
  
   

 

 

 

 

 

 

 

Development of an OCR Web Application with 
Tesseract.js and MERN 
 

Clemente Gonzales 
N00193107 

 

Supervisor:  Cyril Connolly  

Second Reader:  Catherine Noonan  

 

 

 

 

 

 

 

Year 4 2022-23 

DL836 BSc (Hons) in Creative Computing  



Abstract 

The overall aim of the project was to study OCR (Optical Character Recognition) and learn 
how to develop a web application that contained this functionality. This involved an 
application that allowed users to take notes from various platforms and transfer those notes 
into one central application. 

Various steps were taken to accomplish this goal, which includes requirements gathering, 
design, implementation, testing, and project management. These steps are explained in 
greater detail and documented in the report. 

Various tests were carried out after the implementation of the application, which resulted in 
finding underling issues and allowing these issues to be fixed before deployment. 

Further work that could potentially be done would be to allow the application to work with 
React Native and have a mobile version available. 

 

  



Acknowledgements 

I would like to thank my supervisor Cyril Connolly for providing great assistance and 
guidance and for pushing me towards creating a polished product, as well as being very 
encouraging and understanding throughout the duration of this project. 

I would like to thank my peers for participating in surveys and testing whenever possible, 
giving needed criticisms on the usability, and finding underlying problems within the 
application. 

Finally, I would like to thank my family for giving me the opportunity to study and complete 
this degree. 

 

  



The incorporation of material without formal and proper acknowledgement (even with no 
deliberate intent to cheat) can constitute plagiarism. 

If you have received significant help with a solution from one or more colleagues, you should 
document this in your submitted work and if you have any doubt as to what level of 
discussion/collaboration is acceptable, you should consult your lecturer or the Course Director. 

WARNING: Take care when discarding program listings lest they be copied by someone else, 
which may well bring you under suspicion. Do not to leave copies of your own files on a hard disk 
where they can be accessed by other. Be aware that removable media, used to transfer work, may 
also be removed and/or copied by others if left unattended. 

Plagiarism is considered to be an act of fraudulence and an offence against Institute discipline. 

Alleged plagiarism will be investigated and dealt with appropriately by the Institute. Please refer to 
the Institute Handbook for further details of penalties. 

The following is an extract from the B.Sc. in Creative Computing (Hons) course handbook. 
Please read carefully and sign the declaration below 

Collusion may be defined as more than one person working on an individual assessment. This 
would include jointly developed solutions as well as one individual giving a solution to another who 
then makes some changes and hands it up as their own work. 

DECLARATION:  

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own 
work. 

Student : Clemente Gonzales 

Signed 

Clemente Gonzales
  

 

Failure to complete and submit this form may lead to an investigation into your work. 

 

  



 

Table of Contents 
1 Introduction .................................................................................................................................... 1 

2 Researching Optical Character Recognition .................................................................................... 2 

2.1 Introduction to Text Recognition ............................................................................................ 2 

2.2 Optical Character Recognition ................................................................................................ 2 

2.2.1 A Brief Introduction to Optical Character Recognition ................................................... 2 

2.2.2 Overview of The General OCR Algorithm ....................................................................... 3 

2.2.3 A Brief Overview of OCR Libraries ................................................................................. 11 

2.3 User Experience / Interfaces ................................................................................................. 14 

2.3.1 Introduction to User Experience ................................................................................... 14 

2.3.2 UX / UI Design Principals ............................................................................................... 14 

2.3.3 Responsive Design ........................................................................................................ 16 

2.3.4 Design Systems ............................................................................................................. 17 

2.4 A Comparison of EasyOCR and Tesseract ............................................................................. 18 

2.4.1 Introduction .................................................................................................................. 18 

2.4.2 Comparison of the two ................................................................................................. 18 

2.5 Conclusion ............................................................................................................................. 23 

2.6 Summary ............................................................................................................................... 24 

3 Requirements ................................................................................................................................ 25 

3.1 Introduction .......................................................................................................................... 25 

3.2 Requirements gathering ....................................................................................................... 25 

3.2.1 Similar applications ....................................................................................................... 25 

3.2.2 Interviews ...................................................................................................................... 31 

3.2.3 Survey ............................................................................................................................ 32 

3.3 Requirements modelling ....................................................................................................... 41 

3.3.1 Personas ........................................................................................................................ 41 

3.3.2 Functional requirements ............................................................................................... 45 

3.3.3 Non-functional requirements ....................................................................................... 46 

3.3.4 Use Case Diagrams ........................................................................................................ 47 

3.4 Feasibility .............................................................................................................................. 49 

3.5 Conclusion ............................................................................................................................. 49 

4 Design ............................................................................................................................................ 51 

4.1 Introduction .......................................................................................................................... 51 

4.2 Program Design ..................................................................................................................... 51 



4.2.1 Technologies ................................................................................................................. 51 

4.2.2 Structure of React ......................................................................................................... 52 

4.2.3 Model View Controller Design Pattern ......................................................................... 56 

4.2.4 Application architecture ............................................................................................... 57 

4.2.5 Database design ............................................................................................................ 58 

4.2.6 API design ...................................................................................................................... 60 

4.2.7 Process design ............................................................................................................... 61 

4.3 User interface design ............................................................................................................ 62 

4.3.1 Wireframe ..................................................................................................................... 62 

4.3.2 User Flow Diagram ........................................................................................................ 64 

4.3.3 Style guide ..................................................................................................................... 64 

4.4 Conclusion ............................................................................................................................. 69 

5 Implementation ............................................................................................................................ 70 

5.1 Introduction .......................................................................................................................... 70 

5.2 Technologies ......................................................................................................................... 70 

5.3 Implementation Roles ........................................................................................................... 71 

5.4 Scrum Methodology .............................................................................................................. 71 

5.5 Development environment ................................................................................................... 74 

5.5.1 Visual Studio Code ........................................................................................................ 74 

5.5.2 GitHub and Git .............................................................................................................. 74 

5.6 Sprint 1 - Research and Requirements ................................................................................. 75 

5.6.1 Goals.............................................................................................................................. 75 

5.6.2 Item 1 – Researching Project Ideas ............................................................................... 75 

5.6.3 Item 2 – Researching OCR Technologies in React ......................................................... 75 

5.6.4 Item 3 – Gather User Requirements ............................................................................. 76 

5.6.5 Item 4 – Creating User Personas ................................................................................... 77 

5.6.6 Item 5 – List of Functional and Non-Functional Requirements of the application ....... 77 

5.6.7 Item 6 – Creating Use-Case diagrams. .......................................................................... 77 

5.6.8 Conclusion of Sprint 1 ................................................................................................... 77 

5.7 Sprint 2 – Design ................................................................................................................... 78 

5.7.1 Goal ............................................................................................................................... 78 

5.7.2 Item 1 – Researching the Technologies. ....................................................................... 78 

5.7.3 Item 2 – Database Design ............................................................................................. 78 

5.7.4 Item 3 – Process Design ................................................................................................ 79 

5.7.5 Item 4 – User Interface Design ...................................................................................... 79 

5.8 Sprint 3 – Implementation 1 ................................................................................................. 82 



5.8.1 Goal ............................................................................................................................... 82 

5.8.2 Item 1 – OCR Functionality Prototype .......................................................................... 82 

5.8.3 Item 2 – Notes Taking Prototype .................................................................................. 84 

5.8.4 Item 3 – User Register and Login Prototype ................................................................. 93 

5.9 Sprint 4 – Design 2 ................................................................................................................ 97 

5.9.1 Goal ............................................................................................................................... 97 

5.10 Sprint 5 – Implementation 2 and Testing ........................................................................... 107 

5.10.1 Goal ............................................................................................................................. 107 

5.11 Sprint 6 – Testing ................................................................................................................ 134 

5.11.1 Goal ............................................................................................................................. 134 

5.12 Sprint 7 – Thesis .................................................................................................................. 156 

5.12.1 Goal ............................................................................................................................. 156 

5.13 Conclusion ........................................................................................................................... 167 

6 Testing ......................................................................................................................................... 168 

6.1 Introduction ........................................................................................................................ 168 

6.2 Functional Testing ............................................................................................................... 168 

6.2.1 Navigation ................................................................................................................... 168 

6.2.2 CRUD ........................................................................................................................... 172 

6.2.3 Discussion of Functional Testing Results .................................................................... 174 

6.3 OCR Reader Accuracy Testing ............................................................................................. 175 

6.3.1 No Pre-Processing ....................................................................................................... 176 

6.3.2 Gaussian Blur............................................................................................................... 178 

6.3.3 Image Dilation ............................................................................................................. 179 

6.3.4 Colour Inversion .......................................................................................................... 180 

6.3.5 Threshold Filter ........................................................................................................... 181 

6.3.6 Mixing Filters ............................................................................................................... 182 

6.3.7 Conclusion ................................................................................................................... 184 

6.4 User Testing ........................................................................................................................ 185 

6.4.1 Application Overview .................................................................................................. 185 

6.4.2 User Tasks ................................................................................................................... 185 

6.4.3 Usability Testing Participants ...................................................................................... 187 

6.4.4 Usability Factors .......................................................................................................... 187 

6.5 Conclusion ........................................................................................................................... 189 

7 Project Management .................................................................................................................. 190 

7.1 Introduction ........................................................................................................................ 190 

7.2 Project Phases ..................................................................................................................... 190 



7.2.1 Proposal ...................................................................................................................... 190 

7.2.2 Requirements .............................................................................................................. 190 

7.2.3 Design .......................................................................................................................... 191 

7.2.4 Implementation .......................................................................................................... 191 

7.2.5 Testing ......................................................................................................................... 191 

7.3 Teamwork ........................................................................................................................... 192 

7.3.1 Roles ............................................................................................................................ 192 

7.3.2 Communication ........................................................................................................... 192 

7.3.3 Difficulties ................................................................................................................... 192 

7.3.4 Resolving Difficulties ................................................................................................... 192 

7.4 SCRUM Methodology .......................................................................................................... 193 

7.5 Project Management Tools ................................................................................................. 194 

7.5.1 Pen and Paper Notes ................................................................................................... 194 

7.5.2 GitHub ......................................................................................................................... 195 

7.5.3 Journal ......................................................................................................................... 195 

7.6 Reflection ............................................................................................................................ 196 

7.6.1 Your views on the project ........................................................................................... 196 

7.6.2 Completing a large software development project .................................................... 196 

7.6.3 Working with a supervisor .......................................................................................... 196 

7.6.4 Technical skills ............................................................................................................. 197 

7.6.5 Further competencies and skills ................................................................................. 197 

7.7 Conclusion ........................................................................................................................... 197 

8 Conclusion ................................................................................................................................... 198 

8.1 Final Words ......................................................................................................................... 199 

9 References .................................................................................................................................. 200 

 



1 
 

1 Introduction 
The overall aim of this project is to study OCR and discover methods in allowing developers to 
implement this functionality in a web-based application.  

This document will discuss and display the process shown in developing this system, as well as 
studying OCR as a technology, with the various ways to use it. 

The final application will be web-based, which will act as a note taking app, with functionalities that 
allow users to extract text from images. 

The technologies that will be used in the application consist mainly of the MERN Stack, which will 
mainly be used to develop the full stack application, TesseractOCR.js which is a library for the OCR 
functionality, and Quill.js which will be used for the notes taking section. Various other technologies 
will also be used but will be discussed in their respective chapters. 

Management of this project was done with various tools such as Git and GitHub. These tools were 
used for version control and show the progress that will be made and what will be completed at 
each stage of development. 

A to-do list will also be used to take care of the different tasks that need to be completed on that 
day. 

The project is separated into different stages, which consist of Researching OCR and UX/UI, 
Requirements Gathering, Design, Implementation, and Testing. 

Requirements gathering will gather any relevant information from users / other applications, etc. 
and gather any relevant functionalities that should be included in the project. 

Design will be covering both the program design and the user interface design. 

The Implementation will be displaying how the application will be developed and will cover in detail 
how functionalities were created. 

Once this is completed, the next step will be to perform both user testing and functional testing, to 
test the application and see if everything works as intended. 

We will now discuss the requirements gathering. 

  



2 
 

 

2 Researching Optical Character Recognition 
2.1 Introduction to Text Recognition 
A system with the ability to recognize text within natural images have many practical 
applications that can be useful for society. These systems, for example, can be essential for 
users who are visually impaired to allow them to go through different environments, such as 
a small shop, or simple navigation through different roads and streets within the city. 

Text recognition can allow for this kind of usage, as text within natural images provide a 
large amount of information within it, however despite this usage, it is difficult to process 
text within natural images. 

While there are methods to read different characters using machine learning. There are 
many problems when reading images from text. Font variation, backgrounds, textures, and 
lighting can provide challenges to the system, and are present within every image (Wang, 
(2012, November)). 

The goal of this research report is to investigate potential methods to help develop a system 
that can read text from different images, and the methods used to develop them. One of 
which, is Optical Character Recognition. 

2.2 Optical Character Recognition 
2.2.1 A Brief Introduction to Optical Character Recognition 

Optical Character Recognition (OCR) is a heavily researched area in the field of machine 
learning, artificial intelligence, and computer vision (Ranjan, (2021)). The way OCR works is 
that a piece of software takes an image as an input, and reads the text and sentences within 
that image, and converts it into digital text, such as ASCII or Unicode (Matei, 2013). This 
allows the computer to understand the text being presented to it. 

There are many applications that can be endearing for the further study of OCR. Companies 
within a paper-intensive industry can benefit greatly from the use of this kind of software, 
where a large collection of forms and documents can be found. This can include the legal 
industry, banking, healthcare, captcha, optical music recognition, and automatic number 
recognition (Singh, 2012), and can provide great benefits to these industries. 

Despite these benefits, there are still limitations. Such examples consist of the speed and 
accuracy of an OCR program. Many OCR programs will suffer from either being a fast but 
inaccurate program, or slow but highly accurate one (Matei, 2013). Two examples of this 
will be looked at later. 

This is because OCR software uses Neural Network models to recognize new characters and 
texts based on previous training. These models are trained from large datasets, consisting of 
thousands of samples to “learn” how a specific character will look (Ranjan, (2021)).  



3 
 

Due to this, there is a large amount of research in finding ways to improve OCR algorithms 
to create better accuracy, with lower load times (Matei, 2013). 

2.2.2 Overview of The General OCR Algorithm 

Figure 1 displays the general overview of the algorithm. Each of these steps have their own 
tasks required for the algorithm to predict what the image is representing to text: 

 
Figure 1 General Overview of the Algorithm 

Image Acquisition: Is the process of retrieving the image using a hardware system such as a 
camera from a phone (Ong, 2016). This can consist of a photograph being uploaded to the 
system and retrieving the image through there, and the image is fed to the system as an 
input (Ranjan, (2021)). The image should also contain the text that the user wishes to 
extract, and display on the computer (Matei, 2013).  

Pre-Processing: Is the steps that are required to enhance the image for segmentation 
(Ranjan, (2021)). This can consist of the image being changed to a monochrome colour to 
allow for easier readability (Matei, 2013). 

Segmentation: This is where the document is segmented into rows, and columns, to extract 
the words that are within the document (Ong, 2016). 

The angles within the segments will be inputted to the neural network, and for the 
algorithm to confirm it (Matei, 2013). 



4 
 

Feature Extraction: Feature Extraction is when the features of different symbols are 
extracted (Matei, 2013). Symbols are characterized and meaningless features are left out of 
the algorithm. These extracted features are used to train the system (Mithe, 2013). 

Classification: The tested image is added to the program for classifying. There are several 
techniques that can be applied to classification. These methods can include artificial neural 
networks, support vector machines. During classification, the tested image’s features are 
compared with the pattern that is in the training dataset (Ong, 2016).  

Post-Processing: Is the process that helps to improve the accuracy of the recognition. This 
can consist of the analysis of the syntax and the semantics (Ong, 2016). 

Grouping, error detection and correction normally occur within this phase of the process 
(Eikvil, 1993). 

2.2.2.1 Image Acquisition 
The OCR program requires an input of an image, and within that image containing text, that 
can be extracted. The image quality and resolution are essential for a clear reading, and an 
accurate answer (Ranjan, (2021)). Parameters such as colour, fuzziness, lighting, and clarity 
can affect the reading and answer. 

Acquiring the images can come from a variety of sources. These can range from: 

1.) Photographs: These can come from mobile phones, that contain the required text 
that the user wishes to extract (Ranjan, (2021)). 

2.) Scanned Documents: Documents that have already been scanned and stored as an 
image can be inputted to the system (Ranjan, (2021)). 

3.) Screenshots and digital images: Mobile phone or computer applications allow users 
to take screenshots of their screen. This can be used to inserted into the OCR system 
and be processed the same way as other photographs can be too. Digital images are 
the same in the sense that they can also be processed through the system to extract 
text (Ranjan, (2021)). 

Through the scanning process, an image of the original document is captured, and optical 
scanners are used. These optical scanners normally contain a transport mechanism and a 
sensing device that can allow the system to convert light intensity into grey levels (Eikvil, 
1993). This allows the system to read the text in a monochromatic way, ensuring that it 
remains more accurate than with colour. 

It is important to have a clear reading of the image, including the light levels and readability 
of the text, as the text gets converted into black and white for the program to read. Like less 
noise, a focus on the text, and lighting should be taken into consideration (Ranjan, (2021)). 
The result of the reading can be heavily affected if these aren’t taken into consideration. 

This process of converting an image to a bilevel image of black and white is often referred to 
as thresholding. This process is essential as the quality accuracy of the result is dependent 
on the quality of the bilevel image. The best forms of thresholding are generally ones that 
are adaptive and can take into consideration the properties of the brightness and the 



5 
 

contrast of the image to result in a better and clearer image. These methods however 
generally are dependent on multilevel scanning and requires much ore computational 
capacity, resulting in less usage (Eikvil, 1993). 

These papers allude to fact that the image should be clear and readable for the best 
possible effect, as image processing applications are done using grey scale images, to make 
the processing efficient (Ranjan, (2021)). 

2.2.2.2 Pre-Processing 
The result of the image that has been scanned through may contain a certain amount of 
noise, depending on how clear and readable the image is, as the characters may be 
smudged or broken. Some of these defects can be eliminated using pre-processing, to 
smooth out these digitized characters (Eikvil, 1993). This process can help optimize the 
reading and allow for a clearer answer. 

During this phase, smoothing and normalization occurs. Smoothing allows rules to be 
applied to the image, with the help of filling and thinning techniques. Filling removes the 
small breaks, holes and gaps in the digitized characters, and thinning reduces the width of 
the line. A technique that is commonly used in smoothing is to move a window across a 
binary image of that specific character, and while this is there, it applies certain rules to 
what is inside of the window (Mithe, 2013). 

Normalization handles the size, slant, and rotation of the character. For example, if the 
letter “J” is off centred, and leaning more towards the right, normalization will fix this issue 
to allow for easier readability and centre it (Mithe, 2013). 

The image is also sharpened to enhance the high frequency details. This is to emphasize the 
edges in the image, to make it easier for the machine to pick out the patterns and letters 
(Matei, 2013). 

The reason for pre-processing is to allow for easier classification for the program to detect 
the different strokes and classify which belongs to which letter in the alphabet (Ong, 2016). 

Another step-in pre-processing is applying adaptive thresholding, which is used to segment 
the image. This is done by setting the pixels whose values are above a certain threshold to 
the front value, and all remaining pixels, who do not meet this threshold to the background 
value (Matei, 2013). 

Once pre-processing is complete, it is now ready for the next stage. 

2.2.2.3 Segmentation 
Segmentation is the process of locating sections of printed or handwritten text. 
Segmentation distinguishes text from figures and the image. When segmentation is applied 
to text, it isolates characters or words that are within that text (Mithe, 2013).Text lines are 
first segmented, then within these lines of text, the words are then further segmented, and 
finally from the words, the characters are segmented (Rao, 2016). It is essential to locate the 
sections of the document where text have been written and identify them from figures and 
graphics. For example, in the process of automatic mail-sorting, the address must be located 



6 
 

and separated from other print on the envelope like the stamps or company logos, before 
we get to recognition (Eikvil, 1993). 

Most OCR algorithms will segment words to isolated characters that gets recognized 
individually. In general, this form of segmentation is done by isolating each connected 
component, that is each connected black area. It is easy to implement, however there are 
some problems that occur if the characters are touching or are broken and consist of 
multiple parts (Eikvil, 1993). These can lead to the system recognizing a completely different 
word or leading to inaccuracies.  

According to (Eikvil, 1993), there are a few problems within segmentation, and are as 
follows: 

• Extraction of characters that are touching or fragmented. These distortions can lead to 
multiple joined together characters being understood as one single character, or that a 
piece of a character is thought to be an entirely different symbol. These joints can occur if 
the photograph or document is a dark photocopy or if it is scanned at a low threshold. Joints 
are also common if the fonts are serifed. If the document has a light photocopy or is 
scanned at a high threshold, it is also possible for a split to occur due to the circumstances 
of the scan (Eikvil, 1993). 

• Distinguishing noise from text can also be an issue. Dots and accents might be 
misinterpreted as noise, and vice versa, causing inaccuracies to the finished product (Eikvil, 
1993). 

• Misinterpreting an image or geometry and seeing them as text. This can lead to non-text 
being sent to recognition and being unable to read it (Eikvil, 1993). 

• Misinterpreting text as an image or geometry. In this scenario, it is possible that the text 
will not be passed to the recognition stage. This often occurs if characters are attached to 
graphics. 

2.2.2.3.1 Segmentation methods 
Document segmentation is a key pre-processing stage in applying an OCR system. It is the 
process of classifying a document image into homogeneous zones, i.e., that each zone 
contains only one kind of information, such as text, a figure, a table, or a halftone image. In 
many cases, the accuracy rate of systems related to the OCR heavily depends on the 
accuracy of the page segmentation algorithm used (Rao, 2016). 

There are three categories of Algorithms of document segmentation according to (Rao, 
2016). These are as follows: 

 Top-down methods, which is when a document is segmented from large regions into 
smaller regions recursively. The segmentation process will stop when it reaches a 
stage that meets a criterion, i.e., it reaches the final range of segmentation (Rao, 
2016). 



7 
 

 Bottom-up methods will search for interest pixels, and groups these interest pixels. 
They manage the interest pixels into associated elements that represent characters 
that are combined into words, or lines, or blocks of text afterwards (Rao, 2016). 

 Hybrid methods is an integration of both approaches seen from above (Rao, 2016). 

2.2.2.4 Feature Extraction 
Feature extraction is the process of extracting relevant features from objects or alphabets to 
build a feature vector. The objective of this step is to capture vital traits and symbols (Eikvil, 
1993). These vectors are used by classifiers to identify the input unit with the objective 
output unit. The easier the features are to determine; the more effortless classification 
becomes (Rao, 2016). 

