H8). jsan{err}

258 13

50 |

Figure 147 Read One Updated

Figure 147 shows the updated readOne function, and within the “if” statement, it takes the
STATIC_FILES_URL constant in the .env file and combines it with the image path. The
data.imgPath variable is then set to this, allowing the image to be returned, alongside the
rest of the document details.

The update data function in this version of the code was also accepting images to be
changed, however this was reverted to just accept the title of the document to be changed.

127

Figure 148 File Checker

The process however can still be seen in figure 148, where it checks to see if the file is
available and updates it.

Finally, the delete data function was not altered and deletes the document with the id being
found. This is seen in figure 149.

Figure 149 Delete Data

Now that the backend of the image upload has been completed, the frontend of the system
will now be displayed.

The main changes made will be seen in the createDocuments.js file, where the submitForm
method will be altered to allow the submission of images. This was done by creating a
multipart form, that accepts images, and can be seen in figure 150:

128

laf Lidkoen =

let merID = lecaliiorage.

R dociument ' § e 1)

respere =5

#T =k
conenle. s =T

coman L #, [op e reppone e, da1a |

162 i % i il i £ 1Y

i [s | v o) T i,

RO 0N 1]

fea-wr- BTk

il 3 e 1D

iw

B MR S L, PTG

Figure 150 Form Updated

The form takes in the image and uploads it as a part of the form data. Since it is a multipart
form, it can allow images to be accepted.

The input was also added in the form to allow for the acceptance of images seen in figure

151.

ull]
95
o6
o7
08
e
lekd
181
16
1&3

Linput

i

type="file”

name="imgPath"

onChanges{ handleImg}

error={eérrors, imgPath}

// value={newImg.imgPath}
helperText={errors.imgPaths.message]
fullWidth

<button onClick={submitForm}>Submit</button>

Figure 151 Input Updated

The result of this allows for a successful image upload feature, that will also be used when
uploading an image to the folders, as well as storing images for the OCR Reader.

129

5.10.1.5 Item 5 — Bug Fixes and Problems
The goal of this item is to discuss the different problems that occurred during the
development of this sprint.

Problem 1:

Figure 152 Problem (1)
Figure 152 displays a problem where the documents list was not appearing.
The first fix that was attempted was by adding an error boundary to the code.

This can be seen in figure 153:

— e e ——

Text Editor Create

Display Docaments

Semething wenl wrong,

Figure 153 Result

The result of this brought back the pages, however despite this, the problem was still
occurring. This was fixed by removing document card from the return, and instead putting
“documentList” in between the error boundary. This can be seen in the figure below:

130

Figure 154 Result

And the result can be seen in figure 155:

Text Editor Create

Display Docaments

e T
i ki A 2 A i—
L . P . R

W R e T S PR]

B L il o T -

B el ik S o bk rwd i

R L 40 L L

R B P 63 B il o o o B

WS T T 4 A S T

BBl g i S gk iy

e LT E Ty T

T A T LT LA

W L B S T T

B e S S e TR,

The problem was solved, and the document id was being displayed for all documents.

Figure 155 Result

131

Problem 2:

The next problem that occurred was during the development of the image upload feature.
The error can be seen in figure 156:

Figure 156 Problem 2

This was occurring because aws-sdk/client-s3 was not installed on the system, and was fixed
by an “npm install” command, as seen in figure 156:

Figure 157 Result
Problem 3:

Problem 3 took slightly longer to fix. A Multer error was occurring, and did not let me
upload my images, the error can be seen in figure 158:

Figure 158 Problem 3

The problem was that the form didn’t allow for images to be uploaded, and the frontend
needed to be altered to accept a multiform data.

The handle image function was added to allow images to be uploaded seen in figure 159:

132

17, SETNewImg usestate

handleForm g

I M 1'.'..1I'|'_r'| « T

value = |‘,|.-'|r|-‘ll-r.'.-'.I|'I|-

setForm prevstate
o s prevstate,

name | @ value

handleImg

setNewImg) e es[0]

console.log({ "Image: " + e.target.files|@]

Figure 159 Result
Figure 160 shows sets the image to newlimage.

Once this was completed another error occurred, preventing the image upload. This was
fixed by changing “imgPath” to “image” in the form.append line in the figure below:

e.preventDefault

e |
c |I' e

ta.append

Figure 160 Result

Once this was completed, the image upload feature was fully functional, and the user can
successfully upload images alongside the document.

133

5.11 Sprint 6 —Testing
5.11.1 Goal

The goal of this sprint was to continue with the implementation of the application, and to
perform parts of user testing, fixing bugs when necessary, and preparing the application for
user testing by implementing the Ul elements. The items for this sprint are:

e Item 1: Developing the folders for documents, including CRUD and image upload for
folders.

e Item 2: Adding Backend for OCR Reader, including CRUD, saving images and results,
and displaying on a separate page.

e Item 3: Implementing Ul Elements for the application.

e |tem 4: User Testing

e |tem 5: OCR Accuracy Testing

e Item 6: Bug Fixes and Problems

5.11.1.1 Item 1 — Developing the folders for documents, including CRUD and image upload for folders.
The goal of this item was to develop a folder structure, including crud functionalities and
image upload for the folder system that the documents will be stored in. This was
completed in a similar way to how the user can access their own data. For this reason, the
code will not be discussed in as much detail, as it was already covered in detail in previous
sprints. It will only be briefly covered.

The same can be said about the image upload feature, and will also be briefly covered, as it
was explained in greater detail in a previous sprint.

A folder schema was first created, then a reference was put in the user schema. This can be
seen in the figure below.

const Folder = new Schema(

folderTitle:

18 Fa
19 impPath:
F¥ documents:

Figure 161 Folder Schema

Figure 161 shows the folder schema, which contains the documents schema, containing the
imgPath for the image upload. This is then put into the user schema, seen in the figure
below.

134

18 const userschema = Schemal(

40 name: |

a1 type: String,

a2 required: [true, 'Hame is Required'],
43 },

a4 email: |

45 type: string,

a6 required: [true, "Emalil Field is Required’],
a7 unique: truoe,

48 lowercase: true,

49 trim: true

56 }s

51 password: {

57 _-:r.l-ll: ':\I-"ilt:p

53 required; [true, 'Password Field is Reguired’],
T }_

55 folders: [

T Folder

57 1

58 ocrs: |

5q Ser

B

61 Fs

B2 timestamps: true

63)i

Figure 162 Updated User Schema

Figure 162 shows the updated user schema, containing the folders array. This is used to
store the documents and folders to each specific user.

CRUD functionalities for the folder were then created. This was done in a similar way to how
the CRUD for documents were made.

It first required the user_schema.js and the fileSystem, seen in the figure below.

2 const User = require(”.. /modelsfuser schema®)
3 const fs = require('fs");

Figure 163 File System

It then had similar functionality to how the document was read, however instead of the
code accessing the document, it accesses the folder instead. This can be seen in figure 164.

135

Figure 164 Read One and Read Data

Figure 164 shows the readData, and readOne methods, accessing the folder instead of the
documents.

Create data was also similarly implemented, as it pushes it to the folder data to the folders
array using the findByldAndUpdate function (seen in line 95), with the image upload
functionality from lines 85-94. The figure below shows the code for the createData function.

Figure 165 Create Data

136

Update data was then implemented in a similar way, seen in figure 166, requesting the
folderTitle, and containing the image functionalities.

I8 forst updateData = {reg, res) = |

[let id = req.paress.id;
(] Her, Finddneandupdate] ["falders, td": 1d }, |
11t $setr |
153 'folders.$.folderTitle®: req.body.folderTitle,
113 J
114 i
115 «than] {data} =» |
116 if (data} |
117 #f resoves the old image
118 res. status(hod]. {son{data)
119 } eles {
F]:] PR REATUE) |
' F] “EpRiapeT: Bad Regquest. ${1d} Is mot @ walid ID
132 3
123 b
Lad 3]
125 Edteh{{err] =» |
F 1 LF {ere,nams =-e "l idatlonlrror’) |
127 console.errar| "validetion Errorl’, errl;
128 e A TR R R ET T
139 "mig”: "validation Error”,
L] CEFrGET s e A
131 b1
133 }
133 else If Jerr.nme sss “CastError’) |
134 (e TR ST TR BT |
135 “meshape”: Bad Request. ${1d} is mot @ valid ID
136 b1
137 }
138 elae |
1 COnSale. arror (e)
OF 11 B AT
1dl I
143 37
1. §] 1
Figure 166 Update Data

Finally, the delete data function, seen in figure 167.

r amil] il Bl w (P Pk owb
iR i gt vk i e el D odEs i b Brs i eepetal. Bo e Rl greite 8 sarlalles el o 18 6 Tl
i el Gl = ey e F
18 11wkt Rl = Py, e, e
e [N]
3l ' iy el |,
T § bl | Aalides i |
it i
T b tra | datal = |
ik kF gdsfal |
2wl P T A P]
k= “mwiagET s "D wifd 350 LE) s dSemlated smenlally
< i
k. LIl ¢
bt i e |
b “mmwiage~e P wiES D M E e rert el
] 1]}
1hd
5]
i { wie Sl] g
15 AR (P |
= i (eronese == “Lmtivrer) |
VT o, 0 i et |
148 UvlagET nad Remset. B8] L o= @ wallE o
- v
i]
T2 £l |
1rF L LS TRE]
1,
1 ri 1
i I8
Figure 167 Delete Data

137

The routes for the folders were then created and can be seen in figure 168.

