
Alanna Søpler Real-Time Traffic Simulation

12-May-24 1/116

Real-Time Traffic Simulation

Alanna Søpler

N00192732

Report submitted in partial fulfilment of the requirements for the BSc (Hons) in Creative

Computing at the Institute of Art, Design and Technology (IADT).

Alanna Søpler Real-Time Traffic Simulation

12-May-24 2/116

Declaration of Authorship

The incorporation of material without formal and proper acknowledgement (even with no

deliberate intent to cheat) can constitute plagiarism.

If you have received significant help with a solution from one or more colleagues, you

should document this in your submitted work and if you have any doubt as to what level

of discussion/collaboration is acceptable, you should consult your lecturer or the

Programme Chair.

WARNING: Take care when discarding program listings lest they be copied by some-

one else, which may well bring you under suspicion. Do not to leave copies of your own

files on a hard disk where they can be accessed by others. Be aware that removable

media, used to transfer work, may also be removed and/or copied by others if left

unattended.

Plagiarism is considered to be an act of fraudulence and an offence against Institute

discipline.

Alleged plagiarism will be investigated and dealt with appropriately by the Institute.

Please refer to the Institute Handbook for further details of penalties.

The following is an extract from the B.Sc. in Computing (Hons) course handbook.

Please read carefully and sign the declaration below

Collusion may be defined as more than one person working on an individual assessment.

This would include jointly developed solutions as well as one individual giving a solution

to another who then makes some changes and hands it up as their own work.

Declaration

I am aware of the Institute’s policy on plagiarism and certify that this thesis is my own

work.

Signed: ____ _________________________________

Date: _____10.05.2024__

Alanna Søpler Real-Time Traffic Simulation

12-May-24 3/116

Failure to complete and submit this form may lead to an investigation into your work.

Abstract

This document contains research around Simulations to determine if it can be used to

visualize problematic traffic and traffic flows in problematic areas. This was achieved

though the creation of a Unity project taking network and vehicle information and

positioning from SUMO Traffic Simulator. The user will be able to visualize actual

networks from their local communities. The approach began with researching the

different types of simulation tool and different companies’ utilization of simulation tools.

Focusing on what are important aspects of a simulation that are helpful for the user.

Following the implementation of the simulation and thereafter performance testing of the

network. Following with the result of the project and any further conclusions.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 4/116

Acknowledgements

I would like to extend my thanks to the people who showed support and offered advice

throughout the duration of this project. I would like to thank my project supervisor,

Joachim Pietsch Naoise Collins, and my second reader Cyrill Connolly, for their help,

communication, and support throughout the development.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 5/116

Contents

Declaration .. 2

Abstract ... 3

Acknowledgements ... 4

Contents .. 5

1. Introduction ... 8

2. Research ... 9

Traffic Simulation ... 9

Broader Context and Importance of Traffic Simulations .. 9

Understanding Simulations and Models ... 9

The Process of Building a Model ... 10

Introduction to Traffic Simulation Modeling ... 11

Macroscopic Modelling Overview ... 11

Microscopic modelling Overview .. 12

Mesoscopic Modelling Overview .. 13

Traffic Simulation Tools ... 15

Fundamental Concepts .. 17

Aimsun Traffic Simulation ... 20

Core Models .. 20

Microscopic Logic .. 20

Mesoscopic Logic ... 21

SUMO... 22

Preparing a Road Network to Simulate ... 23

Alanna Søpler Real-Time Traffic Simulation

12-May-24 6/116

Microscopic Demand Definitions .. 24

Importing and Using Origin/Destination Matrices .. 24

Challenges and Solutions in Demand Modeling .. 24

Why choose SUMO. ... 26

Unity as a 3D visualization tool ... 28

3. Requirements ... 31

Ford’s Traffic Jam Assist .. 31

Tesla Autopilot ... 33

Functional Requirements .. 35

Non-Functional Requirements .. 35

Use Case Diagram .. 36

Conclusion ... 37

4. Design .. 38

Design ... 38

Technologies .. 38

Visual Studio Code & C# .. 38

Unity Hierarchy and Inspector ... 40

The Toolbar .. 41

The Assets folder ... 42

SUMO ... 45

Tool Bar.. 48

UX Design .. 50

Implementation (or Construction) ... 52

Introduction ... 52

Alanna Søpler Real-Time Traffic Simulation

12-May-24 7/116

Connection between SUMO and Unity ... 52

Set up Unity and SUMO connection. ... 55

Setting up the Vehicles .. 58

Traffic Lights .. 64

Render Lanes ... 72

The Ear Clipping Algorithm .. 85

The JunctionRender Script ... 88

SUMO Network .. 93

Net.xml file .. 93

Rou.xml .. 96

.sumocfg file .. 97

Creating the network ... 98

Generate random traffic flow.. 99

5. Testing and Analysis ... 102

6. Discussion .. 106

Discusstion .. 106

Future Development ... 108

7. Conclusion ... 110

References ... 111

Alanna Søpler Real-Time Traffic Simulation

12-May-24 8/116

1. Introduction

The initiative to create a traffic simulation was sparked by persistent local challenges

in the outskirts of Dundrum, where residents face daily hazards navigating a heavily

trafficked area devoid of pedestrian crossings. The locality, constrained by a stream

and fencing, offers limited egress options from the residential zones. Despite ongoing

appeals to the local council, efforts to improve this situation have remained fruitless.

Notably, a pedestrian crossing exists near a pub that was closed during the pandemic,

highlighting inconsistent infrastructure development. This simulation aims to

demonstrate the urgent need for safer pedestrian pathways to the council, advocating

for immediate action.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 9/116

2. Research

Traffic Simulation

Broader Context and Importance of Traffic Simulations

As urban populations swell, cities are experiencing escalating vehicular density,

intensifying transportation dilemmas that demand optimized road network solutions.

Effective planning and modeling of transportation infrastructure are crucial for

addressing these challenges. According to (Dorokhin, S. 2020), motion modeling is a

cornerstone of traffic studies, which includes planning and evolving transport networks.

By creating models that mirror real-world properties and dynamics, researchers can

examine intricate traffic scenarios in controlled settings rather than unpredictable real-life

conditions. Such modeling is often categorized into microscopic, macroscopic, and

mesoscopic, each tailored to address prevalent transportation issues by allowing analysis

of critical parameters like traffic volume, average speeds, delays, and time losses

(Gorodnichev M., 2022).

Understanding Simulations and Models

Simulations are powerful tools for replicating and understanding real-world processes

through mathematical models. As Jordi Vallverdú (2013) describes in ‘What are

Simulations? An Epistemological Approach,’ simulations are our best mental

representations of reality, functioning through systematic processes that mimic how

things work in the real world. Similarly, Anu Maria emphasizes that a simulation

operates a model of a system, highlighting the dynamic nature of this technology.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 10/116

While both models and simulations serve to understand and predict complex phenomena,

they are not interchangeable. A model is a simplified representation of reality, often a

formal system that encapsulates essential features of a physical system, designed to test

hypotheses, or understand mechanisms. According to Jaume Barceló (2010), building a

model requires deep knowledge of the system and is based on assumptions expressed

through mathematical or logical relationships.

The systemic approach is crucial in modeling. It views a system as more than the sum of

its parts, focusing on interactions and interdependencies that lead to emergent properties

not predictable by studying individual components alone. This concept is vital in traffic

simulations where multiple dynamic interactions occur. For instance, Fundamentals of

Traffic Systems (2010) outlines how models use a systemic approach to study complex

traffic behaviors effectively.

The Process of Building a Model

Model building is an iterative learning process that aims to understand and solve the

problems associated with the modeled system. It begins with system analysis, identifying

all relevant components and their relationships. This step is crucial for developing an

accurate model that reflects the complexities of real-world traffic systems. The model

undergoes continuous refinement and validation to ensure it accurately represents the

studied phenomena and can predict future states or behaviors effectively.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 11/116

Introduction to Traffic Simulation Modeling

Traffic simulation modeling is an essential tool in understanding and optimizing the

movement of people and goods, which are driven by daily social and economic activities.

According to Boris S. Kerner and J. Barcélo (2010), efficient transportation systems are

crucial for ensuring that mobility contributes positively to market demands.

Traffic simulation models vary in complexity. Basic Models might simplify intersections

as single points for general studies. Advanced Models for more precise analysis,

intersections are detailed with specific turning lanes and signal phases. Such models

consider various elements like lane configurations, traffic volumes, delay functions, and

explicit traffic control measures. For comprehensive simulations, it is crucial to

incorporate the actual geometry of roads and intersections (Aume Barceló, 2010). This

includes specifics such as lane numbers, widths, speed limits, and other infrastructure like

traffic signals and surveillance systems. The granularity of the model depends on the

intended use of the simulation, whether for high-level planning or detailed operational

analysis.

Macroscopic Modelling Overview

Macroscopic traffic models describe the collective behavior of traffic flows over large

stretches of road, rather than tracking individual vehicles (Aume Barceló, 2010). The

objective is to model the evolution of traffic variables like volume, speed, and density

over space and time (Aume Barceló, 2010). In practice, macroscopic models help traffic

engineers and planners to predict and manage traffic flows, design road systems, and

Alanna Søpler Real-Time Traffic Simulation

12-May-24 12/116

implement traffic control measures effectively. These models are integral in simulations

that support decision-making for urban development and infrastructure projects.

By understanding these concepts and their mathematical foundations, traffic models can

be effectively implemented in traffic simulation software like SUMO, which can then be

visualized and interacted with using tools like Unity for comprehensive traffic

management and planning solutions.

Microscopic modelling Overview

Microscopic modelling studies the behavior of drivers and vehicles in traffic, including

acceleration, deceleration, and lane changes (Aume Barceló, 2010). The model is based

on detailed observations and mathematical formulations that describe how each vehicle

interacts with its immediate surroundings, particularly the vehicle directly in front.

The development of microscopic traffic models started in the mid-20th century with

pioneers like Reuschel and Pipes, who introduced car-following theories that describe

how drivers maintain safe distances based on their speeds (Aume Barceló, 2010). Pipes'

Theory introduced the concept that a driver should maintain one car length for every ten

miles per hour of speed, which provides a simple yet effective rule for safe following

distances.

The Linear Car-Following Model is a fundamental model where the following vehicle’s

acceleration or deceleration is directly proportional to the speed difference between it and

the vehicle in front (Aume Barceló, 2010). This model assumes that the response

(acceleration or deceleration) is linearly dependent on the stimulus (the relative speed).

Alanna Søpler Real-Time Traffic Simulation

12-May-24 13/116

Gazis, Herman, and Rothery proposed refinements to incorporate more realistic behaviors

and adjust the sensitivity based on the headway (distance between two vehicles),

improving the model's accuracy under different traffic conditions (Aume Barceló, 2010).

Microscopic models require extensive field data to calibrate and validate their

assumptions. The accuracy of these models in predicting real-world traffic behaviors is

crucial for their effectiveness in traffic management systems (Aume Barceló, 2010).

These models are implemented in traffic simulation software like SUMO, which allows

for detailed analysis and visualization of traffic flows and helps in designing better traffic

management strategies.

Mesoscopic Modelling Overview

Mesoscopic modeling is a method of traffic flow modeling that combines elements of

both microscopic and macroscopic modeling (Aume Barceló, 2010). It helps to capture

the essential dynamics of traffic flow without requiring the intensive data and

computational demands of microscopic modeling.