According to (Rao, 2016), there are many methods in which feature extraction can be 
accomplished. For example, one such method consists of a directional chain code feature, 
and zoning for handwritten numerical recognition. It consists of a feature vector of length 
100 and have a high level of accuracy, however it proves to be time consuming and complex 
(Rao, 2016). 

Another potential method that was seen in (Rao, 2016) is that the end points are the 
potential features towards recognition. These features use horizontal/vertical strokes and 
for handwritten numerals obtained a recognition accuracy of 90.50%. Despite this, the 
method uses the thinning process which can result in a loss of features. 

However, according to (Eikvil, 1993), the techniques of feature extraction can be 
categorized into three different groups, where the features can be extracted. This can 
consist of: 

 The distribution points. 
 Transformations and series expansions. 
 Structural Analysis 

In both (Rao, 2016) and (Eikvil, 1993), we see that noise and distortion can skew the results 
that are given. (Eikvil, 1993), however, goes into more detail, we can see that noise, 
distortions, style variation, translation, and rotation can all effect the speed of the 
recognition, the complexity of implementation and whether the system will need further 
support to recognize the text. The following table can display an example of feature 
extraction. 



8 
 

 
Figure 2 Feature and Extraction techniques from (Eikvil, 1993) 

2.2.2.4.1 Distribution Points 
As seen in article (Eikvil, 1993) and (Rao, 2016), the distribution points are key features in 
identifying the essential components of the character. These different techniques can be 
listed below as: 

 Zoning – The rectangle covering the character is divided into different regions and 
densities of black points (Eikvil, 1993). 

 Moments – The moments of black points being chosen as a centre (Eikvil, 1993). 
 Crossing - The features are found through the number of times the character shape 

and the vectors along certain directions are crossed (Eikvil, 1993). 
 N-Tuples – The joint occurrence of the foreground and background (black and white) 

points in a certain order being identified as features (Eikvil, 1993). 
 Characteristic Loci – Vertical and Horizontal vectors are generated. The segments of 

a character that intersects with the vector is used as a feature to describe the 
character (Eikvil, 1993). 

 Transformation and Series expansions - reduce the dimensionality of the feature 
vector and the extracted features can be made invariant to global deformations 
(Eikvil, 1993). 

2.2.2.4.2 Structural analysis 
Structural analysis allows features that describe the geometric structure of a symbol to be 
identified and extracted. These can include the physical characteristics of the character, 
commonly identifying loops, strokes, intersections, lines, bays, and endpoints. Structural 
analysis is a technique with a large tolerance to style of the character and noise variations 
but are not very tolerant to rotation and translation (Eikvil, 1993). 

2.2.2.5 Classification  
The classification state is when the features are extracted to identify the text segment that 
is according to the rules. Classification is generally accomplished by the comparison of 



9 
 

feature vectors that correspond to the input characters with the representative of each 
character class (Lehal, 1999). 

Before doing this however, the classifier should possess a range of training patterns (Verma, 
2012). There are many classification methods, that have been proposed by different 
researchers, and some of them will be looked at in a later section. These techniques can 
consist of statistical methods, template matching, syntactic methods, artificial neural 
networks, and kernel methods (Verma, 2012). 

According to (Lehal, 1999), the nearest neighbour classifier (statistical method as mentioned 
in (Verma, 2012)) and binary classifier trees have been the two most common classifiers. 

2.2.2.5.1 Statistical methods (K-Nearest Neighbour) 
The reason behind using the statistical methods is to determine which category the pattern 
belongs to. This is done through the observation and measurement process, where it 
prepares a set of numbers that is used to prepare a measurement vector (Lehal, 1999). 

The K-NN rule is a non-parametric recognition technique. The method compares unknown 
patterns received from the feature extraction stage to a set of patterns that have been 
labelled with class identities during the training stage. A pattern is then recognized to be of 
the class of pattern, to which it has the closest distance (Verma, 2012). 

This technique is effective for classification problems where the patterns consist of a limited 
number of variations. For clear and specific machine-printed text, the patterns of each class 
tend to be clustered tightly towards the patterns that represent that class. The nearest 
neighbour approach can be effective method of classification; however, it can suffer from 
memory and size issues if more fonts are added (Lehal, 1999). 

Other common statistical methods are Bayesian classification, which assigns a pattern to a 
class with max posteriori probability, Quadratic Discriminant Function (QDF), Linear 
Discriminant Function (LDF), Cross Correlation, Regularized Discriminant Analysis (RDA) and 
Euclidean Distance (Verma, 2012). 

2.2.2.5.2 Artificial neural networks 

A neural network is an architecture that contains a massive interconnection of flexible node 
processors (Rao, 2016). The output from one node reinforces the next one in the network, 
and a result is garnered from the complex collaboration of all nodes. Feed-forward and 
feedback neural networks can be considered as a categorization of a neural network 
architecture (Rao, 2016). 



10 
 

 

Figure 3 (Lopez, 2017), Basic ANN Structure 

In (Lopez, 2017), we can see the basic structure of an artificial neural network. The network 
contains of an input, hidden, and an output layer. Training is done using a method known as 
back-propagation. 

In (Eikvil, 1993), we see the use of back propagation, where it mentions that within this kind 
of network, which consist of many layers of interconnected elements, when a feature vector 
enters as an input through the input layer, each element of the layer calculates the 
weighted sum of the input and transforms it into an output done using a non-linear 
function. While the neural network is training, the weights are adjusted until the required 
output is achieved. The problem with a neural network in OCR is their limited predictability 
due to training, however they are very adaptive which provides to be a general advantage. 
Therefore, libraries such as OpenCV, who uses CNN for OCR is widely used, because of this 
adaptability. 

According to (Verma, 2012), the most used neural networks for OCR and the pattern 
classification task is the feed-forward network, the Radial-Basis Function (RBF) networks, 
Convolutional Neural Networks (CNN), Vector Quantization (VQ), Learning Vector 
Quantization (LVQ), and auto-association networks. 



11 
 

An interesting study that was found in (Matei, 2013), shows that combining the two 
methods of using K-NN and Neural networks can provide staggering results. Their study uses 
Artificial Neural Network and K-NN as a confirmation algorithm, combining the two, and 
bases the vectors on the angles of digits rather than pixels. Some advantages found within 
their system consist of the ability to work in different light levels and exposure conditions, 
insensitivity to rotation and being able to deduct and use exploratory character recognition 
which provided great success with moderate levels of training. 

2.2.2.5.3 Template matching 
One of the simpler methods towards pattern recognition, template matching is the 
approach where a prototype of the pattern that must be recognized is available. The pattern 
that is to be recognized is compared with patterns that are already stored and ignores the 
size and style of these patterns (Verma, 2012). 

2.2.2.6 Post-Processing 
Post-Processing is the final stage of the program, where it is used to make corrections 
towards spelling errors, and the grouping of the words together (Eikvil, 1993). 

 Grouping: The result of the symbol recognition on a document will result in 
individual symbols. Grouping will take these symbols and group them together 
where they each belong with each other, making words, numbers, and sentences. 
This process is known as grouping, where symbols that are found to be adequately 
close are grouped together (Eikvil, 1993). 

 Error-detection and Correction: In advanced OCR problems, a system consisting only 
of single-character recognition will not be sufficient. Errors will often occur, and a 
correction must be provided. One of these approaches is done using syntax, where it 
follows the rules of grammar, for example a capital after a full stop. Another 
approach is done using dictionaries, where it can provide to be the most efficient 
method for error detection and correction (Eikvil, 1993). 

The next section will discuss how the general algorithm is used in OCR libraries. 

2.2.3 A Brief Overview of OCR Libraries 

2.2.3.1 Tesseract 
Tesseract is an open-source OCR engine developed in 1984 – 1994 at HP. Tesseract uses the 
Line Finding algorithm. This algorithm is designed so that a skewed image has the capability 
to be recognized without having to de-skew the image, which saves the image quality. Blob 
filtering and line construction is some of the key parts of the process. More details of the 
process can be found at (Smith, 2007, September). However, the process is like what is 
described in the general overview of the algorithm section above. 

In short however, the program first reads the text and converts it into black and white 
outlines, which are then converted into Blobs. These Blobs are arranged into text lines, 
where the lines and regions are then analysed for some fixed area or are of equal text size. 
Text is divided into two words, with these being definite space and fuzzy spaces. 
Recognition is also started as a two-pass (Patel, 2012). 



12 
 

 
Figure 4 Tesseract Architecture (Patel, 2012) 

Tesseract can provide better accuracy to grey-scale images rather than coloured ones, seen 
in the experiment conducted in (Patel, 2012). Tesseract works best when it comes to grey-
scale images, and as a result works best when working with these kinds of images, with very 
high accuracy, however, falls short when it comes to images with colour. 

This method can be effective in capturing hand-written documents, where it is a simple 
monochrome colour, and there is not much on the written paper being presented, using 
tesseract can provide to be an effective solution. 

2.2.3.2 OpenCV 
Open-Source Computer Vision (OpenCV) is a library with programming functions for real-
time computer vision. The library has over 2000 algorithms and has been widely used 
around the world. Programmers can implement many digital image-processing algorithms 
for mobile phones (Ma, 2000). 

The use of OpenCV can be beneficial in OCR. This is because OpenCV can detect and factor 
in the different noise levels, and colours that occur when using OCR is regular day-to-day 
life.  

A study in (Goel, 2019), shows a process where it uses Convolutional Neural Networks (CNN) 
and the OpenCV Library to develop an accurate OCR system. It extracts natural scenes from 
images, where there can be a wide range of colours, fonts, textures, lighting conditions, etc. 
and can use the two methods effectively to accurately capture the text from an image (Goel, 



13 
 

2019). From this, it can be safely assumed that it is possible to use OpenCV in open areas, 
for example a street road, in attempts to examine a sign to see where a user is, and is more 
accurate than using something like Tesseract, despite taking longer to process. 

2.2.3.3  A Comparison of The Libraries 
The reason for discussing these libraries is to see their different benefits and advantages. 
From researching the Tesseract, KerasOCR, EasyOCR, and OpenCV, a conclusion can be 
drawn that there are many benefits for the use of each library and can be highly effective 
depending on the goal of the software a person is developing needs to accomplish. 

Tesseract is highly effective when used in document reading, where the image and font 
presented is in a monochromatic colour and noticeably clear to read. This can work best 
with handwritten documents, where the ink and the paper are highly contrasted. Pairing 
this with the high accuracy, and lower loading times, it can prove to be the most effective 
method of OCR in a system, where the main goal is to read notes on paper rather than in 
the outdoors. 

OpenCV however, can be used for recognition in the wild instead, with the drawback of 
slower loading times is much more optimized for OCR in the wild. The capability of this is 
mentioned above, where it uses CNN to look at many images and interpret the text. 

Overall, the two libraries both provide benefits for different goals, and can compensate for 
each other’s weaknesses in OCR.  



14 
 

2.3 User Experience / Interfaces 
2.3.1 Introduction to User Experience 

The concept of User Experience (UX) and User Interface (UI) is a term that is used within 
many platforms. Specifically in this dissertation, the UX and UI for the web will be reviewed 
to understand and implement the best user experience possible. 

Poorly designed UI can spoil a user’s experience with a website, and to avoid this, research 
will be done to implement standard design practices and foundations that can be globally 
applied to many websites. 

The goal is to give the user the best potential experience when interacting with the website, 
as well as be an aesthetically pleasing website to look at, and to retain their attention and 
consistently keep returning. 

The next section will be focused on discussing the UX and UI Design Foundations, to help us 
understand the reasoning and psychology behind these design principals. 

2.3.2 UX / UI Design Principals 

In this section, the essential design principals will be discussed and researched. The steps 
and goals for each design principal will be looked at here, starting with the look of the 
website. 

2.3.2.1 Aesthetics and Clarity 
As design and aesthetics and visual composition is attractive to the eye, it is possible to 
convey the idea of your website quickly and clearly through the design alone. Graphics 
design principles that include contrast, hierarchy, spacing, alignment, and using colour 
effectively provides the overall look and feel of an interface (Bhaskar, 2011). These elements 
are essential when creating a web application, as these concepts can also be applied to web-
apps. 

Based on previous experience, it is effective to build a design system, where the designer 
chooses a fitting colour palette that suits the feel of the website, choses the typography 
which complement the website, and each other, and the style of the icons and buttons to be 
used to help keep the look of the website consistent. 

2.3.2.2 Visual Structure / Hierarchy 
Visual Structure and Hierarchy is an essential part of designing an interface. A visual 
hierarchy allows users to organize information into clear categories that can be repeated 
throughout the website (Fleming, 1998). This allows users to better understand what they 
are looking at, providing clarity when analysing the body for information. It allows users to 
separate their relevant goals from irrelevant information that is provided within a body of 
text (Johnson, 2020). 



15 
 

 
Figure 5 (Fleming, 1998) Visual Hierarchy 

Looking at fig. 5, it is easy to better distinguish the relevant information on the text on the 
right. The use of bold and large font for the title, while using smaller text however still in 
bold for the subheading shows the main ideas that the article provides.  

Relevant size can help communicate the relevance of the information provided, as seen in 
the previous figure. Large items, position of element, and colour and contrast, can help 
draw a user’s attention (Fleming, 1998). This can allow for the communication of 
information to be more easily done and is not simply font size, but all the other elements 
listed above can help draw a user’s attention. 

2.3.2.3 Requirements 
The requirements gather phase is an essential part of the design progress. It finds the needs 
and the subject matter of the application that is being developed. It is essential to 
understand what is being developed and the plan the functionalities that the system will 
have. 

There is a plethora of different methods to accomplish the requirements gather phase. 
Those which can be listed below: 

2.3.2.3.1 User Observations 
Observing user behaviour while interacting with the website can provide to be beneficial 
when planning the design of the application. Through observing their behaviour, it is 
possible to see what the users do, and what they like and dislike about the application 
(Stone, 2005). This can allow the developers to discover flaws that is found within the design 
and allow the developer to make changes where necessary to provide a better end-product 
overall. 

Direct observation is when a developer is watching a user interact with their system and 
taking notes on any issues that the user is facing. This is normally done on the user’s system 



16 
 

(Stone, 2005).It is however easy for a developer to overlook an important issue when doing 
direct observation, as the process is not recorded, and cannot be studied after it is over. This 
is where it is possible to instead record a user’s actions for further study. 

Indirect observation allows just that, where the user can provide a video recording that 
allows the developers to watch and analyse the recording to find issues, they might deem 
necessary to fix (Stone, 2005). 

Both methods have their own benefits and are excellent ways to find issues within the 
design to fix for a much better product. 

2.3.2.3.2 Interviews 
Interviews can also be conducted when gathering requirements. The interview process is 
done to find the different features that a user would like to see in an application that the 
developer is creating. There are generally two types of interviews; a structured interview, 
where questions are generally pre-written and contains little scope in exploring different 
topics that arise in conversation, and a flexible interview, where the questions are more 
broad and can explore and dive deeper into a certain topic within that interview (Stone, 
2005). Both provide different benefits. The structured interview can allow developers to 
gather data on different functionalities on the system of something that has a clearer goal, 
while the general interview can allow developers to gather more ideas on what kinds of 
functions a system can have, as well as what the different users would like to see. 

2.3.2.3.3 Surveys and Questionnaires 
 Surveys and questionnaires are like interviews, where they can be used to gather 
information and is flexible and friendly in gathering more precise information (Stone, 2005). 
The use of surveys can be used to mass gather information as tens to hundreds of people 
can take part in a short survey. This is good when gathering requirements, as it allows users 
to show developers what they wish to see within their program. 

There are two kinds of questions when creating a questionnaire or a survey. One of which 
are known as “closed questions”. These consist of closed-ended answers, for example “yes” 
or “no” (Stone, 2005) and can be used for specific topics that can be answered easily. 

The second set of questions are “open questions” where they are open to what the user has 
to say. These questions can provide rich data from what a user has to say due to the 
openness of the question (Stone, 2005). For example, this can be used to gather feedback 
on a certain feature and see how a user would like that feature to be improved upon. 

2.3.3 Responsive Design 

As technology continues to evolve, responsive design becomes more and more crucial in the 
role of web development. Many people will own a wide range of screens, where websites 
might not be optimized for. This problem can be resolved with responsive design. 

Responsive web design attempts to mix HTML5 and CSS3 features with new design 
methodology to website architecture, where it the website will adapt to a browser with 



17 
 

varying screen sizes (Gardner, 2011). This allows websites to be flexible and compatible with 
almost any device and provides to be a great tool for accessibility to a website.  

According to (Gardner, 2011), responsive design contains three parts: 

 A fluid layout is the use of a flexible grid, that allows a website to scale to the width 
of a screen / browser. These layouts are responsive and can change to whatever 
screen it fits. Popular practice can consist of using grid systems which consist of 
columns, gutters, and rows (Gardner, 2011). A fluid layout can allow for a website to 
be seen and accessed using many different devices and can potentially lead to more 
people viewing it 

 Images and media being flexible and adapt with the website to the browser that it is 
being viewed through is also essential. Images should be sized accordingly, 
depending on the screen size. This can be done using CSS, and it is also possible to 
keep the resolution by using the “max width” property in CSS (Gardner, 2011). Doing 
this however can lead to the website loading slower, as the images are mostly kept 
in high resolution and can provide potential performance issues. 

 Media Queries can be used to address usability issues. A common problem that can 
occur when attempting to develop for all devices is that components are not as 
optimized as they could be in the location that they are in. For example, if we take a 
side nav and translate that to a mobile device from a desktop, the side-nav will 
shrink in width in the mobile version. To combat this, the use of media queries is 
available, where it can alter the viewing experience and style depending on the 
device that it is being viewed upon (Gardner, 2011). 

All these concepts regarding design can be streamlined using design systems, which we will 
look at in the next section. 

2.3.4 Design Systems 

A design system is a group of requirements that manages design through the maintenance 
of consistency and reduction of redundancy (Kumar, 2022). Design systems aim to keep the 
look of a website to be consistent and follow rules of good practice in graphic design. 

These design systems are commonly very consistent in look and can help when developing a 
web application. They can also prove to be useful, as they are very user friendly and clear to 
read. 

Examples of design systems are Material UI design, Fluent Design Systems, Atlassian, and 
Polaris. These design systems are well respected and commonly used throughout the web. 
Material Ui Design for example is used by Google. 

  



18 
 

2.4 A Comparison of EasyOCR and Tesseract 
2.4.1 Introduction 

Before beginning the development of the application to be built, a direct comparison was 
done to test the accuracy of both EasyOCR and Tesseract. The code for EasyOCR was written 
in Python, and developed by using Anaconda, and the code for Tesseract was written in 
JavaScript, more specifically React.js and developed using Visual Studio Code. 

This comparison was done to determine the accuracy of both libraries, as both provide great 
benefits and help to decide on which library is preferable to use. The test will be done with a 
list of the same images to provide a fair test. 

 

2.4.2 Comparison of the two 

The first image to be examined was found in Google Images, with a quick search of a 
random image to use of a bank sign. In figure 6, the words detected are accurate, however 
the spacing is slightly off. Nonetheless EasyOCR provides an accurate reading of the sign 
shown in the image. 

 
Figure 6 Bank of America (EasyOCR Reading) 

The same cannot be said however for Tesseract’s reading. As expected, due to the different 
colour, the Tesseract library struggles with the reading of the letters and displays a very 
inaccurate result as seen in figure 7.  



19 
 

 
Figure 7 Bank of America (TesseractOCR Reading) 

The next image that was then examined was a simple paragraph, again found with a quick 
Google search. In figure 8, the letters and words detected are highly accurate, as the letters 
are clear to read and are not distorted in any way. EasyOCR results are seen in figure 8. 

 
Figure 8 Paragraph EasyOCR result 

The same can also be seen in figure 9, where Tesseract is then used. It is important to note 
that the use of Tesseract proved to be much faster than using EasyOCR, and provides highly 
accurate results in this format, as the words are easy to read and very clear to see. 

 
Figure 9 Paragraph Tesseract Result 



20 
 

The next test was to test the accuracy of the application when reading letters and 
paragraphs through common household objects, in this case from a swimming pool box. In 
figure 10, EasyOCR again proves to be highly accurate when reading letters, as it has very 
little inaccuracies as seen in the figure below. 

 
Figure 10 EasyOCR Reading of Swimming Pool Box 

 

TesseractOCR also proves a very accurate reading of the paragraph seen in the bottom of 
the box. Although it cannot read “Tango”, as it is in colour and struggles to read it, the 
paragraph at the bottom of the pages shows its accuracy as it is a clear, black font and easily 
seen against a contrasting background.  

 
Figure 11 TesseractOCR Reading of Swimming Pool Box 

Although TesseractOCR struggles with different colours and typography, a test was done 
with both libraries to see how the two would compare against regular fonts from a novel. 

EasyOCR was tested first and can be seen in figure 12. Although it is quite difficult to see, 
the reading was highly accurate with the use of EasyOCR. This process however took around 
one to two minutes to load, showing that it takes a very long time to return results. 



21 
 

 
Figure 12 EasyOCR Book Reading 

 

TesseractOCR on the other hand only took around 20 – 30 seconds to read the following 
paragraph and provided highly accurate results. These results can be seen in figure 13. 

 
Figure 13 TesseractOCR Book Reading 

Both results provided clearer readings when using a black and white background with a 
clearer to use font. TesseractOCR showed the accuracy it can perform when used in this 
specific scenario, however from previous examples can struggle when reading things used in 
the outside world such as signposts and is where EasyOCR then shines. 

A final set of tests were then performed, this time testing different handwritten texts with 
the use of pens, markers, and pencils. 

The first library to be tested was EasyOCR, and it once again proves to be highly accurate in 
the use of an outside environment, and the results can be seen in figure 14. 



22 
 

 
Figure 14 Handwritten EasyOCR Results 

These results are to be expected with EasyOCR as it has shown throughout the testing phase 
that it is highly accurate, with some mistakes here and there. 

TesseractOCR is then used, and again struggles to read some of the results, due to the font 
being hard to read, as it is handwritten text. Although it can occasionally read some words, 
it struggles to read handwritten texts and lettering, as it is not incredibly accurate, but can 
still read some of the presented letters. These results can be seen in figure 15, 16, 17 and 
18. 