1 const express = require(express’);

2 const router = express.Router();

3 const ImageUpload = require('..futils/{mage upload');

d

5 ff import folder contraller. curly braces is where you specify what wre importing
& comit {

T readbata,

a reaxdine;

£} createData;

i@ updateData;

11 deletebata

12 } = require(’. ./ contrellers/folder_controller®);

13

14/ takes the function from the controller in the folder controller files
1% router.get(’fiuserid’, readData);

16 router.pet(’/:userTd/:id", readOne);

17 router.post{’fruserid’, imageUpload.single(’'image’), createdata);
18 router.put(’feid’, imageUpload.single(’image’), updateData);

18 router.deletel "/ userldsid®, deletebata);

2

21 module . exports = router]

FiF,

Figure 168 Routes

The paths are then set in the server.js file, and can be seen in figure 169:

kb ™ [TiF Y [T LR e W
i

L]

']

- I [m——— SES—— T 7], | —

i g e ey fea, WRELD e

] i [req testeruF . satherfzadlonf. ageit” C{Bf === Wearw) |

L] Jot i] | o Sl @A har LeatEen.apl 1" "j[1] protekkoEEeLART BTV, [efF, Secioded) =5 |
n ¥ {err} reqoaner = urdlsfissds

1 Pl ™ = Uil |

i maraid ||

H L

L }

N wlis [

13 Fep T el Laad]

il arntf]]

=4 |

i 1k

a4

F 1 i E Palm

a8 gppsiellapd e’ | regmiced ' FroutEidesers ' 1

as o aien| " fapdf Socumeet T, TR res] C Sroehen o umeT " i
=2 apparis] CfEpdleer | requice] Jiroaldresr” LG

sh apg el " el Heldle ' eegel e ' Semptes Peler ') L

il Frgulre] " o servl i doteeest Rerviis” S kel

. server . LLvkeed pord . (B =2 |
] diwvisab ling] Dnawale app Dlstelag o8 port S{eerl) 1
. N I ¥

Figure 169 Paths

138

After some bug fixes, the folder structure now works in the insomnia backend, and can be
seen in figure 170:

L
[REeT

Figure 170 Insomnia

The documents are now being stored within the folders, and when the user’s information is
viewed, the folders and documents are now being stored with the user. This is seen in figure
171.

Figure 171 Insomnia Result

Figure 171 shows a user account, with a folders array, containing many folders, and each
folder containing many documents.

139

The image path is also being stored in each folder.

CRUD functionalities were then built in the frontend of the application and are similar in
how the structure of the frontend for the documents were created. As that was explained in
greater detail in a previous sprint, only a screenshot of one of the pages, and the filenames
will be shown. This can be seen in the figure below.

Lini, wrbarse | from Feec oo dom

el M, wseitais | fros

¥
ey sy € o ol !
rid | = | i
T i
=yl I (e -
» -
ot
T - L
T - F
il
= »
i Lamut i 1d
- 33 L
- b b L e - -] e Sz U
wl oo PelderTie]|
L im <At
- ' g pvwr ol - imag # 4 g -

Figure 172 View Single Folder

Figure 172 shows the viewSingleFolder.js file, and the other headings show the CRUD
components that the application uses to create a new folder.

The implementation of the folder structure allowed users to store documents in more

organized manner, and an example of the finished folder structure can be seen in figure
173.

Foldens Collection

Figure 173 Folder Collection

The documents are now accessible in a folder system.

140

5.11.1.2 Item 2 — Adding Backend for OCR Reader, including CRUD, saving images and results, and
displaying on a separate page.

The goal of this sprint was to develop a backend for the OCR Reader, as it cannot store the

data that it returns. The steps to build this was again similar in how it was implemented in

previous sprints and will only be discussed briefly.

The OCR schema was first created, and added to the user schema, seen in figure 174:

t nidw
resultl
i
impPath:
i
oLk
njamas
required: [tree, "Nase is Required™],
I
il {
required: |[tree, Emall Fleld s Regeired |,
uniguer tros,
I lowarcake: Tros,
irlm; Crgss
password;
.
regiplred: [tree, "Paivword Eleld
"
folders;
e
'
Flmes il pmed ;. i

Figure 174 OCR Schema

Similar CRUD functionalities were the created in the ocr_controller.js file:

141

ot £
CONMET o T i = T fllerase] =3
¥

COTSL tElata = [Py PEE) =

H
L4210 fita = (9, Fod) =3

’

LR S = (ireg, re) =3 0

const updstefiata = [Py, rEsl =n |

const o ta = [regs res) =»

Figure 175 Functions

Figure 175 only shows the function names, as they have already been discussed in greater
detail. There were no major changes made, except editing it to fit the OCR files, rather than
the previous files.

Once this was completed, the routes were then set, seen in figure 176:

O T . X I
LGk i A 1§

|m £ f ' ¥ atial - {
oA T

14 saetd’, tajij
tor. post] " freierld®, Iesageipload. of"image” j, createfata);
ra.omatd 3"y imagpeiiplomd np " Imap b
Figure 176 Routes

142

Finally, it was set in the server.js file, seen in the figure below:

Figure 177 Server.js

As the OCR Reader is set in the frontend, the results from the OCR Reader are what is stored
in the results section. It can be seen in figure 178:

Figure 178 OCR Reader Frontend

143

These are received after the OCR Reader has finished extracting the results, and the user
will need to manually save this result by using the submitForm function.

Once the submit button is hit, the form is then stored in the user’s profile, which is seen in
figure 179.

Figure 179 Insomnia Storage

This data can also be accessed and selected in the frontend, seen in figure 180.

OCR Files

T e i Iys o = o g
e 1] i i enaciee Tre il ol rmerme U]l wils s FralNE e T
e pre—n

-
e bt o e - T
e e B 1y et B e Ty Lo et

ey - R

Figure 180 Frontend Storage

144

5.11.1.3 Item 3 —Implementing Ul Elements for the application.

The goal of this item was to implement the Ul elements that the application will be using.
The project will be using some components from MUI, such as the navbar, and grid system,
and will also be using fonts from Google Fonts, and icons from Font Awesome.

As it is mostly Ul elements, the code will only be briefly discussed as it is mostly going to
focus on the styling and look of the application.

The homepage was styled first, which can be seen in figure 181.

Figure 181 Homepage Styling

The use of the MUI Grid system was used throughout the project and provided great help
with the positioning of the application.

The code and some parts of the CSS can be seen in figure 182, although it will not be
discussed in full detail, only highlighting the important parts:

Figure 182 Code for Homepage Styling

Figure 182 shows an example of the grids being used to align the items in the correct place.
The CSS code to the right also shows the styling of the application.

The navbar was then altered. The navbar uses the MUI Navbar for the sliding function and
can be seen in figure 183:

145

P OB >

Figure 183 Navbar Styling

The figure above shows the navbar and is slightly different to how the initial design was
made, however it contains the links that redirect the user to the desired pages. The navbar
also contains icons from Font Awesome and was imported to suit the side-nav.

The code can be seen in the figure below:

import { useState, J allb } from “react”;
import * as React from "react”;
import { Link, u-_.r_-r].ll.'i.g.lll;' } trom “react-router-dom” ;

Lmparg
import
import

impeor-t
LmpLrT
import
import
1 mpirt
impert
i mpeirt
Lmport
1mport
import
impsoirt

import

Lmpart

import

Amporg

Edituter from ° . feodalsfuterProfileModal /EditUserdodal
Box from “@mui/material fBox”;
Drawer from ‘@Emul /eaterial fOrawer” ;

List from "Emuifmaterial fList”;

pivider froa ° il /material /fDivider’;

Listitem from "@mui/material/Listitem”;

ListItemButton from “@eul/saterial /ListItesButton’;
ListItemIcon from “@mul/saterial/ListItemlcon”;
ListItemText from “@Emui/material/ListItemText”;
CameradltIcon from "Beuificons-material/Cameranlt’)
CloudCirclelcon from “@geul/icons-material/ClowdCircle’ ;
HomeIcon from “gmui/icons-material/Home" ;
FolderIcon from "@mui/icons-material/Folder’;
Personlcon trom --\..1:"'“'._-. icons-material/Person” ;
LogoutIcon from “@muificons-materialfLogout”;

| FontAwesomelcon | from ';Hrlr'1 v Lomd S react - font awesome
{ Fagars } from “@fortawesoss)fres-solid-svg-icons’
{ Grid } from "Emul/saterial”™;

Figure 184 Navbar Code

146

First the imports can be seen, including the icons from fontawesome

It uses the MUI Navbar to redirect users as seen in figure 185:

Figure 185 Navbar

Finally, it returns the mapped components seen in figure 186:

Figure 186 Navbar

147

The OCR Reader is then styled, and can be seen in figure 187:

OCR Readen!