The Mesoscopic models handles the behavior of individual vehicles or groups of vehicles

(platoons) while also considering aggregated traffic dynamics like flow and density

across larger segments of the traffic network (Aume Barceló, 2010).

There are two main approaches. Platoon-based models group vehicles into platoons,

which move through the traffic network, reducing computational complexity (Aume

Barceló, 2010). The second approach is Simplified vehicle dynamics, which uses

Alanna Søpler Real-Time Traffic Simulation

12-May-24 14/116

straightforward rules for individual vehicles’ dynamics but don’t require as detailed data

as microscopic models (Aume Barceló, 2010).

Many mesoscopic models advance time in fixed steps, known as the simulation step, or

asynchronously when events occur, such as a vehicle entering or leaving a link (Aume

Barceló, 2010).

Link Modelling in Mesoscopic Traffic Simulations are typically divided into two

segments. There is the Running Part and Queue Part. In the running part, vehicle

dynamics may be governed by simplified car-following models aligned with macroscopic

speed-density relationships, whereas in the queue part, the dynamics are controlled by the

queue discharge processes (Aume Barceló, 2010).

Mesoscopic models are particularly valued for their balance between detail and

computational efficiency. They are better suited for larger-scale simulations where

microscopic details are less critical, but some individual vehicle interactions still need to

be considered.

In conclusion, mesoscopic models offer a practical compromise between detailed

microscopic models and broad macroscopic models. They provide sufficient detail for

many applications while keeping computational demands reasonable, making them ideal

for studying traffic dynamics over large areas where detailed individual behavior is less

significant than the overall flow patterns.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 15/116

Traffic Simulation Tools

Traffic simulation is a crucial tool for transport planners and traffic engineers. VISSIM is

a microscopic, behavior-based traffic simulation that can analyze and optimize traffic

flows. It has a wide range of urban and highway applications, integrating public and

private transportation (Loren B., 2000).

The software is primarily designed for traffic engineers, but an increasing number of

transport planners are also using microsimulation (Aume Barceló, 2010). VISSIM is a

microscopic traffic simulation system that models both motorway and urban traffic

operations using various mathematical models (Aume Barceló, 2010). The system can be

used to investigate private and public transport, as well as pedestrian movements. Traffic

engineers and transport planners can create applications by selecting appropriate objects

from a variety of primary building blocks. The system provides technical features for

pedestrians, bicyclists, motorcycles, cars, trucks, buses, trams, lights, and heavy rail, and

allows for customization options to simulate multi-modal traffic flows.

In traffic simulation systems like VISSIM, the complex interactions and dynamics of

real-world traffic are modeled using a structured framework that divides the modeling

environment into distinct but interrelated blocks (Aume Barceló, 2010).

The infrastructure block is the foundation of the simulation model where all physical and

static components of the transportation system are represented (Aume Barceló, 2010).

This includes roads and railways which are modeled to reflect the real-world network

Alanna Søpler Real-Time Traffic Simulation

12-May-24 16/116

including the number of lanes, lane widths, types of roads (motorways, arterial roads),

and railway tracks (Aume Barceló, 2010).

The traffic flow block consists of the elements that make up the traffic system, namely

the vehicles and their movement patterns (Aume Barceló, 2010). Different types of

vehicles, including cars, buses, trucks, and bicycles, are modeled with specific attributes

such as speed capabilities, dimensions, and other technical specifications.

Each of these blocks interacts with others to create a comprehensive model of the traffic

system. For instance, changes in the Traffic Control Block can affect traffic flows and

behaviors, which in turn may necessitate adjustments in infrastructure planning in the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 17/116

Infrastructure Block (Aume Barceló, 2010). The Evaluation Block helps in understanding

the outcomes of these interactions and in planning future improvements.

These interdependencies ensure that the simulation is dynamic and reflects the complex

nature of real-world traffic systems, allowing planners and engineers to test and refine

their approaches before implementing actual changes on the ground. Such simulations are

invaluable tools in urban planning and traffic management, providing insights that help in

making informed decisions to enhance the efficiency and safety of transportation

systems.

Fundamental Concepts

Car-Following Models are used to simulate how drivers follow one another on the road,

considering factors like vehicle speeds, distances, and driver reactions to changing traffic

conditions (Aume Barceló, 2010).

Psycho-Physical Models approach integrates psychological perceptions (like visual cues)

and physical actions (like braking or accelerating) to model driver behaviour.

Key Parameters and Their Functions :

- ax (Minimum Jam Distance): Represents the minimum distance a driver maintains from

the vehicle in front when all vehicles are stopped (like at a traffic light) (Aume Barceló,

2010).

Alanna Søpler Real-Time Traffic Simulation

12-May-24 18/116

- abx (Minimum Following Distance): This is the critical distance below which a driver

reacts to slow down to avoid getting too close to the vehicle in front.

- sdv (Speed Difference Threshold): The threshold speed difference at which a driver

starts to notice that the leading vehicle is moving slower and may initiate deceleration.

- opdv (Overtake Preparation Distance Velocity): The point at which a driver realizes

they are moving faster than the vehicle ahead and prepares to overtake or accelerate.

- sdx (Maximum Following Distance): This defines the farthest distance at which a driver

still considers the behavior of a vehicle ahead in their driving decisions, typically several

times the abx distance.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 19/116

The dynamics described by these models show how a driver transitions from noticing a

slower vehicle to deciding when to slow down or speed up based on the relative speeds

and distances. The parameters ax, abx, sdv, and opdv are instrumental in defining how

these transitions occur. The model also accounts for different driver risk profiles—risk-

averse versus risk-taking—which influence how closely drivers follow the vehicle ahead

(Aume Barceló, 2010).

The model has the ability to handle sudden traffic changes, including scenarios where

drivers exceed normal deceleration rates to avoid collisions. This allows traffic engineers

and planners to adjust thresholds and parameters to model and predict road capacities

under various traffic conditions and driver behaviors. By doing so, they can design more

efficient traffic management systems, road layouts, and safety measures.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 20/116

Aimsun Traffic Simulation

Aimsun is a software that was originally developed as a project at the University of

Catalonia (UPC) under the acronym "Advanced Interactive Microscopic Simulator for

Urban and Non-Urban Networks" or AIMSUN (Aume Barceló, 2010). It started as a

traffic simulation software that could handle a wide range of traffic simulations,

including macroscopic, mesoscopic, and microscopic models. The software has now

evolved and is currently in its sixth major commercial release.

Aimsun is used for traffic planning and analysis tasks that require detailed simulation of

traffic patterns but do not need to be conducted in real-time (Aume Barceló, 2010).

Aimsun has grown from a project focused on specific simulation needs to a robust

platform that accommodates a broad spectrum of traffic modeling requirements (Aume

Barceló, 2010). It offers sophisticated tools for both detailed traffic engineering and real-

time management, making it a versatile choice for modern traffic solutions. It serves as a

tool for specific traffic simulation tasks, as well as a component of larger, integrated

traffic management and planning strategies.

Core Models

Microscopic Logic

The microscopic model of traffic simulation uses a time slice-based approach, which is

enhanced with a scheduled event calendar (Aume Barceló, 2010). This enables the

simulation process to update traffic control events, such as traffic light changes, and the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 21/116

statuses of roads and intersections in real-time. Every cycle updates the status of all

entities, vehicles and processes new vehicle entries, and data collection.

Mesoscopic Logic

The mesoscopic model of traffic simulation operates on a discrete-event basis, where the

simulation clock advances between events, instead of fixed time slices (Aume Barceló,

2010). This approach allows for dynamic adjustments based on events such as vehicle

movements, traffic light changes, and traffic demand updates. Key events include vehicle

generation, traffic control changes, and data collection. These events guide the

simulation, adjusting the network state dynamically to reflect both scheduled and

conditional changes.

Modeling Microscopic

Two main driver behavior models, car following and lane changing, dictate how vehicles

interact on the road (Aume Barceló, 2010). These models consider factors such as vehicle

speed, surrounding vehicles, and road conditions. Based on Gipps' model, this approach

calculates acceleration and deceleration based on the vehicle's current speed and desired

speed, considering both the vehicle's capabilities and the influence of leading vehicles.

In essence, Aimsun's approach to traffic simulation, with its sophisticated models of car

following and lane changing, allows for a nuanced understanding of vehicular dynamics.

It offers robust tools for managing both everyday traffic flow and unusual or emergent

traffic conditions effectively.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 22/116

SUMO

SUMO (Simulation of Urban Mobility) is a microscopic road traffic simulation software

that was developed by the Center for Applied Informatics Cologne and the Institute of

Transportation Systems at the German Aerospace Center in 2000 (Aume Barceló, 2010).

The software has undergone significant evolution since its inception and has become an

integral part of various traffic management projects.

SUMO was developed as a comprehensive and open-source traffic simulation tool that

could be easily adapted and reused in academic research (Aume Barceló, 2010). It was

released under the GNU General Public License, which ensures that it is freely accessible

and modifiable. The software was designed to run on various operating systems and to

simulate large city areas efficiently, making it ideal for handling complex simulations

without excessive computational demands.

SUMO has been used to evaluate traffic light systems, simulate traffic management

strategies, and explore the impacts of various traffic management technologies. It is

suitable for real-time applications in traffic management and forecasting.

SUMO's development philosophy ensures that it remains relevant and progressively

enhanced by a growing community of users and developers. The software has become

increasingly popular among traffic professionals and computer scientists due to its open-

source nature, adaptability, and the breadth of its application in traffic management

research.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 23/116

Preparing a Road Network to Simulate

The primary method for setting up road networks in SUMO involves importing existing

digital road network data. SUMO uses NETCONVERT Tool, which is SUMO’s network

importer tool, capable of reading various formats such as VISUM, TIGER, ArcView

shape files, Vissim, Robocup Rescue League folders, OpenStreetMap, and native XML

representations of road networks (Aume Barceló, 2010). Given that many imported

network formats are not directly suited for microscopic traffic simulation (which requires

detailed lane-level information, intersection behaviors, traffic light statuses, etc.), SUMO

uses the NETCONVERT tool to calculates which turns are allowed from each road. Also,

determining how lanes are connected across roads and at intersections. Furthermore,

identifying the type of intersection (stop, signalized) and establishing priority rules.

Lastly, the placement and operational logic of traffic lights, and refines the geometric

layout of roads and intersections. Despite this, the initially converted network often

requires manual inspections and corrections to address any inaccuracies or missing data.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 24/116

Microscopic Demand Definitions

SUMO's preferred format involves a list of vehicles with specified departure times and

the roads they travel between. This data allows SUMO to compute complete paths

through the network using shortest path algorithms, resulting in a detailed set of vehicle

routes for the simulation (Aume Barceló, 2010). For more dynamic and detailed traffic

modeling, SUMO incorporates methods that simulate dynamic user equilibrium. This

technique adjusts vehicle routes based on current traffic conditions, enhancing the realism

of the simulation.

Importing and Using Origin/Destination Matrices

The conversion process typically involves converting Origin/Destination (O/D) matrices

into lists of trip details for individual vehicles. This is followed by a dynamic user

assignment to realistically distribute these trips across the traffic network.

Challenges and Solutions in Demand Modeling

While detailed per-vehicle data is rare and labor-intensive to generate due to the need for

extensive sociological data, it is ideal. Synthetic populations or agent-based models can

provide this data. More commonly, SUMO simulations rely on importing O/D matrices,

which are more readily available and provide a satisfactory level of detail for large-scale

simulations.