 
Figure 15 TesseractOCR Results for Handwritten Text with a Pencil 



23 
 

 
Figure 16  TesseractOCR Results for Handwritten Text with a Pen 

 
Figure 17 TesseractOCR Results for Handwritten Text with a Coloured Marker 

 
Figure 18 TesseractOCR Results for Handwritten Text with a Black Marker 

2.5 Conclusion 
From these tests, it’s clear that EasyOCR is the optimal library to use if factoring in accuracy, 
despite this the benefit of speed provided by TesseractOCR can be show in these tests, as it 
is far faster than EasyOCR and accurate when presented in the correct circumstances. 
Tesseract can also be used with React and JavaScript and can provide an easier 
development process than using EasyOCR. 

 



24 
 

2.6 Summary 
In short, OCR is a character recognition system that can be used for computers to recognize 
characters from an image. There is a general algorithm that requires to go through the steps 
of image acquisition, pre-processing, segmentation, feature extraction, classification, and 
post-processing, where the general algorithm of OCR is discussed.  

Different libraries can be used to make this process easier and follows most of the steps 
with the general algorithms, although would contain some differences. These libraries can 
work well with certain functionalities, for example Tesseract OCR works well with 
documents, where the image is generally black and white, while KerasOCR and EasyOCR 
works well with images with many parameters although slightly slower. 

A comparison of Tesseract.js and EasyOCR was conducted to see the benefits of both 
libraries and concluded that it would be for the best to use Tesseract.js for the project. 

In the UI and UX section of the report, the basic design principals were discussed. These 
consist of how a developer can design a website and good practices to follow when doing 
so, including contrast, hierarchy, colour, and structure, following a user-friendly design. 

Requirements gathering was also discussed to help developers understand flaws in their 
design or discover the user’s needs and the different functionalities that the website will 
contain. 

Responsive design was also covered for more compatibility options. Media queries, grid 
systems and fluid layouts are ways to allow for a website to be more compatible with more 
than one system, for example accessibility for mobile users. 

Finally design systems were briefly covered, with their benefits and examples were given of 
good design systems. 

Overall, the research project allowed for a better understanding and insight in the topic of 
OCR and discover methods of developing an OCR system for the web, with a brief insight to 
web-design and compatibility with different devices. 

 

  



25 
 

3 Requirements 
 

3.1 Introduction 
 

The purpose of the requirements phase is to allow for developers to work out what the 
application should be able to do. It is important to understand what the users would like the 
application to do rather than the developer deciding what is required. 

The project area that will be looked at will be a progressive web application, with OCR 
functionality, and an adaptive UI that can allow for mobile compatibility.  

Several methods were used to gather information on how the product will be presented. 
This includes looking at similar applications, conducting interviews, surveys, and 
questionnaires to find the functional and non-functional requirements that the application 
will have, as well as gathering opinions on the design of the application. 

 

3.2 Requirements gathering 
3.2.1 Similar applications 

The research of similar applications is essential in finding the features that the web-app will 
be using. When looking at similar applications, the advantages, disadvantages, and 
descriptions of each website will be examined. The first website that will be looked at is 
Notion. 

3.2.1.1 Notion 

 

Figure 19 Notion Homepage 

Fig 19 displays Notion, which is a productivity application that is designed to boost 
productivity. The application contains a list of many features that include: the organization 
of notes into different folders and sub-folders to organize their workspace, to-do lists to 



26 
 

display different tasks, a note taking feature, where users can take notes of what they need. 
This note taking feature also allows for users to customize the font size, colour, background 
colour, etc. It is also possible to share notes with other users. It is also possible to add 
widgets to further customize and personalize the look and feel of their workspace.  

Advantages of Notion: 

 The application contains a detailed notes taking feature that allows users to edit 
notes and customize the look, such as the font size, the background colour, etc. 

 The application has a clean look to it and is designed to be user friendly.  
 A user can fully customize the folders and the folder structure, allowing for very 

detailed customization. 
 The user can personalize these folders by adding images, icons, and names to them. 
 Users can sort, filter, and add tags to the notes and folders that they are using. 
 It is possible for a user to share their notes with other people. 
 Users can add bullet points, headings, to-do lists, and even tables to their notes.  
 Users can also upload images, links, files such as CVs, and widgets to the notes page 

that they are using. 
 Users can search for a note or folder that they are looking for. 
 Creating a new page is easy to do and can be immediately accessed at the bottom of 

the side-nav bar. 
  You can import pages to use the structure of other users. This can have new widgets 

and features such as a clock in the page dashboard. 
 When sharing a notion folder, it is possible for other users to comment on the page 

you are viewing. 
 Users can collaborate with each other and create folders where an entire group can 

use them. 
 Users can choose to have a certain folder to be private. 
 When deleting a page, you can view the deleted pages in the bin folder. 
 A help button is always displayed in the bottom right corner as a “?” sign. 
 Notion has a mobile version that functions the exact same as the desktop version. 

Disadvantages of Notion: 

 The user interface is quite intimidating to learn when just starting to use the 
application, as it is filled with features that can put off new users. 

 The images a user chose for their folder picture is only limited to images from 
Unsplash.com. 

 There is no way to directly message other users in the team. 

From an examination of this web app, the advantages of notion far outweigh its 
disadvantages and has many features that can prove to be beneficial to the web app that 
will be worked on. One major benefit of Notion is that it can also be used on a mobile 
application, and functions the exact same as the desktop version, although slightly slower. 
Similarly, we can see such benefits in the next application, which is going to be Google Keep. 



27 
 

3.2.1.2 Google Keep 

 

Figure 20 Google Keep Homepage 

Figure 20 shows the homepage for Google Keep. This is Google’s notes taking application, 
and to-do list, although focuses more on being a simple to-do list application, rather than a 
notes taking app. Google Keep also has a mobile version that functions similar to the 
desktop application. This is an easy and highly effective web app, that is user friendly and 
very easy to use. 

Advantages of Google Keep: 

 Google keep has an incredibly simple UI, and as a result is very easy to use. 
 Users can use Google Keep as a notes taking application, or use it’s to-do lists 

featues. 
 Users can organize and sort their notes by using tags to show which folder they 

belong to. 
 The web app also uses a side-nav for easy access to all notes. 
 It is easy to create a new note. 
 A user can indent their to-do checkbox and have a multi-layered to-do list. 
 Users can change the background of a note, and can also upload an image of their 

choice to use a background. 
 Users can pin their notes, and functions similarly to a favourites feature. These 

pinned notes will be immideately brought to the top of the page. 
 Users can archive, or delete notes. 
  A users is also able to use a draw feature, where they can draw in the application. 
 Users can also add a collaborator and share their notes with other users. 

Disadvantages of Google Keep: 

 Google Keep is primarily a to-do list app, and as a result does not have many features 
for the notes taking section of the application. 



28 
 

 Due to the simplicity of the app, the features are not as detailed as other 
applications. 

 When writing long paragraphs while taking notes, it can be difficult to see them as it 
is hard to separate into headings and general paragraphs.  

 The notes and does not have a way to make the screen larger when reading them. 
 You cannot add sub-folders to further organize them. 

Despite the disadvantages, Google Keep is an effective web app that acts as an effective to-
do list tool. The indentation of checkboxes to further organize their tasks is incredibly 
effective and can prove to be a very useful feature when using it. It is primarily a to-do list 
app, hence why the notes taking features are somewhat lacking, but can prove to still be 
functional and effective. 

The UI of Google Keep is also incredibly easy to use. The simplicity can entice users to use 
the web app over others that are more complex and confusing to use. A good balance of 
both notes taking and to-do features are also seen in Evernote, which will be the next 
application that we will be discussing. 

3.2.1.3 Evernote 

 

Figure 21 Evernote Homepage 

In figure 21, evernote is another productivity app that is commonly used. It proves to be a 
highly effective app to take notes, and contains many useful featues that can allow for easy 
of use to the users. 

Advantages of Evernote: 

 Contains a draw feature, where users can draw an image, or for hand-written tasks. 
 Evernote has a to-do list feature, where users can set custom due-dates, set the task 

to be re-occuring or set the due date to “today” or “tomorrow”. 
 A user is able to add shortcuts to allow for quick access to their most important 

notes. 
 A user can also organize them into folders, called “notebooks”. 



29 
 

  It is easy to navigate through the website, and all folders and notes are accessible 
through the side-nav. 

 There is a “recently viewed” tab that can show the recently viewed. 
 The notes display the time where it was last edited and viewed. 
 A user can share their notes with other members as a shareable link or an invite 

through email. 
 Users can add reminders of tasks they have to do that day. 
 Users can duplicate a note that they have. 
 Users can search for something they need in a specific note. 
 Evernote has a version history, where a user can view each version of their notes. 

Disadvantages of Evernote:  

 Again, the notes taking features are not as elaborate and deailed when compared to 
something like Notion. 

 Not every feature is availble in the free plan, for example the version history of the 
notes. 

Some of the features listed above are locked by a premium plan, however despite this 
Evernote proves to be a very good balance of both applications, with complex enough 
features and an easy to use UI.  

  



30 
 

3.2.1.4 Text Scanner OCR 

 

Figure 22 Text Scanner [OCR] 

Figure 22 shows Text Scanner OCR, which is a mobile app used to extract text from images. 
It is a simple app and focuses on the OCR functionality. 

Advantages of Text Scanner [OCR] 

 Easy to use interface. 
 Text extraction is fast. 
 The returned results are accurate to the text presented. 
 The app can access your gallery or take a picture with the camera. 
 Settings can be configured to increase brightness or zoom in and out. 

Disadvantages of Text Scanner [OCR] 

 Contains too many ads. 
 Cannot save results returned. 
 No web version. 
 Limited number of uses, as it can only be used ten times before needing to refresh 

tokens. 

  



31 
 

3.2.2 Interviews 

Interviews were conducted towards a variety of users to gather information and data on the 
kind of people who would be using this application. It was also done to see their notes-
taking habits and how frequently they would use notes taking applications, and similar 
tools. The interviews provided great insight into the different user’s habits and provided 
some interesting features that they would have wished to see in the application. 

The first interview conducted was with a 22-year-old student, who is currently studying in 
their final year of college. This interviewee normally has multiple ways of notes taking, 
ranging from flashcards to general computer notes, to notes on their phone. The 
interviewee also finds organizing of notes into folders to be slightly tedious and would 
prefer if they were more in-depth to allow for further organization. 

When asked if the user enjoys making their notes look nice, the user says that they find it 
beneficial, although they don’t normally spend too much time on it. They would use the 
basics such as bolding, italics, changing the font size to represent a title, etc. 

The interviewee uses a flashcard app known as Anki, and in this app, the interviewee has 
several folders setup, one for college, one for their own personal development, one for 
language learning, and one for an archive. The most important folders are set to the top of 
the list, and in each folder, contains a set of folders including college material, modules, 
lectures, etc, with each one containing an individual card. A feature that Anki has is to allow 
for users to add tags to a card and organize those cards into tags to allow for easy sorting of 
these cards, as all you need to find them is to search.  

In this application, the user mentions that it does not have an archive feature built in with 
the app and mentions that although it is not the most necessary, it would be nice to have 
that kind of feature in an application for a better ease of use. 

When asked what their favourite features were from this application, they mentioned Anki, 
Notes on IOS, and Trello. In Anki, their loved how there was no paywall, and that it was 
feature-heavy while remaining free to use, and the gamification of the application, allowing 
them to constantly return to the application, as there is a daily streak feature that it has.  

In the “Notes” app on IOS, they liked the straightforward UI that it has, the autoformat, the 
checklist, the ability to add checklists, draw, the fact that it automatically arranges by date, 
and that a user can share notes with other users, and lastly has a global search feature, 
which allows users to search for a certain thing, and the search feature will look through all 
the notes to find it.  

Finally, the features that the interviewee loves in Trello consists of the checklists, and the 
priority sorting found in the application. 

When asked if an OCR feature would be handy in a notes-taking application, the interviewee 
replies with “yes, but I would be quite concerned about its ability to read handwritten 
texts”. They find that it would be handy for other users but note so much themselves as 
they tend to simply take notes on other devices.  



32 
 

Features they would like to see on a similar application being built would be the 
gamification of a system like this, spaced repetition, add folders / subfolders, and easily 
customizable, an archive feature and a global search feature, like the one in the Notes app, 
and finally a daily notes section. 

The second interviewee is a 23-year-old graduate. The interviewee generally didn’t really 
take notes, even during their time in college, they would often only listen to lectures and 
rarely take down notes, however when they do, they would always organize it, although it 
can be mentioned that they would potentially use a notes application in daily life outside of 
work reasons to bullet journal / consistently journal their tasks. 

The interviewee used multiple notes taking applications, however Notion and CollaNote 
proved to be their personal favourite. 

Initially, they originally found Notion to be confusing, with overwhelming UI as there are a 
lot of features that Notion provides its users and great variety in customization. CollaNote 
on the other hand was very easy to use and provided many features such as the possibility 
of exporting as a PDF file, a collection of different templates and designs. CollaNote also 
contains features such as public rooms, where anyone in the world can write things down, 
the possibility to insert pictures, draw and even add stickers too. 

When asked about their favourite feature, the interviewee quickly brought up CollaNote 
again. This time discussing a feature that allowed documents to be turned into a PDF, and in 
this PDF the user is allowed to edit things and highlight things that are written in the PDF 
too, which the user found to be very helpful. 

The next question the interviewee was prompted with was to see if they would make their 
notes look nice and decorate their notes. The interviewee only uses the simple tools, such 
as highlights, bold and italics, and bullet points. 

The interviewee also thought that an OCR feature would be helpful in an application, as they 
were very fond of the PDF feature found in CollaNote. 

The interviewee is then asked for recommendations on features that they might like to see 
in a similar application being built, and they replied with a calendar, a section that allows a 
user to focus on certain tasks for the day, a schedule to make organization easier, that is like 
a timetable, and a to-do list widget or section in the application, to help with the 
productivity.  

 

3.2.3 Survey 

A questionnaire was carried out to determine the functional and non-functional 
requirements of the application. It was conducted to find out how users would take notes, 
and the methods they require to do so. This questionnaire also establishes what features 
and functionalities that user would like to see in the application, and ways to figure out how 
to improve upon the flaws found in similar applications already being used. 



33 
 

Microsoft Forms was used to create the questionnaire and was shared on various social 
media platforms such as discord, Instagram, and Facebook. The survey managed to reach up 
to 34 participants, with 23 out of the 30 participants consisting of 18 – 24 years old, and 3 
participants being 25 – 34 years old. These participants were mostly in college / university, 
with 64% of them being in a fulltime course. 

These results can be seen in the figure below: 

 

Figure 23 Question 1 and 2 Results 

 

  



34 
 

In the next question, the user was asked to state how they feel about the following opinions 
and can be seen in the figure below:  

 

Figure 24 Question 4 results 

From these results, we can gather information that most users answering the questionnaire 
find that organisation of their notes would be a great benefit towards the application. We 
can also see that most users would like to see a to-do list feature, personalization and giving 
them control over how the notes will look when looking through them. 

With the user results being collected, it can be agreed upon that these features should be 
included upon the development of the application. 

The next question then asks the user to describe their experiences with notes-taking 
websites / mobile apps and can be seen in the figure below. 

 

Figure 25 Question 5 results 



35 
 

From the results gathered, and reading through the answers, a lot of respondents would 
often organize notes into different folders to allow for ease of accessibility. Some also found 
that the UI of certain notes-taking websites were also a little complicated. E.g., a user found 
notion to be complicated to use, seen in the figures below.

 

Figure 26 User Results of Notion (1) 

 

Figure 27 User Results of Notion (2) 

From these results, it should be noted that the app being developed should be easy to use 
and user friendly, as that was a common flaw found in most of the answers. It should also 
have an ability to save a user’s notes so that they won’t be lost. 

The next question then asks what kinds of features a user would like to see in a notes-taking 
application, seen in fig 28.  

 

Figure 28 Potential Features 

This question gave a great insight on different features that could be applied to the 
application. One of which included the ability to customize the look, adjusting different font 
sizes, bolding and italics, colours, inclusion of images into the file etc. to allow for 
customization. 

Another set of ideas suggested is the ability to link different notes sections to each other, a 
to-do list feature, a “sort” feature, bullet points and numbers option, and a clean UI. 



36 
 

The user was then asked whether a “share” feature would be useful when using the 
application, and as seen in fig 29, 100% of users agree that it would be a great addition to 
the application. 

 

 

Figure 29 Question 7 

Followed up by this question is question 8, where the user is asked why they think it would 
be a useful feature, to allow for teamwork and co-operation with other users. Potentially 
friends and classmates. These can be seen in fig 30. 

 

Figure 30 Question 8 

 

Question 9 then asks whether a user would take notes on paper and wishes to transfer 
them to the desktop device, seen in the figure below.  

 

Figure 31 Question 9 

Around 56% of users answered “yes”, showing that potentially developing OCR functionality 
could be beneficial to the application, as more than half the users could potentially use this 
functionality. 



37 
 

 

Question 10 then asks why the user would find it to be a helpful feature, seen in figure 32. 

 

Figure 32 Question 10 

From the answers seen, those who answered “yes” state that paper can be easily destroyed, 
and that it would be more convient to have it saved on a device such as a mobile phone, to 
have easier access to those notes, as well as for organization purpses. This can be seen in 
figure 33. 

 

Figure 33 Respondents of Question 9 

The respondents who answered “no” to question 9 were also asked for their reasoning 
behind their answer in question 11. Seen in figure 34. 



38 
 

 

Figure 34 Question 11 

Where most users state that they already take notes on their computer, and don’t 
necessarily need to transfer, however it is also important to note that there are users who 
simply prefer notes-taking on paper, as they find it easier to retain information that way 
rather than through desktop. 

 Question 12 asks if the participant uses any notes taking websites / mobile applications, 
seen in figure 35. We can see that there are more users who answered “no”, with 44% 
answering “yes”. 

 

Figure 35 Question 12 

Question 13 then branches, and first asks the users who answered “yes” to list off the 
applications that they use, seen in figure 36. 



39 
 

 

Figure 36 Question 13 

The users answered mostly with Notion, Microsoft Word and One Note, Google Docs, and 
Trello. These applications are very commonly used and contain functionality that can 
provide to be useful when taking notes. 

Question 14 asks users if they are satisfied with the functionalities that are in these 
applications, with most users answering with “yes”. This can be seen in the figure below. 

 

Figure 37 Question 14 

Question 15 asks users what they were dissatisfied with, only retrieving one answer where 
the users “needs internet to use them”. Seen in the figure 38. 

 

Figure 38 Question 15 

Question 16 then asks users what they were most satisfied with, and the answers range 
from cloud accessibility, support for multiple devices, ease of use, and allowing for the notes 
to look nice. Some of these responses can be seen in figure 39. 



40 
 

 

Figure 39 Question 16 

Question 17 then asks if there are any features that the user wishes to be improved upon, 
and a common answer was to make the UI simpler to understand and less cluttered. Some 
also mention to have more functionality such as a built-in timer and music player, the ability 
to make notes offline and allowing users to attach files, seen in figure 40. 

 

Figure 40 Question 17 

From the results gathered in the surveys, we have a better understanding of the types of 
functionalities that the user can be expecting from an application such as this one, and the 
UI should also be easy to use and easy to understand. 

  



41 
 

3.3 Requirements modelling 
3.3.1 Personas  

Personas are fictional characters that are made to help developers understand what the 
user’s needs are. These characters also help in identifying the target audience that the 
developers are aiming for. 

The data collected from the survey and interviews help with the creation of these user 
personas. These personas contain the goals of that character, and their frustrations in what 
they are currently working on.  

The personas created are: 

 Sally 
 Anya 
 Denji 

The personas can be seen in more detail in figure 41, 42, and 43. 



42 
 

 

Figure 41 Persona 1 



43 
 

 

Figure 42 Persona 2 



44 
 

 

Figure 43 Persona 3 

  



45 
 

3.3.2 Functional requirements 

The functional requirements contain a list of functions that users should be able to do in the 
application. The list contains a set of requirements that range from high priority to low 
priority. 

# Functional Requirements Priority 

1 Users will be able to sign up or log into the application High 

2 Users should be able to create a notes folder High 

3 Users should be able to edit a notes folder High 

4 Users should be able to delete a notes folder High 

5 Users should be able view notes folders High 

6 Users should be able to create a new note  High 

7 Users should be able to update notes High 

8 Users should be able to view all notes in a specific folder High 

9 Users should be able to delete notes in a specific folder High 

10 Users should be able to open notes High 

11 Users should be able to access OCR functionality High 

12 Users should be able to upload an image and read using OCR High 

13 Notes can auto-save High 

14 Users should be able to save an image to a specific note Medium 

15 Users should be able to change their email Medium 

16 Users should be able to change their password Medium 

17 Users should be able to change their name Medium 

18 An information icon to show how to use the website should be available Low 

19 Users should be able to verify password Low 

 

  



46 
 

3.3.3 Non-functional requirements 

These are requirements which if not met do not stop the application from working, but 
which mean that the application is not working as well as it should.  They are usually based 
on issues such as: 

o Usability 
o Performance  
o Security 

# Non-functionality Requirements Type 

1 The application should be compatible to mobile screen sizes Usability 

2 The application should work in multiple browsers Usability 

3 The application should have information of how to use some parts of the 
website 

Usability 

4 Users should be able to navigate the website easily Usability 

5 The application should be user friendly and accessible Usability 

6 Users can access all their notes through a side-nav Usability 

7 Users will not be able to view another user’s account Security 

8 User password will require at least 8 characters and contain a number Security 

9 User password will be encrypted  Security 

 

  



47 
 

3.3.4 Use Case Diagrams 

There are two main users of the web application. These consists of visitors and registered 
users. The use-case diagram is meant to represent what the users can do once they access 
the website. The use-case diagram for the application and its potential users can be seen in 
figure 44, and fig 45. 

 

Figure 44 Visitor Use Case Diagram 

Visitors: 

 A visitor can create an account. 
 A visitor can view the homepage and sign-in / login page. 

  



48 
 

 

Figure 45 User Use Case Diagram 

Registered Users: 

 A user can log in and log out of the application. 
 A user can view all their notes folders. 
 A user can create a new notes folder. 
 A user can edit a notes folder. 
 A user can delete a notes folder. 
 A user can open each notes folder. 
 A user can view all notes in that folder. 
 A user can create a new note. 
 A user can edit a note. 
 A user can delete a note. 
 A user can access the note and edit its contents. 
 A user can change the notes font size. 
 A user can change the colour of the note font. 
 A user can add italics and bold to a note font. 
 A user can add a checklist in the note. 
 A user can access the OCR feature. 
 A user can use the OCR feature to upload an image and read the results from that 

image. 
 A user can discard or save the results to another file. 
 A user can add a note to favourites. 
 A user can access all notes from the sidebar. 
 A user can access notes from their mobile device. 