MO FILE BELECTED
Figure 187 OCR Reader Styling

The OCR Reader again uses the grid system and the icons from Font Awesome. No major
changes in code besides the CSS files seen in figure 188.

Figure 188 OCR Reader Code

148

The results also show when it completes the extraction of the text seen in the figure below:

Results

image Recognition = An spplication recognizes sn objecl using & coemera = The applicalion hen say whal [he chiect it hack o
the umer by sound {eg sourds e 3 robo! speaking) — Accessbility for Blind pecple or something slong those lines —
Application will also Fave & fealue whete it can giso do The opposite — Will be able 1o recognize & voice, and display an image
beried ST wfib] Dhes webes Say — | vl Do L] 0o ool wery mice B0 displey by ability 10 Gebgn 45 well — LIS can Siga up J aign in /
cleste if atcour (whal's the raienT how will o Blind patesn sigh inTI222T7T) = Volds recogfition Son prinl ool B widds o
people as well . someons wiiles oul words on g peece of peper and i will recogniie Those wonds and spegi # oul 1o the person =
ool M=o be used for something ke signs — Hand gestures (8 can also read dtfesend hand gestures and fransiale them o

peopie]

Garve Fesa]

Figure 189 OCR Reader Result

The View All OCR Files was then styled. This can be seen in figure 190:

OCR Files

ol ol ol Pk BT ol el 1F il s el LT el e Frage Br.dgd o - L agid iy 1FE Pl il Farkd LR ol el
ki T e w0 mave TeL T ard =Ty e s e T T el =T TECEranen @ ohcl ey & CFeE - The ek P oo sy TR T ==
skl Blelafa Aoy Py sl Fo ol e wdula jo

ba B v by e g sl i g ke
il gy — el

Figure 190 OCR Reader Files

The results were stored in a card and uses the grids to position them. When it is clicked, it

displays a modal and can be seen in figure 191:

Results

L L . T L LR g e)

Figure 191 Viewing OCR File

149

The folders collection was then designed and can be seen in figure 192:

Foldens Collection

r e wra Foosbee

f—r—m‘-—-—nrll-bm ™ T a—

BT o ey i

Figure 192 Folder Collection

It was like when the user views all the OCR Files, and the card contains a modal that allows
users to edit or delete the folder, seen in figure 193:

Edin
123 Delete 3

"-—-’_f}

Figure 193 Edit and Delete

The styling for the create folder page was then completed, and the Create Document page is
very similar to the design below:

150

Cneate Folden
B

Inseal Folcdes Mame

=

Figure 194 Create Folder

After that was completed, the view all documents page, or the single folder was then styled.
It is similar to the view all folders; however, the single folder contains the image that the
user placed in. It can be seen in figure 195:

William Shakespeare’'s most beloved comedies,
A Midsummer Night's Dream, performed beautifully

at the Los Angeles Repertory Theatre in downtown
Los Angeles. At first glance, this performance

Er.lmad nurm!

| ——
l—- ey e —
e
-
e e
e st i

Figure 195 View All Documents

151

Now when viewing a single document, the text editor now has an image, and the title of the
document at the top of the page, seen in figure 196:

new docwment

i AW EJFE 4@ = B BE= §

Figure 196 View Single Document

Regarding the user profile, an edit user modal was created to allow users to edit their
details seen in figure 197:

Edit Muofile

ek bl

Figure 197 Edit Profile

152

Finally, the login and register pages were also completed and styled, and can be seen in
figure 198 and figure 199:

Sien Up

Figure 198 Register

Sign up page seen above.

Log In

Figure 199 Login

Login page seen above.

153

5.11.1.4 Item 4 — User Testing

User testing was also performed during this stage of the application. Users were given a
scenario and task to accomplish, as well as explore the application to see if they encounter
any problems when using the application. This was to ensure that the bugs that can
potentially be encountered are known and that potential fixes can be performed to allow
for a higher-quality product.

User testing will be discussed in greater detail in the next section of this document.

5.11.1.5 Item 5— OCR Accuracy Testing

OCR Accuracy was also tested. A resource was found to apply changes before using the OCR
Reader, including gaussian blurs, setting the colours to monochromatic, etc. and was used
to test how accurate the OCR Reader can be. This will also be discussed in a later section of
the document and the code used will be credited there too.

5.11.1.6 Item 5—Bug Fixes and Problems
Only a few minor problems were encountered during this sprint.

Problem 1:

One of which included the authentication failing, when the user is updating their details.
This can be seen in figure 200:

LT R e s re— = L= =

Login

Figure 200 Problem 1

The solution of this problem was to add encryption to the “updateUser” method in the
backend of the application. This is shown in the figure below.

154

Figure 201 Result
Problem 2:

The second problem that was encountered was OCR in the backend was returning empty
objects. This can be seen in figure 202.

Figure 202 Problem 2

The solution to this problem was to add square brackets in the user_schema.js when
including it in the user’s schema. This is seen in figure 203.

Figure 203 Result

This changes it to an array, allowing the objects to be stored.

155

5.12 Sprint 7 —Thesis
5.12.1 Goal

The goal of this sprint is to finish the project, including the writeup for the thesis, and the
final implementations, and bug fixes of the project. The items for this sprint can be seen:

e Item 1: Thesis Writeup
e Item 2: Deployment
e Item 3: Figures of the Final product

5.12.1.1 Item 1— Thesis Writeup

The goal of this item is to complete the writeup for the thesis. This was to complete the final
parts of the document and to update parts of the document that needed to be updated and
changed. No major parts of the code were changed and was mostly worked on the
documentation of the project.

5.12.1.2 Item 2 — Deployment

The goal of this item is to deploy the project to be used by other people. The deployment of
the project will be done at the very end, when the application is ready to be deployed. It will
be deployed using Vercel and Firebase to allow users to access the application.

The backend is first deployed, with the use of Vercel.

To deploy the backend, a separate repository was created to allow Vercel to specifically use
the code for the backend. This can be seen the figure below:

o omaster = Hi o O G B fibe hidd fle = m

ﬁ ClapGantales mit Tt L o E 1

Figure 204 Second Backend GitHub

156

A Vercel.json file was then created seen in the figure below:

A verceljson X

Figure 205 Vercel.json file

Once these were setup, the project was then configured, and deployed using the Vercel
website. The .env files were set up during configuration. This can be seen in the figure

below:
&

Proschuc ticen Dasploymaent

e

Figure 206 Deployment of Backend

157

After deployment of the backend, the frontend was then deployed. This was done using
Firebase to deploy the frontend of the application.

A new Firebase project was created seen in the figure below:

Firad-prefect-hasring =

final-project-hosting = ws=

= A app

Camlisfalig your fure?

Figure 207 Firebase

A file called “.firebaserc” was created, with the ID of the hosted website. The file can be
seen below:

& styles.css
@ -firebaserc

» .gitignore
& firebase.json

Figure 208 New Firebase Files

158

The firebase.json file was then created. This was for firebase find the files needed, that in
which is the builds, which can be seen in the figure below:

& fwcbase json *

Figure 209 Firebase.json

Finally, a set of commands were used to deploy the application. These commands consisted
of:

e npm install -g firebase-tools
e npm run build

e firebase login

e firebase deploy

Once these commands were completed, the result can be seen at the figure below:

Deploy complets!

Project Consale: Rittps:)
Hosting URL: kit

Figure 210 Deployment

The link of the deployed project can be seen in Appendix D.

159

Within the deployed project, there are some problems that have occurred. Most notably in
the documents side of the application, where some parts of the application are not working
in the deployed project, although still works in the final local version. Due to time
constraints, these problems in the deployed application were not fixed, however works
properly in the local version.

160

5.12.1.3 Item 3 — Figures of the Final Product
This item is to allow reader to see images of the final product.

Homepage:

Noted

Mot b @ SObH-Labirg] et w0 Ml B DS e b
B LEal R

sl ol hwn e The merdiode e e el el
i et - T B iy - il TR WL

ihaml U

e W IPENT T e Iy AT o
Thr s b cdrrriop o mers s s B o o S
e T "Ll bl el W e 1 i e

Figure 211 Homepage

161

Register:

Siegn Up
[
Figure 212 Register
Login:
Log In
Figure 213 Login

162

OCR Reader:
S

OCR Readen!