The granularity of O/D matrices should match the simulation's scale. High-detail

simulations require fine-grained O/D data that aligns closely with the network's physical

roads rather than aggregated district-level data.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 25/116

Sometimes, manual adjustments and additional planning are necessary to map O/D data

effectively onto the simulated network, ensuring that traffic patterns and vehicle

behaviors in the simulation closely mimic real-world conditions.

Traffic demand modeling in SUMO involves creating realistic vehicle movements within

simulations. This requires defining each vehicle's route, departure time, and other

characteristics. There are different methods to establish this demand, ranging from using

highly detailed individual trip information to leveraging aggregated origin-destination

(O/D) matrices that represent broader traffic flows.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 26/116

Why choose SUMO.

Traffic simulation tools are essential for transport planners and traffic engineers to

analyze, optimize, and visualize traffic flows. While tools like VISSIM offer detailed

behavior-based microsimulation capabilities across various urban and highway contexts,

SUMO (Simulation of Urban MObility) stands out due to its adaptability and extensive

applicability in both academic research and practical traffic management.

Aimsun offers advanced features and integrated modeling environments for microscopic,

mesoscopic, and macroscopic simulations. However, it is a commercial product, and

organizations must purchase licenses.

SUMO, on the other hand, is an open-source, microscopic road traffic simulation tool that

provides high adaptability and extensive customization for scenarios that require it. It is

freely available under the GNU General Public License, allowing users to modify the

code to suit specific project needs without the constraints of licensing fees or proprietary

restrictions.

SUMO can run on multiple platforms and support large-scale simulations. It can integrate

easily with other simulation packages, allowing for the importation of detailed road

networks and demand data from diverse sources.

SUMO excels in simulating complex urban mobility scenarios. It can model a wide array

of vehicles and traffic behaviors, making it ideal for real-time applications in traffic

management and forecasting, such as evaluating traffic light systems or exploring the

impacts of traffic management technologies.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 27/116

SUMO divides the traffic modeling environment into structured blocks that interact

dynamically, enhancing the realism of simulations. The Infrastructure Block models all

physical components of the transportation system, including intricate road and railway

networks. The Traffic Flow Block focuses on the vehicles themselves and their

movement patterns. The Traffic Control Block includes mechanisms for detailed control

of the traffic system, such as traffic lights and priority rules. The Evaluation Block

provides comprehensive outputs from the simulation, such as travel times, queue lengths,

and throughput metrics.

SUMO's flexibility is evident in its ability to be tailored for specific research or practical

applications. Whether it's a detailed analysis of pedestrian movements, public transport

systems, or multi-modal traffic flows, SUMO provides the tools necessary to create

precise and adaptable simulation environments.

For organizations and researchers who require a robust, customizable, and cost-effective

solution for traffic simulation, SUMO offers significant advantages. Its ability to handle

complex, large-scale simulations and adapt to specific project requirements makes it an

invaluable tool in both academic research and practical traffic management solutions.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 28/116

Unity as a 3D visualization tool

Unity is a powerful software that is highly regarded for its robust features, making it an

excellent choice for 3D visualization across a variety of industries. This software can

handle real-time position information and display it in 3D, which is important for

dynamic simulations like traffic and autonomous vehicle navigation (Ismail B.,2017).

An article titled "3D Traffic Simulation for Autonomous Vehicles in Unity and Python"

discusses a simulation that integrates real-time positional data obtained from street

cameras. This data is then used to animate and control the movements of vehicles within

the Unity simulation environment. This means that Unity can handle live data feeds,

which is crucial for scenarios that depend on up-to-the-minute data, such as traffic

management systems or real-time testing of autonomous vehicle algorithms. Unity also

offers the capability to switch between a global bird's-eye view and a local ground-level

perspective of individual vehicles seamlessly. This flexibility is key for analyzing traffic

flow from different vantage points (Ismail B.,2017).

Furthermore, Unity not only visualizes traffic but also serves as a reinforcement learning

platform. It accepts user inputs to control vehicles within the simulation, providing a

feedback loop to deep learning programs (Ismail B.,2017). The system can simulate a

variety of traffic scenarios and collect data on vehicle behavior in response to different

driving commands, contributing to the training of more robust autonomous driving

models.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 29/116

Another article titled "Vehicle-Pedestrian Interaction in SUMO and Unity3D" highlights

the benefits of using Unity as a visualization tool in a few significant ways. The article

emphasizes the integration of Unity with the Simulation of Urban Mobility (SUMO) via

the Traffic Control Interface (TraCI) Protocol and TraCI as a Service (TraaS) library.

This integration leverages Unity's powerful 3D graphics engine to visualize traffic

scenarios generated in SUMO, which is primarily a 2D traffic simulation tool. This

combination brings the detailed traffic modeling capabilities of SUMO into the visually

rich 3D world of Unity, enhancing both the analytical and experiential aspects of traffic

simulation studies.

Unity's ability to handle real-time data and update the simulation environment

accordingly is crucial for studying dynamic interactions and conducting responsive

analyses. In this setup, pedestrian and vehicle data from SUMO are sent to Unity, where

they are visualized in real time. This feature is essential for applications such as testing

pedestrian safety measures or vehicle routing algorithms under varied traffic conditions.

The use of Unity enables flexible visualization options, such as switching between

different camera views—such as bird's-eye view or ground-level perspectives—thus

offering diverse insights into traffic dynamics and interactions. This capability is

invaluable for developing advanced driver-assistance systems (ADAS) and autonomous

vehicle systems, where understanding the environment from multiple perspectives is

crucial.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 30/116

By simulating the interaction between pedestrians and vehicles in a 3D space, Unity

allows researchers and developers to observe and analyze the impact of various factors on

road safety. This can include visualizing the movement of vulnerable road users (VRUs)

near vehicles, which is crucial for developing systems aimed at reducing pedestrian

fatalities and enhancing urban traffic safety.

Unity’s robust development environment allows for extensive customization and

scalability. Users can develop custom scripts and integrate various sensors and data

inputs to extend the simulation capabilities according to specific research needs or project

requirements.

Overall, the article underscores Unity's role in advancing traffic simulation by providing

a visually engaging and technically robust platform that complements traditional traffic

simulation tools like SUMO. This integration enhances the practicality and applicability

of traffic simulations in urban planning, autonomous vehicle development, and safety

analysis, demonstrating the significant benefits of using Unity as a visualization tool in

these contexts.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 31/116

3. Requirements

In this chapter the requirements for the application will be explored and discussed.

Research for application development will involve searching for similar existing

simulations. The requirements, both functional and nonfunctional, will then be listed, to

get an overview of the most important features to include.

Ford’s Traffic Jam Assist

Ford has integrated various Advanced Driver-Assistance Systems (ADAS) in its vehicles

to improve safety and enhance the driving experience, especially in traffic. These ADAS

features are discussed in detail in the article "Application of Advanced Driver-Assistance

Systems in Police Vehicles." This article is helpful for those interested in exploring

traffic simulation or data visualization for safety technologies in specialized vehicles,

such as police cars.

Advanced Driver-Assistance Systems (ADAS) have been developed to help manage and

improve traffic flow in congested road conditions. Traffic Jam Assist is one such example

of ADAS that specifically aims to enhance traffic flow. However, there are several other

types of ADAS that can also be beneficial for traffic management.

Traffic Jam Assist combines the functionalities of adaptive cruise control and lane-

keeping assistance to help the driver navigate through congested traffic with less effort. It

controls the car's acceleration, braking, and steering during heavy traffic scenarios at low

speeds.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 32/116

Simulation tools are particularly valuable for developing and refining systems like Traffic

Jam Assist (TJA), which are designed to operate in complex, dynamic environments like

congested traffic scenarios. Here’s how these tools are typically used in the context of

TJA development:

Traffic Jam Assist needs to be effective in various traffic conditions and setups.

Simulation tools allow developers to create diverse traffic jam scenarios, including

varying levels of congestion, different types of vehicles, and various road layouts. This

helps in testing how the TJA system reacts to slow-moving traffic, sudden stops, and lane

changes by other vehicles. TJA relies heavily on data from sensors like cameras, radar,

and ultrasonic sensors to monitor the vehicle’s surroundings closely. Simulation tools can

generate synthetic sensor inputs that mimic real-world data, allowing the TJA system to

be tested against a wide array of traffic situations without the need for costly real-world

driving tests.

Simulation tools also enable testing of the user interface and interactions between the

driver and the TJA system. This includes how information is displayed to the driver and

how the driver can override or interact with the system if needed. Ensuring that these

interactions are intuitive and safe is crucial for the acceptance and efficacy of TJA

systems.

Traffic Jam Assist functions must adhere to various safety standards and regulations.

Simulations can be used to demonstrate compliance with these standards by showing how

the system performs in scenarios that could be risky or dangerous. This includes testing

Alanna Søpler Real-Time Traffic Simulation

12-May-24 33/116

the system’s ability to prevent collisions, maintain safe following distances, and safely

execute lane-keeping maneuvers.

By leveraging simulation tools, developers can ensure that Traffic Jam Assist systems are

well-prepared to handle real-world conditions safely and effectively, enhancing both the

technology's reliability and the driver's trust in the system.

Tesla Autopilot

Autonomous driving systems have been available for some time now, and Tesla's

Autopilot was one of the first commercially available systems. However, there have been

concerns about the safety of the Autopilot system following multiple accidents involving

its use. The article "Survey on Autonomous Vehicle Simulation Platforms" cites specific

incidents, such as the 2016 accident in Florida where the Autopilot system failed to

differentiate a white truck from the sky, resulting in a fatal crash.

It is evident that extensive simulation testing is necessary considering the Autopilot

incidents. These simulations allow developers to observe how the system behaves in

diverse, controlled environments, which can replicate rare or dangerous situations that are

difficult to test safely in real-world conditions. The article suggests that continuous

refinement through simulations can enhance the functionality and safety of systems like

Tesla's Autopilot, potentially reducing the likelihood of accidents and improving public

trust in autonomous vehicle technology.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 34/116

The article discusses "Dynamic Environment and Behavior Simulation" as an advanced

approach to enhance the realism and applicability of simulation technologies for

autonomous driving systems like Tesla's Autopilot. This section explains how dynamic

simulations incorporate both environmental variability and the complex behaviors of

different actors within the traffic ecosystem, such as pedestrians, cyclists, and other

vehicles.

Dynamic simulations are critical because they provide a controlled yet realistic and

interactive setting for testing autonomous driving systems. They allow developers to

evaluate how these systems react to changes in the environment, such as varying weather

conditions, unexpected pedestrian movements, or sudden changes in traffic flow. This is

crucial for developing robust ADAS systems that must reliably make split-second

decisions in real-world driving situations.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 35/116

Functional Requirements

1. Real-time Response: The system should be able to process data and respond in real-

time to accurately simulate the decision-making process of autonomous vehicles in

dynamic environments.

2. Environment Simulation: The system should be able to create varied driving

environments, including different weather conditions, road types, and traffic densities, to

test the robustness of autonomous driving technologies.

3. Actor Behavior Modeling: Simulation tools should realistically model the behavior of

various actors (such as other vehicles and pedestrians) to understand how the autonomous

system interacts with them.

4. Scenario Testing: The system should support the configuration and testing of different

driving scenarios, traffic jams, and at various speeds.

5. Data Integration: The system should be capable of integrating real-world data, such as

actual traffic patterns and accident data, to enhance the accuracy of the simulations.