49 
 

 A user can save their notes through autosave. 
 A user can change their email address. 
 A user can change their password. 
 A user can change their profile picture. 

3.4 Feasibility 
 

The feasibility section looks over the different technologies that are to be used together in 
the development of the application and looks at any technical issues that can arise during 
development, e.g., compatibility issues. 

The application will be developed using the MERN stack, and because of this, the 
technologies that are to be used are very commonly used together.  

The technologies used to develop this application consists of: 

 React.js which will provide the frontend of the application. 
 Express.js which will be the node.js framework. 
 MongoDB which will provide the database. 
 Node.js will act as the web server. 

These technologies should be very compatible with each other, and technical issues 
shouldn’t occur when working with this stack because of this. 

Due to mobile compatibility being an important feature from the data gathered in the 
interviews, the application should contain this feature. Mobile compatibility should be 
accomplishable with the use of React Native to allow for this feature to be implemented. 
Although due to time factors, it is possible that only a barebones version of this feature will 
be accomplished, as other more important features are being developed. 

Tesseract.js will allow the project to contain OCR functionalities. This library was studied and 
compared with Easy OCR to see which library can be most effective in a web-application in a 
previous section of this document. Due to Tesseract.js being a JavaScript library, 
implementation of this library will be feasible and compatible with the other technologies 
used in this project. 

 

3.5 Conclusion 
 

In this chapter, the developers are given a better understanding of what features are to be 
seen in the application, as well as examining user’s needs before starting development and 
design of the app. 

This was done through several methods, including surveys and questionnaires, interviews, 
and researching similar applications to gather the functional and non-functional features 
that the application should have. 



50 
 

The survey conducted provided information on what users find useful about notes-taking 
apps, and to gather general information about a user’s opinion of these apps. This ranged 
from what they found to be advantageous, what they found to be a disadvantage, etc. 

Interviews were then conducted to gather a better insight of a user’s opinions of these 
applications and gather further information on what they would like to see more of. 

The list of functional and non-functional requirements was then listed out, showing the 
functionalities that the application should contain, ranging from high to low priority 
requirements, where non-functional requirements showed what extra features the web 
application can have that will improve the application. 

A use-case diagram was also created to show how different users were supposed to interact 
with the web application, and what they can access as a visitor, and as a user. 

  



51 
 

4 Design 
 

4.1 Introduction 
 

The chapter is to show the development of the design of the application. The design section 
covers the UI of how the app will look, covering the style guides, typography, wireframes 
etc, allowing for the developer to view the finish product and where the functionalities will 
be placed. It also covers the program design, which covers the technologies used and the 
structure of the code, as well as the database design of the application.  

The application that is going to be developed is going to be a web app, that will be 
developed using the MERN stack. It will act as a text editing application where a user will be 
able to store notes into folders and take down and save notes. Users will also be able to 
upload screenshots of notes with text on them and read the text on that note using OCR. 

 

4.2 Program Design 
 

The program design section is essential to make the programming and coding of the 
application to be better planned and more straightforward, following potential patterns 
when structuring the code and API. 

4.2.1 Technologies 

The technologies that will be used to develop this application will be: 

 MongoDB 
 Mongoose 
 Express.js 
 React 
 Node.js 
 HTML 
 CSS 
 Axios 
 AWS 

These technologies were chosen because they generally work well with each other. This 
functionality helps with the compatibility of the application and can help minimize issues 
when developing the app.  

React 

React.js is a JavaScript framework that is used to develop frontend web-applications. It is 
commonly used to quickly develop the frontend of a website and would take much less code 
than it would when using vanilla JavaScript. (David, 2022) 



52 
 

React was chosen for the reasons listed above, as you can create components that can be 
reused throughout the website, providing a potentially quick development of the UI of the 
website.  

MongoDB 

MongoDB will provide the database of the application. The database will be in a JSON-like 
format and as it is a NoSQL database, the fields and data structures of the database can be 
changed and provide scalability (What Is MongoDB?, 2022). MongoDB is also easy to work 
with and is highly compatible with the other technologies that will be used to develop this 
application, one of which is Axios, which is what will be used to call data from the API.  

Express.js 

Express.js will be covering the backend of the application. The backend API will be written in 
Express.js, as it is a web-application framework that allows developers to build RESTful API’s 
(Express - Node.js web application framework, 2017). It is flexible and lightweight allowing 
for quick development and is compatible with the technologies available in this application.  

Mongoose 

Mongoose is an ODM (Object Data Modelling) library that is used for MongoDB and Node.js. 
It Is used to manage the relationships between data, provides validation for the schema, 
and can act as a translator of code for MongoDB. (Karnik, 2018) 

It will act as a translator between React.js, Express and the MongoDB, to translate the code 
and its representation in MongoDB. 

Node.js 

Node is an asynchronous JavaScript runtime engine and is used to develop scalable network 
apps (Node.js, 2023). It will act as the server of the application. 

AWS 

AWS will allow developers to store the images, with the use of AWS S3 Buckets. This is 
because MongoDB cannot store images and will need to be uploaded to a different method 
of storage. In this case, it is S3 buckets. 

Another set of technologies that could be used is the Django Framework, although this 
would have been ideal when developing the OCR application, the time it would have taken 
to become comfortable with learning Python and the framework would have been too long, 
and setback progress on the application.  

 

4.2.2 Structure of React 

The structure of React consist of different folders, used for different purposes to keep it 
organized. This section will be using the folder structure of a previous project and can be 
seen in fig 46. 



53 
 

 

Figure 46 React Folder Structure 

Root Directory: 

The root directory consists of all the folders that was used in the previous application. This 
included the deployment, the build, node modules, public folder, packages, etc. 

SRC Directory: 

The SRC directory contains the many folders used to develop the application. It is where the 
code is held, and contains the code and where the different components, assets, pages, etc. 
are held. 

Assets Directory: 

The assets directory contains the images that are used throughout the program, and general 
assets that can also be considered. It also contains the styling files, where the global styles 
can be stored.  

Layouts Folder: 

Although not available in Fig 46. the layouts folder is where it contains layouts for the entire 
project. For example, it stores headers, footers, nav-bars, etc. 

  



54 
 

 

Components Folder: 

The components folder is where the components used throughout the entire application is 
stored. Using a pervious project as an example, figure 47 shows what is inside the 
components folder. 

 

Figure 47 React Components 

As seen in the fig 47, the different functionalities are stored in this folder, and contains 
components such as cards, buttons, and forms. These components are globally available 
throughout the entire application and can be called and used in the different pages 
available. 

Config Folder: 

The config folder contains a set of configuration files, that can be used to store environment 
variables. These variables are accessed throughout the entire application. 

 Pages Folder: 

 

Figure 48 React Pages 

Figure 48. shows the pages folder, which contains all the pages that the application has. 
Within this folder is a sub-folder that organizes the characters page towards their 
components. These pages normally contain components grouped into one. 

App.js: 

App.js is used to display the application. It contains all the folders, routes, pages, and 
components within the application. 

  



55 
 

Index.js: 

Index.js displays the app.js file. 

Routes Folder: 

This folder contains the many routes of the application, ranging from private and protected 
routes, and all other types. It can be seen in the figure below. 

 

Figure 49 Routes Folder 

The backend of the application also contains the “controller”, the “data”, and the “models” 
folder, which is used to store the schema, controllers and data of the application. 

 

Figure 50 Controllers Folder 

Controllers Folder: 

The Controllers folder holds the CRUD functionalities of a specific object in the application, 
e.g., CRUD of a specific character in the case of the previous application. 



56 
 

Models Folder: 

The Models folder holds the schema of the application, and how this object will be stored in 
the database, containing the attributes of e.g., a character for example. 

Utils Folder: 

Finally, the Utils folder contains the utilities used throughout the application. E.g., the 
database 

 

4.2.3 Model View Controller Design Pattern 

The Model-View-Controller is a design pattern that is used to split an application into 3 
different components: the Model, the View, the Controller. These components handle 
specific requests throughout the application. It is efficient, and scalable, and is an industry 
standard. 

 The Controller receives the requests from the user and sends it to the model. 
 The Model responds to actions that are requested and returns it back to the 

controller. Once this is done the Controller sends it to the View. 
 The View then responds with the data back to the user. 

The diagram seen in Fig 51 displays the Model-View-Controller design pattern. 

 

Figure 51 Model-View-Controller Design Pattern 

  



57 
 

4.2.4 Application architecture 

A web application architecture is a guide on how an application’s software are used 
together, and how that application reacts with each other. This can allow for scalability and 
reliability as they display the interactions are between things like middleware, databases, 
and the frontend (Ferguson, 2021). 

In this application, the application is using the MERN stack, which consists of MongoDB, 
Express.js, React.js and Node.js. In this stack, React.js acts as the frontend of the application, 
it is used to quickly build UI and allow for the components that the website will be using. 
MongoDB will then act as the database for the application, taking in the requests sent by 
the user and sending back a response to the user with the requested data. It is used with 
components consisting of JSON and uses JavaScript. Express and Node.js will then act as the 
backend and server of the application, taking in API calls and requests and placing the data 
requested to the webpage. 

The diagram below (figure 52) displays the application architecture for this project, 
displaying the frontend, the server, and the database, as well as showing the requests and 
responses that is returned from the database. 

 

Figure 52 Application Architecture 

  



58 
 

4.2.5 Database design  

The figure below (figure 53) shows the embedded data models. These data models are seen 
in the JSON file in MongoDB and are shown to represent how it looks in the database. These 
embedded data models are required to store a set of related data in a singular database 
record. 

 

Figure 53 Database Design 

  



59 
 

ERD’s (Entity relationship diagrams) were also created to better display the relationships 
between each item in a diagram. The ERD of the project is displayed in the next image 
(figure 54) and can be better seen in Figma: 
https://www.figma.com/file/8wushDYxUM3YNyoGlC2RUW/Final-Project?node-
id=0%3A1&t=vzfT2FTUSNURtNsh-1 

 

 

Figure 54 Entity Relationship Diagram 

  



60 
 

4.2.6 API design 

REST 

Method 

Endpoint Description 

GET /user/ :id Get User 

POST /register Sign Up  

POST /login Log In 

PUT /edit/user/ :id Update user details 

   

POST /folder Create Folder  

GET /folders Get All Folders 

GET /folder / :id Get Single Folder 

PUT /edit/folder/ :id Update user details 

DELETE /folder/ :id Delete Single Folder 

   

POST /note Create Note 

GET /notes Get All Notes 

GET /note/ :id Get Single Note 

PUT /edit/note/ :id Update note details 

DELETE /note/ :id Delete Single Note 

   

POST /ocr_img Create OCR Image 

GET / ocr_img Get All OCR Images 

GET / ocr_img/ :id Get Single OCR Image 

DELETE / ocr_img /:id Delete Single OCR Image 

   

POST /checklist Create Checklist 

GET / checklist Get All Checklist 

GET / checklist / :id Get Single Checklist 

PUT /edit/ checklist / :id Update Checklist details 

DELETE / checklist / :id Delete Single Checklist 

 



61 
 

4.2.7 Process design 

To show different sequences that the user might be going through while using the 
application, a sequence diagram was created to display the process of what can be done 
while using the application. The sequence diagram can be seen in figure 55. 

 

Figure 55 Sequence Diagram 

  



62 
 

4.3 User interface design  
 

This section discusses the design of the user interface. This is done through a set of steps 
that look at the different requirements that were initially found in the previous section and 
implemented with the functionalities and design in mind. 
The app will first look at paper prototypes, wireframes, user-flow diagrams, and style 
guides.   
 

4.3.1 Wireframe 

 A wireframe is used to display the content and functionality of the layout of a page. These 
wireframes usually do not consist of colour, or typography or much detail to begin with. We 
start the development of the wireframes by initially creating a set of paper-prototypes that 
are used to develop ideas on where to put different pieces of functionality and how to use 
the system.  

 
Figure 56 Paper Prototypes 

Paper prototypes are generally done before building the wireframe, and are seen in the 
figure above (fig 56)  
One the development of these paper prototypes is complete, having a slightly more 
developed version (without detail) is then created. The lo-fidelity (lo-fi) wireframes are then 
made with the use of paper-prototypes as a guideline. The lo-fi wireframes show a better 
look of how the application will look and provide a closer look into how the final application 
will look.  
The wireframes are provided in figure 57 below and was designed in a prototyping tool 
known as “Figma.” 



63 
 

 
Figure 57 Wireframes 

  



64 
 

4.3.2 User Flow Diagram 

The user flow diagram shows how users will navigate from one page to another within the 
application. It can be seen in figure 58. 

 

Figure 58 User Flow Diagram 

The full diagram can be seen in: 
https://www.figma.com/file/8wushDYxUM3YNyoGlC2RUW/Final-Project?node-
id=0%3A1&t=Cc2mS5tSz8jgz3fE-1 

4.3.3 Style guide 

The style guide shows the colours, typography, layout, form elements, buttons, tabs, and 
cards for how the website is going to look. Style guides are often used to keep the website 
looking consistent. It also covers the grids and spacing of the application and how they are 
used throughout the website. The full style guide can be seen below in figure 59. 



65 
 

 
Figure 59 Style Guide 

 
Typography: 
The font that will be used for heading will be Croissant One in several different sizes for the 
headings to indicate importance. These headers will not be used often and will be reserved 
for headings and areas of importance. The reason behind using this font is because it is easy 
to read and suits the look and feel of the website. The paragraphs will consist of Roboto 
Light as it contrasts well with the heading font and is also clear and easy to read, making it a 
great choice for the body of the website. A screenshot of the typography can be seen in 
figure 60. 

 
Figure 60 Typography 

Colour: 



66 
 

Colour will be used sparingly throughout the website. It will be used to highlight important 
objects that are seen throughout the website, such as buttons. The colour pallet will remain 
simple, as the main use of colour throughout the application will be from images. Figure 61 
shows the colour pallet of the application. 

 
Figure 61 Colour Palette 

Spacing: 
Spacing is used to keep the application consistent with the size and how far each element is 
away from each other. The consistency of the spacing is essential to allow for a more 
professional-looking application. The spacing is seen in figure 62. 

 
Figure 62 Spacing Size 

  



67 
 

Buttons: 
Buttons are used throughout the entire website. The different buttons are for different 
occasions, for example “return to homepage” will only be used in the sign up and log in 
form. These buttons can be seen in figure 63. 
 

 
Figure 63 Button Variation 

Forms: 
The form will consist of the text area and the name, it will also contain the buttons that are 
needed. This can be the “sign up” button, the “confirm” button and the “return to 
homepage” button. 

 
Figure 64 Forms 

  



68 
 

Tabs: 
Tabs are used to display where the user is on the website. It is used for easy navigation and 
is accessible through the side navigation. The tabs are kept simple and clean to allow for as 
little visual clutter as possible when navigating the website. Figure 65 shows the tabs when 
navigating the website. 

 
Figure 65 Tabs 

Cards: 
Cards are used to help distinguish the different notes that the user creates. The cards 
available will contain an image and a name of the note to allow users to differentiate it from 
others. It remains simple to prevent visual clutter, with a drop shadow to highlight the card 
itself. The second card shows when the user needs to save a note after using the OCR 
functionality. The two cards can be seen in figure 66. 

 

Figure 66 Card Variations 

  



69 
 

4.4 Conclusion 
 

In conclusion, this chapter discussed the program design, and how it will be developed, as 
well as the user interface design, which discussed the different UI elements that will be seen 
in the application. 

 

 

  



70 
 

5 Implementation 
 

5.1 Introduction 
 

The implementation chapter discusses how the application was developed, as well as the 
technologies used to build it. This chapter will be discussing the different technologies used 
within the project, and the sprints that occurred throughout the project, and the items that 
were completed within each sprint.  

5.2 Technologies 
 

The technologies that were used to develop the application are seen as follows: 

o React.js 
React is a JavaScript framework that is primarily used to develop the front-end of an 
application. React is component-based and can be used to quickly develop an 
effective and intuitive, web-based UI (David, 2022). The reason for choosing React.js 
was primarily for its components, vast number of libraries and resources, and it’s 
React Native feature, to allow for mobile-compatibility, and its fast development.  
 

o Express.js 
Express.js is a fast, and unopinionated web framework for Node.js that is used to 
build RESTful APIs and will provide the backend for the application. (Express - 
Node.js web application framework, 2017) 
 

o MongoDB 
MongoDB will act as the database for the application. It is a very flexible database 
and scales very well as the application develops. 
 

o Mongoose 
Mongoose is an Object Data Modelling (ODM) and is used for MongoDB and Node.js. 
It can handle the relationships between the data and can translate objects within 
code and how it is represented in the database, as well as provide schema validation. 
(Introduction to Mongoose for MongoDB, 2018) 
 

o AWS S3 Bucket 
AWS S3 is an Amazon object storage service that can retrieve and store data. It will 
be used in the application to store images. (Getting Started – Amazon Simple Storage 
Service (S3) – AWS, 2023) 
  

o Socket.io 
Socket.io is a library that allows for cross communication between a client and server 
and is used in our text editor to share documents with other users. (Introduction | 
Socket.IO, 2023) 
 



71 
 

o Tesseract.js 
Tesseract.js is a JavaScript library port of the Tesseract OCR engine. The port will 
allow developers to use OCR functionality in a web-based application. The library is 
used to provide the OCR functionalities seen in the application. (Tesseract.js | Pure 
Javascript OCR for 100 Languages!, 2023) 

o Quill 
Quill.js is a powerful text editor library, that will be used to provide for the notes-
taking feature that the application will have. It is powerful, easy to use and 
customizable (Quill - Your powerful rich text editor, 2023). The reason behind using 
Quill is because of the Delta feature, which allows developers to store the position 
and style of that specific document in a backend. 
 

o Figma 
Figma is a free online web service that is used for designing UX / UI applications. 
Figma was used to design the wireframes, and UI of the project, and to create the 
design systems of the application. 

The application that will be developed for this project is a note taking application that 
contains OCR functionalities. The user will be able to create new documents, sort their 
documents into folders and use OCR functionalities alongside the notes taking features to 
help users take notes on different mediums and transfer it to the application. 

 

5.3 Implementation Roles 
 

The project consisted of a single developer, and a project supervisor and secondary reader. 
The project will be developed by Clemente, including all the design, functionalities, and 
testing that is seen throughout the project, while being supervised by Cyril Connolly. Weekly 
meetings were held, where updates for the project progress and criticisms were exchanged 
between the student and supervisor and were consistent during the development process. 

 

5.4 Scrum Methodology 
Scrum Methodology was used for the implementation of this project. The Scrum 
methodology follows the Agile Development methodology, and divides the project into 
smaller, manageable goals that are achievable throughout development. These goals are 
generally accomplished within one to two weeks, called sprints, depending on the plan that 
the developers have set out. (What Is Scrum Methodology? & Scrum Project Management, 
2022) 

The project is divided into different roles, which consists of: 

 Scrum Master – The Scrum Master is to guide the developers and manage the 
project. They will oversee the project, keeping the Scrum up to date and will provide 



72 
 

training and mentoring in case a team needs it (What Is Scrum Methodology? & 
Scrum Project Management, 2022) 

 Software development team – The team that will be developing the project and 
following the Scrum goals. 

 The product owner – Will be the clients that will use the software that is being 
developed. 

In this project, Cyril will provide the role of the Scrum Master, while Clemente will be the 
software development team that will accomplish the goals set out to him. 

Each sprint in the project will be completed every two weeks, and in total consisting of 7 
sprints, and a set of goals will be accomplished within those sprints. The figure below shows 
how the scrum methodology was used: 

 

Figure 67 Scrum Diagram (What Is Scrum Methodology? & Scrum Project Management, 2022) 

The requirements for the application were broken into a product backlog, and each item on 
the product backlog was broken down to smaller functionalities, which created the sprints. 
The product backlog can be seen in the figure below: 



73 
 

 

Figure 68 Backlog 

These sprints were accomplished over the course of two weeks and encouraged developers 
to be productive to keep up to date with their work. 

  



74 
 

5.5 Development environment 
 

5.5.1 Visual Studio Code 

Visual Studio Code is a fast code editor that supports developers by syntax highlighting, 
bracket-matching, auto indentation and many more. It allows developers to inspect and 
debug their code and add many other plugins that is created by the community. (Visual 
Studio Code, 2021) 

The reason Visual Studio Code is being used is because it runs well with web development 
and JavaScript and can highlight different errors that can occur during the development 
process. It is fast, easy to use and highly customizable to run with different plugins. 

Visual Studio Code is where most of the code will be written. It is compatible with React, 
JavaScript, Mongo, Mongoose and works very well when also using Node to install the 
packages that will be used to develop the application. 

5.5.2 GitHub and Git 

GitHub provides a method of version control. It will be used to create the many commits 
that will be created and tracks the different changes that a developer makes within those 
commits. It can also provide for different branches and merging. (What Is GitHub? A 
Beginner's Introduction to GitHub, 2022) 

The version control system was essential during development to help save progress or 
revert to a previous version in case the current version is too broken to salvage. 

The way these versions are uploaded to GitHub is using Git commands, which allows for the 
different features and commits to be saved. 

  



75 
 

5.6 Sprint 1 - Research and Requirements 
 

5.6.1 Goals 

The goal of Sprint 1 is to research project ideas, view similar applications, and conduct 
surveys and interviews to gather information on a user’s needs. 

 Item 1: Research the ideas for project in a similar area. 
 Item 2: Researching OCR Technologies in React. 
 Item 3: Gather User Requirements 
 Item 4: Create User Personas 
 Item 5: List Functional and Non-Functional Requirements of application 
 Item 6: Create Use-Case Diagrams 

 

5.6.2 Item 1 – Researching Project Ideas 

The goal of this item was to perform research for the project area and find out what will be 
built towards the end of the application. Due to the nature of OCR being heavily committed 
with writing, developing a notes-taking application with OCR functionality was decided early 
into the project. The idea of the project was to allow users to take notes on pen and paper 
and transfer those notes to a desktop application to give them flexibility in where they can 
store their notes. 

 

5.6.3 Item 2 – Researching OCR Technologies in React 

Technologies were then researched to see if this application was feasible to develop. As it 
turns out, there are available libraries for React.js to that will allow developers to build an 
OCR application. One of these being Tesseract.js, a port of Tesseract OCR to a react library, 
usable within JavaScript. 

A prototype was then developed in React.js to see if it is possible to add this feature. 

Prototypes for the notes-taking side of the application was also developed during this time. 
A library called “Quill.js” was used to develop the notes-taking part of the application, as it is 
a very powerful notes taking library with the ability to store the properties of what is in the 
documents.  