MOIFLF @LPCTID

Figure 214 OCR Reader

OCR Reader Results:

Results

e BRCograsn - A ERSLTRT SIOGRITL i KT g B TR - [T Rt the A B S 00T 1 bt
g e iy el g ey M g rpfd sprmiang - Srrryakeie b e propls proarnee g oo
Ay sl aell s Sier w Lk P 1w do i D gt - 0E Be i Enoeoogrebr e i doginn o ruegr
Bk G ol e L - | T P Ly o RO Y R I ST Dy SRy T R L E - e L R R e
R W eoona el e seen T wow w6 Bed v egn aTEETTT - W oot mee gl i e wcedh e
pregee g mrl et EeFen o e o peeee o pacer aed 8 al sroges e B s g g § nuf b e e en
Vi ani's L e P ot by e s - diarad ealormi 0 i win red B ed Vol pradire i anl sl r v &
[

Figure 215 OCR Reader Results

163

Viewing All OCR Files:

OCR Files

[T e B R PR I T3 il P gl el W (R g — W g s “¥ il o P BT 1] AR
wracrags iyl s rawie fenl &0 =7e wracrian 1l e ravier Tl 180 = Ts MFOCEELITY 8 GhET S b LT T wrrporanry T | wey rardr T Ml wilh
BALNCTH HTES 1 sgrin shin Bur g wbad B gl m el LA E

R] By el o ey T i i

LT e

Figure 216 View All OCR Files

Modal When Clicking to View OCR File:

Results

= et il P S 1wl e T lE e T TP wdTH MAER R

LA

Figure 217 View Single OCR File

164

View All Folders:

Foldens Collection

rrais reew [oide

" r— e

T T W] 2 S

| Ly o
-

B S e P |

Figure 218 View All Folders
Create Folder:

Cneate Folden

Intwrut Foldey Name

Figure 219 Create Folder

165

View All Documents / View A Single Folder:

College Notes

Figure 220 View All Documents

Viewing The Text Editor:

Module 1

Figure 221 View Text Editor

Minor changes may be made before deployment for bug fixes / usability however the
application will remain mostly the same for the most part.

166

5.13 Conclusion

In conclusion, the implementation of the application was displayed throughout this chapter.
The project was developed using the SCRUM methodology consisting of 7 sprints in
development of the application.

The SCRUM Methodology was discussed in detail in this chapter, explaining the different
roles, sprints, and items within the sprints.

The technologies to be used were also discussed in this chapter, discussing React, GitHub /
Git, etc.

These sprints each had their own items that was a backlog of features that were to be
completed for the application.

The sprints consisted of:

e Sprint 1: Research

e Sprint 2: Design

e Sprint 3: Implementation 1

e Sprint 4: Design 2

e Sprint 5: Implementation 2 and Testing 1
e Sprint 6: Testing 2

e Sprint 7: Thesis

This chapter displayed the work and the development process of the application and
explained some of the decisions made during development.

Through this, the application that was developed was a note taking application, that can use
OCR in React.js, with a login and register, and folder system that can be used to store the
notes found within the application.

167

6 Testing

6.1 Introduction

This chapter discuss the forms of testing that has been done during the development of the
application. This chapter contains two sections:

1. Functional Testing
2. User Testing

Functional testing is a kind of software testing, where the application is tested for its
functional requirements. The app is tested to see if the output expected is accurate to the
output returned by the application. These tests are based on the requirements of the
application, and its results will display whether that piece of functionality in the application
is working, and easy to use.

User testing will look at the application, to see if a user is able to interact with the program
in a way that is easy to use. This can include how the user navigates through the application,
or whether they can find functionality easily.

6.2 Functional Testing

This section discusses the functional testing that were carried out throughout the
application. The functional test categorised in:

e Navigation
e CRUD

Black Box Testing is generally used during functional testing, which means that the tester is
only interested in the actual output matching the expected output of the application.

6.2.1 Navigation

Test | Descripti | Input Expected Actual Comment
No on of test Output Output
case
1 Navigate | Click on Register in Nav or Redirect Redirects | User can
to Sign up | “Get Started button on the user user to successfully
Page Homepage to Register | register navigate to
from page page register
homepag page
e

168

Create an | Name: NewName Don’t Allows The
account Email: allow user | userto register
with anotherinvalidEmail tosignup | sign up form
invalid Password: with with should
details. 1 invalid invalid have a way
details details to check
it’s
contents to
prevent
invalid user
email.
Sign up Name: Allow user | User signs | Password
with valid | newTestingName tosignup | up with verification
details Email: with valid | valid could be
newTestingName@gmail.com | details details added
Password:
password
Log out of | User navigates to “logout” Logs user | The useris
applicatio | button on navbar out and logged out
n redirects and
to redirected
homepage | to
homepage
Navigate | User navigates to “login” page | Useris User was
to LogIn | through navbar redirected | redirected
page to “Login” | to “Login”
page page
Login Email: Useris not | User was | Validation
with Emailnotavailable permitted | notlogged | should be
incorrect | Password: to login in but no implement
details incorrectPassword and validation | ed if time is
validation | error was | available
error shown
message is
shown
Login Email: User gets | User was User
with newTestingName@gmail.com | logged in logged in | should be
correct Password: redirected
details password to folders
page
Navigate | User clicks “OCR Reader” in User is User gets
to OCR nav redirected | redirected
Reader to OCR to OCR
Page Reader Reader
page page

169

9 Use OCR | Add image to extract text and | Text gets | Text was The page
Reader hit the “extract” button extracted | extracted | should
and move
results down when
were page is
shown shown
10 Save OCR | User should push the “Save Saves Saves
Result Result” button result and | result and
redirects redirects
user user
11 Navigate | User either navigates to view | Redirects | Useris
to View all files from the “Save Result” | user to redirected
All OCR button or through navbar see all to see all
Files OCR OCR
Results Results
12 View User should click on the card User Modal is
Single to view the details of a single | opensthe | opened
OCR File | file modal for | for single
OCR File OCR File
13 Navigate | Click on the “Select Folder” The useris | The user is
to Folders | button in nav redirected | redirected
page to view all | to their
their folders
folders
14 Navigate | Click on the “Create Folder” User is User was
to create | button redirected | redirected
folder to create | to create
page folder folder
page page
15 Use Insert an image and title. User User
Create Title: creates a creates
Folder Folder Test folder and | folder and
is was
redirected | redirected
to folders | to folders
page page
16 Select Click on the single folder User views | User views
one content of | content of
folder single single
folder folder
17 Navigate | User clicks on “Create User is User was
to create | Document” brought to | brought to
documen the create | the create
ts page document | document
page page

170

18 Use User inputs an image and User User made
Create document title makes a a new
Documen | Title: new document
ts New Document document | and was
and is redirected
redirected
19 Navigate | Click to view the document User is User was
to text text editor redirected | redirected
editor to the text | to text
editor editor
20 Use Text | Input some text to use the Text Text was There
Editor text editor inputted inputted should be a
to text and saved | way to
to text show that
the text
editor
autosaves
21 Return to | Click on homepage button in Redirects | Useris
homepag | Nav user to redirected
e from homepage | to
text from homepage
editor anywhere
22 Navigate | Click on “User Edit” modal in User Edit User edit
to use navbar Modal modal
edit user appears appeared
modal

171

6.2.2

CRUD

Test | Description of test Input Expected Actual Comment
No | case Output Output
1 Create New User Input user User is User was
details created created
Update User Input new Useris User was
user details updated updated
View User Details Not available | Not Not Should be
in front end availablein | available in | implemented
front end front end if there is
time
Delete User Not available | Not Not Should be
in front end availablein | available in | implemented
front end front end if there is
time
Create New OCR File | Input image to | Text from Text from
extract and image to be | image was
save results extracted extracted
and results | and results
saved were saved
View OCR File Go to View all | All saved All saved
OCR page OCR Results | OCR Results
are viewable | were
viewable
Update OCR File Function not Function not | Function Should be
available in availablein | not implemented
frontend frontend availablein | if thereis
frontend time
Delete OCR File Function not Function not | Function Should be
available in availablein | not implemented
frontend frontend available in | if thereis
frontend time
Create New Folder Input folder Folder Folder was
details should be created
created
View All Folders Go to view all | All folders All folders
folders page should be were
displayed displayed
View Single Folder Gotoasingle | The The
folder documents | documents
stored in the | in the single

172

folder folder were
should be displayed
displayed
Update Folder The edit The folder The folder
folder modal title should | title was
should appear | be edited edited
Delete Folder The delete The folder The folder | There should
folder button | should be was be
should be deleted deleted something to
clicked notify the
user that the
folder was
deleted
Create New The user The new The new
Document should go to document document
the create should be was
new created created
document
page and
input the
details for a
new
document
View All Documents The user will All the All the
navigate to documents | documents
the view all created created
documents within that | within that
page folder folder are
should be displayed
displayed
View Single The user will The The
Document click into the document document
document and | should displayed
see the display the the content
contents of content from the
that from the text editor
document text editor and the
and the saved text
saved text
Update Document The user The edit The edit
should open user modal | user modal
the edit user should appears
modal and appearand | and saves
input the new | save the the
information updated updated
document document

173

Delete Document The delete
button was
pushed to
delete the
document

The
document
should be
deleted

The
document
was
deleted

6.2.3 Discussion of Functional Testing Results

Although there are some features missing, namely the verification of the register and login
forms, the functional testing went mostly as intended, with most features being available to
use. The more important CRUD Functionalities were all working as intended and performed
the tasks that was needed to be performed.

Improvements can still be performed, however due to time constraints, it might not be

possible to implement all improvements to the application.

174

6.3 OCR Reader Accuracy Testing
The accuracy of the OCR Reader was tested using various methods that consist of:

e Colour Inversion

e Threshold Filtering
e Dilation

e Gaussian Blur

¢ Noise Removal

Some of these methods were mentioned in the research section, such as noise removal,
threshold filtering and colour inversion, although the topics that were not covered in the
research section will be briefly explained in their respective section.

The purpose behind testing the OCR Reader was to see if the accuracy could be improved
upon by applying these pre-processing methods. As discussed in the research section of the
report, these methods can greatly alter the results of the accuracy, by potentially making it
easier for the Tesseract OCR library to read the inputted image and extract the text.