Non-Functional Requirements

1. Scalability: The system must be able to handle increasing simulation complexity and

size, allowing the addition of more elements, such as more actors or larger geographical

areas, without performance degradation.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 36/116

2. Reliability: The system must be highly reliable to ensure that simulations consistently

run as expected without failures, especially when testing safety-critical systems.

3. Usability: The system should have user-friendly interfaces for setting up simulations,

running them, and interpreting results without requiring deep technical knowledge of the

underlying algorithms.

4. Performance: The system should be efficient in simulation execution, with minimal

latency to mimic the real-time responses of autonomous systems in live environments.

Use Case Diagram

To outline the simulation's flow and possible user actions, a Use Case Diagram was

created. The diagram depicts each scene and option that the user will encounter while

playing the simulation. Starting from the main menu, the user can choose the network

they wish to simulate, quit the simulation, or return to the main menu.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 37/116

Conclusion

After conducting research on how other companies utilize simulation tools, it has become

apparent what will make a simulation useful for traffic developers and council members.

This includes features such as environmental factors to create a more realistic simulation,

scalability to handle an increase in demand and see how road infrastructure handles the

increase, and the ability for others to create networks using the same project.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 38/116

4. Design

Design

The traffic simulator was created by using Unity game development engine as the

frontend and SUMO traffic Simulator as the backend. C# programming language was

used within Visual Studio Code. This chapter explains the design process of the

simulation and provides a basic understanding of how each software works.

Technologies

Visual Studio Code & C#

Although other code editors are compatible with Unity, Microsoft's Visual Studio Code

was chosen for this project. Visual Studio Code is a simplified, streamlined version of

Microsoft's Visual Studio, which makes it easy to focus exclusively on writing code. It is

also highly customizable, and extensions can be added to aid the user in various areas,

such as line auto-completion or formatting.

All scripts were written in C#, which is natively supported by Unity and can be easily

integrated into Unity projects. C# is an object-oriented language derived from C and is

quite similar in syntax to C++. It is a high-level language, meaning it is developer-

friendly and simple to debug and maintain, compared to low-level languages such as

Assembly code. High-level languages, such as C#, can also be run on any platform,

whereas low-level languages are entirely machine-oriented.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 39/116

Unity

The Unity game development engine was used to create the frontend of the application,

and it was programmed using the C# language. Specifically, version 2018.4.36f1 was

used. Unity is a user-friendly game development engine that is available for free. It offers

a graphical interface and uses C# code natively, although Java, C/C++, and Lua scripting

can also be used. Although Unity can be used for 2D game development, it is mainly

designed for 3D development. 3D game development can be easily carried out using the

"scene view" window, where 3D assets can be created and placed in a three-dimensional

game world. These assets can be easily adjusted as needed. This graphical interface also

allows users to see real-time changes made to their code or track errors that arise.

Unity has a programming feature called Visual Scripting, which allows users to create

games visually by dragging and dropping gameplay functions without writing any code.

This makes game development more accessible, especially for beginners. However,

Alanna Søpler Real-Time Traffic Simulation

12-May-24 40/116

Visual Scripting was not used in the development of this project. Instead, all scripting

was done using Visual Studio Code.

Furthermore, Unity is compatible with a wide range of operating systems and hardware.

It can be used to develop games and applications for Windows, MacOS, and Linux, as

well as for mobile platforms such as iOS and Android. It also supports virtual reality

(VR) development for platforms like Oculus Quest, HTC Vive, and Steam VR.

Unity Hierarchy and Inspector

The Hierarchy panel, located on the left side, displays the assets that are currently in the

scene. You can perform various actions from here, such as deleting them, rearranging

their order, and selecting them to view in the Inspector panel on the right side. The

Inspector panel shows the properties of the selected game object, including its name, tags,

layer, position, and size. You can make changes to these values through the Inspector

panel.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 41/116

The Toolbar

The Toolbar consists of seven basic controls. Each relate to different parts of the Editor.

• Transform Tools – used with the Scene View

• Transform Gizmo Toggles – affect the Scene View display

• Play/Pause/Step Buttons – used with the Game View

• Cloud Button - opens the Unity Services Window.

• Account Drop-down - used to access your Unity Account.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 42/116

• Layers Drop-down – controls which objects are displayed in Scene View

• Layout Drop-down – controls arrangement of all Views

The Assets folder

The Assets folder is the primary folder for Unity projects, containing all the necessary

materials like scenes, models, prefabs, plugins, textures, materials, and scripts. Users can

also create subfolders to organize assets for easy location and selection. Whenever an

asset pack is imported from the Unity Asset Store, a new folder is automatically created

inside the project, containing the new assets.

The Scenes folder in Unity is a crucial feature that should be used to organize and store

all scene files. These scenes are containers that enable you to set up environments,

gameplay areas, menus, and other interactive elements of your game or application. Each

scene file represents a different level or screen of the game.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 43/116

The Prefabs folder is another essential folder in Unity that is responsible for housing

"Prefabs." These are pre-configured, reusable game objects or asset collections that can

be instantiated multiple times throughout a project.

The Scripts folder is crucial for storing all the script files (CS files if using C#) that

control the behavior of game objects and the game environment. Scripts in Unity are

primarily written in C# and are used to implement game logic, define object behaviours,

handle user input, manage scenes, and interact with other game components.

The Materials folder, on the other hand, is conventionally used to store material assets

that define the appearance of surfaces in 3D environments. Materials in Unity are used to

Alanna Søpler Real-Time Traffic Simulation

12-May-24 44/116

specify how objects reflect light, display textures, and overall look within the scene. The

Materials folder is essential for defining and managing the visual aesthetics of the Unity

project and plays a crucial role in the look and feel of the game or application, allowing

for customization and detailed control over surface appearances.

Lastly, the Plugins folder in Unity is used to store native plugins and manage assemblies

that extend the functionality of the project. Code in the Plugins folder is compiled before

the scripts in the rest of the project, which allows you to call these functionalities from

the regular C# scripts within Unity. This setup helps in creating more modular and

maintainable code.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 45/116

SUMO

SUMO (Simulation of Urban Mobility) is a road traffic simulation package that is open-

source, highly portable, microscopic, and continuous. It is designed to be able to handle

large road networks. One of the tools included in the SUMO suite is Netedit, which is

essential in creating and modifying network files used in simulations.

Netedit is a software tool that enables users to create and modify traffic networks using a

graphical interface. It is user-friendly, allowing easy manipulation of elements such as

roads, junctions, traffic lights, signs, and other objects. Netedit plays a critical role in

configuring and updating the road networks that serve as the foundation for traffic

simulations in SUMO.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 46/116

Netedit is a tool that provides users with a Graphical User Interface (GUI) to visually

create and edit traffic networks. It supports various network components like roads,

junctions, lanes, and traffic control devices. Users can either create a new network from

scratch or import and modify an existing one. Networks created or modified in Netedit

can be directly used in SUMO for simulation purposes.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 47/116

Apart from physical infrastructure, Netedit also allows for the management and editing of

demand-related elements like vehicle routes, public transport lines, and traffic

assignment. Users can manage different layers of the network, such as road signs, traffic

lights, or transport routes, making complex edits more organized and manageable.

Netedit comes equipped with validation tools that check the network for errors, such as

connectivity issues, undefined attributes, or conflicts in traffic flow logic, ensuring the

network's operational feasibility before simulation. It also offers robust undo/redo

capabilities that allow users to experiment and revert changes effortlessly, which is

crucial in a design tool.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 48/116

Tool Bar

SUMO's Netedit toolbar is designed to make it easy to create and manipulate different

network elements. The toolbar includes the following tools:

1. Selection Tool: Usually represented by a cursor or arrow, this tool enables the selection

of network elements such as nodes, edges, and lanes, for viewing or editing properties.

2. Move Tool: Often depicted as a hand or four-directional arrow, this tool allows you to

move selected elements or navigate the view within the workspace.

3. Zoom Tool: Represented by a magnifying glass, sometimes with a plus or minus sign,

this tool is used to zoom in or out of the network view to get a closer look or a broader

perspective.

4. Create Edge Tool: Depicted as a line or road, this tool enables the creation of new

edges (roads) by clicking and dragging between nodes (intersections).

5. Create Node Tool: Often shown as a dot or junction symbol, this tool is used for

creating new nodes (junctions) within the network.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 49/116

6. Create Traffic Light Tool: Represented by a traffic light icon, this tool enables the

addition of traffic lights at junctions, which is crucial for controlling traffic flow.

7. Inspector Tool: Represented by a magnifying glass or an 'i' icon, this tool provides

detailed information about selected network elements, including attributes and settings.

8. Delete Tool: Typically a trash can or an X symbol, this tool removes selected elements

from the network.

9. Undo/Redo Tools: Represented by arrows pointing left for undo and right for redo,

these tools allow you to revert or reapply changes made during the editing process.

10. Lane Addition/Modification Tool: Represented by lanes or a road branching, this tool

facilitates the addition or alteration of lanes on existing roads.

11. Connection Tool: Often shown as a plug or link, this tool helps define how lanes

connect across nodes, which is crucial for turn definitions and lane transitions.

12. Traffic Demand Tool: Typically a car or flow chart, this tool is used to define and

manage traffic flows, routes, and vehicle types, integrating transport demand aspects into

the network.

13. Save and Load Tools: Represented by a floppy disk for save and a folder for load,

these tools are essential for saving progress and loading existing projects or

configurations.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 50/116

14. Simulation Start/Stop Tools: Represented by a play button for start and a square for

stop, these tools allow you to run and stop simulations directly from Netedit to test and

analyze the network behavior under traffic conditions.

UX Design

Wireframes were created to conceptualize the main screens of the simulation. A main

menu was designed with the purpose of early going from one network to another.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 51/116

The main is where the user views the simulation in action. The idea is to have the option

for the user to view from the inside of the car so that they can be more enraptured in the

simulation.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 52/116

Implementation (or Construction)

Introduction

The implementation chapter of this document will provide detailed instructions on

developing features within this project. Additionally, the thinking process behind the

implementation. Including research efforts on feature methodology, highlighting the

strengths and restrictions to keep in mind for each feature. The idea behind including a

detailed implementation chapter is to build a foundation of understanding, making it

possible for people wishing to attempt to develop a similar product and understand the

reasoning behind each feature. This section of the document makes it easier to develop

the project further and develop better and more efficient implementation methods.

Connection between SUMO and Unity

The initial task was to find a methodology for sending information to Unity for the

SUMO simulation. The SUMO documentation talks about a way of retrieving data from

the simulated object in the network and manipulating their behaviour while the

simulation is running with the Traffic Control Interface, a.k.a. Traci

(https://sumo.dlr.de/docs/TraCI.html). The purpose of using Traci is to set up a way of

communicating and interacting with SUMO and external applications like Unity. Traci

acts like a bridge, allowing Unity to retrieve data from the simulation in real time and

manipulate the simulated objects' behaviour while the simulation runs.

The Traci works as a gateway to interact with the network with a real-time read traffic

simulation. It employs a client/server architecture based on Transmission Control

Alanna Søpler Real-Time Traffic Simulation

12-May-24 53/116

Protocol, a.k.a. TCP, to connect with SUMO, one of the main protocols in the Internet

Protocol Suite, often called TCP/IP. As mentioned in the previous chapter, TCP provides

a dependable means of transmitting data over networks, making it suitable for

applications that require reliable and ordered delivery.