Tutorials were used and altered for both the OCR prototype and the Notes taking prototype. 
The notes taking tutorial can be found here: (Simplified, 2021) and the OCR Reader 
prototype can be found here: (basarat, 2022)  



76 
 

5.6.4 Item 3 – Gather User Requirements 

Gathering the user requirements was to find the different functionalities and features that a 
user would be able to use within the application. The requirement gathering process was 
done in three ways to maximize the usable functionalities within the application. 

These steps consisted of: 

 Researching similar applications 
 Surveys 
 Interviews 

 

5.6.4.1 Item 3.1 – Researching Similar Applications 
Similar applications were looked and examined to find the advantages and disadvantages of 
that specific application. High quality applications were looked at to ensure that the 
functionalities of the program that is being built will contain the essential features of a notes 
taking application. 

The applications that were researched were: 

 Notion 
 Evernote 
 Google Keep 
 Text Scanner [OCR] 

The advantages and disadvantages of these applications can be found in Research Section of 
this report. 

 

5.6.4.2 Item 3.2 – Surveys 
Surveys were conducted to gather mass data on the application. The surveys were sent to 
gather data on whether the common person uses notes taking applications, what they like 
about these applications, and the different features that they would like to see on an 
application like this. 

These surveys returned a variety of responses and helped further determine the 
functionalities that the application will possess. 

The results can be seen in the research section of the report. 

 

5.6.4.3 Item 3.3 – Interviews 
Users were also interviewed to find what features suit them, what they would like to see 
and how they interact with these kinds of notes taking applications. 

In these interviews, the users were asked what their favourite features were from notes 
taking application that they have previously used, and the results were listed in the research 
section of the report. 



77 
 

 

5.6.5 Item 4 – Creating User Personas 

A set of user personas were created to showcase the potential users who will be using the 
application, and to display their needs and wants that the application should provide.  These 
personas can be seen in figure 69 and is shown in greater detail in the research section. 

 

Figure 69 Personas 

5.6.6 Item 5 – List of Functional and Non-Functional Requirements of the application 

Functional and Non-Functional requirements were then listed. These requirements were 
gathered from the needs that has been provided from the information that was gathered 
from the surveys, interviews, and personas. The requirements were listed from high to low 
priority to show the developers what to prioritise during the development of the 
application. The list can be seen in the research section of the report. 

 

5.6.7 Item 6 – Creating Use-Case diagrams. 

A use-case diagram was then created to showcase what certain users can do. These 
diagrams show the registered and un-registered users and what the application allows them 
to do.  

 

5.6.8 Conclusion of Sprint 1 

The overall goals of this sprint were accomplished and gave a clear end-product on what 
should be built towards the end of the project, showing the functionalities and needs that 
should be implemented towards the end of the project.  

 

 

 



78 
 

5.7 Sprint 2 – Design  
 

5.7.1 Goal 

The goal of Sprint 2 was the design the different parts of the application. These included 
both the Program Design, and the User Interface Design, showcasing how the project will be 
developed in its design systems, as well as the look of the application. 

 Item 1: Research the Technologies 
 Item 2: Database Design 
 Item 3: Process Design 
 Item 4: Wireframes 
 Item 5: User Flow Diagram 
 Item 6: Style Guide 

 

5.7.2 Item 1 – Researching the Technologies. 

 This item consists of performing research on the technologies that will be used in the 
application, the design patterns that will be used and the architecture of the overall 
application. 

 Technologies and Structure 

The technologies that will be used for this application was displayed in this section, 
showcasing the stack that will be used and explaining the reasoning behind using them. 

The structure of how React.js is used was also discussed, showing the different folder 
structures, and explaining the reasoning behind that structure. 

The Model View Controller (M.V.C) design pattern was also discussed in this section, 
showing how the stack uses M.V.C and a diagram to compliment it too. 

Application Architecture was also in this section, it is to show the connections between 
the technologies and how they all worked together to create the finished product. 

These can all be seen in further detail in the design section of the application. 

 

5.7.3 Item 2 – Database Design 

The database design section then showcases the structure of the database. Diagrams were 
created to show the relationships between data, and how they will connect with each other. 
These diagrams include a Database Record and Entity Relationship Diagram and can be seen 
in the figure below (figure 70), and in greater detail in the Design section of the document. 



79 
 

 

Figure 70 Database Design 

  

5.7.4 Item 3 – Process Design 

The API and Process Design were created in item 3. 

The API design shows how the calls should look in the backend of the application, and what 
calls a specific entity should be able to perform. 

The process design then shows a sequence diagram that show the process of what is being 
performed. 

These diagrams can be seen in the design section of the report. 

 

5.7.5 Item 4 – User Interface Design 

Item 4 then shows the creation of the User Interface Design of the application. This is done 
through a series of steps that allows for a final design to be created, which includes: 

 Paper Prototypes and Wireframes 
 User Flow Diagram 
 Style Guides 

5.7.5.1 Item 4.1 – Paper Prototypes and Wireframes 
Paper prototypes were produced to quickly lay down ideas for a potential UI design. This 
was done to allow for mistakes and fast creation, and to give ideas on how the webpage will 
look before wireframes are produced.  

Once a paper prototype was completed, a wireframe is then created. The design of the 
wireframe is based on the design of the paper prototype; however, the wireframe is built in 
a design tool. In this case, the wireframe was built using Figma. 

These paper prototypes and wireframes can be seen in the figure below (Figure 71) and can 
be seen in greater details in the Figma board, or the design section.  



80 
 

 

Figure 71 Wireframe 

 

5.7.5.2 Item 4.2 – User Flow Diagram 
A user-flow diagram was then created to show how a user will interact with the website, 
and the pages that they are to be led to, after clicking a specific button, or nav component. 
This was done to show how they will interact with the design and for navigation purposes. 
The user-flow diagram can be seen in figure 72. 

 

Figure 72 User Flow Diagram 



81 
 

5.7.5.3 Item 4.3 – Style Guide and Finished Design 
Finally, a style guide and the finished design was created. The style guide was built to give 
the UI of the application a consistent look, and to choose the colour scheme, iconography, 
font and font sizes, etc.  

With the style guide completed, the finished design was then constructed, and built with the 
use of the style guide and the wireframe. 

The finished design and style guide can be seen in figure 73. 

 

Figure 73 Final Design 

 

 

 

 

 

 

 

  



82 
 

5.8 Sprint 3 – Implementation 1 
5.8.1 Goal 

The goal of sprint 3 was to begin the implementation of the application. During this sprint, 
prototypes were further developed separately to see if the different parts of the application 
can work together. The items that were developed during this phase of the project were: 

 Item 1: OCR Functionality prototype. 
 Item 2: Notes taking prototype. 
 Item 3: User profile. 

 

5.8.2 Item 1 – OCR Functionality Prototype 

A prototype for OCR functionality was developed in React. The tutorial used to develop this 
prototype was found on YouTube and uses a library for React known as “Tesseract OCR”, a 
library that was ported from Python to JavaScript. 

 The prototype that was developed took in an input from the user and uses Tesseract to 
read the text and return it back to the user. 

 

Figure 74 OCR Prototype (1) 

In figure 74, the data is first stored using useState, setting it to its initial value. The file that 
the user inputs is then loaded with the use of the “loadFile” method. When the file is then 
read, the result is set to the image data using the “setImageData” function. 



83 
 

 

Figure 75 OCR Prototype (2) 

Figure 75 then shows a new worker being created, coming from Tesseract.js. The worker ref 
then logs the progress message, setting the status until it is complete. Once it has been 
completed, it then terminates the workerRef. 

 

 

Figure 76 OCR Prototype (3) 

Figure 76 then shows how the extraction of the text is handled with the “handleExtract” 
method. The progress label is initially set to 0, then “starting” when it begins extracting text. 
Line 48 shows the workerRef being received in its current state, then loading the worker and 
setting the worker’s language to English in line 50 and 51. 

Line 54 then shows the response after the worker recognizes the imageData variable. Once 
this is complete the result is set in line 57 and console logged in line 58. 

  



84 
 

5.8.3 Item 2 – Notes Taking Prototype 

The prototype for the notes taking section of the application uses a library called “Quill.js”. 
The tutorial for this prototype was found on YouTube, and can be seen here: (Simplified, 
2021) 

The goal of this item was to develop a notes-taking prototype with a working backend that 
connects to MongoDB. This database uses a prototype database and was not used in the 
final product, when all the prototypes are connected to create one application. 

 

Figure 77 Notes Taking Prototype (1) 

Figure 77 displays the toolbar from Quill. Line 9 to 19 shows the different options that the 
user can use, and all come from Quill.js, and stores it in a variable called “Toolbar Options”. 

Line 8 just stores the save interval, saving every 2 seconds. 

 

Figure 78 Notes Taking Prototype (2) 



85 
 

Figure 78 then shows the text Editor function, with the different use effects required to 
work. 

Line 23 to 25 first creates variables. The Line 23 takes the document ID from the parameter 
of the URL. A socket and Quill variable is then set with a useState. 

The useEffect in line 28 shows the connection being established, with the use of socket io to 
localhost 3001. The socket is set to “s” and is disconnected when it’s finished. 

The useEffect from line 38 to 48 loads the document. It first check to see if the socket is null, 
and will return if it is, seen in line 40. If it is not null, the socket then loads the document and 
sets the contents to the document loaded. Once that is completed quill is then enabled in 
line 44. The socket then gets the document with the use of the document ID. 

 

Figure 79 Notes Taking Prototype (3) 

Figure 79 shows the use effect that saves the document. It first checks to see if the socket is 
null and return if it is. The setInterval function then runs the save-document function every 
two seconds, coming from the “SAVE_INTERVAL_MS” variable set earlier in the page.  

 

Figure 80 Notes Taking Prototype (4) 



86 
 

Figure 80 then shows the updates for changes being made on the document. The first 
useEffect will listen for changes being made by other users and presents the updates that 
those users perform. The delta is then applied to quill using the updateContents method. 
Delta simply stores the position and styling of the typography being used in the document. 

The second useEffect listens for the changes being made by the current user. The handler 
function is called whenever a change in the document is made, and the delta variables are 
to show the changes made, the old version and who made the changes. 

 

 

Figure 81 Notes Taking Prototype (5) 

Figure 81 creates a function called “wrapperRef”, to render out one toolbar. The wrapper 
first checks to see if it is null, then sets the inner HTML as an empty string. A div is then 
created and appends a new quill editor. The new Quill editor takes in the theme, and the 
toolbar. 

The function will initially be disabled, seen in line 98, but will enable once it finishes loading. 

The server side of the application was also built during this prototype. It is stored in 
MongoDB and is written in express.js. The structure of the code consists of the controller, 
the models, the routes, and the server. This can be seen in figure 82, the figure below. 

 

Figure 82 Backend of Notes Taking Prototype 

This kind structure will be found throughout the entire backend of the application and will 
be explained in detail in this section. 



87 
 

We will first start by discussing the document model. 

 

Figure 83 Document Schema 

Figure 83 shows the document model and shows how it is supposed to be stored in the 
database, consisting of an ID, a title, and the data, which is the quill.js document files being 
stored. 

It then exports the model as “Document” and is used in the document_controller.js file. 

 

Figure 84 Document Controller 



88 
 

Figure 84 shows the document controller and shows the different CRUD functionalities that 
is being used, although this will be changed in a later section to suit the folders feature of 
the application.  

The readData function seen in figure 84 will return all the documents that is in the database. 
The find() method is from MongoDB and  will find all the data and return it to the user. The 
if statement provided is for error handling in case no data was available. 

 

Figure 85 Document Read One Method 

Figure 85 then shows the readOne method. It first requests for the ID of the document from 
the params, then it finds the id using the findByID method, passing the id as a parameter. It 
then checks to see if the data is available, where it returns “Document with ID: ${id} was not 
found” if that document doesn’t exist, and simply returns the document if it finds it. 

A catch is then put in place as a method of error handling, to check if the ID is valid or not. 



89 
 

 

Figure 86 Document Create Data Method 

Figure 86 shows the create data method. This method allows users to create new 
documents. It first requests for the body, then accesses the mongoose model and uses the 
create() method from MongoDB and passes the data as a parameter.  

It then checks to see if it is successful and returns the data with a status of 201. If it is not 
successful, an error is thrown to the user. 



90 
 

 

Figure 87 Update Data 

Figure 87 the shows the updateData method, which updates the document data. It first 
takes in the ID and the body that the user decides to put in. It then uses the 
findByIdAndUpdate() method to update the data, through an error if it is unsuccessful or 
invalid data was provided or returning it if it was successfully updated. 

 

Figure 88 Delete Data 



91 
 

Finally, figure 88 shows the delete data method, where it takes in the ID that the user wants 
to delete, and uses the deleteOne() method to delete it from the database, again throwing 
an error if it is unsuccessful, and showing a message “Document with ID: ${id} was not 
deleted”, and if it is successfully deleted it returns with a status 200 and a message saying it 
was successfully deleted. 

 

Figure 89 Exports of Functions 

Figure 89 then shows the functions being exported, and it is then use in the routes folder. 

 

 

Figure 90 Routes 

Figure 90 shows the routes file and uses the functions that were exported from the models 
file and matches the function with the route of the request, for example router.get(‘/:id’, 
readOne) gets the id of the URL and uses the readOne method. The router is then exported. 
To the server to be used. 



92 
 

 

Figure 91 db.js 

In the figure above, it shows the Utils folder, where the db.js file is stored. The connection is 
established to the MongoDB database here using an environment variable that stores the 
URL called “DB_ATLAS_URL”. 

The server.js file then uses all the components together to run the server for the 
application.  

 

Figure 92 Server.js 

The figure above shows the connections being created and requiring all the different utilities 
needed for the server to run. 



93 
 

We first require mongoose, express, and socket io. Then the server is then created with the 
port of 3001, as well as the socket.io server. It then requires the dotenv file and the db.js file 
for the database. The server then is changed to accept json and sets the view to html.  

 

Figure 93 Server Port 

Figure 93 finally shows the paths that is being used and console logs the server port. The 
services folder will be discussed in a later section. 

5.8.4 Item 3 – User Register and Login Prototype 

Item 3 was to develop a prototype that allowed users to register and login to the 
application. 

The development of the user’s register and login were very similar to the document CRUD 
functionalities, with some changes.   

Like the document, the user contained a schema, a controller, a route, and was all placed 
into the server.js. 



94 
 

 

Figure 94 User Schema 

Figure 94 first shows the user schema, the user will need to input their name, email and 
password in the schema, and the password becomes encrypted with the use of the function 
seen in line 28 to 32. 

The schema is then exported as “User”. 

 

Figure 95 User Controller Register Function 

The user controller is then seen in figure 95, where it displays the register method. It is like 
the create method, however it encrypts the user password with the use of a library called 
Bcrypt.js and saves the user into the database. 



95 
 

 

Figure 96 Login Function 

Figure 96 then shows the login method and what is being exported. 

The login will first check to see the user’s email address. It will then check to see if the user 
password is the same as the password that was stored in the database, or if that user exists. 
If it doesn’t it returns an error, otherwise it will generate the token with the use of JSON 
Web Token (JWT), and sign the user in. The secret key from JWT is the 
process.env.APP_KEY. It will then return a status 200 if it works. 

 



96 
 

 

Figure 97 Login Required Function 

Figure 97 then shows the authorization of the application. The login required is to ensure 
that a user is logged in before proceeding with the rest of the application. 

 

Figure 98 User Routes 

Figure 98 then shows the route of the user, and what it can do. Here it takes in a register 
and login. 

  



97 
 

Finally, the server.js is mostly the same, however it adds a middleware that can be seen in 
figure 99. 

 

Figure 99 Middleware 

This middleware checks for the JWT token and verifies it. 

 This item of the sprint allows users to login to view their profile and will be altered to show 
users their own specific files and documents. 

 

5.9 Sprint 4 – Design 2 
5.9.1 Goal 

The goal of this sprint was to update the design section, to cater for changes that were 
made during the development of the application in Implementation 1. The backlog and 
design of the application was updated to create a more user-friendly design of the 
application. The items that were included in this sprint were: 

 Item 1: Update Backlog. 
 Item 2: Update user interface design. 
 Item 3: Connect Prototypes (including backend). 
 Item 4: Bug Fixes and problems. 

5.9.1.1 Item 1 – Updated Backlog 
The functional requirements backlog was updated slightly. Some features were removed or 
placed in a lower priority to focus more on the development of the more core-features of 
the application. The updated backlog can be seen in figure 100: 



98 
 

 

 

Figure 100 Updated Backlog 

Some parts included in the backlog were already included in other features, such as “The 
ability to style the notes page” being included in the Quill.js library already being done. The 
to-do-list and share notes feature were removed to focus on other parts of the project. 

Some parts of the project were also increased in priority, such as a user being able to edit 
their own profile, compared it initially being set to low. 

  



99 
 

5.9.1.2 Item 2 – Updated User Interface Design 
The user interface of the application was also updated.  

 

Figure 101 Updated Design 

The updated design is seen in figure 101, this design includes the modals and pages that 
were created while developing the application. The new design contains the modals for 
when the user wishes to edit their profile or document.  

The user can also view the files that was saved from the OCR reader in a modal and is seen 
in its own separate page. 

The title of the document or folder can also be seen when viewing either the document or 
the folder. 

  



100 
 

5.9.1.3 Item 3 – Connecting All Prototypes Together 
The goal of this item was to connect all the existing prototypes together to form a more 
unified application. This was accomplished by combining the prototypes one-by-one, 
starting with the login and register functionalities, then including the OCR Reader page, and 
finally including the document editor. 

 

Figure 102 Combined Frontend 

Figure 102 shows the structure of the combined project, including pages and components, 
showing all the prototypes combined. 



101 
 

 

Figure 103 Navbar Component 

Figure 103 shows the navbar. The inclusion of a Navbar was also included in this phase, to 
allow users to navigate to the different pages that were created. 



102 
 

 

Figure 104 App.js file 

Figure 104 shows the app.js file, which was also modified to include all the new pages for 
prototypes that were combined, allowing for the baseline of the application to be created. 

A similar procedure was also performed in the backend of the application, combining all of 
them into one. 



103 
 

 

Figure 105 Combined Backend 

Figure 105 shows the controllers, schemas, and routes, creating one central backend for the 
application. A new MongoDB database was also created for the new data being made. 

 

Figure 106 Server.js 

Figure 106 shows the server.js file. This file now contains all the routes that were required 
to combine the prototypes, although there were some slight modifications made to allow 
for the server.js file to work alongside the document’s functionalities, which will be covered 
in item 4. 



104 
 

5.9.1.4 Item 4 – Fixing the problem with the document’s backend. 
The goal of this item was to fix a certain problem that was occurring with the backend for 
the documents file.  

As socket.io was running its own server, the actual server for the backend needed to be 
restructured and altered to cater for this cause, as there were problems occurring when 
both servers were running. 

Unfortunately, a screenshot of the error was not taken during this process, however, to 
allow this to work the socket.io server must be using the same server as express and use the 
functions the document to save. 

Firstly, the socket.io server was first initialized to use the same server as express.  

 

Figure 107 Initialization 

Figure 107 shows the initialization of this, with the CORS option being set in the process. 
Line 14 – 21 then creates the server location. 

The next step to solving this problem is to use the required functions to allow the document 
file to run. This is first done by separating these, and placing it into a services folder, which 
held the document_service.js file. 



105 
 

 

Figure 108 Methods 

This can be seen in figure 108, where the methods using socket.io are being used. 

Finally, it is required to run these functions and get used in the server.js file.  

 

 

Figure 109 Paths 

The figure above shows the document_service.js file being run, in line 51. 

The result of this restructuring of the code allowed the document file to work again when it 
has been incorporated with the rest of the prototypes, allowing for the application to work. 

  



106 
 

5.9.1.5 Item 5 - Bug Fixes and problems 
Aside from the major problem shown in the previous item, there was only one minor 
problem that occurred during this phase of implementation that was notable. 

 

Figure 110 Problem 1 

Figure 110 shows an infinite loading screen occurring, which didn’t allow users to use the 
document editor, as it was disabled until the data was returned. 

 

Figure 111 Result 

Figure 111 shows the problem. The reason for this not working was because “app.listen” in 
line 53 was not using app anymore, and needed to be updated to “server.listen”. 

 

 

Figure 112 Result 

Figure 112 shows the correct code, and the infinite loading for the documents page has 
been fixed. 

 

 

 

 



107 
 

 

 

5.10 Sprint 5 – Implementation 2 and Testing 
5.10.1 Goal 

The goal of this sprint was to implement more features of the application, as well as 
perform minor testing to help eliminate errors that were occurring during the development 
of the application. The items for this sprint include: 

 Item 1: Including CRUD in the Frontend for Document Editor. 
 Item 2: Displaying the documents that is specific for each user. 
 Item 3: Adding basic styling to project and pages. 
 Item 4: Including an image upload feature. 
 Item 5: Bug Fixes and problems 

5.10.1.1 Item 1 – Including CRUD in the Frontend for Document Editor. 
The goal of this sprint was to include the CRUD functionalities in the frontend of the 
documents. Currently a user is unable to create, read, update, or delete a document unless 
it is viewing a single page with the id already available or using the backend to perform 
these methods.  

To start, TextEditorPage.js was created to display all documents. This was done with the use 
of axios, retrieving all the documents from the database. This can be seen in figure 113. 

 

Figure 113 Data Removal 

Figure 114 shows the data being retrieved. 

The data is then placed into a document card, which will receive the document id as a key. 



108 
 

 

Figure 114 Error handling 

Figure 114 shows the that if there is no documents, it returns as “loading”. 

Line 34 – 37 shows the documents list returning a card for each document that is within the 
database. 

The document card is a separate file, which contains its own properties, that can link users 
to that specific document. 

 

Figure 115 Document Card.js 

Figure 115 shows DocumentCard.js. It uses the title as a link to the specific document, line 
10 shows the route, using the document id to redirect the user to that specific document. It 
also contains the edit and delete document buttons. 



109 
 

 

Figure 116 Document List 

The document list is then placed on the page to display all the documents. This can be seen 
in the figure above. 

If the user clicks on one of the links, it brings the user to the single document page.  

 

Figure 117 Protected Paths 

Figure 117 shows the protected paths. On line 54, the route will take a document ID and 
redirect it to that text editor page with that same id. 



110 
 

 

Figure 118 Displaying All Documents 

Figure 118 shows the documents all being displayed, simply showing the ID of each 
document.  

Next, a create method was built in the frontend. A page was first created for the create 
documents page, this contained a form for the title of the document, and later will add an 
image.  



111 
 

 

Figure 119 Form 

Figure 119 shows the setup for the form of the application. The “handleForm” method is 
meant to handle the different input fields in the form and is useful if there were more than 
one input field.  