The code used for pre-processing can be found here: (Chan, 2020)

Note that this code was only used for testing and was only applied to see how it would
affect the accuracy of the output. The code was not used in the final project.

The image that will be tested will be figure 215 seen below.

Figure 222 Tested Image

The results for this image will be discussed in detail on how it was tested and a collection of
image results from testing the OCR Reader, listing what functions were used together when
attempting to read it.

It is also worth noting that the package “p5” was installed during the tests to enable the
filter algorithms. P5 can be found here: (p5, 2023)

175

The reason behind using the selected image, is to test four different things:

e Regular handwriting

e Joint handwriting

e Writing Quickly

e Writing in block capitals

This was done to test different scenarios that the user could potentially find themselves in
when taking notes.

6.3.1 No Pre-Processing

The result shown below will be the accuracy of the OCR Reader without any pre-processing
applied. This can be seen in the figures below:

Camran

Figure 223 No Pre-processing applied.

Extracted text

Tea-ufl with marker 34T =<3 with manken T°f.bYy) Md\ MIACS TeaTING: wiTH MARKER
 Choosa file | 16 jpg Comver to text

Figure 224 Result

The results shown in the figure above has some inaccuracies, although reads most of the
text. Some of the words are incoherent, and some parts of it were extracted properly, seen
at the end when it is reading the capitalized font.

The changes in the code can be seen in figure 218 and 219, where it is applied to a canvas,
and read with most of the pre-processing functionality commented out.

176

et hardilel] fch = 53

1 F takisg the cormas
i DML Cafitai = [neailed [T
1
3 forrec] @ . o[r et)
ol OfE = ey iyl 3" ji

oorren] @ gl imapeded . corrent owildEh

¢ applying the prepreceyss] issge feiore remibng B throsgh the OOR resder
i TN T nage| [asgekal , ourreat, &, #))
1 oo Sl L e e powy ah R (a8 8]

Ll voril datae] = caraan . Dol Em |~ g | g b

i ke al . Fecognd te

i dutocrl, ‘eng',

ik

i logper: B =¥ corveale. logim

T

I]

iz LaLeh[#FF o3

i LR L O B)

[11

LE] <Eher reaulE = |
;e fonfjderce wore
1t = el ponf i desc s

lst fowt = reselt . dats, et
N et et e |

comga be, Iogd ek

Figure 225 Testing Code

299 function preprocessImage(canvas) {

ey const ctx = canvas.pgetContext(2d };

81 const image = cix.getimagelata(d, @, canvas.width, canvas.height};
183 {f blurARGE(image.data, canvas, 1);

363 Jf dilate{imapge.data, canvas);

30 Al invertColors{image.data);

305 /f thresholdrilter(image.data, 1238);

306

3a7 return image;

308 }

305

318 export default preprocessImage;

Figure 226 Pre-process Image Function

Figure 218 and 219 shows the slight alterations made in the OCR Reader code, notably using
the pre-process function before returning the results, although in this case it is commented
out, and returns the default result.

We will first start by adding a Gaussian Blur to the pre-processing.

177

6.3.2 Gaussian Blur

The gaussian blur can help by reducing the noise found within the image that is submitted.
The image that was tested looked much smoother than the original and can be seen in

figure 220.

Canvas

Figure 227 With Gaussian Blur

The result shown contains less noise and is slightly smoother. This could potentially provide
a more accurate reading. The result can be seen in figure 221.

Extracted text
Tes+{n3 with marker gafwh with manken T{Hiu) with mavkes TeEsTIVG: wiTh MaAsREKER
| Chooss fis | 16 jpg Copvert o text
Figure 228 Result
The result of the extracted text is similar, with some parts of inaccuracies.

The next method of pre-processing to be applied will be image dilation, on top of the

Gaussian Blur.

178

6.3.3 Image Dilation

Image dilation simply brightens the lighter pixels. The result of the inputted text can be seen
in figure 222:

Canvas

Figure 229 Image Dilation

The font looks slightly thinner than the previous result, and lead to a slightly different result
after text extraction. This is seen in figure 223:

Extracted text
Tegfind with marker Jeste : k Te)(5s) wiHe Mok es TESTING wiThH Marker
[Choosa fie | 16 jpg Comvert 1o text

Figure 230 Result

The result shows a slightly more accurate reading, showing the block capital results being
the most accurate.

The next pre-processing step will be the colour inversion, as well as the previous pre-
processing methods.

179

6.3.4 Colour Inversion

Colour inversion will invert the colours for text extraction. The inputted image before
extraction is seen in figure 224:

Canvas
Tt'.f.'Jr[n.ﬂ witlh marker

Jestoe. with manken

4

T{jf .'.l.--‘./t, H;Hﬁ- Mo s k L

TESTING wiTH MARKkER

Figure 231 Colour Inversion

This will most likely not be very effective, as it is searching for the typography but finds it
difficult to find the text due to the text blending in with the background.

The result of the text extraction is in figure 225:

Extracted text

Choose file | 16 jpg Coaven to text
Figure 232 Result
Very minimal text was extracted as it couldn’t find any text to extract.

Finally, the threshold filter will be applied to show all the pre-processing methods
combined.

180

6.3.5 Threshold Filter

The final filter makes the dark pixels darker, and light pixels lighter. Now that all the pre-
processing filters have been applied, the result is seen in figure 226:

Canvas

Te s-h'nj with marker

gedﬁ-trj with monken
Testims with Mevker

TEST NG wWITH MAR.I-'.E_.F_.

[

Figure 233 Threshold Filter

With the threshold filter, it blackens the dark pixels, and turns the light pixels to white,
allowing for easier reading. The result is seen in figure 227:

Extracted texi

Teshng with marker 38«3 with maonken Tc:]iu) with moviees TesTING wiTh Marker

haooss Ba | 16 e Coivert 1o 18Xt
Figure 234 Result

It is slightly more accurate, and as seen in the result the block text is the most accurate, as it
finds it easiest to read with all the pre-processing filters applied.

181

6.3.6 Mixing Filters

To test the accuracy fully, mixing the different filters and testing the results will be done. As
the filters were discussed in more detail in their respective sections, the name of the filter
and the result will simply be shown. The filters selected will be in a random order to find the
best source of accuracy.

Gaussian Blur + Threshold Filter:

Testing with marker
3:4{-{.5 with monken
Testim s with mackes
TESTING WiTH MA;%

X
- L

Figure 235 Gaussian Blur + Threshold Filter

Extracied gext

TESETU by versy marko Safi § with monken Te) with movioes TeeT g wilh MARK

Figure 236 Result

Gaussian Blur + Dilation + Threshold Filter:

Camvmy

T&pl-fn:. with marker
5541‘;;3 with monken
T;_jfﬁ-.) with movkes

TesTiNer with Markgr

el Y

Figure 237 Gaussian Blur, Dilation and Threshold Filter

Extrscied texi

TRSHY NUHA marker Jesiing with manken T Tk) with movcer Tes Tidegr with MAREgR

Figure 238 Result

182

Dilation + Threshold Filter

Canvms

Te,s+fn3 with marker

334%.«5 wth manken
T'E'I{';:} m:i"L .I"l"‘-ﬂ"-f.‘. €s

TeEsTING wiTh MarRkeR
ol e

Figure 239 Dilation and Threshold Filter

Extracted text

TESHAA with marker S84 'w{j with manken Tofhu) with meavckes TESTING wiTH Marker

Figure 240 Result

Colour Inversion + Threshold Filter:

Camvas

T'E-S"I'I-hﬂ with marker

3541";}“3 with manken
Testing with mavzker

TEsTING wiTh Marker

Figure 241 Colour Inversion and Threshold Filter

Exirvacted text

Teahing with marker Safw{] with manken 13 with movrker TeaTING wiTh Magrer

Figure 242 Result

183

Threshold Filter Only:

Canvas

T:-s-l'fnﬂ with marker

j&ﬁﬁ;ﬁ with manken
Testin g with mavkes

TEsT NG with Marker
L RRS
Figure 243 Threshold Filter Only
Extracted text
T&S-Hn| with marker g&f'wg with manken Testing with markes
Figure 244 Result

6.3.7 Conclusion

In conclusion pre-processing allowed the developer to test the accuracy of the OCR Reader
using the methods shown.

From the results, the most notable combinations are dilation and threshold filter and all the
pre-processing methods combined.

These pre-processing methods are slightly more accurate compared using no filters at all,
however more tests that uses a variety of different images can yield different results.

184

6.4 User Testing

The purpose of user testing is to unravel underlying issues that are still present in the
application. User testing will reveal issues found in the navigation of the application, and
hidden bugs that the developers have not found.

This allows developers to improve their application, by performing changes in the design
and bug fixes, as well as improving usability for common users.

6.4.1 Application Overview

The goal of the application is to allow users to create notes and use OCR functionalities to
help with their notes taking process, and potentially transfer notes from images.

Users should be able to view their own work and organize their notes into the required
folders.

The users should also be able to view all their own files.

Research was done before development of the application to ensure that the functionality
and design of the app was of good quality and met the user’s needs.