However, SUMOs Traci method uses Python. The documentation also talks about using

libsumo, which is supposed to perform better but uses C++. Therefore, it would be

possible to implement this project using the Unreal game engine. Therefore, after

conducting further research, there was a similar project about using

CodingConected.Traci (https://github.com/CodingConnected/CodingConnected.Traci)

has two implementations of the Traci protocol. The first offers an implementation of

Traci in C#/.NET. To download the repository and covert into a plugin for a Unity 2018

project:

Clone the directory through the command line or download the '.zip' folder. In the

directory where the repository was downloaded. Either throw the terminal or open it in a

Code Editor. Inside the repository directory, find the .csproj file. This file contains the

configuration and settings for the C# project. For this plugin, go to where the .csproj file

is in the terminal and run 'dotnet build.' Then, there should be a .dll file in the output

directory specified in the project settings. Compiling the C# code into a .dll file compiles

it into a .dll file, which Unity can then use as a plugin. Copy the generated DLL file from

the output directory. Open the Unity project and navigate to the Assets folder within the

Unity Editor. Paste the copied DLL file into this folder. Unity will automatically detect

Alanna Søpler Real-Time Traffic Simulation

12-May-24 54/116

and import the DLL into the project. The DLL file appears in the Unity Editor's Project

window.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 55/116

Set up Unity and SUMO connection.

The Traci script oversees setting up a connection between SUMO using Traci, stepping

the simulation to synchronize it with Unity, and closing the connection when the

application quits. Additionally, it is in its script so that other scripts in the project can get

the Client information. This way, every script does not require a new client connection,

which would cause issues.

These directives import namespaces that contain classes and functionalities required for

the script. This CodingConnected.TraCI.NET refers to the imported plugin. This

directory provides classes for Traci's communication.

The Awake method within the Traci class is the first script to run when the user hits 'Play'

in Unity. The 'Try' block creates a new instance of the Traci Client, which connects to

SUMO simulating running locally on port '8813'. After that, the simulation will be

synchronized using the ‘Client.Controle.SimStep()’ method with a fixed timestep of

0.02f.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 56/116

The connection must be synchronized to ensure that objects are rendered at the right time.

For example, vehicles render when they are about to enter the simulation, making the

initial rendering less taxing on the machine.

When SUMO and Unity are systematically synchronized, Unity can effectively avoid

missing the initiation of a new vehicle. However, a delay could result in the removal on

SUMO's side, which Unity has missed. It would result in Unity being unable to locate the

vehicle it is being asked to delete, potentially causing significant issues in the integration

process.

At the end of the Awake method, there's a 'Catch' block. This block is designed to throw

an error if any part of the preceding 'Try' block fails. The error is then passed into the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 57/116

console, providing valuable information for troubleshooting, and ensuring the smooth

operation of the integration.

The last method in the Traci class is the OnApplicationQuite(). This method runs when

the user ends the simulation or closes the application. Ensure the Traci client connection

is properly closed when the scene ends.

This script is the foundation for further interactions between Unity and SUMO.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 58/116

Setting up the Vehicles

The SUMOVehicle script handles the visualization and management of vehicles in the

SUMO Simulation within Unity. Initially, this repository was used as a blueprint for

creating and interacting with objects in SUMO and translating them into Unity

(https://github.com/DarraghMac97/Real-time-Traffic-Simulation-with-3D-

Visualisation/tree/master/Sumo%20Unity/Assets/Scenes).

Within the SUMOVehicle class, these variables are declared at the class level to

reference the Traci Script, the Traci Client, the vehicle GameObject prefab, and a list to

store instantiated vehicle GameObjects.

Within the start method, when the script is being initialized, it gets a reference to the

Traci script attached to the same GameObject. Thereafter, it checks if the Traci script

reference is valid and retrieves the Traci client from the Traci script. After that, it checks

if the Client is valid.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 59/116

The updated method is called each 0.02f, which is essential when getting the IDs of new

and old vehicles and updating the vehicle's positioning. Within the 'Try' block, two

critical operations are taking place to interact with the SUMO simulation via the Traci

Plugin.

The first line retrieves a list of all vehicle IDs that have started their journey at the current

simulation time step, emphasizing again the importance of synchronizing SUMO and

Unity. This line provides real-time feedback about the number of vehicles that have

started their journey.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 60/116

Then, the 'vehiclesleft' variable retrieves the list of all vehicles that have arrived at the

destination at the current simulation step.

The following section removes vehicles from the Unity scene once they have completed

their journey in the SUMO simulation. This loop iterates through each vehicle ID in the

list of vehicles stored in the 'vehiclesleft' variable.

After that, if the vehicle GameObject was found in the scene, 'Try' to locate the vehicle

with the ID of x, destroy the GameObject with that ID, and remove it from the scene.

Additionally, try to remove this vehicle from the 'carlist', which will be described later.

In the 'else' statement, send the error message to the console if the vehicle is not found.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 61/116

The block of code cleans up the Unity scene and ensures that the visual representation in

Unity matches the current state of the SUMO simulation. It prevents clutter and potential

performance issues due to unnecessary GameObjects, which is why this code block is

written before populating and updating the vehicles.

The next section of the script handles creating and managing vehicle GameObjects in

Unity based on vehicle data retrieved from the SUMO simulation.

Initially, the loop iterates through the list of vehicle IDs present in the 'vehiclelist' List,

which subsequently retrieves various attributes of each vehicle through the Traci Client,

such as its position, angle of facing, length, width, and colour.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 62/116

Next, create a new GameObject by cloning the pre-fab vehicle named

GameObject('Vehicle_Car_color02'). The new GameObject's name is set to the

'vehicleid', which helps track each vehicle's lifecycle.

To set the position of the new vehicle, use the 'tranfrom.position' for the new vehicle and

adjust the coordinates to the Unity structure. SUMO stores the vehicle coordinates in a

2D structure. Therefore, the X position is the same as that in SUMO for setting the

coordinates for Unity. The Y position is how far from the ground the vehicles will render,

which, now, is a hard-coded value. Lastly, the z coordinates are the y coordinates in

SUMO.

'Transfrom.rotation' sets the vehicle orientation based on the angle from SUMO. Lastly,

to get the vehicle's color, get the color from SUMO and convert it into RGB values for

Unity's color system. The final step is to add the vehicle GameObject to the 'carlist' List,

which tracks all vehicle GameObjects currently on the scene.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 63/116

The last loop updates the position and orientation of each vehicle GameObject in the

current scene based on their current state in the sumo simulation.

The Loop itterates over each vehicle located in the 'carlist' for each vehicle GameObject.

The script gets the latest position, 'carposition,' and orientation, 'carangle,' from SUMO.

Then, update the related GameObject's position in the Unity scene using the X and Y

coordinates retrieved from SUMO. Also, update the GameObject's rotation to reflect the

current correlation.

Initially, the Traci script and the Vehicle script were in the script. However, the scripts

were separated to make them more organized, which helped connect the Traci script to

other scripts later.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 64/116

Traffic Lights

The TrafficLights script manages, initializes, and updates the traffic lights within the

Unity scene to reflect their real-time status in the simulation. This script has gone through

multiple iterations to find the correct rotation of the Traffic Lights. Firstly, in SUMO,

each Traffic Light is associated with a Junction. The first implementation was done by

using the thought process of getting the initial position of the Traffic Light and, from

there, getting all the points of the Junction and calculating the center point of the

Junction. From there, find the angle between the two vectors and set the angle to the

negative value of this calculation. However, the initial problem with this implementation

was that the angle was calculated from the traffic light position to the center of the

connecting Junction.

Calculating the angle of the Traffic Light results in the angle facing away from the lane

instead of facing the lane directly. To assist with visualizing, a graph script will be used

to show the traffic light and junction point using Python in Google Colab.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 65/116

The output of this code proves the error behind this thinking process. Below, the junction

point is displayed, and the starting point of the line going across the Junction represents

the starting point of the traffic light and the arrow at the end represents the angle at which

the Traffic Light is facing.

At this point, the concept evolved to include the 'assosiated lane' and the 'center points '

od the lane. These elements, crucial to the process, are obtained from both the lane and

the junction. The 'TrafficLights' class has the same start method as the SUMOVehicle

class. It gets a reference to the Traci script attached to the same GameObject.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 66/116

The following method, PopulateTrafficLights', creates Traffic Light Objects in Unity

based on the data retrieved from the Traci simulation.

Firstly, it fetches the list of Traffic Light IDs in the simulation.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 67/116

After that, iterate through the Traffic Lights and fetch relevant data for each one. This

includes information about the associated junction and the lane being controlled by the

traffic light.

In addition, two 'vector2' variables will be created to store unique points for easier

calculation later in the script. Since the shape of the lanes may consist of the same points,

a HashSet is used to ensure that each point stored in these sets is unique and the order of

the pints don’t matter. The process of populating these sets is shown below. After that,

the necessary values are passed to create the Traffic Light game objects, and the angle of

the Traffic Lights is calculated using the CreateTrafficLightObject method.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 68/116

The following method, 'CreateTrafficLightObject,' assists in creating a GameObject

representing the Traffic Lights.Furthermore, calculating the angle of each of the Traffic

Lights. If the number of points defined for the Junction or the lane is less than 3, the

shape's center is calculated by averaging the coordinates of the available points.

If at least 3 points are defined for the Junction, the center is calculated by subtracting the

minimum and maximum coordinates among the junction points and averaging them out.

This will, hopefully, ensure that the center of the Junction and lane shapes are determined

accurately.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 69/116

The direction of the Traffic Light is calculated as the vector from the center of the lane to

the center of the junction. This line will be perpendicular to the line connecting the

centers. Then, the orientation angle is calculated based on the direction vector using the

‘Mathf.Atan2’ functions, which will return the angle in radians. Then, convert the angle

into degrees to make it compatible with Unity.

Laslty, creating a new GameObject representing the traffic light is creatied using the

Props_Traffic prefab. With the name bing the id of the traffic light. The position of the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 70/116

gameObject is set based on the position retrived from the Traci Client + adding half of

the lane width to place the traffic light on the edge of the road. Lastly, the orientation of

the traffic light is set to the calculated orientation angle.

The final part of the script, the update method, is responsible for updating the

visualization of traffic Lights based on their current phase in the SUMO simulation.

The 'update' method systematically iterates through each traffic light in the simulation.

For each traffic light, it retrieves the current phase and the render component of the traffic

light object. It then proceeds to access all the child objects, which correspond to the

various lights of the traffic light.

Depending on the current phase of the traffic light, set the color of the child object to

either green, red, yellow, or nothing.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 71/116

Alanna Søpler Real-Time Traffic Simulation

12-May-24 72/116

Render Lanes

This RoadRender script is attached to a GameObject in the Unity project. The script

generates and renders road meshes based on lane data from the traffic simulation using

TraCI.

The LaneData method in the RoadRender script populates lane data by retrieving

information about lanes from the traffic simulation using TraCI and generating road

meshes for visualization in the Unity environment.

Firstly, it retrieves a list of lane IDs from the TraCIClient instance using the GetIdList

method. This method returns a TraCIResponse<List<string>> object containing the IDs

of all lanes in the simulation.

It initializes a dictionary named oppositeLanes to store pairs of lane IDs and their

corresponding opposite lane IDs. The opposite lane of a given lane ID is the lane on the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 73/116

opposite side of the road. The reason behind combining parallel roads was the shape

provided by the SUMO.net.xml file. Straight lanes would have a shape of 2 points.

However, lanes with curves would have a longer list of points or could have 3 points. If

the lane only had 3 points then the lane would render as a triangle instead of a proper lane

shape.