The “isRequired” function is to state whether that specific field is required when creating a 
new document. 



112 
 

 

Figure 120 Handler 

The submit form is then used to handle when a user is submitting the form. It first takes the 
token and user id from the local storage of the app. It then creates a form data and appends 
the title from the form, meaning the title is now a part of the formData variable. Once this is 
done an axios.post request is done, uploading the formData to the userId.  

The content is specified to be a multipart/form-data as an image upload will be 
implemented in a later sprint. 

The data is then uploaded, and the user is navigated back to the select-document page. 

 

Figure 121 Submission 

Figure 121 shows the form and the submit button using the submitForm function. 

 



113 
 

The edit documents modal is like the create document function. The code will first contain 
the modal styling, seen in figure 122. 

 

Figure 122 Edit Document Modal 

Figure 122 is a simple modal that will only be the styling for it temporarily. 

The code then sets up the variables that will be used, and the isRequired and handleForm 
functions, which can be seen in figure 123. 

 

Figure 123 Is Required and Handle Form Functions 



114 
 

 

The axios.put method is then used in the submit form. It uses the documentID to update it. 
This can be seen in figure 124. 

 

Figure 124 Axios Call 

 

The form itself is seen in figure 125. 

 

Figure 125 Form 

 

Finally, the implementation of the delete document will be done. Figure 126 shows the code 
for the delete document function: 



115 
 

 

Figure 126 Delete Document Function 

It first accesses the userId and the token and deletes the resource that is passed through. In 
this case resource is “document”.  

It is then returned as a button that can is used in the DocumentCard mentioned when 
discussing the DocumentCard. 

 

 

 

 

 

 

 

 

  



116 
 

5.10.1.2 Item 2 – Displaying the documents that is specific for each user. 
The goal of this item was to alter the code to allow users to see their own specific 
documents. As of now, when a user logs in, they can see the documents for all users, and 
the documents are not specific to their own.  

The code was updated to cater for this problem and begins with updating the document 
schema to be included with the user schema. 

 

Figure 127 Document Schema in User Schema 

Figure 127 shows the document schema being included in the user schema. This change was 
performed to documents to be included in a user’s profile, rather than being a separate 
entity. 

Next, changes were made to the document_controller.js file. The CRUD functionalities were 
updated in the controller. It no longer uses the previous version, and now uses slightly 
altered functions to cater for the changes made when finding a document in a user’s profile. 



117 
 

 

Figure 128 Using User Schema 

In figure 128, it is shown that instead of using the “document” schema, it is instead using 
the “user” schema to find the documents that are stored within the users. 

In the “createData” function, it was altered to use the user instead of the document, 
alongside the “findByIdAndUpdate” function found within the express.js documentation. 
The code will first request the userId and push the data to the documents inside of the user. 
It will return with a status of 200 when successful, and a 404 or status 500 when it is 
unsuccessful. 

The “readData” function was also updated. 

 

Figure 129 Read Data Updated 

Figure 129 shows the function requesting for the user first, then returning the documents. 
This means that when a user is found, it will return the documents of that user with a status 
200 when successful, and status 404 or status 500 when unsuccessful. 



118 
 

The “readOne” function is like the above “readData” function.  

 

Figure 130 User Id 

Figure 130 shows that it will first find the userId, then search through the documents and 
find the document that matches the id that was requested. It returns if successful, and 
status 404 / 500 when it is unsuccessful. 

  



119 
 

The “updateData” function contains the most significant changes made. 

 

Figure 131 Update Data 

Figure 131 shows the update data function. To start, the code will first receive a req and res 
as parameters. The id is then retrieved from the request parameters and set to the variable 
“id”. It will then use the “findOneAndUpdate” method to find the specific document, and 
update the corresponding fields to the req.body that the user choses to input. It will then 
check to see if it is successful, with the use of error handling, and respond with a status 200 
if it is successful.  

  



120 
 

Finally, the delete data function was also updated. 

 

Figure 132 Delete Data 

Figure 132 shows the delete data. It first takes the user and document Id, then removes it by 
pulling that document from the user. If it is successfully deleted, it returns with a success 
status of 200. 

With these modifications made, the users can now perform CRUD functionalities on their 
own specific set of documents. 

It is important to note that a similar procedure will occur when developing the folder 
structure of the application and will not be discussed in much detail in that phase of 
implementation, except noting the changes. 

5.10.1.3 Item 3 – Adding basic styling to pages. 
The goal of this sprint was to add very basic navigation and UI elements to the project. This 
was implemented very quickly to allow the developer to navigate through the pages and 
display the required information when developing. Further styling of the application will be 
completed in a separate sprint. 

The figures below will showcase the different pages that were built. 



121 
 

 

Figure 133 OCR Reader V1 

Figure 133 shows the first iteration of the OCR reader. 

 

Figure 134 Login V1 

Figure 134 shows the first iteration of the login page. 



122 
 

 

Figure 135 Displaying All Documents 

Figure 135 shows the documents all being displayed. 

 

 

Figure 136 Text Editor V1 

Figure 136 shows the original text editor design. 

These pages contained the styling for the prototypes developed and will be further styled in 
a later sprint. 



123 
 

5.10.1.4 Item 4 – Include an image upload feature for documents. 
 

The goal of this item was to allow users to upload images. The image upload feature was 
used when uploading images for documents, thus it is a prominent feature that must be 
developed. 

A file is first created in the utils folder, called image_upload.js, seen in figure 137. 

 

Figure 137 Utils Folder 

In this file, multer-s3 and s3-client are initiated. These are packages that are required to be 
installed and will allow users to connect to AWS S3 Buckets and use that as a place to store 
their images, rather than the local desktop folder. 

 

Figure 138 Multer-s3 

The figure above shows the code requiring multer-s3 and the S3-Client. 

 

Figure 139 "If" Statement 

Figure 139 then shows an if statement, connecting to the AWS Storage system. It uses the 
constants from “process.env”, which includes the storage engine, the access key, and the 
secret access key that is given when creating a bucket in AWS. 

Storage is also declared in line 12, and is used in the following code: 



124 
 

 

Figure 140 Second Half of "if" Statement 

Figure 140 shows the second half of the if statement. It uses multerS3 as a storage, and uses 
the settings given in the Multer documentation seen here: (multer-s3, 2022) 

This was added with s3 adjustments in mind. The code defines the settings for uploading 
files to AWS S3 Bucket using Multer Middleware, which includes the name, the content 
type, the data, and the key, which generates a unique file with the date timestamp. 

If it cannot connect to AWS, an else statement is created to store it locally. 

 

Figure 141 "else" Statement 

Figure 141 shows this else statement, storing it to the local disk storage, instead of AWS 
Server. 

A file filter function is also required to ensure that the file is specifically an image and can be 
seen in figure 142 below. 



125 
 

 

Figure 142 File Filter 

To allow for an image upload to be used, changes were made to the code of the 
document_controller.js file to cater for this. 

 

Figure 143 File System 

File systems were first added. This is seen in the figure above. 

A deleteImage function was then created, which will be used with the updated functions. 

 

Figure 144 Delete Image Function 



126 
 

Figure 144 shows the deleteImage function. It first receives a filename as a parameter. The 
if statement then ensures that the STORAGE_ENGINE is set to “S3”. It then deletes the 
image that is found in the AWS SDK, or the local storage system. It then logs a success or 
failure message depending on the result. 

CreateData was updated accordingly, to cater for the image upload when creating a new 
document. This can be seen in the code below: 

 

Figure 145 Create Data Updated 

Figure 145 now has an “if” statement that requests for the file, which will check whether the 
STORAGE_ENGINE variable has “S3”, if it does it uploads it to AWS as a file key, and if not 
uploads it to the local storage. Otherwise, it returns an error. 

Line 215 onwards then uploads the data. 

  



127 
 

The ReadData function remains the same, and can be seen below: 

 

Figure 146 Read Data Updated 

Minor changes were made to the “readOne” function and can be seen in figure 147: 

 

 

Figure 147 Read One Updated 

Figure 147 shows the updated readOne function, and within the “if” statement, it takes the 
STATIC_FILES_URL constant in the .env file and combines it with the image path. The 
data.imgPath variable is then set to this, allowing the image to be returned, alongside the 
rest of the document details. 

The update data function in this version of the code was also accepting images to be 
changed, however this was reverted to just accept the title of the document to be changed. 



128 
 

 

Figure 148 File Checker 

The process however can still be seen in figure 148, where it checks to see if the file is 
available and updates it. 

Finally, the delete data function was not altered and deletes the document with the id being 
found. This is seen in figure 149. 

 

Figure 149 Delete Data 

Now that the backend of the image upload has been completed, the frontend of the system 
will now be displayed. 

The main changes made will be seen in the createDocuments.js file, where the submitForm 
method will be altered to allow the submission of images. This was done by creating a 
multipart form, that accepts images, and can be seen in figure 150: 



129 
 

 

Figure 150 Form Updated 

The form takes in the image and uploads it as a part of the form data. Since it is a multipart 
form, it can allow images to be accepted. 

The input was also added in the form to allow for the acceptance of images seen in figure 
151. 

 

Figure 151 Input Updated 

 

The result of this allows for a successful image upload feature, that will also be used when 
uploading an image to the folders, as well as storing images for the OCR Reader. 

  



130 
 

5.10.1.5 Item 5 – Bug Fixes and Problems 
The goal of this item is to discuss the different problems that occurred during the 
development of this sprint. 

Problem 1: 

 

Figure 152 Problem (1) 

Figure 152 displays a problem where the documents list was not appearing.  

The first fix that was attempted was by adding an error boundary to the code. 

This can be seen in figure 153: 

 

Figure 153 Result 

The result of this brought back the pages, however despite this, the problem was still 
occurring. This was fixed by removing document card from the return, and instead putting 
“documentList” in between the error boundary. This can be seen in the figure below: 



131 
 

 

Figure 154 Result 

And the result can be seen in figure 155: 

 

Figure 155 Result 

The problem was solved, and the document id was being displayed for all documents. 

  



132 
 

Problem 2: 

The next problem that occurred was during the development of the image upload feature. 
The error can be seen in figure 156: 

 

Figure 156 Problem 2 

This was occurring because aws-sdk/client-s3 was not installed on the system, and was fixed 
by an “npm install” command, as seen in figure 156: 

 

Figure 157 Result 

Problem 3: 

Problem 3 took slightly longer to fix. A Multer error was occurring, and did not let me 
upload my images, the error can be seen in figure 158: 

 

Figure 158 Problem 3 

The problem was that the form didn’t allow for images to be uploaded, and the frontend 
needed to be altered to accept a multiform data. 

The handle image function was added to allow images to be uploaded seen in figure 159: 



133 
 

 

Figure 159 Result 

Figure 160 shows sets the image to newImage. 

Once this was completed another error occurred, preventing the image upload. This was 
fixed by changing “imgPath” to “image” in the form.append line in the figure below: 

 

Figure 160 Result 

Once this was completed, the image upload feature was fully functional, and the user can 
successfully upload images alongside the document. 

 

 

 

 

 

 



134 
 

5.11 Sprint 6 – Testing  
5.11.1 Goal 

The goal of this sprint was to continue with the implementation of the application, and to 
perform parts of user testing, fixing bugs when necessary, and preparing the application for 
user testing by implementing the UI elements. The items for this sprint are: 

 Item 1: Developing the folders for documents, including CRUD and image upload for 
folders. 

 Item 2: Adding Backend for OCR Reader, including CRUD, saving images and results, 
and displaying on a separate page. 

 Item 3: Implementing UI Elements for the application. 
 Item 4: User Testing 
 Item 5: OCR Accuracy Testing 
 Item 6: Bug Fixes and Problems 

5.11.1.1 Item 1 – Developing the folders for documents, including CRUD and image upload for folders. 
The goal of this item was to develop a folder structure, including crud functionalities and 
image upload for the folder system that the documents will be stored in. This was 
completed in a similar way to how the user can access their own data. For this reason, the 
code will not be discussed in as much detail, as it was already covered in detail in previous 
sprints. It will only be briefly covered. 

The same can be said about the image upload feature, and will also be briefly covered, as it 
was explained in greater detail in a previous sprint. 

A folder schema was first created, then a reference was put in the user schema. This can be 
seen in the figure below. 

 

Figure 161 Folder Schema 

Figure 161 shows the folder schema, which contains the documents schema, containing the 
imgPath for the image upload. This is then put into the user schema, seen in the figure 
below. 



135 
 

 

Figure 162 Updated User Schema 

Figure 162 shows the updated user schema, containing the folders array. This is used to 
store the documents and folders to each specific user. 

CRUD functionalities for the folder were then created. This was done in a similar way to how 
the CRUD for documents were made. 

It first required the user_schema.js and the fileSystem, seen in the figure below. 

 

Figure 163 File System 

It then had similar functionality to how the document was read, however instead of the 
code accessing the document, it accesses the folder instead. This can be seen in figure 164. 



136 
 

 

Figure 164 Read One and Read Data 

Figure 164 shows the readData, and readOne methods, accessing the folder instead of the 
documents. 

Create data was also similarly implemented, as it pushes it to the folder data to the folders 
array using the findByIdAndUpdate function (seen in line 95), with the image upload 
functionality from lines 85-94. The figure below shows the code for the createData function. 

 

Figure 165 Create Data 

  



137 
 

Update data was then implemented in a similar way, seen in figure 166, requesting the 
folderTitle, and containing the image functionalities. 

 

Figure 166 Update Data 

Finally, the delete data function, seen in figure 167. 

 

Figure 167 Delete Data 



138 
 

The routes for the folders were then created and can be seen in figure 168. 

 

Figure 168 Routes 

The paths are then set in the server.js file, and can be seen in figure 169: 

 

Figure 169 Paths 

  



139 
 

After some bug fixes, the folder structure now works in the insomnia backend, and can be 
seen in figure 170: 

 

Figure 170 Insomnia 

The documents are now being stored within the folders, and when the user’s information is 
viewed, the folders and documents are now being stored with the user. This is seen in figure 
171. 

 

Figure 171 Insomnia Result 

Figure 171 shows a user account, with a folders array, containing many folders, and each 
folder containing many documents. 



140 
 

The image path is also being stored in each folder. 

CRUD functionalities were then built in the frontend of the application and are similar in 
how the structure of the frontend for the documents were created. As that was explained in 
greater detail in a previous sprint, only a screenshot of one of the pages, and the filenames 
will be shown. This can be seen in the figure below. 

 

Figure 172 View Single Folder 

Figure 172 shows the viewSingleFolder.js file, and the other headings show the CRUD 
components that the application uses to create a new folder.  

The implementation of the folder structure allowed users to store documents in more 
organized manner, and an example of the finished folder structure can be seen in figure 
173. 

 

Figure 173 Folder Collection 

The documents are now accessible in a folder system. 



141 
 

5.11.1.2 Item 2 – Adding Backend for OCR Reader, including CRUD, saving images and results, and 
displaying on a separate page. 

The goal of this sprint was to develop a backend for the OCR Reader, as it cannot store the 
data that it returns. The steps to build this was again similar in how it was implemented in 
previous sprints and will only be discussed briefly. 

The OCR schema was first created, and added to the user schema, seen in figure 174: 

 

Figure 174 OCR Schema 

Similar CRUD functionalities were the created in the ocr_controller.js file: 



142 
 

 

Figure 175 Functions 

Figure 175 only shows the function names, as they have already been discussed in greater 
detail. There were no major changes made, except editing it to fit the OCR files, rather than 
the previous files. 

Once this was completed, the routes were then set, seen in figure 176: 

 

Figure 176 Routes 

 



143 
 

 

Finally, it was set in the server.js file, seen in the figure below: 

 

Figure 177 Server.js 

As the OCR Reader is set in the frontend, the results from the OCR Reader are what is stored 
in the results section. It can be seen in figure 178: 

 

Figure 178 OCR Reader Frontend 



144 
 

These are received after the OCR Reader has finished extracting the results, and the user 
will need to manually save this result by using the submitForm function. 

Once the submit button is hit, the form is then stored in the user’s profile, which is seen in 
figure 179. 

 

Figure 179 Insomnia Storage 

This data can also be accessed and selected in the frontend, seen in figure 180. 

 

Figure 180 Frontend Storage 

  



145 
 

5.11.1.3 Item 3 – Implementing UI Elements for the application. 
The goal of this item was to implement the UI elements that the application will be using. 
The project will be using some components from MUI, such as the navbar, and grid system, 
and will also be using fonts from Google Fonts, and icons from Font Awesome. 

As it is mostly UI elements, the code will only be briefly discussed as it is mostly going to 
focus on the styling and look of the application. 

The homepage was styled first, which can be seen in figure 181. 

 

Figure 181 Homepage Styling 

The use of the MUI Grid system was used throughout the project and provided great help 
with the positioning of the application. 

The code and some parts of the CSS can be seen in figure 182, although it will not be 
discussed in full detail, only highlighting the important parts: 

 

Figure 182 Code for Homepage Styling 

Figure 182 shows an example of the grids being used to align the items in the correct place. 
The CSS code to the right also shows the styling of the application. 

The navbar was then altered. The navbar uses the MUI Navbar for the sliding function and 
can be seen in figure 183: 



146 
 

 

Figure 183 Navbar Styling 

The figure above shows the navbar and is slightly different to how the initial design was 
made, however it contains the links that redirect the user to the desired pages. The navbar 
also contains icons from Font Awesome and was imported to suit the side-nav. 

The code can be seen in the figure below:  

 

Figure 184 Navbar Code 

  



147 
 

First the imports can be seen, including the icons from fontawesome 

It uses the MUI Navbar to redirect users as seen in figure 185: 

 

Figure 185 Navbar 

Finally, it returns the mapped components seen in figure 186: 

 

Figure 186 Navbar 

  



148 
 

The OCR Reader is then styled, and can be seen in figure 187: 

 

Figure 187 OCR Reader Styling 

The OCR Reader again uses the grid system and the icons from Font Awesome. No major 
changes in code besides the CSS files seen in figure 188. 

 

Figure 188 OCR Reader Code 

  



149 
 

The results also show when it completes the extraction of the text seen in the figure below: 

 

Figure 189 OCR Reader Result 

The View All OCR Files was then styled. This can be seen in figure 190: 

 

Figure 190 OCR Reader Files 

The results were stored in a card and uses the grids to position them. When it is clicked, it 
displays a modal and can be seen in figure 191: 

 

Figure 191 Viewing OCR File 

  



150 
 

The folders collection was then designed and can be seen in figure 192: 

 

Figure 192 Folder Collection 

It was like when the user views all the OCR Files, and the card contains a modal that allows 
users to edit or delete the folder, seen in figure 193: 

 

Figure 193 Edit and Delete 

The styling for the create folder page was then completed, and the Create Document page is 
very similar to the design below: 



151 
 

 

Figure 194 Create Folder 

After that was completed, the view all documents page, or the single folder was then styled. 
It is similar to the view all folders; however, the single folder contains the image that the 
user placed in. It can be seen in figure 195: 

 

Figure 195 View All Documents 

  



152 
 

Now when viewing a single document, the text editor now has an image, and the title of the 
document at the top of the page, seen in figure 196: 

 

Figure 196 View Single Document 

Regarding the user profile, an edit user modal was created to allow users to edit their 
details seen in figure 197: 

 

Figure 197 Edit Profile 

  



153 
 

Finally, the login and register pages were also completed and styled, and can be seen in 
figure 198 and figure 199: 

 

Figure 198 Register 

Sign up page seen above. 

 

Figure 199 Login 

Login page seen above. 

  



154 
 

5.11.1.4 Item 4 – User Testing 
User testing was also performed during this stage of the application. Users were given a 
scenario and task to accomplish, as well as explore the application to see if they encounter 
any problems when using the application. This was to ensure that the bugs that can 
potentially be encountered are known and that potential fixes can be performed to allow 
for a higher-quality product. 

User testing will be discussed in greater detail in the next section of this document. 

5.11.1.5 Item 5 – OCR Accuracy Testing 
OCR Accuracy was also tested. A resource was found to apply changes before using the OCR 
Reader, including gaussian blurs, setting the colours to monochromatic, etc. and was used 
to test how accurate the OCR Reader can be. This will also be discussed in a later section of 
the document and the code used will be credited there too.  

5.11.1.6 Item 5 – Bug Fixes and Problems 
Only a few minor problems were encountered during this sprint.  

Problem 1: 

One of which included the authentication failing, when the user is updating their details. 
This can be seen in figure 200: 

 

Figure 200 Problem 1 

The solution of this problem was to add encryption to the “updateUser” method in the 
backend of the application. This is shown in the figure below. 



155 
 

 

Figure 201 Result 

Problem 2: 

The second problem that was encountered was OCR in the backend was returning empty 
objects. This can be seen in figure 202. 

 

Figure 202 Problem 2 

The solution to this problem was to add square brackets in the user_schema.js when 
including it in the user’s schema. This is seen in figure 203. 

 

Figure 203 Result 

This changes it to an array, allowing the objects to be stored. 



156 
 

5.12 Sprint 7 – Thesis  
5.12.1 Goal 

The goal of this sprint is to finish the project, including the writeup for the thesis, and the 
final implementations, and bug fixes of the project. The items for this sprint can be seen: 

 Item 1: Thesis Writeup 
 Item 2: Deployment 
 Item 3: Figures of the Final product 

5.12.1.1 Item 1 – Thesis Writeup 
The goal of this item is to complete the writeup for the thesis. This was to complete the final 
parts of the document and to update parts of the document that needed to be updated and 
changed. No major parts of the code were changed and was mostly worked on the 
documentation of the project. 

5.12.1.2 Item 2 – Deployment  
The goal of this item is to deploy the project to be used by other people. The deployment of 
the project will be done at the very end, when the application is ready to be deployed. It will 
be deployed using Vercel and Firebase to allow users to access the application. 

The backend is first deployed, with the use of Vercel.  

To deploy the backend, a separate repository was created to allow Vercel to specifically use 
the code for the backend. This can be seen the figure below: 

 

Figure 204 Second Backend GitHub 



157 
 

 

A Vercel.json file was then created seen in the figure below: 

 

Figure 205 Vercel.json file 

Once these were setup, the project was then configured, and deployed using the Vercel 
website. The .env files were set up during configuration. This can be seen in the figure 
below: 

 

Figure 206 Deployment of Backend 

  



158 
 

After deployment of the backend, the frontend was then deployed. This was done using 
Firebase to deploy the frontend of the application. 