6.4.2 User Tasks

During the user testing phase, the users were given tasks that they needed to accomplish.
The goal of this was to see if the users can navigate their way through the application
without encountering any issues, and use the required features as intended.

This also allowed users and developers to encounter bugs and issues that are relevant to the
application during user testing. This allows developers to see flaws and improve the
application.

User 1:
User 1 was given the tasks of:

e Sign up.

e User OCR Reader.

e Create afolder.

e (Create a Document.

Some Issues that this user encountered were:

e This user did not know what OCR is.

e When the OCR Reader has been completed, the user was unsure on where to see
the result, as the page didn't move down to display the result.

e The Navbar Link does not work, the user was trying to click on the general area of
the link, including the icon and was not navigating to the page. It only worked when
the user clicks on the words.

185

The user was not a huge fan of the homepage.

The user tried to choose several images. Breaks when the user picks several
documents. This might be because one of the files that the user has chosen was not
supported.

The user was confused on whether the document was saving. There should be an
icon to indicate that it autosaves every 2 seconds.

This provided great insight a few flaws of the application and shows parts of the application
that need to be fixed for usability purposes. The simple issues found within the application,
namely the issues with the nav bar should be addressed quickly to ensure that the user-
interface of the application is of high standard.

User 2:

User 2 was given the task of:

Sign up.

User OCR Reader

Create a folder.

Create a Document

Copy and paste OCR results to document.
Edit the document name and folder name.
Edit User Content

Things that were worth noting from this user were:

User was having problems with the navbar again, clicking around and it not
navigating.

The user managed to register properly without minor issues. They expected the
enter key to work and although both users expected to be redirected to a different
page.

When using the OCR Reader, after the results are shown an auto scroll should be
done as this user didn’t know either.

The user didn't know that it autosaves either.

This user however didn’t know how to find folders and the documents page. The
user was struggling to find how to create a document as it is nested in the folder.
The naming should be clearer in the navigation.

There were no problems when it came to editing the folder and document.

When editing their profile however, the password was still being shown. The user
was wondering if there was a way to hide or show this password or if there was a
method to implement it.

The user wasn't very fond of the white background and would prefer a slightly darker
design. A dark mode could be implemented for this cause; however, it might take
too long to develop a mode like that.

186

e The user also thinks that the folders page looks slightly empty when there are no
folders available to it.

e The user also would like to see if they can align the folders and documents to the
left.

e Aslight separation line from the create folder and the folders themselves.

e Adding a logo to the navbar would be nice too.

e The user liked the on-hover effect.

This user provided great insight into the problems still prevalent in the application, and
these problems will hopefully be addressed and fixed.

6.4.3 Usability Testing Participants

There were two students that participated in the usability testing, who are familiar with
technology and notes-taking applications. Even so, the students still needed explanation on
what OCR was, and how those features worked, and what it does.

The target demographic for this application was reached within the participants, being
college students who regularly take notes, and managed to yield results that were insightful
to the application, to allow for a more user-friendly application.

The participants found that the app itself wasn’t too difficult to navigate and found the
design and user-interface to be simple and easy to follow.

6.4.4 Usability Factors

6.4.4.1 Ease of use

The ease of use of the application should be of high quality. The usability of the application
should be of the highest standard, so that when users are using the application, problems
don’t occur that could potentially frustrate the user and stop them from returning to the
website.

The user testing will ensure that problems that some users are facing now can be fixed
during development to create a more user-friendly product.

6.4.4.2 Test Environment

The user testing was conducted in a small classroom in college, with a laptop that the
application will run on, as well as the developer observing their actions and taking notes on
how the user is performing.

The test is conducted on the developer’s laptop, to ensure the intended screen sizes that
should have been used, as compatibility with different screen sizes were unavailable.

The user is free to ask questions from the developer in case the users being tested are
unable to find specific parts of the application, which occurred during the user testing, as
one of the users were unable to find the “folders” page.

187

The reason for taking notes is to ensure that the developer can take in as much information
as possible in short bullet-points. This information includes what the developer expected
the user to do, as well as noting down things that the developer didn’t expect the user to
do.

Feedback was also given, the developer asks the users what they liked and didn’t like about
the application, and the developer noted down the feedback that was returned and can be
seen in the results of the user tasks.

188

6.5 Conclusion

In conclusion, the testing chapter carries out the different forms of testing, ranging from the
navigation of the application to the CRUD functionalities seen throughout the app, as well as
how the users interacted with it.

Different forms of user-testing were performed, and feedback was taken to allow for
development and for improvements to be made throughout the application itself.

This phase of development is essential in the improvement of the application and improve
the overall quality of the final product.

Although there may not be enough time to apply these changes, the information gathered
from the user testing is crucial in letting the developer know the flaws within the product.

The OCR Reader was also tested, to see if the accuracy of it can also be improved upon by
adding pre-processing methods before text extraction begins.

This chapter proved to be essential in the development of the application, for seeking flaws
and how to improve the product.

189

/ Project Management

7.1 Introduction

The project management phase describes how well the project was managed, and how the
student and the supervisors worked with each other to help with the creation of the
application. The various phases of the project are shown, as well as the steps that were
taken to before the development of the application.

The discussion of Trello, GitHub and a project management journal were also used to assist
during the project management phase.

7.2 Project Phases
This section describes the different phases throughout the project and will explain any issue
that arose from each phase.

7.2.1 Proposal

The proposal phase of the application was to allow students to come up with ideas for
projects that they can work on. During this phase ideas were brainstormed, and the idea
that was agreed upon was to develop a note taking application, with the use of OCR
functionalities.

This idea was expanded upon throughout the various phases of the project to develop into
the final product.

As notes taking applications were always commonly used in college, ideas for functionality
were already being thought upon, that could potentially be developed for the application.

The idea for this project was then discussed with the supervisor of this project and allowed
research to begin, starting with the gathering of requirements.

7.2.2 Requirements

The requirements gather phase consisted of the developer researching separate, already
established applications to perform find functionalities that a developer can implement.

Websites such as Notion, Google Keep, etc. were researched to find the functional, and non-
functional requirements for the application, as well as evaluating the advantages and
disadvantages that could be seen within each application.

Interviews and surveys were also conducted to see which features should be prioritised
during the development phase.

Personas were then created to simulate a user with different needs using the application.

190

The design of each application was also researched, to find suitable designs for the project
to be developed.

Feasibility of the application was then discussed, looking at the most important pieces of
functionality that should be prioritised during development.

Once this stage was completed, the design of the application was next to be worked on.
7.2.3 Design

This phase of the project consisted of two parts, which included the program design and the
user interface design.

The program design discussed the different technologies that the application would be
using. The application uses the MERN Stack, which consisted of Mongo, Express, React and
Node, as well as various libraries such as TesseractOCR.js and Quill.js for example that was
used throughout the application.

The different design patterns were also discussed, with the MVC design pattern being one of
them.

Once this was done, the architecture of the application was covered, and the design for the
backend of the application was shown, including the database design and the API Design.

The second part of this phase was the interface design, which was the development of the
Ul for the application. The project was designed in Figma and was completed in various
steps, such as creating paper prototypes, wireframes, user-flow diagrams, a style guide, and
a finalized design.

Once this phase was completed, implementation of the full project began.
7.2.4 Implementation

The implementation phase of the application showed the process of development, and how
the entire project was put together. The implementation phase consisted of 7 Sprints and
uses the SCRUM Methodology to develop the project.

Each sprint consisted of various items that were to be completed during that sprint to allow
for manageable time-management and give the developer a clear goal to work towards
during that sprint.

7.2.5 Testing

The testing phase of the project was to ensure that the quality of application was of good
quality. Testing consisted of both functional, and user testing and covered the various parts
of the application, including the navigation, the CRUD functionalities and Ul, to ensure that
everything was working as expected.

User testing was then performed to find flaws that the developers might not have known
about and to ensure that it is user-friendly and provides great usability.

191

7.3 Teamwork

7.3.1 Roles
The roles of this project were between the supervisor and the student.

Clemente Gonzales provided the role of a full-stack developer, creating the project and
accomplishing the different goals that were seen throughout the various sprints.

Cyril Connolly oversaw the project, and as a supervisor, acted as the role of the SCRUM
Master, ensuring that the weekly sprints were completed and that enough work was being
done, and provided by the developer, as well as guidance throughout the entirety of the
development of the project.

7.3.2 Communication

The communication between the student and the supervisor were very consistent. Weekly
meetings began in around mid-October and were kept consistent throughout the following
months to ensure that the project was progressing well.

Emails and Teams messages were sent if any issues occurred, or if an urgent question was
needed to be asked.

This allowed progress to be shown throughout the weeks and ensure that the student was
on the right track throughout the duration of the project.

7.3.3 Difficulties

During the development of the application, difficulties were found throughout various
phases of development. Some of which included bug fixes, where the developer would
spend several days attempting to fix one bug and losing time and progress because of it.

7.3.4 Resolving Difficulties

To ensure that work was still being done throughout the many weeks of development,
focusing on different parts of the application was done whenever a prevalent bug occurred.
For example, if an issue occurred and was not solved within the span of a few hours,
different parts of the application would be worked on to ensure that work was still
accomplished that day and return to the problem on a different day.