Then, itterate over each lane ID in the laneIds list and call the GetOppositeLaneId helper

method to retrieve the ID of the opposite lane, if available. If an opposite lane is found, it

adds the pair to the oppositeLanes dictionary. Unique Lane initializes a list named

uniqueLanes to store unique pairs of lane IDs and their opposite lane IDs. This list will be

used to process each lane and its opposite lane together later in the method.

It itterates over each lane ID in the ‘laneIds’ list again and checks if the lane has an

opposite lane. If an opposite lane is found, it checks if the pair of lane IDs is already

present in the ‘uniqueLanes’ list. If not, it adds the pair to the list.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 74/116

It iterates over each unique pair of lane IDs and their opposite lane IDs stored in the

uniqueLanes list. For each pair, it checks if the lane ID starts with a negative sign ("-") or

a colon (":"), indicating that it should be skipped. Since lanes containing (":") are internal

lanes and ids with ("-") indicates that the lane is a part of the parallel road. This was done

due to performance issues.

For each valid lane, it initializes a list named ‘lanePoints’ to store the points defining the

lane shape. It also initializes variables to store the total road width and length of the lane.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 75/116

It iterates over each lane ID in the ‘laneIds’ list and checks if the current lane ID contains

a specific pattern that indicates it is the opposite lane of the given laneId. The opposite

lane ID is formed by the original lane ID with a hyphen ("-").

If a lane ID containing the specified pattern is found, and it is not the same as the original

laneId, the method returns this lane ID as the opposite lane ID. Otherwise, if no matching

lane ID is found, the method returns null, indicating that no opposite lane was found for

the given laneId.

In summary, the GetOppositeLaneId method searches through the list of all lane IDs in

the traffic simulation system to find the opposite lane ID corresponding to a given lane

ID. It does this by checking for lane IDs that contain a specific pattern indicating they are

the opposite lanes. If a matching opposite lane ID is found, it is returned; otherwise, null

is returned. This method is used in conjunction with the LaneData method to pair each

lane with its opposite lane for further processing and visualization of road meshes in the

Unity environment.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 76/116

The GenerateRoadMesh method in the RoadRender script is designed to generate a 3D

mesh for a road segment based on a list of 2D positions (Position2D points), the width,

and the length of the road. It adapts its mesh generation strategy based on the complexity

of the road shape, determined by the number of points defining the segment.

Based on the number of points, the method chooses one of three approaches to generate

the mesh:

Fewer than 3 Points: If there are fewer than 3 points, a simple shape mesh is generated

using GenerateSimpleShapeMesh. This function creates a basic road shape for straight

lanes.

If there are 3 points, the road is triangular. This could call a hypothetical method like

GenerateTriangleMesh to create a triangle-shaped mesh, although this pathway is

commented out in the code and returns null.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 77/116

For more complex shapes with more than 3 points, GenerateComplexShapeMesh is

called. This function utilizes the ear clipping method to triangulate the polygon defined

by the points, suitable for creating complex, irregularly shaped road segments.

The GenerateSimpleShapeMesh method constructs a mesh that represents the road

segment. It does so by generating vertices along the road path and defining triangles (the

basic units of a mesh in 3D graphics) to form the surface of the road.

The mothod accepts the points, which contains a list of `Position2D` objects that provide

the x and y coordinates defining the road's path. Additionally, the road width, road length

and lastly the lane id.

Initially, the method sets up a new Mesh object, which will be returned at the end of the

method. Additionally, a List for storing vertices and triangle indices. The vertices are a X,

Y and Z coordinates. Every corner of a 3D object is marked by a vertex. For example, a

simple 3D triangle requires three vertices, one for each corner. The Y coordinates of the

vertices is set to ‘onGround’, which has a hardcoded value in it. Which ensures that all

vertices lie at the same vertical position, simulating the road lying flat on the terrain. The

list of triangles consists of three vertices connected. It is the simplest 2D shape that can

exist in 3D space. Triangles are used to construct the surface of 3D models. Because they

Alanna Søpler Real-Time Traffic Simulation

12-May-24 78/116

are flat and have only three sides. Graphics hardware is optimized to render triangles

efficiently, which is why they are the fundamental unit of 3D models in graphics.

The direction vector for each segment of the road is calculated using consecutive points.

This vector is normalized to ensure consistent operations. A perpendicular vector is

calculated for each direction vector, ensuring it extends to either side of the path. This is

crucial for generating the width of the road.

The direction vector for each segment of the road is calculated using consecutive points.

This vector is normalized to ensure consistent operations A perpendicular vector is

calculated for each direction vector, ensuring it extends to either side of the path. This is

crucial for generating the width of the road.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 79/116

Each segment between consecutive points is divided into smaller parts based on the

calculated segment length and the specified road width, determining the number of

interpolation points 'numPoints'. For each segment, interpolation points are calculated

along the line. At each of these ponts, two vertices are placed to the left and right

perpendicularly by half of the road width. This forms the actual width of the road.

The triangle formation is created by defining the connection between vertices. When

moving along each segment, a pair of triangles is created between each set of four

vertices. This will create a rectangle across the road width. The vertices are indexed in a

way that ensures the triangles are rendered correctly in Unity. This involves adding two

triangles for each set of four vertices. One triangle connects the first three vertices, and

the second triangle connects the last three.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 80/116

The final step is to assign the list of vertices and triangles to the Mesh object. Normals

are recalculated to ensure that lighting effects render correctly on the road surface. This

step is essential as it affects how light interacts with the surface of the mesh, influencing

visual realism.

The fully constructed mesh is returned to the GenerateRoadMesh method, which is then

returned to the LaneData method. The mesh object and the lane ID is finally passed to the

RenderMesh method.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 81/116

The GenerateComplexShapeMesh method is designed to create a 3D mesh from a set of

vertices that form a complex polygonal shape. This method is typically used when the

road shape is defined by more than three points, allowing for the creation of irregular or

curved road segments. In this context, it employs an ear clipping algorithm for

triangulation.

The unique part of this method is to convert each 'Position2D' into a 'Vector2'. This is

necessary for the ear clipping algorithm which operates in 2D. Utilizing the ear clipping

method to triangulate the polygon. This involves finding 'ears' in the polygon, which are

triangles that can be clipped off without cutting through the polygon and progressively

reducing the polygon until it's fully triangulated. The

'ear_clipping.EarClipping(vertices2D)' function returns a list of tuples, where each tuple

represents a triangle with indices referring to the vertices in 'vertices2D'.

Then to create the 3D vertices from the Triangulation. Iterate over each triangle produced

by the ear clipping. Convert each 2D vertex of these triangles into 3D by assigning a

consistent Y coordinate.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 82/116

Each set of three vertices are added to 'roadVertices' which forms a triangle. Since the

vertices are added in sets of three, the indices can be assigned sequentially. Then assign

the vertices and triangles to the mesh. Then, recalculate the normals for the mesh to

ensure correct lighting and shading. The mesh is now complete and can be returned. This

mesh can then be used with Unity’s `MeshFilter` and `MeshRenderer` components to

render the complex road shape in the scene.

The `GenerateComplexShapeMesh` method is ideal for roads that include curves,

intersections, or any irregular shapes that cannot be simply represented by straight lines

or simple triangles. By using the ear clipping method for triangulation, this approach

Alanna Søpler Real-Time Traffic Simulation

12-May-24 83/116

allows for the creation of visually accurate and topologically correct road meshes based

on real-world or simulation data.

The RenderMesh method in the RoadRender script is responsible for taking a generated

mesh and rendering it in the Unity game environment by attaching it to a new

GameObject. This method involves a few critical steps to ensure that the mesh is properly

displayed, utilizing Unity's rendering system components such as MeshFilter and

MeshRenderer.

The Mesh object that contains the vertices, triangles, and normals needed to render the

shape of the road. A string identifier for the lane, which can be used for naming the

GameObject and possibly for debugging purposes.

Rendering Steps starts with checking if the mesh is valid and has vertices to render. A

new GameObject is created to hold the mesh. This GameObject acts as a container for the

mesh and its associated rendering components. The GameObject is named using the lane

ID to ensure it can be easily identified within the Unity Editor or while debugging.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 84/116

The transformation properties of the GameObject (position, rotation, scale) are set to

defaults. Typically, the position is set to zero (the origin of the coordinate system), the

rotation is set to no rotation (Quaternion.identity), and the scale is set to one (original

size).

The 'roadMaterial' is a previously defined material that will dictate the appearance of the

road surface, including its texture, color, and reflectiveness.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 85/116

The Ear Clipping Algorithm

The ear clipping algorithm for triangulating simple polygons is used to decompose a

polygon into triangles, which is a common requirement in graphics programming for

rendering shapes. The ear clipping algorythms was create thanks to the Youtuber Two-bit

coding(https://www.youtube.com/watch?v=hTJFcHutls8&t=1976s&ab_channel=Two-

BitCoding)

The IsConvex Method takes three Vector2 points a, b, and c which represent consecutive

vertices of a polygon. Which determines if the triplet forms a convex angle at ‘b’ by

checking the sign of the z-component of the cross product of vectors (a-b) and (c-b). If

it's non-negative, the corner is convex. Is to ensure that a potential ear triangle doesn't

fold inwards.

The next IsPointInTriangle Method takes a point 'p' and three vertices 'a', 'b', and 'c' of a

triangle to determine if point ‘p’ is inside the triangle formed by a, b, and c. This method

checks if 'p' is on the same side of each edge as the opposite vertex. Used to check if any

point lies inside a candidate's ear, which is necessary to validate an ear before it is

clipped.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 86/116

The IsEar Method takes in three consecutive vertices 'a', 'b', and 'c' and the list of all

vertices. First checks if the vertices form a convex corner using IsConvex. If they do, it

then checks if no other vertices lie inside the triangle formed by these three vertices using

IsPointInTriangle.

The purpose is to identifies if a triangle (ear) can be safely clipped off without cutting

through the polygon.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 87/116

The EarClipping method it's self takes a list of Vector2 vertices defining the polygon.

Implements the main loop of the ear clipping algorithm. It iteratively checks each triplet

of consecutive vertices to determine if they can form an ear. If an ear is found, it is added

to the list of triangles, and the vertex forming the tip of the ear is removed from the list.

The process repeats until only two vertices are left. This is done to decomposes the entire

polygon into a series of triangles.

In Unity, this method allows for dynamic generation of meshes from arbitrary polygon

shapes, which can be useful in numerous applications like dynamic terrain generation,

procedural modeling, or game level design. The script utilizes Unity’s Vector2 and

Vector3 classes to handle geometric calculations, making it well-integrated within the

Unity environment.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 88/116

The JunctionRender Script

The script JunctionRender renders junctions in a simulation using data from a traffic

control interface (TraCIClient). The script includes functionality to retrieve junction data,

process it, generate a mesh using Delaunay triangulation, and render the resulting mesh in

the Unity environment.

The JunctionData method is responsible for processing junction data fetched from a

traffic control interface, creating meshes for these junctions, and then rendering them

within the Unity environment.

The method starts by retrieving a list of all junction IDs. This list represents the

identifiers for all junctions that the traffic simulation knows about. Then iterates over

each junction ID, skipping any that start with "-" or ":". It fetches the shape data for each

valid junction, which includes a list of points defining the junction's geometric boundary.

It uses a HashSet to store unique points since some junctions might have duplicate points.

This ensures that each point is processed only once.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 89/116

The method checks that there are at least three unique points. A minimum of three points

is necessary to form a single triangle, which is the simplest polygon in mesh generation.