A new Firebase project was created seen in the figure below: 

 

Figure 207 Firebase 

A file called “.firebaserc” was created, with the ID of the hosted website. The file can be 
seen below: 

 

Figure 208 New Firebase Files 

  



159 
 

The firebase.json file was then created. This was for firebase find the files needed, that in 
which is the builds, which can be seen in the figure below: 

 

Figure 209 Firebase.json 

Finally, a set of commands were used to deploy the application. These commands consisted 
of: 

 npm install -g firebase-tools 
 npm run build 
 firebase login 
 firebase deploy 

Once these commands were completed, the result can be seen at the figure below: 

 

Figure 210 Deployment 

The link of the deployed project can be seen in Appendix D. 



160 
 

Within the deployed project, there are some problems that have occurred. Most notably in 
the documents side of the application, where some parts of the application are not working 
in the deployed project, although still works in the final local version. Due to time 
constraints, these problems in the deployed application were not fixed, however works 
properly in the local version. 

  



161 
 

5.12.1.3 Item 3 – Figures of the Final Product 
This item is to allow reader to see images of the final product. 

Homepage: 

 

Figure 211 Homepage 

  



162 
 

Register: 

 

Figure 212 Register 

 

Login: 

 

Figure 213 Login 

  



163 
 

OCR Reader: 

 

Figure 214 OCR Reader 

 

OCR Reader Results: 

 

Figure 215 OCR Reader Results 

  



164 
 

Viewing All OCR Files: 

 

Figure 216 View All OCR Files 

Modal When Clicking to View OCR File: 

 

Figure 217 View Single OCR File 

  



165 
 

View All Folders: 

 

Figure 218 View All Folders 

Create Folder: 

 

Figure 219 Create Folder 

  



166 
 

View All Documents / View A Single Folder: 

 

Figure 220 View All Documents 

 

Viewing The Text Editor: 

 

Figure 221 View Text Editor 

Minor changes may be made before deployment for bug fixes / usability however the 
application will remain mostly the same for the most part. 

  



167 
 

5.13 Conclusion 
In conclusion, the implementation of the application was displayed throughout this chapter. 
The project was developed using the SCRUM methodology consisting of 7 sprints in 
development of the application. 

The SCRUM Methodology was discussed in detail in this chapter, explaining the different 
roles, sprints, and items within the sprints. 

The technologies to be used were also discussed in this chapter, discussing React, GitHub / 
Git, etc. 

These sprints each had their own items that was a backlog of features that were to be 
completed for the application. 

The sprints consisted of: 

 Sprint 1: Research 
 Sprint 2: Design 
 Sprint 3: Implementation 1 
 Sprint 4: Design 2 
 Sprint 5: Implementation 2 and Testing 1 
 Sprint 6: Testing 2 
 Sprint 7: Thesis 

This chapter displayed the work and the development process of the application and 
explained some of the decisions made during development. 

Through this, the application that was developed was a note taking application, that can use 
OCR in React.js, with a login and register, and folder system that can be used to store the 
notes found within the application. 

  



168 
 

6 Testing 
 

6.1 Introduction 
 

This chapter discuss the forms of testing that has been done during the development of the 
application. This chapter contains two sections: 

1. Functional Testing 
2. User Testing 

Functional testing is a kind of software testing, where the application is tested for its 
functional requirements. The app is tested to see if the output expected is accurate to the 
output returned by the application. These tests are based on the requirements of the 
application, and its results will display whether that piece of functionality in the application 
is working, and easy to use. 

User testing will look at the application, to see if a user is able to interact with the program 
in a way that is easy to use. This can include how the user navigates through the application, 
or whether they can find functionality easily. 

 

6.2 Functional Testing 
 

This section discusses the functional testing that were carried out throughout the 
application. The functional test categorised in: 

 Navigation 
 CRUD 

Black Box Testing is generally used during functional testing, which means that the tester is 
only interested in the actual output matching the expected output of the application. 

 

6.2.1 Navigation 

 

Test 
No 

Descripti
on of test 
case 

Input Expected 
Output 

Actual 
Output 

Comment 

1 Navigate 
to Sign up 
Page 
from 
homepag
e 

Click on Register in Nav or 
“Get Started button on 
Homepage 

Redirect 
the user 
to Register 
page 

Redirects 
user to 
register 
page 

User can 
successfully 
navigate to 
register 
page 



169 
 

2 Create an 
account 
with 
invalid 
details. 
 

Name: NewName 
Email: 
anotherInvalidEmail 
Password: 
1 

Don’t 
allow user 
to sign up 
with 
invalid 
details 

Allows 
user to 
sign up 
with 
invalid 
details 

The 
register 
form 
should 
have a way 
to check 
it’s 
contents to 
prevent 
invalid user 
email. 

3 Sign up 
with valid 
details 

Name: 
newTestingName 
Email: 
newTestingName@gmail.com 
Password: 
password 

Allow user 
to sign up 
with valid 
details 

User signs 
up with 
valid 
details 

Password 
verification 
could be 
added 

4 Log out of 
applicatio
n 

User navigates to “logout” 
button on navbar 

Logs user 
out and 
redirects 
to 
homepage 

The user is 
logged out 
and 
redirected 
to 
homepage 

 

5 Navigate 
to Log In 
page 

User navigates to “login” page 
through navbar 

User is 
redirected 
to “Login” 
page 

User was 
redirected 
to “Login” 
page 

 

6 Login 
with 
incorrect 
details 

Email: 
Emailnotavailable 
Password: 
incorrectPassword 

User is not 
permitted 
to log in 
and 
validation 
error 
message is 
shown 

User was 
not logged 
in but no 
validation 
error was 
shown 

Validation 
should be 
implement
ed if time is 
available 

7 Login 
with 
correct 
details 

Email: 
newTestingName@gmail.com 
Password: 
password 

User gets 
logged in 

User was 
logged in 

User 
should be 
redirected 
to folders 
page 

8 Navigate 
to OCR 
Reader 
Page 

User clicks “OCR Reader” in 
nav 

User is 
redirected 
to OCR 
Reader 
page 

User gets 
redirected 
to OCR 
Reader 
page 

 



170 
 

9 Use OCR 
Reader 

Add image to extract text and 
hit the “extract” button 

Text gets 
extracted 

Text was 
extracted 
and 
results 
were 
shown 

The page 
should 
move 
down when 
page is 
shown 

10 Save OCR 
Result 

User should push the “Save 
Result” button 

Saves 
result and 
redirects 
user 

Saves 
result and 
redirects 
user 

 

11 Navigate 
to View 
All OCR 
Files 

User either navigates to view 
all files from the “Save Result” 
button or through navbar  

Redirects 
user to 
see all 
OCR 
Results 

User is 
redirected 
to see all 
OCR 
Results 

 

12 View 
Single 
OCR File 

User should click on the card 
to view the details of a single 
file 

User 
opens the 
modal for 
OCR File 

Modal is 
opened 
for single 
OCR File 

 

13 Navigate 
to Folders 
page 

Click on the “Select Folder” 
button in nav 

The user is 
redirected 
to view all 
their 
folders 

The user is 
redirected 
to their 
folders 

 

14 Navigate 
to create 
folder 
page 

Click on the “Create Folder” 
button 

User is 
redirected 
to create 
folder 
page 

User was 
redirected 
to create 
folder 
page 

 

15 Use 
Create 
Folder 

Insert an image and title. 
Title: 
Folder Test 

User 
creates a 
folder and 
is 
redirected 
to folders 
page 

User 
creates 
folder and 
was 
redirected 
to folders 
page 

 

16 Select 
one 
folder 

Click on the single folder User views 
content of 
single 
folder 

User views 
content of 
single 
folder 

 

17 Navigate 
to create 
documen
ts page 

User clicks on “Create 
Document”  

User is 
brought to 
the create 
document 
page 

User was 
brought to 
the create 
document 
page 

 



171 
 

18 Use 
Create 
Documen
ts 

User inputs an image and 
document title 
Title: 
New Document 

User 
makes a 
new 
document 
and is 
redirected 

User made 
a new 
document 
and was 
redirected 

 

19 Navigate 
to text 
editor 

Click to view the document 
text editor 

User is 
redirected 
to the text 
editor 

User was 
redirected 
to text 
editor 

 

20 Use Text 
Editor 

Input some text to use the 
text editor 

Text 
inputted 
to text 

Text was 
inputted 
and saved 
to text 

There 
should be a 
way to 
show that 
the text 
editor 
autosaves 

21 Return to 
homepag
e from 
text 
editor 

Click on homepage button in 
Nav 

Redirects 
user to 
homepage 
from 
anywhere 

User is 
redirected 
to 
homepage 

 

22 Navigate 
to use 
edit user 
modal 

Click on “User Edit” modal in 
navbar 

User Edit 
Modal 
appears 

User edit 
modal 
appeared 

 

 

  



172 
 

6.2.2 CRUD  

 

Test 
No 

Description of test 
case 

Input Expected 
Output 

Actual 
Output 

Comment 

1 Create New User Input user 
details 

User is 
created 

User was 
created 

 

 Update User Input new 
user details 

User is 
updated 

User was 
updated 

 

 View User Details Not available 
in front end 

Not 
available in 
front end 

Not 
available in 
front end 

Should be 
implemented 
if there is 
time 

 Delete User Not available 
in front end 

Not 
available in 
front end 

Not 
available in 
front end 

Should be 
implemented 
if there is 
time 

 Create New OCR File Input image to 
extract and 
save results 

Text from 
image to be 
extracted 
and results 
saved 

Text from 
image was 
extracted 
and results 
were saved 

 

 View OCR File Go to View all 
OCR page 

All saved 
OCR Results 
are viewable 

All saved 
OCR Results 
were 
viewable 

 

 Update OCR File Function not 
available in 
frontend 

Function not 
available in 
frontend 

Function 
not 
available in 
frontend 

Should be 
implemented 
if there is 
time 

 Delete OCR File Function not 
available in 
frontend 

Function not 
available in 
frontend 

Function 
not 
available in 
frontend 

Should be 
implemented 
if there is 
time 

 Create New Folder Input folder 
details 

Folder 
should be 
created 

Folder was 
created 

 

 View All Folders Go to view all 
folders page 

All folders 
should be 
displayed 

All folders 
were 
displayed 

 

 View Single Folder Go to a single 
folder 

The 
documents 
stored in the 

The 
documents 
in the single 

 



173 
 

folder 
should be 
displayed 

folder were 
displayed 

 Update Folder The edit 
folder modal 
should appear 

The folder 
title should 
be edited 

The folder 
title was 
edited 

 

 Delete Folder The delete 
folder button 
should be 
clicked 

The folder 
should be 
deleted  

The folder 
was 
deleted 

There should 
be 
something to 
notify the 
user that the 
folder was 
deleted 

 Create New 
Document 

The user 
should go to 
the create 
new 
document 
page and 
input the 
details for a 
new 
document 

The new 
document 
should be 
created 

The new 
document 
was 
created 

 

 View All Documents The user will 
navigate to 
the view all 
documents 
page 

All the 
documents 
created 
within that 
folder 
should be 
displayed 

All the 
documents 
created 
within that 
folder are 
displayed 

 

 View Single 
Document 

The user will 
click into the 
document and 
see the 
contents of 
that 
document 

The 
document 
should 
display the 
content 
from the 
text editor 
and the 
saved text 

The 
document 
displayed 
the content 
from the 
text editor 
and the 
saved text 

 

 Update Document The user 
should open 
the edit user 
modal and 
input the new 
information 

The edit 
user modal 
should 
appear and 
save the 
updated 
document 

The edit 
user modal 
appears 
and saves 
the 
updated 
document 

 



174 
 

 Delete Document The delete 
button was 
pushed to 
delete the 
document 

The 
document 
should be 
deleted 

The 
document 
was 
deleted 

 

 

 

6.2.3 Discussion of Functional Testing Results 

Although there are some features missing, namely the verification of the register and login 
forms, the functional testing went mostly as intended, with most features being available to 
use. The more important CRUD Functionalities were all working as intended and performed 
the tasks that was needed to be performed.  

Improvements can still be performed, however due to time constraints, it might not be 
possible to implement all improvements to the application. 

 

 

 

 

  



175 
 

6.3 OCR Reader Accuracy Testing 
The accuracy of the OCR Reader was tested using various methods that consist of: 

 Colour Inversion 
 Threshold Filtering 
 Dilation 
 Gaussian Blur 
 Noise Removal 

Some of these methods were mentioned in the research section, such as noise removal, 
threshold filtering and colour inversion, although the topics that were not covered in the 
research section will be briefly explained in their respective section. 

The purpose behind testing the OCR Reader was to see if the accuracy could be improved 
upon by applying these pre-processing methods. As discussed in the research section of the 
report, these methods can greatly alter the results of the accuracy, by potentially making it 
easier for the Tesseract OCR library to read the inputted image and extract the text. 

The code used for pre-processing can be found here: (Chan, 2020) 

Note that this code was only used for testing and was only applied to see how it would 
affect the accuracy of the output. The code was not used in the final project. 

The image that will be tested will be figure 215 seen below.  

 

Figure 222 Tested Image 

 

The results for this image will be discussed in detail on how it was tested and a collection of 
image results from testing the OCR Reader, listing what functions were used together when 
attempting to read it. 

It is also worth noting that the package “p5” was installed during the tests to enable the 
filter algorithms. P5 can be found here: (p5, 2023) 



176 
 

The reason behind using the selected image, is to test four different things: 

 Regular handwriting 
 Joint handwriting 
 Writing Quickly 
 Writing in block capitals 

This was done to test different scenarios that the user could potentially find themselves in 
when taking notes. 

 

6.3.1 No Pre-Processing 

The result shown below will be the accuracy of the OCR Reader without any pre-processing 
applied. This can be seen in the figures below: 

 

Figure 223 No Pre-processing applied. 

 

Figure 224 Result 

The results shown in the figure above has some inaccuracies, although reads most of the 
text. Some of the words are incoherent, and some parts of it were extracted properly, seen 
at the end when it is reading the capitalized font. 

The changes in the code can be seen in figure 218 and 219, where it is applied to a canvas, 
and read with most of the pre-processing functionality commented out. 



177 
 

 

Figure 225 Testing Code 

 

Figure 226 Pre-process Image Function 

Figure 218 and 219 shows the slight alterations made in the OCR Reader code, notably using 
the pre-process function before returning the results, although in this case it is commented 
out, and returns the default result. 

We will first start by adding a Gaussian Blur to the pre-processing. 

  



178 
 

6.3.2 Gaussian Blur 

The gaussian blur can help by reducing the noise found within the image that is submitted. 
The image that was tested looked much smoother than the original and can be seen in 
figure 220. 

 

Figure 227 With Gaussian Blur 

The result shown contains less noise and is slightly smoother. This could potentially provide 
a more accurate reading. The result can be seen in figure 221. 

 

Figure 228 Result 

The result of the extracted text is similar, with some parts of inaccuracies. 

The next method of pre-processing to be applied will be image dilation, on top of the 
Gaussian Blur. 

  



179 
 

6.3.3 Image Dilation 

Image dilation simply brightens the lighter pixels. The result of the inputted text can be seen 
in figure 222:  

 

Figure 229 Image Dilation 

The font looks slightly thinner than the previous result, and lead to a slightly different result 
after text extraction. This is seen in figure 223: 

 

Figure 230 Result 

The result shows a slightly more accurate reading, showing the block capital results being 
the most accurate. 

The next pre-processing step will be the colour inversion, as well as the previous pre-
processing methods. 

  



180 
 

6.3.4 Colour Inversion  

Colour inversion will invert the colours for text extraction. The inputted image before 
extraction is seen in figure 224: 

 

Figure 231 Colour Inversion 

This will most likely not be very effective, as it is searching for the typography but finds it 
difficult to find the text due to the text blending in with the background. 

The result of the text extraction is in figure 225: 

 

Figure 232 Result 

Very minimal text was extracted as it couldn’t find any text to extract. 

Finally, the threshold filter will be applied to show all the pre-processing methods 
combined. 

  



181 
 

6.3.5 Threshold Filter 

The final filter makes the dark pixels darker, and light pixels lighter. Now that all the pre-
processing filters have been applied, the result is seen in figure 226: 

 

Figure 233 Threshold Filter 

With the threshold filter, it blackens the dark pixels, and turns the light pixels to white, 
allowing for easier reading. The result is seen in figure 227: 

 

Figure 234 Result 

It is slightly more accurate, and as seen in the result the block text is the most accurate, as it 
finds it easiest to read with all the pre-processing filters applied. 

  



182 
 

6.3.6 Mixing Filters 

To test the accuracy fully, mixing the different filters and testing the results will be done. As 
the filters were discussed in more detail in their respective sections, the name of the filter 
and the result will simply be shown. The filters selected will be in a random order to find the 
best source of accuracy. 

Gaussian Blur + Threshold Filter: 

 

Figure 235 Gaussian Blur + Threshold Filter 

 

Figure 236 Result 

Gaussian Blur + Dilation + Threshold Filter: 

 

Figure 237 Gaussian Blur, Dilation and Threshold Filter 

 

Figure 238 Result 



183 
 

Dilation + Threshold Filter 

 

Figure 239 Dilation and Threshold Filter 

 

Figure 240 Result 

 

Colour Inversion + Threshold Filter: 

 

Figure 241 Colour Inversion and Threshold Filter 

 

Figure 242 Result 



184 
 

 

 

Threshold Filter Only: 

 

Figure 243 Threshold Filter Only 

 

Figure 244 Result 

6.3.7 Conclusion 

In conclusion pre-processing allowed the developer to test the accuracy of the OCR Reader 
using the methods shown.  

From the results, the most notable combinations are dilation and threshold filter and all the 
pre-processing methods combined. 

These pre-processing methods are slightly more accurate compared using no filters at all, 
however more tests that uses a variety of different images can yield different results.  

  



185 
 

6.4 User Testing 
The purpose of user testing is to unravel underlying issues that are still present in the 
application. User testing will reveal issues found in the navigation of the application, and 
hidden bugs that the developers have not found. 

This allows developers to improve their application, by performing changes in the design 
and bug fixes, as well as improving usability for common users. 

 

6.4.1 Application Overview 

The goal of the application is to allow users to create notes and use OCR functionalities to 
help with their notes taking process, and potentially transfer notes from images.  

Users should be able to view their own work and organize their notes into the required 
folders.  

The users should also be able to view all their own files. 

Research was done before development of the application to ensure that the functionality 
and design of the app was of good quality and met the user’s needs. 

 

6.4.2 User Tasks 

During the user testing phase, the users were given tasks that they needed to accomplish. 
The goal of this was to see if the users can navigate their way through the application 
without encountering any issues, and use the required features as intended. 

This also allowed users and developers to encounter bugs and issues that are relevant to the 
application during user testing. This allows developers to see flaws and improve the 
application. 

User 1: 

User 1 was given the tasks of: 

 Sign up. 
 User OCR Reader. 
 Create a folder. 
 Create a Document. 

Some Issues that this user encountered were: 

 This user did not know what OCR is. 
 When the OCR Reader has been completed, the user was unsure on where to see 

the result, as the page didn't move down to display the result. 
 The Navbar Link does not work, the user was trying to click on the general area of 

the link, including the icon and was not navigating to the page. It only worked when 
the user clicks on the words. 



186 
 

 The user was not a huge fan of the homepage. 
 The user tried to choose several images. Breaks when the user picks several 

documents. This might be because one of the files that the user has chosen was not 
supported. 

 The user was confused on whether the document was saving. There should be an 
icon to indicate that it autosaves every 2 seconds. 

 

This provided great insight a few flaws of the application and shows parts of the application 
that need to be fixed for usability purposes. The simple issues found within the application, 
namely the issues with the nav bar should be addressed quickly to ensure that the user-
interface of the application is of high standard. 

User 2: 

User 2 was given the task of: 

 Sign up. 
 User OCR Reader 
 Create a folder. 
 Create a Document 
 Copy and paste OCR results to document. 
 Edit the document name and folder name. 
 Edit User Content 

 
Things that were worth noting from this user were: 

 User was having problems with the navbar again, clicking around and it not 
navigating. 

 The user managed to register properly without minor issues. They expected the 
enter key to work and although both users expected to be redirected to a different 
page. 

 When using the OCR Reader, after the results are shown an auto scroll should be 
done as this user didn’t know either. 

 The user didn't know that it autosaves either. 
 This user however didn’t know how to find folders and the documents page. The 

user was struggling to find how to create a document as it is nested in the folder. 
The naming should be clearer in the navigation. 

 There were no problems when it came to editing the folder and document. 
 When editing their profile however, the password was still being shown. The user 

was wondering if there was a way to hide or show this password or if there was a 
method to implement it. 

 The user wasn't very fond of the white background and would prefer a slightly darker 
design. A dark mode could be implemented for this cause; however, it might take 
too long to develop a mode like that. 



187 
 

 The user also thinks that the folders page looks slightly empty when there are no 
folders available to it. 

 The user also would like to see if they can align the folders and documents to the 
left. 

 A slight separation line from the create folder and the folders themselves. 
 Adding a logo to the navbar would be nice too. 
 The user liked the on-hover effect. 

This user provided great insight into the problems still prevalent in the application, and 
these problems will hopefully be addressed and fixed. 

 

6.4.3 Usability Testing Participants 

There were two students that participated in the usability testing, who are familiar with 
technology and notes-taking applications. Even so, the students still needed explanation on 
what OCR was, and how those features worked, and what it does.  

The target demographic for this application was reached within the participants, being 
college students who regularly take notes, and managed to yield results that were insightful 
to the application, to allow for a more user-friendly application. 

The participants found that the app itself wasn’t too difficult to navigate and found the 
design and user-interface to be simple and easy to follow. 

6.4.4 Usability Factors 

6.4.4.1 Ease of use 
The ease of use of the application should be of high quality. The usability of the application 
should be of the highest standard, so that when users are using the application, problems 
don’t occur that could potentially frustrate the user and stop them from returning to the 
website. 

The user testing will ensure that problems that some users are facing now can be fixed 
during development to create a more user-friendly product. 

6.4.4.2 Test Environment 
The user testing was conducted in a small classroom in college, with a laptop that the 
application will run on, as well as the developer observing their actions and taking notes on 
how the user is performing. 

The test is conducted on the developer’s laptop, to ensure the intended screen sizes that 
should have been used, as compatibility with different screen sizes were unavailable. 

The user is free to ask questions from the developer in case the users being tested are 
unable to find specific parts of the application, which occurred during the user testing, as 
one of the users were unable to find the “folders” page. 



188 
 

The reason for taking notes is to ensure that the developer can take in as much information 
as possible in short bullet-points. This information includes what the developer expected 
the user to do, as well as noting down things that the developer didn’t expect the user to 
do.  