192

7.4 SCRUM Methodology

The SCRUM Methodology proved to be an effective method of developing a large-scale
project such as this one. It ensured that the weekly sprints were completed and proved to
be a highly effective method of encouraging productivity when needed.

The goals being divided into the 7 sprints worked very well and ensured that enough time
was given to the development of different parts of the application.

As the requirements were gathered at the beginning of the project, the developers knew
what needed to be accomplished to produce the final product and gave them clear goals to
work towards throughout each sprint.

The project backlog showed the different functionalities that needed to be accomplished
throughout the duration of the project and was updated to show which pieces of
functionality were completed and which still need to be implemented.

193

7.5 Project Management Tools
7.5.1 Pen and Paper Notes

Although there are various applications that can be used to manage parts of a project, pen
and paper checklists was used for this application.

The reason behind this was because pen and paper allowed me, the developer to
consistently think of different tasks that needed to be completed on that day. When a
project management app such as Trello is being used, the updates towards that app and the
tasks that needed to be completed tend to decline the further into the project, and because
of this pen and paper was instead used as there was no need to share the tasks, as it was a
solo project, and the tasks were discussed weekly with the supervisor.

The to-do list was dated to show when each task was being completed and can be seen in
figure 238.

Figure 245 Pen and Paper To-Do lists

194

7.5.2 GitHub

GitHub is an online tool that allows developers to store their code, as well as allow for
version control. GitHub and Git are essential in the development of the application, as its
allowance for version control proved to be useful when looking back over previous versions
of the code. GitHub also shows the progress that was undertaken throughout development
and shows the work done throughout the various sprints.

GitHub was an easy way to store the code in case the developer needed to return to a
previous version or act as a method to back up their code, in case it becomes corrupt, or
progress gets lost.

GitHub also kept the changes that the developer made throughout the development of the
application, and the different version of commits can be accessed and viewed if needed.

A screenshot of GitHub can be seen below in figure 239:

Pl mgarn men Gl i @ e

Figure 246 GitHub Repository
7.5.3 Journal

A journal was not kept during the development of the application, but the pen and paper
notes / to-do list allowed the developer to keep in track of the different goals that were
completed in each sprint, and tasks that needed to be accomplished throughout the day.
The tasks that were incomplete during that day were moved on to the next.

Problems and difficulties were also recorded in Notion, to ensure that the problems were
being listed down if any of them occurred.

A journal itself was not kept, although there were many parts of the application that listed
the progress and problems whenever they occurred.

195

7.6 Reflection

7.6.1 Your views on the project

From my personal perspective, the project turned out to be quite successful, achieving the
main functionality and goals that were set out from the beginning of the project. The
implementation of the OCR Reader and tweaking parts of it to test out the functionality and
accuracy was incredibly rewarding to work with as it was something different from the
regular projects that are generally worked on. Even though it was a website, there were
many aspects to it that changed it so that it provided a different experience from the usual
projects.

The application that was produced however could have done with more polishing as it
contained a variety of bugs that were not solved due to the time constraints. Some features
that could have greatly benefited the application were not implemented and could have
been great features to have included.

Despite these flaws, the project was successful and accomplished its goal. The overall
guality of the project created was of an overall high standard with completed functionality.

7.6.2 Completing a large software development project

The completion of a large software development project worked on by a single individual
gave a great insight into the lifestyle of a full-stack developer, working on the own or on a
team. This was beneficial in showing the many steps of developing a completed product.

The various sprints that occurred throughout the project also provided a great general
guideline in what should be accomplished within those sprints, and the functionalities that
were to be focused on for that sprint.

Overall, it was a crucial learning experience and showed me how to progress through
problems whenever they are encountered, as well as communicating with my supervisor to
show the progress that was completed though out the various weeks of development and
implementation.

7.6.3 Working with a supervisor

Working with a supervisor was very helpful. Cyril consistently provided great feedback
throughout the weekly meetings and would provide guidance on what to focus on during
that phase of the project, and any extras that can be added. He provided constructive
criticism during the writeup of the application and provided some great ideas to help the
project stand out and be more in line with what needed to be developed.

Communication overall was very good. Emails and Microsoft Teams messages were
regularly sent, as well as updates regarding the progress of the project.

Overall, Cyril provided great help and guidance as a supervisor and guided me towards the
right direction throughout the duration of the project.

196

7.6.4 Technical skills

This project managed to improve some parts of my technical skills. The OCR part of the
application was something very different and managed to improve my competency in
building projects such as this one. The project managed to expand my skillsets. Even though
it was still in a field that | was comfortable with, there were parts of the project that were
very different from what | would normally work on and was a very valuable learning
experience.

The project also managed to develop my web development skills, as well as my design skills
through the duration of the project.

Overall, the most valuable part of this project was learning the new technologies and how to
incorporate and implement them with the React framework.

7.6.5 Further competencies and skills

Learning more complex languages / coding practices is a goal that should be worked
towards. This can include developing a project in a completely new language to learn how
something works or creating projects and seeing how to implement specific features.

This can help improve my flexibility as a developer and help expand my skillsets into doing
more things that’s not just web-based applications.

Another skill that should be learned is learning more effective ways to problem solve, as
well as writing more efficient code, rather than using the quickest methods to solve a
problem, although this will mostly be a skill that will be acquired over time.

7.7 Conclusion
In conclusion, the project that was developed was a web-based notes taking application that
contained OCR functionalities.

The chapter discussed how the project was managed, explaining the many phases of the
project that occurred during implementation, which discussed what was done in each sprint
of development.

The chapter also discussed how teamwork was done, with the constant communication with
the supervisor, and explaining how difficulties were encountered and resolved during
development.

The project management tools that were used to assist development were also shown
during this chapter, and explains how the different tasks were completed, and the methods
for listing down those various tasks.

A reflection of the project was then discussed, allowing me to give my insights and parts of
the project that could have been done better and improved upon.

197

8 Conclusion

The final product that was built consisted of a web-application that allowed users to take
down notes and use OCR software to allow text to be extracted from outside sources. The
overall goal of the project was to build a web application that contained functionalities that
were different from what the developer was comfortable with. The inclusion of the OCR
functionality was different and allowed me to expand my knowledge as a developer.

The technologies seen in the application consisted of various libraries. This included
TesseractOCR.js, Quill.js, the MERN Stack, which were MongoDB, Express.js, React.js, and
Node.js, and various other packages for different functionalities. AWS Buckets were also
used for storing the images that were uploaded to the application, and Vercel and Firebase
were used to host the application.

Research was conducted to find the various features that the application has. This ranged
from conducting surveys and interviews, as well as researching various other applications to
find the main functionalities that those applications had.

Additionally, research into how OCR worked was also done, which provided a better insight
into how the system extracts text, through the various methods of text extraction.

The design was then formed, which included the software design and the User Interface
Design. The software design section discussed the design patterns seen using the MERN
Stack, the database design, the APl Design, the application architecture, and the process
design. While the User Interface Design provided the wireframes, the User Flow Diagram,
the Style Guide, and showed the final design of the application.

Implementation then showed the steps taken to develop the application. The SCRUM
Methodology was used to develop the application, which divided the whole application into
achievable goals that ran through two-week sprints over the course of several sprints.
Various functionalities were developed during the sprints to create the final product.

Testing was then conducted to uncover underlying flaws that were found throughout the
application and allow these flaws and issues to be fixed. This was completed through the

means of functional testing, and user testing, both of which covered different parts of the
application to find flaws within them.

The project management chapter discussed the various methods that was used to assist the
development of the application, which discussed the roles provided, difficulties and how
these difficulties were resolved, as well as showing the tools that assisted development,
such as GitHub, and the notes.

The result provided a professional looking web application that fulfilled the goals and
functionalities that were set during the start of development. The overall application was
polished with minimal bugs, and accomplished the functionalities that were set at the start
of development.

198

The project could be further developed by adding extra functionalities, such as the to-do list,
sharing notes, and improving the accuracy of the OCR Reader, potentially adding an options
modal to allow users to adjust the OCR Reader to increase its accuracy.

React Native and media queries should also be included if the application were to be
developed further, as well as implementing the criticisms found during user testing.

The application could potentially run ads or contain a premium version to allow users to use
some functionalities as a business opportunity, although the application should stay mostly
free to use.

Many new skills were learned and refined during the development of this application. The
ability to problem solving was focused on. During development, a variety of bugs and errors
would often occur, and a common problem that would happen is spending too much time
finding a solution and solving that issue. This often led to only small amounts of work being
accomplished that day, and the fix for this was to simply return to the issue after
implementing other parts of the application, leading to more being accomplished
throughout development.

The project also allowed me to learn new technologies, that of which | was not very familiar
with, for example TesseractOCR.js was something very different from what is normally done
and gaining experience in developing something new was a very rewarding experience.

Coding skills were also refined during development, as there were also parts of the project
that | was already familiar with, for example the use of MongoDB and Express.js, as well as
the use of the SCRUM Methodology and regularly communication with my supervisor.

8.1 Final Words

Throughout the development of this project, | managed to learn and develop many new
skills which can help prepare me for the workplace. Time management and problem solving
were crucial and were given a chance to develop during the duration of this project.