If there aren't enough points, the junction is skipped, and a warning is logged.

If there are sufficient points, the method attempts to create a mesh using these points by

calling CreateJunctionMesh, which internally uses the Delaunator library to perform

Delaunay triangulation. If the mesh creation is successful, it proceeds to render the mesh

by calling RenderMesh.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 90/116

The CreateJunctionMesh method is responsible for creating a 3D mesh from a set of

points representing a junction. It uses Delaunay triangulation, a common technique for

mesh generation, particularly when dealing with arbitrary point sets that need to be turned

into a mesh. This process is ideal for creating efficient, non-overlapping triangles that

cover the entire area defined by the points.

A new Mesh object is initialized to hold the vertices and triangles. ‘roadVertices’ is a list

to store the vertex data in 3D. Triangles is a list to define how vertices are connected to

form triangles.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 91/116

The method uses the Delaunator library to perform Delaunay triangulation on the given

points. Delaunay triangulation ensures that no point lies inside the circumcircle of any

triangle. The Delaunator object processes the points and provides a list of indices

(Triangles) that describe how to connect the points into triangles.

The triangles defined by the Delaunator are iterated over in steps of three (since each

triangle is defined by three points). For each index in the triangle definition, the

corresponding point is converted into a Vector3 with a fixed Y value (onGround) to

position it slightly above the ground.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 92/116

The triangles list is populated with indices that are adjusted to be sequential because they

are directly referencing the roadVertices list. The vertices and triangles are assigned to

the mesh.

This method is used to create a visual representation of a junction in a traffic simulation

where accurate and visually appealing junction modeling is required. The use of

Delaunay triangulation ensures that the mesh is optimal in terms of both aesthetics and

computational efficiency, making it suitable for real-time applications.

The RenderMesh method makes a mesh generated for a junction and render it within the

Unity environment by attaching it to a GameObject.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 93/116

SUMO Network

Net.xml file

The .net.xml file is a network file for SUMO that describes the traffic simulation

environment.

The root element <net> defines the network. It consists of attributes like ‘version’ and

schema location for validation reasons.

The <location> element is responsible for defining the boundaries and coordinate system

of a simulation. It uses attributes like netOffset, convBoundary, and origBoundary to

transform geographic coordinates in the simulation environment.

The <edge> element represents a connection or road in the network. Edges may serve

different purposes like internal links within intersections or normal roads. Each edge has

a unique identifier called id and a function attribute to describe its purpose.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 94/116

The <lane> element represents individual lanes on an edge. Each lane has an identifier

called id, a position index called index, a maximum speed called speed, a length called

length, and a geometric description called shape.

The <junction> element describes intersections or nodes in the network. It has an

identifier called id, a type attribute, and coordinates x and y. The junction's geometric

shape is defined by the shape attribute. The <request> element defines the behavior of

traffic at the junction, including permissible movements and conflicts.

The <tlLogic> element is used to define traffic light logic at a junction. It has an

identifier called id and a type attribute. The <phase> element describes a phase of the

Alanna Søpler Real-Time Traffic Simulation

12-May-24 95/116

traffic light cycle. Each phase has a duration in seconds and light states like G for green

and R for red.

The <connection> element shows how lanes connect between edges, especially at

junctions. It has attributes like from, to, fromLane, toLane, dir, and state.

This file structure helps SUMO simulate traffic flow by defining how roads, lanes,

junctions, and traffic control mechanisms are interconnected in a virtual environment.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 96/116

Rou.xml

The rou.xml file specifies the details of vehicle types, routes, and specific vehicle trips

within a simulated network.

The root element, <routes>, provides the namespace and schema location for validation

purposes.

The <vType> element defines a vehicle type with specific attributes, including an

identifier (e.g. "car"), maximum acceleration and deceleration abilities, driver

imperfection (measured in sigma), vehicle length, minimum gap to the front vehicle,

maximum speed, and graphical representation in the simulation.

The <route> element defines a route within the network, with an identifier and a

sequence of edge IDs that make up the route.

The <vehicle> element defines individual vehicle instances that follow specified routes,

with a unique identifier, vehicle type (linked to a <vType> defined earlier), route (linked

to a <route> defined earlier), and a departure time.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 97/116

.sumocfg file

This file is a SUMO (Simulation of Urban MObility) configuration file that is used to set

up and control simulations in the SUMO traffic simulation suite.

The root element of this file is the <configuration> element that specifies the XML

schema instance used for validation.

The <input> element specifies input files necessary for the simulation. There are two

input files specified in this configuration file:

* <net-file value="NetworkB.net.xml"/>: Specifies the network file for the simulation.

This file contains the definition of roads, junctions, and other network features.

* <route-files value="simple_demand.rou.xml"/>: Specifies the route file, which includes

the definitions of vehicle routes, departure times, and other traffic demand elements.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 98/116

These files are essential for running simulations in the SUMO traffic simulation suite,

and this configuration file provides the necessary instructions for setting up and

controlling these simulations.

Creating the network

During this project, two methods of network creation were used. The initial method

involved using software called Netedit. Netedit is a tool from the Simulation of Urban

MObility (SUMO). It is designed to create and modify network files that describe road

networks. Below is a depiction of the Straight Netowkr and the Bend_TL network:

The file that is exported by OSM has an extension of .osm and contains a lot of irrelevant

information such as park details and housing data. To convert this file to a .xml file and

remove the unnecessary data, I use the Java OpenStreetMap editor (JOSM).

Alanna Søpler Real-Time Traffic Simulation

12-May-24 99/116

Generate random traffic flow

The randomTrips.py script is provided by SUMO. It is used for creating random vehicle

trips. It's a part of the SUMO tool suite and generates trip definitions for vehicles in a

network. The script selects random origin-destination pairs to create a set of trips between

them in a network.

To use the script, the network file (net.xml) is passed in. It contains all the necessary

information about the road network, including edges, junctions, and connections. Once

the network file is provided, the RandomTrips.py generates trips by randomly selecting

start (origin) and end (destination) points on the network.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 100/116

The trips file created by the script is usually a .tryps.xml file and contains detailed

information about individual trips, including their origin, destination and departure time.

This script can be re-run everytime, before running the simmulation, using this command.

The command goes as follows:

• First initiates the Python interpreter to run the randomTrips.py script. Then -n flag

specifies the network file to be used by the script.

• The -r flag specifies the output route file where the script will save the generated

trips including the routes.

• The file Straight_demand.rou.xml will contain detailed route information for each

trip.

• The -b option sets the beginning of the simulation period. Here it start when the

simulation starts.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 101/116

• The -p option sets the period or interval between departures of trips. Here, it's set

to 1 second, meaning a new trip will be generated every second. Which is quite

short.

• The -o flag specifies the output file for the trip definitions. This file does not

contain the routes themselves but just the trip information.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 102/116

5. Testing and Analysis

To ensure optimal performance when rendering larger roads in a simulation environment

such as Unity connected with SUMO, there are several key aspects to focus on.

Performance benchmarks play a crucial role in this process. Initially, the baseline was

determined by working from a simple single road network to a real-world network. To

start, the network used a simple single road created using Netedit, and the LaneRender

script generated all lanes the network provided, including internal lanes. These internal

lanes, designated by IDs starting with ':', act as filler lanes for the external ones. They

round out the ends of lanes or overlap gaps between junctions and lanes. These lanes

looked adequate when testing the performance of such a small network. However, when

using the OpenStreetMap application, the extracted network consisted of a lot more

detailed lanes shape.

 After converting the network to an .xml file that SUMO can read, playing the simulation

in Unity most of the lanes were generated. However, it crashed when developing the

lanes surrounding the junction below.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 103/116

 To test where in the process it was struggling, different parts of the algorithms were

commented out to handle the road generation. It was clear that when only the two-point

road generation script was running, the network would generate, but with missing lanes.

However, when the ear-clipping was in the picture, Unity would crash after a few lanes

being generated. This led to the process of optimizing the road render script.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 104/116

Initially, the ear-clipping script handled lanes from three points and up. However, it

became apparent that lanes with three points refer mainly to internal filler lanes and small

lanes that have a curve to them (valid lanes with this issue was handled by combining its

associated lane if found). This is why, in the end, the section of the script dealing with

generating lanes with 3 points was commented out, but it was left in case there was a later

use case that would require three-point mesh generation.

The next step was to only call the ear-clipping algorithm when necessary. After

discovering that the lanes including ':' were not necessary, the 'LaneData' changed

drastically. Firstly, the change was just to skip lanes with the ID of ':'. Then skip lanes

with the symbol ‘-’ due to these lanes only existing in association with their parallel lane.

Lanes that had the ‘-’ merged their shapes with their parallel lanes if found. Which meant

that the ear clipping algorithm would be called less.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 105/116

When looking at the render material, the idea was to make the material as lightweight as

possible. The material was compressed to save space on the disk wherever possible.

Which was a simple step. However, when generating larger networks it made a few

second difference.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 106/116

6. Discussion

Discusstion

This project serves as a starting point for creating a simulation that allows people to

create their own local traffic simulation. Whilst analyzing the cutout of the Dundrum

network, it was apparent during rush hour when bottlenecks would most frequently occur.

More specifically, when vehicles must first stop for the traffic light and then stop to wait

to drive up the junction. However, to make the simulation more durable, it would be

beneficial to have additional parameters to edit the traffic flow. The demand can be

changed though the command line by changing the number of seconds before a new

vehicle generates. However, since not all roads are as populated depending on if they are

main roads or roads leading to a neighborhood. The next step would be to add a

restriction on how many percent of the vehicles go in certain directions.

There is a significant focus on generating roads within simulations to provide a

comprehensive toolset to address multiple aspects of urban planning, making it a valuable

feature. Understanding how traffic flows across a network of roads is important when

analyzing congestion, designing traffic signals, and improving overall traffic efficiency.

Furthermore, simulating traffic on realistic roads makes it easier to identify potentially

dangerous areas and design interventions to enhance safety, such as optimizing road

layouts, improving signage, and road markings.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 107/116

Additionally, generating roads makes it easier for users to simulate their own networks.

The vehicles will generate in the correct coordinates. However, the lanes and junctions

would need to be added manually, which would be a tedious task. Auto-generating the

lanes was an impactful step to make the simulation more flexible for each user's use case.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 108/116

Future Development

The next steps for this simulation include properly handling the User Interface. Currently,

the users are required to go into the command line to open the networks and develop new

trips. It would be better for the user to connect to different networks from a home page as

initially designed. This would require the command line code to be done on Unite's side.

Also, it would be nice for users to have different viewpoints. Cinemabrain is already

imported in the project. If the user would like to view the simulation though one of the

vehicles it would be necessary modification to the SUMO Vehicle script or creating a

new script depending on the methodology. Additionally, it would be interesting for the

user to edit the time between each vehicle that is generated. To represent the decrease or

increase in demand.

The traffic light script will need to be improved. When looking at the few other projects

doing the same as this project, they would manually place the traffic lights. The traffic

lights, as mentioned before, are associated with a junction. However, SUMO only gives

one x,y position for traffic light affecting both directions. This means one will have to

rethink how to find out if there are multiple traffic lights for one junction, perhaps by

looking at the length of the traffic light phase.

Lastly, there is an issue with the lanes being generated by the ear clipping algorithm.