Feedback was also given, the developer asks the users what they liked and didn’t like about 
the application, and the developer noted down the feedback that was returned and can be 
seen in the results of the user tasks. 

  



189 
 

6.5 Conclusion 
In conclusion, the testing chapter carries out the different forms of testing, ranging from the 
navigation of the application to the CRUD functionalities seen throughout the app, as well as 
how the users interacted with it. 

Different forms of user-testing were performed, and feedback was taken to allow for 
development and for improvements to be made throughout the application itself. 

This phase of development is essential in the improvement of the application and improve 
the overall quality of the final product. 

Although there may not be enough time to apply these changes, the information gathered 
from the user testing is crucial in letting the developer know the flaws within the product. 

The OCR Reader was also tested, to see if the accuracy of it can also be improved upon by 
adding pre-processing methods before text extraction begins. 

This chapter proved to be essential in the development of the application, for seeking flaws 
and how to improve the product. 

 

  



190 
 

7 Project Management 
 

7.1 Introduction 
The project management phase describes how well the project was managed, and how the 
student and the supervisors worked with each other to help with the creation of the 
application. The various phases of the project are shown, as well as the steps that were 
taken to before the development of the application.  

The discussion of Trello, GitHub and a project management journal were also used to assist 
during the project management phase. 

 

7.2 Project Phases 
This section describes the different phases throughout the project and will explain any issue 
that arose from each phase. 

 

7.2.1 Proposal 

The proposal phase of the application was to allow students to come up with ideas for 
projects that they can work on. During this phase ideas were brainstormed, and the idea 
that was agreed upon was to develop a note taking application, with the use of OCR 
functionalities. 

This idea was expanded upon throughout the various phases of the project to develop into 
the final product.  

As notes taking applications were always commonly used in college, ideas for functionality 
were already being thought upon, that could potentially be developed for the application. 

The idea for this project was then discussed with the supervisor of this project and allowed 
research to begin, starting with the gathering of requirements. 

 

7.2.2 Requirements  

The requirements gather phase consisted of the developer researching separate, already 
established applications to perform find functionalities that a developer can implement. 

Websites such as Notion, Google Keep, etc. were researched to find the functional, and non-
functional requirements for the application, as well as evaluating the advantages and 
disadvantages that could be seen within each application.  

Interviews and surveys were also conducted to see which features should be prioritised 
during the development phase.  

Personas were then created to simulate a user with different needs using the application. 



191 
 

The design of each application was also researched, to find suitable designs for the project 
to be developed. 

Feasibility of the application was then discussed, looking at the most important pieces of 
functionality that should be prioritised during development. 

Once this stage was completed, the design of the application was next to be worked on. 

7.2.3 Design 

This phase of the project consisted of two parts, which included the program design and the 
user interface design. 

The program design discussed the different technologies that the application would be 
using. The application uses the MERN Stack, which consisted of Mongo, Express, React and 
Node, as well as various libraries such as TesseractOCR.js and Quill.js for example that was 
used throughout the application. 

The different design patterns were also discussed, with the MVC design pattern being one of 
them. 

Once this was done, the architecture of the application was covered, and the design for the 
backend of the application was shown, including the database design and the API Design. 

The second part of this phase was the interface design, which was the development of the 
UI for the application. The project was designed in Figma and was completed in various 
steps, such as creating paper prototypes, wireframes, user-flow diagrams, a style guide, and 
a finalized design. 

Once this phase was completed, implementation of the full project began. 

7.2.4 Implementation  

The implementation phase of the application showed the process of development, and how 
the entire project was put together. The implementation phase consisted of 7 Sprints and 
uses the SCRUM Methodology to develop the project. 

Each sprint consisted of various items that were to be completed during that sprint to allow 
for manageable time-management and give the developer a clear goal to work towards 
during that sprint. 

 

7.2.5 Testing 

The testing phase of the project was to ensure that the quality of application was of good 
quality. Testing consisted of both functional, and user testing and covered the various parts 
of the application, including the navigation, the CRUD functionalities and UI, to ensure that 
everything was working as expected. 

User testing was then performed to find flaws that the developers might not have known 
about and to ensure that it is user-friendly and provides great usability.  



192 
 

7.3 Teamwork 
 

7.3.1 Roles 

The roles of this project were between the supervisor and the student.  

Clemente Gonzales provided the role of a full-stack developer, creating the project and 
accomplishing the different goals that were seen throughout the various sprints. 

Cyril Connolly oversaw the project, and as a supervisor, acted as the role of the SCRUM 
Master, ensuring that the weekly sprints were completed and that enough work was being 
done, and provided by the developer, as well as guidance throughout the entirety of the 
development of the project. 

7.3.2 Communication 

The communication between the student and the supervisor were very consistent. Weekly 
meetings began in around mid-October and were kept consistent throughout the following 
months to ensure that the project was progressing well.  

Emails and Teams messages were sent if any issues occurred, or if an urgent question was 
needed to be asked. 

This allowed progress to be shown throughout the weeks and ensure that the student was 
on the right track throughout the duration of the project. 

7.3.3 Difficulties 

During the development of the application, difficulties were found throughout various 
phases of development. Some of which included bug fixes, where the developer would 
spend several days attempting to fix one bug and losing time and progress because of it. 

7.3.4 Resolving Difficulties 

To ensure that work was still being done throughout the many weeks of development, 
focusing on different parts of the application was done whenever a prevalent bug occurred. 
For example, if an issue occurred and was not solved within the span of a few hours, 
different parts of the application would be worked on to ensure that work was still 
accomplished that day and return to the problem on a different day.  

  



193 
 

7.4 SCRUM Methodology 
The SCRUM Methodology proved to be an effective method of developing a large-scale 
project such as this one. It ensured that the weekly sprints were completed and proved to 
be a highly effective method of encouraging productivity when needed. 

The goals being divided into the 7 sprints worked very well and ensured that enough time 
was given to the development of different parts of the application. 

As the requirements were gathered at the beginning of the project, the developers knew 
what needed to be accomplished to produce the final product and gave them clear goals to 
work towards throughout each sprint. 

The project backlog showed the different functionalities that needed to be accomplished 
throughout the duration of the project and was updated to show which pieces of 
functionality were completed and which still need to be implemented. 

  



194 
 

7.5 Project Management Tools 
7.5.1 Pen and Paper Notes 

Although there are various applications that can be used to manage parts of a project, pen 
and paper checklists was used for this application. 

The reason behind this was because pen and paper allowed me, the developer to 
consistently think of different tasks that needed to be completed on that day. When a 
project management app such as Trello is being used, the updates towards that app and the 
tasks that needed to be completed tend to decline the further into the project, and because 
of this pen and paper was instead used as there was no need to share the tasks, as it was a 
solo project, and the tasks were discussed weekly with the supervisor. 

The to-do list was dated to show when each task was being completed and can be seen in 
figure 238. 

 

Figure 245 Pen and Paper To-Do lists 

  



195 
 

7.5.2 GitHub 

GitHub is an online tool that allows developers to store their code, as well as allow for 
version control. GitHub and Git are essential in the development of the application, as its 
allowance for version control proved to be useful when looking back over previous versions 
of the code. GitHub also shows the progress that was undertaken throughout development 
and shows the work done throughout the various sprints. 

GitHub was an easy way to store the code in case the developer needed to return to a 
previous version or act as a method to back up their code, in case it becomes corrupt, or 
progress gets lost. 

GitHub also kept the changes that the developer made throughout the development of the 
application, and the different version of commits can be accessed and viewed if needed. 

A screenshot of GitHub can be seen below in figure 239: 

 

Figure 246 GitHub Repository 

7.5.3 Journal 

A journal was not kept during the development of the application, but the pen and paper 
notes / to-do list allowed the developer to keep in track of the different goals that were 
completed in each sprint, and tasks that needed to be accomplished throughout the day. 
The tasks that were incomplete during that day were moved on to the next. 

Problems and difficulties were also recorded in Notion, to ensure that the problems were 
being listed down if any of them occurred.  

A journal itself was not kept, although there were many parts of the application that listed 
the progress and problems whenever they occurred. 

  



196 
 

7.6 Reflection 
 

7.6.1 Your views on the project  

From my personal perspective, the project turned out to be quite successful, achieving the 
main functionality and goals that were set out from the beginning of the project. The 
implementation of the OCR Reader and tweaking parts of it to test out the functionality and 
accuracy was incredibly rewarding to work with as it was something different from the 
regular projects that are generally worked on. Even though it was a website, there were 
many aspects to it that changed it so that it provided a different experience from the usual 
projects. 

The application that was produced however could have done with more polishing as it 
contained a variety of bugs that were not solved due to the time constraints. Some features 
that could have greatly benefited the application were not implemented and could have 
been great features to have included. 

Despite these flaws, the project was successful and accomplished its goal. The overall 
quality of the project created was of an overall high standard with completed functionality. 

7.6.2 Completing a large software development project  

The completion of a large software development project worked on by a single individual 
gave a great insight into the lifestyle of a full-stack developer, working on the own or on a 
team. This was beneficial in showing the many steps of developing a completed product.  

The various sprints that occurred throughout the project also provided a great general 
guideline in what should be accomplished within those sprints, and the functionalities that 
were to be focused on for that sprint. 

Overall, it was a crucial learning experience and showed me how to progress through 
problems whenever they are encountered, as well as communicating with my supervisor to 
show the progress that was completed though out the various weeks of development and 
implementation. 

7.6.3 Working with a supervisor  

Working with a supervisor was very helpful. Cyril consistently provided great feedback 
throughout the weekly meetings and would provide guidance on what to focus on during 
that phase of the project, and any extras that can be added. He provided constructive 
criticism during the writeup of the application and provided some great ideas to help the 
project stand out and be more in line with what needed to be developed. 

Communication overall was very good. Emails and Microsoft Teams messages were 
regularly sent, as well as updates regarding the progress of the project. 

Overall, Cyril provided great help and guidance as a supervisor and guided me towards the 
right direction throughout the duration of the project. 



197 
 

7.6.4 Technical skills  

This project managed to improve some parts of my technical skills. The OCR part of the 
application was something very different and managed to improve my competency in 
building projects such as this one. The project managed to expand my skillsets. Even though 
it was still in a field that I was comfortable with, there were parts of the project that were 
very different from what I would normally work on and was a very valuable learning 
experience. 

The project also managed to develop my web development skills, as well as my design skills 
through the duration of the project. 

Overall, the most valuable part of this project was learning the new technologies and how to 
incorporate and implement them with the React framework. 

7.6.5 Further competencies and skills   

Learning more complex languages / coding practices is a goal that should be worked 
towards. This can include developing a project in a completely new language to learn how 
something works or creating projects and seeing how to implement specific features. 

This can help improve my flexibility as a developer and help expand my skillsets into doing 
more things that’s not just web-based applications. 

Another skill that should be learned is learning more effective ways to problem solve, as 
well as writing more efficient code, rather than using the quickest methods to solve a 
problem, although this will mostly be a skill that will be acquired over time. 

7.7 Conclusion 
In conclusion, the project that was developed was a web-based notes taking application that 
contained OCR functionalities.  

The chapter discussed how the project was managed, explaining the many phases of the 
project that occurred during implementation, which discussed what was done in each sprint 
of development. 

The chapter also discussed how teamwork was done, with the constant communication with 
the supervisor, and explaining how difficulties were encountered and resolved during 
development. 

The project management tools that were used to assist development were also shown 
during this chapter, and explains how the different tasks were completed, and the methods 
for listing down those various tasks. 

A reflection of the project was then discussed, allowing me to give my insights and parts of 
the project that could have been done better and improved upon. 

  

  



198 
 

8 Conclusion 
The final product that was built consisted of a web-application that allowed users to take 
down notes and use OCR software to allow text to be extracted from outside sources. The 
overall goal of the project was to build a web application that contained functionalities that 
were different from what the developer was comfortable with. The inclusion of the OCR 
functionality was different and allowed me to expand my knowledge as a developer. 

The technologies seen in the application consisted of various libraries. This included 
TesseractOCR.js, Quill.js, the MERN Stack, which were MongoDB, Express.js, React.js, and 
Node.js, and various other packages for different functionalities. AWS Buckets were also 
used for storing the images that were uploaded to the application, and Vercel and Firebase 
were used to host the application.  

Research was conducted to find the various features that the application has. This ranged 
from conducting surveys and interviews, as well as researching various other applications to 
find the main functionalities that those applications had.  

Additionally, research into how OCR worked was also done, which provided a better insight 
into how the system extracts text, through the various methods of text extraction. 

The design was then formed, which included the software design and the User Interface 
Design. The software design section discussed the design patterns seen using the MERN 
Stack, the database design, the API Design, the application architecture, and the process 
design. While the User Interface Design provided the wireframes, the User Flow Diagram, 
the Style Guide, and showed the final design of the application. 

Implementation then showed the steps taken to develop the application. The SCRUM 
Methodology was used to develop the application, which divided the whole application into 
achievable goals that ran through two-week sprints over the course of several sprints. 
Various functionalities were developed during the sprints to create the final product. 

Testing was then conducted to uncover underlying flaws that were found throughout the 
application and allow these flaws and issues to be fixed. This was completed through the 
means of functional testing, and user testing, both of which covered different parts of the 
application to find flaws within them. 

The project management chapter discussed the various methods that was used to assist the 
development of the application, which discussed the roles provided, difficulties and how 
these difficulties were resolved, as well as showing the tools that assisted development, 
such as GitHub, and the notes. 

The result provided a professional looking web application that fulfilled the goals and 
functionalities that were set during the start of development. The overall application was 
polished with minimal bugs, and accomplished the functionalities that were set at the start 
of development. 



199 
 

The project could be further developed by adding extra functionalities, such as the to-do list, 
sharing notes, and improving the accuracy of the OCR Reader, potentially adding an options 
modal to allow users to adjust the OCR Reader to increase its accuracy.  

React Native and media queries should also be included if the application were to be 
developed further, as well as implementing the criticisms found during user testing. 

The application could potentially run ads or contain a premium version to allow users to use 
some functionalities as a business opportunity, although the application should stay mostly 
free to use. 

Many new skills were learned and refined during the development of this application. The 
ability to problem solving was focused on. During development, a variety of bugs and errors 
would often occur, and a common problem that would happen is spending too much time 
finding a solution and solving that issue. This often led to only small amounts of work being 
accomplished that day, and the fix for this was to simply return to the issue after 
implementing other parts of the application, leading to more being accomplished 
throughout development. 

The project also allowed me to learn new technologies, that of which I was not very familiar 
with, for example TesseractOCR.js was something very different from what is normally done 
and gaining experience in developing something new was a very rewarding experience. 

Coding skills were also refined during development, as there were also parts of the project 
that I was already familiar with, for example the use of MongoDB and Express.js, as well as 
the use of the SCRUM Methodology and regularly communication with my supervisor. 

8.1 Final Words 
 
Throughout the development of this project, I managed to learn and develop many new 
skills which can help prepare me for the workplace. Time management and problem solving 
were crucial and were given a chance to develop during the duration of this project. 
 
My ability to code was also expanded upon, as there were many instances during 
development where I needed to develop something that I was not too familiar with, which 
helped expand my capabilities as a developer. 
 
Overall, this project provided an excellent challenge and produced a worthwhile product. 
Although there were still flaws within it, it helped expand my abilities as a developer, and I 
hope to continue to keep polishing my abilities and keep learning new technologies and 
concepts as a developer. 



200 
 

9 References 
basarat. (2022, 7 13). Image to Text Conversion with JavaScript // OCR (Optical Character 

Recognition). Retrieved from YouTube: 
https://www.youtube.com/watch?v=zBET2cEKths&ab_channel=basarat 

Bhaskar, N. U. (2011). General principles of user interface design and websites. International Journal 
of Software Engineering (IJSE),, 2(3), 45-60. 

Chan, M. (2020, 11 12). Using JavaScript to Preprocess Images for OCR. Retrieved from DEV 
Community: https://dev.to/mathewthe2/using-javascript-to-preprocess-images-for-ocr-1jc 

David, H. (2022, 6 27). Hubspot. Retrieved from What is React.js? (Uses, Examples, & More): 
https://blog.hubspot.com/website/react-
js#:~:text=The%20React.,you%20would%20with%20vanilla%20JavaScript. 

Eikvil, L. (1993). Optical character recognition. citeseer. ist. , psu. edu/142042. html, 26. 

Express - Node.js web application framework. (2017). Retrieved from Expressjs.com: 
https://expressjs.com/ 

Ferguson, K. (2021). Application architecture. Retrieved from TechTarget: application architecture 

Fleming, J. &. (1998). Web navigation: designing the user experience. Sebastopol, CA: O'reilly. , p. 
166. 

Gardner, B. S. (2011). Responsive web design: Enriching the user experience. Sigma Journal: Inside 
the Digital Ecosystem, 11(1), 13-19. 

Getting Started – Amazon Simple Storage Service (S3) – AWS. (2023). Retrieved from Amazon Web 
Services, Inc.: https://aws.amazon.com/s3/getting-
started/#:~:text=Amazon%20Simple%20Storage%20Service%20(Amazon,at%20any%20time
%2C%20from%20anywhere. 

Goel, V. K. (2019). Text extraction from natural scene images using OpenCV and CNN. Int. J. Inf. 
Technol. Comput. Sci, 11(9), 48-54. 

Introduction | Socket.IO. (2023, 3 7). Retrieved from Socket.io: https://socket.io/docs/v4/ 

Introduction to Mongoose for MongoDB. (2018, 2 11). Retrieved from freeCodeCamp.org: 
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-
d2a7aa593c57/ 

Johnson, J. (2020). Designing with the mind in mind: simple guide to understanding user interface 
design guidelines. Morgan Kaufmann. 

Karnik, N. (2018, 2 11). Introduction to Mongoose for MongoDB. Retrieved from freeCodeCamp.org: 
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-
d2a7aa593c57/ 

Kumar, S. (2022, June 29). 10 most popular design systems to learn from in 2022 for UX Designers. 
Retrieved from Medium; UX Planet: https://uxplanet.org/10-most-popular-design-systems-
to-learn-from-in-2022-for-ux-designers-18a24843a860 



201 
 

Lehal, G. S. (1999). Feature extraction and classification for OCR of Gurmukhi script. VIVEK-BOMBAY-
, 12(2), 2-12. 

Lopez, M. M. (2017). Deep Learning applied to NLP. arXiv preprint, arXiv:1703.03091. 

Ma, D. L. (2000). Mobile camera based text detection and translation. Department of Electrical Engg 
Department Stanford University. 

Matei, O. P. (2013). Optical character recognition in real environments using neural networks and k-
nearest neighbor. Applied intelligence, 39(4), 739-748. 

Mithe, R. I. (2013). Optical character recognition. International journal of recent technology and 
engineering (IJRTE), 2(1), 72-75. 

multer-s3. (2022, 5 31). Retrieved from npm: https://www.npmjs.com/package/multer-s3 

Node.js. (2023). About | Node.js. Retrieved from Node.js: https://nodejs.org/en/about/ 

Ong, V. &. (2016). Using k-nearest neighbor in optical character recognition. ComTech: Computer, 
Mathematics and Engineering Applications, 7(1), 53-65. 

p5. (2023, 2 22). Retrieved from npm: https://www.npmjs.com/package/p5 

Patel, C. P. (2012). Optical character recognition by open source OCR tool tesseract: A case study. 
International Journal of Computer Applications, 55(10), 50-56. 

Quill - Your powerful rich text editor. (2023). Retrieved from Quill: 
https://quilljs.com/#:~:text=Rich%20Text%20Editor-
,Quill%20is%20a%20free%2C%20open%20source%20WYSIWYG%20editor%20built%20for,S
ettings 

Ranjan, A. B. ((2021)). OCR Using Computer Vision and Machine Learning. In Machine Learning 
Algorithms for Industrial Applications. Springer, Cham, (pp. 83-105). 

Rao, N. V. (2016). OPTICAL CHARACTER RECOGNITION TECHNIQUE ALGORITHMS. . Journal of 
Theoretical & Applied Information Technology, 83(2). 

Simplified, W. D. (2021, 4 20). How To Build A Google Docs Clone With React, Socket.io, and 
MongoDB. Retrieved from YouTube: 
https://www.youtube.com/watch?v=iRaelG7v0OU&ab_channel=WebDevSimplified 

Singh, A. B. (2012). A survey of OCR applications. International Journal of Machine Learning and 
Computing, 2(3), 314. 

Smith, R. (2007, September). An overview of the Tesseract OCR engine. In Ninth international 
conference on document analysis and recognition (ICDAR 2007), (Vol. 2, pp. 629-633). IEEE. 

Stone, D. J. (2005). User interface design and evaluation. Elsevier. 

Tesseract.js | Pure Javascript OCR for 100 Languages! (2023). Retrieved from Projectnaptha.com: 
https://tesseract.projectnaptha.com/ 

Verma, R. &. (2012). A-survey of feature extraction and classification techniques in OCR systems. 
International Journal of Computer Applications & Information Technology, 1(3), 1-3. 



202 
 

Visual Studio Code. (2021, 11 3). Retrieved from Visualstudio.com: 
https://code.visualstudio.com/docs/editor/whyvscode 

Wang, T. W. ((2012, November)). End-to-end text recognition with convolutional neural networks. In 
Proceedings of the 21st international conference on pattern recognition (ICPR2012). (pp. 
3304-3308). IEEE. 

What Is GitHub? A Beginner's Introduction to GitHub. (2022, 12 13). Retrieved from Kinsta®: 
https://kinsta.com/knowledgebase/what-is-github/ 

What Is MongoDB? (2022). Retrieved from MongoDB: https://www.mongodb.com/what-is-
mongodb 

What Is Scrum Methodology? & Scrum Project Management. (2022, 12 23). Retrieved from 
Nimblework: What Is Scrum Methodology? & Scrum Project Management 

 

  



203 
 

10 Appendices 
 

10.1 Appendix A - Wireframes 
The link for the Figma File can be seen here: 

https://www.figma.com/file/8wushDYxUM3YNyoGlC2RUW/Final-Project?node-
id=0%3A1&t=IChSggepWepbklIC-1 

 

 



204 
 



205 
 



206 
 

 

  



207 
 

10.2 Appendix B – Final Design 



208 
 



209 
 



210 
 



211 
 



212 
 



213 
 

 

  



214 
 

10.3 Appendix D – Important Links 
 

GitHub of Final Application: https://github.com/IADT-projects/y4-project-CjayGonzales 

Hosted Application: https://final-project-hosting.web.app/ 

Figma: https://www.figma.com/file/8wushDYxUM3YNyoGlC2RUW/Final-Project?node-
id=0%3A1&t=IChSggepWepbklIC-1 

 