My ability to code was also expanded upon, as there were many instances during
development where | needed to develop something that | was not too familiar with, which
helped expand my capabilities as a developer.

Overall, this project provided an excellent challenge and produced a worthwhile product.
Although there were still flaws within it, it helped expand my abilities as a developer, and |
hope to continue to keep polishing my abilities and keep learning new technologies and
concepts as a developer.

199

9 References

basarat. (2022, 7 13). Image to Text Conversion with JavaScript // OCR (Optical Character
Recognition). Retrieved from YouTube:
https://www.youtube.com/watch?v=zBET2cEKths&ab_channel=basarat

Bhaskar, N. U. (2011). General principles of user interface design and websites. International Journal
of Software Engineering (lJSE),, 2(3), 45-60.

Chan, M. (2020, 11 12). Using JavaScript to Preprocess Images for OCR. Retrieved from DEV
Community: https://dev.to/mathewthe2/using-javascript-to-preprocess-images-for-ocr-1jc

David, H. (2022, 6 27). Hubspot. Retrieved from What is React.js? (Uses, Examples, & More):
https://blog.hubspot.com/website/react-
js#:~:text=The%20React.,you%20would%20with%20vanilla%20JavaScript.

Eikvil, L. (1993). Optical character recognition. citeseer. ist. , psu. edu/142042. html, 26.

Express - Node.js web application framework. (2017). Retrieved from Expressjs.com:
https://expressjs.com/

Ferguson, K. (2021). Application architecture. Retrieved from TechTarget: application architecture

Fleming, J. &. (1998). Web navigation: designing the user experience. Sebastopol, CA: O'reilly. , p.
166.

Gardner, B. S. (2011). Responsive web design: Enriching the user experience. Sigma Journal: Inside
the Digital Ecosystem, 11(1), 13-19.

Getting Started — Amazon Simple Storage Service (S3) — AWS. (2023). Retrieved from Amazon Web
Services, Inc.: https://aws.amazon.com/s3/getting-
started/#:~:text=Amazon%20Simple%20Storage%20Service%20(Amazon,at%20any%20time
%2C%20from%20anywhere.

Goel, V. K. (2019). Text extraction from natural scene images using OpenCV and CNN. Int. J. Inf.
Technol. Comput. Sci, 11(9), 48-54.

Introduction | Socket.l0. (2023, 3 7). Retrieved from Socket.io: https://socket.io/docs/v4/

Introduction to Mongoose for MongoDB. (2018, 2 11). Retrieved from freeCodeCamp.org:
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-
d2a7aa593c57/

Johnson, J. (2020). Designing with the mind in mind: simple guide to understanding user interface
design guidelines. Morgan Kaufmann.

Karnik, N. (2018, 2 11). Introduction to Mongoose for MongoDB. Retrieved from freeCodeCamp.org:
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-
d2a7aa593c57/

Kumar, S. (2022, June 29). 10 most popular design systems to learn from in 2022 for UX Designers.
Retrieved from Medium; UX Planet: https://uxplanet.org/10-most-popular-design-systems-
to-learn-from-in-2022-for-ux-designers-18a24843a860

200

Lehal, G. S. (1999). Feature extraction and classification for OCR of Gurmukhi script. VIVEK-BOMBAY-
,12(2), 2-12.

Lopez, M. M. (2017). Deep Learning applied to NLP. arXiv preprint, arXiv:1703.03091.

Ma, D. L. (2000). Mobile camera based text detection and translation. Department of Electrical Engg
Department Stanford University.

Matei, O. P. (2013). Optical character recognition in real environments using neural networks and k-
nearest neighbor. Applied intelligence, 39(4), 739-748.

Mithe, R. I. (2013). Optical character recognition. International journal of recent technology and
engineering (IJRTE), 2(1), 72-75.

multer-s3. (2022, 5 31). Retrieved from npm: https://www.npmjs.com/package/multer-s3
Node.js. (2023). About | Node.js. Retrieved from Node.js: https://nodejs.org/en/about/

Ong, V. &. (2016). Using k-nearest neighbor in optical character recognition. ComTech: Computer,
Mathematics and Engineering Applications, 7(1), 53-65.

p5.(2023, 2 22). Retrieved from npm: https://www.npmjs.com/package/p5

Patel, C. P. (2012). Optical character recognition by open source OCR tool tesseract: A case study.
International Journal of Computer Applications, 55(10), 50-56.

Quill - Your powerful rich text editor. (2023). Retrieved from Quill:
https://quilljs.com/#:~:text=Rich%20Text%20Editor-
,QuIll%20is%20a%20free%2C%200pen%20source%20WYSIWYG%20editor%20built%20for,S
ettings

Ranjan, A. B. ((2021)). OCR Using Computer Vision and Machine Learning. In Machine Learning
Algorithms for Industrial Applications. Springer, Cham, (pp. 83-105).

Rao, N. V. (2016). OPTICAL CHARACTER RECOGNITION TECHNIQUE ALGORITHMS. . Journal of
Theoretical & Applied Information Technology, 83(2).

Simplified, W. D. (2021, 4 20). How To Build A Google Docs Clone With React, Socket.io, and
MongoDB. Retrieved from YouTube:
https://www.youtube.com/watch?v=iRaelG7vOOU&ab_channel=WebDevSimplified

Singh, A. B. (2012). A survey of OCR applications. International Journal of Machine Learning and
Computing, 2(3), 314.

Smith, R. (2007, September). An overview of the Tesseract OCR engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), (Vol. 2, pp. 629-633). IEEE.

Stone, D. J. (2005). User interface design and evaluation. Elsevier.

Tesseract.js | Pure Javascript OCR for 100 Languages! (2023). Retrieved from Projectnaptha.com:
https://tesseract.projectnaptha.com/

Verma, R. &. (2012). A-survey of feature extraction and classification techniques in OCR systems.
International Journal of Computer Applications & Information Technology, 1(3), 1-3.

201

Visual Studio Code. (2021, 11 3). Retrieved from Visualstudio.com:
https://code.visualstudio.com/docs/editor/whyvscode

Wang, T. W. ((2012, November)). End-to-end text recognition with convolutional neural networks. In
Proceedings of the 21st international conference on pattern recognition (ICPR2012). (pp.
3304-3308). IEEE.

What Is GitHub? A Beginner's Introduction to GitHub. (2022, 12 13). Retrieved from Kinsta®:
https://kinsta.com/knowledgebase/what-is-github/

What Is MongoDB? (2022). Retrieved from MongoDB: https://www.mongodb.com/what-is-
mongodb

What Is Scrum Methodology? & Scrum Project Management. (2022, 12 23). Retrieved from
Nimblework: What Is Scrum Methodology? & Scrum Project Management

202

10 Appendices

10.1 Appendix A - Wireframes
The link for the Figma File can be seen here:

https://www.figma.com/file/8wushDYxUM3YNyoGIC2RUW/Final-Project?node-
id=0%3A1&t=IChSggepWepbklIC-1

Notelify
Eoiss s
T e —
About us
[t gt g
L e

College Notes

b o ey 1 el | e I o o e]

+ L rm i |

203

) w0

Sign Up

204

e e ek p e e

205

206

10.2 Appendix B — Final Design

Noted

Aboul us

Sign Up

207

Login

Click 1o add image

Il Falder Some

208

209

College Motes

B o 1 e kL by ey S e e Er bk = 1

Edit Document

210

OCR Readen!

&

211

OCR Readen!
AR A F P LR RPN T o §
W't ke -tll-"-.":‘rrg. '!‘.'l..'.ufl"'.l [y Ty s -:i'll'l.
Den'y 5p0nd oo lang decidwy K you dhauld
LB P Bewon :
Thin Your rotes
Dot % e, poary g | Lase sl oerdi
e abecanatiend - pclade o boy o spciHe =k
s leckay abbiegattens So0 b lochase oldmd
B Hgeby U L8 fEguic Yol (ot | A
Stubgmd s, leadond ot WO IF ol gadh
T, fabs & febe o Bisd Hereg UL " H. G5, 0F sk
Weuld be conhead witth Ky Hedy VI, abbenade
it aas Moy Hemey VL)
Wi Orwd

Results

212

o e ke 0 aerd e
whma o ps el raed
e T W
i B e e e
rrEm A e sk W
Sy =1 88 T

e s deer ol e e e ey e i A7 e e b e b 8 el e

somm e T § T O mi g s e B g e T P T
- ehp R s g e TS FL QT I P R e vt A s e s Egny
L L b e s la i R e T
v e e ke o e ke N Ll . LC]
e Ao L] w4 — e e LT g

Resnlis

e e dhrns e e e]
s e e ragea g el e e g skl e e e a
e R o BT e 4 Fosag o =
ribuad gty = g | B sty T S b B RIS I L el B R
o et oyt e e el we o o ke

213

10.3 Appendix D — Important Links

GitHub of Final Application: https://github.com/IADT-projects/y4-project-CjayGonzales

Hosted Application: https://final-project-hosting.web.app/

Figma: https://www.figma.com/file/8wushDYxUM3YNyoGIC2RUW/Final-Project?node-
id=0%3A1&t=IChSggepWepbklIC-1

214