SUMO only gives the center points of the road, which is why it was important to add the

width and length of the road for the two-point lanes. However, the ear clipping algorithm

doesn't consider the full width of the road. This means that if a car runs on a lane

Alanna Søpler Real-Time Traffic Simulation

12-May-24 109/116

constructed by the ear clipping algorithm, it looks like it is running on the side of the

road, while the lane has generated half of the lane and not the total width.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 110/116

7. Conclusion

Although there is still more work to be done, the completed features are significant.

This project has helped me in terms of personal growth by demonstrating my ability

to assert my preferences on how the project should appear, rather than timidly adding

features. The project was challenging in multiple ways, not only because creating a

simulation is not an easy feat, but because information gathering was challenging for

this set up. Nevertheless, the outcome was positive due to what one has accomplished

so far.

Alanna Søpler Real-Time Traffic Simulation

12-May-24 111/116

References

Boris S. Kerner, J. Barcélo, Introduction to Modern Traffic Flow Theory and Control,

2010,

https://www.academia.edu/36079982/Introduction_to_Modern_Traffic_Flow_Theory_an

d_Control

Daellenbach, Hand G., systems and decision making a management science approach,

1994,

https://www.academia.edu/23088679/Daellenbach_systems_and_decision_making_a_ma

nagement_science_approach_wiley_1994_

Anu Maria, Introduction to modeling and simulation, 1997,

https://dl.acm.org/doi/10.1145/268437.268440

Martin Treiber, Ansgar Hennecke and Dirk Helbing, Microscopic Simulation of

Congested Traffic, https://mtreiber.de/publications/micro_tgf99.pdf

Wilco Burghout, Hybrid microscopic-mesoscopic traffic simulation, 2004,

https://www.diva-portal.org/smash/get/diva2:14700/FULLTEXT01.pdf

Denso C. Gazis, THE ORIGINS OF TRAFFIC THEORY, 2002,

https://pubsonline.informs.org/doi/pdf/10.1287/opre.50.1.69.17776

Alanna Søpler Real-Time Traffic Simulation

12-May-24 112/116

AcqNotes, Modeling & Simulation, 2021,

https://web.archive.org/web/20230603104655/https:/acqnotes.com/acqnote/tasks/modelin

g-simulation-overview

Jaume Barcelo, Fundamentals of Traffic Simulation, 2010,

file:///C:/Users/alann/Downloads/331%20(7).pdf

Martin Schönhof, Dirk Helbing, Transportation Research, 2009,

http://web.math.unifi.it/users/cime/Courses/2009/01/200917-Notes.pdf

Jaume Barcelo, FUNDAMENTALS OF TRAFFIC SIMULATION, 2010,

https://epdf.tips/fundamentals-of-traffic-simulation.html

Petter Arnesen, Odd A. Hjelkrem, AN ESTIMATOR FOR TRAFFIC BREAKDOWN

PROBABILITY BASED ON CLASSIFICATION OF TRANSITIONAL

BREAKDOWN EVENTS, 2017, https://sintef.brage.unit.no/sintef-

xmlui/bitstream/handle/11250/2586781/final_Est_Breakdown_Prob.pdf?sequence=2

Zhijing J., Tristan S., Ramesh R., 2019, 3D Traffic Simulation for Autonomous Vehicles

in Unity and Python, https://arxiv.org/pdf/1810.12552

Cristina O., Javier E., Alberto D., Carlos B., Luis S., Markus K., 2018,Connection of the

SUMO Microscopic Traffic Simulator and the Unity 3D Game Engine to Evaluate V2X

Communication-Based Systems, https://www.mdpi.com/1424-8220/18/12/4399

https://web.archive.org/web/20230603104655/https:/acqnotes.com/acqnote/tasks/modeling-simulation-overview
https://web.archive.org/web/20230603104655/https:/acqnotes.com/acqnote/tasks/modeling-simulation-overview
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2586781/final_Est_Breakdown_Prob.pdf?sequence=2
https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2586781/final_Est_Breakdown_Prob.pdf?sequence=2
https://arxiv.org/pdf/1810.12552
https://www.mdpi.com/1424-8220/18/12/4399

Alanna Søpler Real-Time Traffic Simulation

12-May-24 113/116

Leyre A., Cristina O.,2019, Vehicle-Pedestrian Interaction in SUMO and Unity3D

https://www.jku.at/fileadmin/gruppen/344/Publications/Vehicle-

Pedestrians_Interaction_SUMO.pdf

Shin I., Beirami M., Cho S., Yu, Y.,2015, Development of 3D Terrain Visualization for

Navigation Simulation using a Unity 3D Development Tool,

https://koreascience.kr/article/JAKO201522359516445.page

Antoine C., Bruno D., 2021, Intra-City Traffic Data Visualization: A Systematic

Literature Review, https://ieeexplore.ieee.org/abstract/document/9484412

Ismail B., Serdar B., Gurcan B., A.P. B., Hairi K., Alias A., R., 3D MODELLING AND

VISUALIZATION BASED ON THE UNITY GAME ENGINE – ADVANTAGES AND

CHALLENGES, 2017,

https://isprs-annals.copernicus.org/articles/IV-4-W4/161/2017/isprs-annals-IV-4-W4-

161-2017.pdf

Alberto M., Gershon B., Mehler B., Bryan R., 2020, Driver-initiated Tesla Autopilot

Disengagements in Naturalistic Driving,

https://www.researchgate.net/publication/344378805_Driver-

initiated_Tesla_Autopilot_Disengagements_in_Naturalistic_Driving

Guang Y., Yunzhi X., Lingzhong M., Pengqi W., Yuan S., Qinghong Y., Qian D., 2021,

Survey on Autonomous Vehicle Simulation Platforms,

https://dsa21.techconf.org/download/DSA2021_FULL/pdfs/DSA2021-

1sP33wTCujRJmnnXDjv3mG/439100a692/439100a692.pdf

https://www.jku.at/fileadmin/gruppen/344/Publications/Vehicle-Pedestrians_Interaction_SUMO.pdf
https://www.jku.at/fileadmin/gruppen/344/Publications/Vehicle-Pedestrians_Interaction_SUMO.pdf
https://koreascience.kr/article/JAKO201522359516445.page
https://ieeexplore.ieee.org/abstract/document/9484412
https://isprs-annals.copernicus.org/articles/IV-4-W4/161/2017/isprs-annals-IV-4-W4-161-2017.pdf
https://isprs-annals.copernicus.org/articles/IV-4-W4/161/2017/isprs-annals-IV-4-W4-161-2017.pdf
https://www.researchgate.net/publication/344378805_Driver-initiated_Tesla_Autopilot_Disengagements_in_Naturalistic_Driving
https://www.researchgate.net/publication/344378805_Driver-initiated_Tesla_Autopilot_Disengagements_in_Naturalistic_Driving
https://dsa21.techconf.org/download/DSA2021_FULL/pdfs/DSA2021-1sP33wTCujRJmnnXDjv3mG/439100a692/439100a692.pdf
https://dsa21.techconf.org/download/DSA2021_FULL/pdfs/DSA2021-1sP33wTCujRJmnnXDjv3mG/439100a692/439100a692.pdf

Alanna Søpler Real-Time Traffic Simulation

12-May-24 114/116

Sergey D., Alexander A., Dmitry L., Alexey N., Evgeniy S., 2020, IOP Conference

Series: Materials Science and Engineering,

https://iopscience.iop.org/article/10.1088/1757-899X/918/1/012058/meta

Jichao W., Lucas P., John R. M., Bin W., Chenn Z., 2015, Simulation and visualization

of industrial processes in unity, https://dl.acm.org/doi/abs/10.5555/2874916.2874929

C. Donalek et al., "Immersive and collaborative data visualization using virtual reality

platforms," 2014 IEEE International Conference on Big Data (Big Data), Washington,

DC, USA, 2014, pp. 609-614, doi: 10.1109/BigData.2014.7004282. keywords: {Data

visualization;Three-dimensional displays;Collaboration;Visualization;Big data;Virtual

reality;Abstracts;astroinformatics;visualization;virtual reality;data analysis;big

data;pattern recognition},

Akshay G., 2023, Visualization of Industrial Production Processes using 3D Simulation

Software for Enhanced Decision-Making,

https://www.researchgate.net/publication/374862435_Visualization_of_Industrial_Produ

ction_Processes_using_3D_Simulation_Software_for_Enhanced_Decision-Making

M. Dikmen, C. Burns, 2017, Trust in autonomous vehicles: The case of Tesla Autopilot

and Summon, https://ieeexplore.ieee.org/abstract/document/8122757

M. Dikmen and C. Burns, "Trust in autonomous vehicles: The case of Tesla Autopilot

and Summon," 2017 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), Banff, AB, Canada, 2017, pp. 1093-1098, doi: 10.1109/SMC.2017.8122757.

keywords: {Automation;Vehicles;Advanced driver assistance systems;Analysis of

https://iopscience.iop.org/article/10.1088/1757-899X/918/1/012058/meta
https://dl.acm.org/doi/abs/10.5555/2874916.2874929
https://www.researchgate.net/publication/374862435_Visualization_of_Industrial_Production_Processes_using_3D_Simulation_Software_for_Enhanced_Decision-Making
https://www.researchgate.net/publication/374862435_Visualization_of_Industrial_Production_Processes_using_3D_Simulation_Software_for_Enhanced_Decision-Making
https://ieeexplore.ieee.org/abstract/document/8122757

Alanna Søpler Real-Time Traffic Simulation

12-May-24 115/116

variance;Autonomous automobiles;Correlation;System analysis and design;trust in

automation;automated driving;advanced driver assistance systems},

A. Eriksson a, V.A. Banks b, N.A. Stanton, 2017, Transition to manual: Comparing

simulator with on-road control transitions,

https://www.sciencedirect.com/science/article/abs/pii/S0001457517301094

G. Yang et al, 2021, Survey on Autonomous Vehicle Simulation Platforms,

https://ieeexplore.ieee.org/abstract/document/9622937

G. Yang et al., "Survey on Autonomous Vehicle Simulation Platforms," 2021 8th

International Conference on Dependable Systems and Their Applications (DSA),

Yinchuan, China, 2021, pp. 692-699, doi: 10.1109/DSA52907.2021.00100. keywords:

{Point cloud compression;Industries;Analytical models;Costs;Tools;Autonomous

vehicles;Research and development;autonomous vehicle;test and verification;simulation

test;simulation elements;simulation technology},

Olof E., Jennifer L., Padmini S., Hans-Martin H., Setting AI in context. A case study on

defining the context and operational design domain for automated driving,

https://arxiv.org/pdf/2201.11451

Schulke A., Mai Vi N., 2023, The introduction of self-driving / full-automation trucks:

Will we live among these modern dinosaurs?

https://www.econstor.eu/bitstream/10419/268391/1/1831592185.pdf

https://www.sciencedirect.com/science/article/abs/pii/S0001457517301094
https://ieeexplore.ieee.org/abstract/document/9622937
https://arxiv.org/pdf/2201.11451
https://www.econstor.eu/bitstream/10419/268391/1/1831592185.pdf

Alanna Søpler Real-Time Traffic Simulation

12-May-24 116/116

Marie-Ange L., Frédéric Le M., Eric M., Julien D., Richard D., 2014, VANET

Applications: Hot Use Cases, https://arxiv.org/pdf/1407.4088

Vanessa N., David W., Farzaneh S., Maryam Z., 2021, Application of Advanced Driver-

Assistance Systems in Police Vehicles,

https://journals.sagepub.com/doi/epub/10.1177/03611981211017144

https://arxiv.org/pdf/1407.4088
https://journals.sagepub.com/doi/epub/10.1177/03611981211017144

